

Integration of information and optimization models for routing in city logistics

Dirk Mattfeld and Jan Fabian Ehmke, Shonan Village, 18.12.2012

Introduction Challenges for city logistics service providers

ш	Peaped w StopsShop	Delivery Times Select an available time for delive	Return to Shopping	
d.c	Search Manage My NutriFilter®	May 2011	Wednesday, May 25 Delivery	
d	General M Produce M Meat & 🥰 The 🚲 N	Su Mo iu we in Fr Sa	Evening (Submit Order by 11:59PM Tuesday, May 24)	
еа	Grocery Stand Seafood To Deli	8 9 10 11 12 13 14	3:00PM - 5:00PM	
v.p		15 16 17 16 19 20 23	3:30PM - 7:00PM ETA Save \$1.00 Greener Select	
Š		22 23 24 25 26 27 28 29 30 31	4:00PM - 6:00PM Select	
_	Dairy Frozen Foods Beverages			

- Increasing importance of online retail and e-commerce
- More complex supply chains require transshipment on time
- Time-varying (and increasing) traffic demand within limited transport infrastructure of conurbations (→ congestion)
- City logistics service providers have to realize more reliable delivery tours considering tight customer time
- Vehicle routing for city logistics applications demands for time-dependent travel times in order to meet increasing customer requirements more efficiently.

Introduction What Google does

Technische Universität Braunschweig

Dirk C. Mattfeld| Integration of information and optimization models for routing in city logistics | Page 3

Agenda

Information models	 Provision of time-dependent travel times Transformation of empirical traffic data by Data Mining Evaluation of time-dependent travel times
Integration	 Integration of time-dependent travel times Modelling of time-dependent networks Calculation of time-dependent shortest paths
Optimization models	 Design and evaluation of a vehicle routing system Routing of a single vehicle and of a fleet of vehicles Impact of customer time windows

Information models Collection and transformation of empirical traffic data

- Goal: provision of compact, time-dependent travel time data sets
- Aggregation of telematics based traffic data by Data Mining
- Implementation of the Knowledge Discovery Process (Fayyad et al. 1996; Han, Kamber 2000)
- Exemplary analysis of ~230 millions of empirical traffic data (Floating Car Data (FCD), Stuttgart, DLR, 2003-2005)

Dirk C. Mattfeld| Integration of information and optimization models for routing in city logistics | Page 5

Information models Preprocessing: Spatial distribution of FCD

Information models **Preprocessing: Distribution of speeds**

- Preparing FCD for subsequent analysis by Data Mining procedures
- Handling of incomplete, erroneous FCD measurements

TIME	LINK	SPEED		
time of positioning	road segment ID	calculated speed [km/h]		
01.08.2003 07:01	54362718	50.73		

Technische Universität Braunschweig

Dirk C. Mattfeld Integration of information and optimization models for routing in city logistics | Page 7

Information models 1st and 2nd level of aggregation

1st level of aggregation

- Empirical traffic data → planning data
- Daily curves are derived from 7x24 average speeds per link
- "FCD Hourly Average" (FH)
- Comprehensive representation of timedependent travel times

2nd level of aggregation

- Compress planning data without significant loss of planning reliability (→ cluster analysis)
- Speed reduction factors represent deviation from average speed
- "FCD Weighted Average" (FW)
- Compact representation of timedependent travel times

Information models Results of 2nd level aggregation for a typical weekday

Information models Evaluation of time-dependent travel times (1/2)

- Planning and evaluation of routes
 Which route is in fact the fastest?
 Which route leads to the most reliable travel time anticipation?
- Evaluation of planned routes by simulation

Realization by recalculation of travel times based on historical FCD

Comparison of average deviation between planned and realized travel times

- Experimental setup (3600 routes in total)
 - 3 traveler scenarios (downtown, inner city, outer city, for 100 OD pairs each)
 - 5 traffic scenarios (2x "free flow", 2x "rush hour", "average traffic flow")
 - 4 travel time data sets (digital roadmap, FA, FH, FW)

Information models Evaluation of time-dependent travel times (2/2)

Agenda

Information models	 Provision of time-dependent travel times Transformation of empirical traffic data by Data Mining Evaluation of time-dependent travel times
Integration	 Integration of time-dependent travel times Modelling of time-dependent networks Calculation of time-dependent shortest paths
Optimization models	 Design and evaluation of a vehicle routing system Routing of a single vehicle and of a fleet of vehicles Impact of customer time windows

Integration Integration of time-dependent information models

Time-dependent optimization requires a time-dependent topology of the road network

Following Pallottino (1997)

Integration Time-Space Network

- Travel times depend on departure time on an edge
- Common approach: multiplication of network according to time series

Integration Time-aggregated graph

- Smaller network, but more complex data structures
- Calculation of shortest paths similar to static networks, if FIFO condition is fulfilled
- FIFO condition: vehicles travelling on the same edge must not pass each other
- FIFO graphs ensure that waiting is never beneficial and sub paths of shortest paths again represent shortest paths
- Time-dependent travel times may violate the FIFO condition
- Transformation of FH and FW data into a FIFO consistent, time-aggregated graph
- Calculation of time-dependent distance matrices f
 ür vehicle routing procedures

Agenda

Information models	 Provision of time-dependent travel times Transformation of empirical traffic data by Data Mining Evaluation of time-dependent travel times
Integration	 Integration of time-dependent travel times Modelling of time-dependent networks Calculation of time-dependent shortest paths
Optimization models	 Design and evaluation of a vehicle routing system Routing of a single vehicle and of a fleet of vehicles Impact of customer time windows

Optimization models What we are aiming at

Dirk C. Mattfeld| Integration of information and optimization models for routing in city logistics | Page 17

Optimization models Routing of a single vehicle

 Time-Dependent Traveling Salesman Problem (TDTSP): determine the optimal order of delivery for a given departure time

- TDNN: Amend that node that can be reached fastest at current departure time
- Simply lookup travel times from timedependent distance matrix for the current time slice
- TDIH: Complement the tour by that customer that extends the current tour minimally at cost minimal position
- Determination of insertion costs more expensive than in the static case
- TDSAV: Serve each customer individually, then merge pendulum tours in order of decreasing savings
- Static calculation of savings is opposed by time-dependent realization

Optimization models Routing of a fleet of vehicles

- Time-Dependent Vehicle Routing Problem (TDVRP): determine the optimal assignment of customers to vehicles as well as the optimal order of delivery for a given departure time
- Consider customer time windows (→ TDVRPTW)

Optimization models Results of TDTSP calculation

- Exemplary delivery to 40 inner city customers (service time 10 minutes)
- Results for 7x24 departure times from the depot (Mon, 00:30 Sun, 23:30)

— TDNN — LANTIME ------ Best static

- Overall travel times vary between 70 and 100 minutes
- Tours reflect typical travel times at different times of the day

Optimization models Impact of time-dependent travel times (1/2)

- What is the impact of time-dependent travel times on the structure of a tour?
- Idea: analyze the structure of temporally consecutive tours by comparison of the order of customers (precedence relations)
- Quantification based on the normalized Hamming distance

$$d_{x,y} = \frac{1}{l} \sum_{i=1}^{l} \operatorname{xor}(x_i, y_i)$$

	x ₁ < x ₂	x ₁ < x ₃	$x_1 < x_4$	x ₁ < x ₅	x ₂ < x ₃	$x_2 < x_4$	x ₂ < x ₅	x ₃ < x ₄	x ₃ <x<sub>5</x<sub>	x ₄ < x ₅
Α	0	0	0	0	0	0	0	0	0	0
В	1	1	1	1	1	1	1	1	1	1

$$d_{A,B} = \frac{1}{10}(10) = 1$$

A
$$\dots$$
 $x_1 - x_2 - x_3 - x_4 - x_5 \dots$
C \dots $x_1 - x_4 - x_3 - x_2 - x_5 \dots$
 $x_5 - x_5 - x_5$

	x ₁ < x ₂	x ₁ < x ₃	x ₁ < x ₄	x1 < x5	x ₂ < x ₃	x ₂ < x ₄	x ₂ < x ₅	x ₃ < x ₄	x3 < X2	x4< x5
Α	0	0	0	0	0	0	0	0	0	0
Ċ	0	0	0	0	1	1	0	1	0	0

$$d_{A,C} = \frac{1}{10}(3) = 0.3$$

Dirk C. Mattfeld| Integration of information and optimization models for routing in city logistics | Page 21

Optimization models Impact of time-dependent travel times (2/2)

Comparison of precedence relations for inner city customers

TDNN LANTIME

- Nearest neighbor procedures (TDNN) feature small changes only
- Tabu Search (LANTIME) reacts more sensitively to time-dependent travel times

Optimization Impact of customer time windows on TDVRP calculation

- Reliability of customer time windows defines an important part of service quality
- Shorter tours or addition of buffer times may increase service quality, but decrease efficiency
- Exemplary delivery to 100 customers for three exemplary delivery slots with 15 minute delivery time windows
- Comparison of three planning approaches: static (FA), with buffer time (FA+), time-dep. (FW)

- Buffer times inefficiently utilize transportation resources
- Time-dependent planning may ensure service quality as well as efficiency

Summary and outlook

- Implementation of a planning system for time-dependent vehicle routing in city logistics
- Alignment of recent technology, data analysis and optimization procedures
- Next step: conduct field studies in urban areas (attended home delivery or similar services)
- Data availability will increase (→ Bluetooth, WLAN, Floating Phone Data)
- More efficient network modeling for timedependent, large area networks
- Consider stochastic information in network modeling
- Improve solution methodology (→ heuristics)

Technische Universität Braunschweig

Thank you for your attention!