Distributed Random Sampling

Srikanta Tirthapura
Iowa State University
(joint work with David Woodruff)
Distributed Stream Monitoring

 Requests

 Server 1 (Tokyo)
 Server 2 (Iowa)
 Server 3 (India)

 Master Server

What is a typical Request like?
What are Frequent request types?

Distributed Random Sampling
Distributed Streams

\[S = \bigcup_{j=1}^{k} S_j \]

k Sites

Answers Queries About

Sketches

Distributed Random Sampling
Plan

- Random Sampling Over Distributed Streams
- Distributed Streaming Models
Random Sampling: Definition (1)

\[S = \bigcup_{1}^{k} S_i \]

- **Task:** central coordinator must continuously maintain a random sample of size \(s \) from \(S \)
- **Cost:** Total number of messages sent by the protocol over the entire execution of observing \(n \) elements
Random Sampling: Definition (2)

Given a data set P of size n, a random sample S is defined as the result of a process.

1. **Sample Without Replacement of Size s ($1 \leq s \leq n$)**

 Repeat s times

 1. $e \leftarrow \{\text{a randomly chosen element from } P\}$
 2. $P \leftarrow P - \{e\}$
 3. $S \leftarrow S \cup \{e\}$

2. **Sample With Replacement of size s ($1 \leq s$)**

 Repeat s times

 1. $e \leftarrow \{\text{a randomly chosen element from } P\}$
 2. $S \leftarrow S \cup \{e\}$
Our Results: Upper and Lower Bounds

• Upper Bound: An algorithm for continuously maintaining a random sample of S with message complexity.

\[O\left(\frac{k \log \frac{n}{s}}{\log\left(1 + \frac{k}{s}\right)}\right) \]

• Lower Bound: Any algorithm for continuously maintaining a random sample of S must have above message complexity, w.h.p

• \(k \) = number of sites, \(n \) = stream size, \(s \) = desired sample size

• “Optimal Sampling for Distributed Streams Revisited”, DISC 2011: T. and David Woodruff
Prior Work

• **Random Sampling on Distributed Streams**
 – Cormode, Muthukrishnan, Yi, and Zhang: *Optimal sampling from distributed streams*. ACM PODS, pages 77–86, 2010

• **Single Stream: Reservoir Sampling Algorithm**
 – Waterman (1960s)
Prior Work

<table>
<thead>
<tr>
<th></th>
<th>Upper Bound</th>
<th>Lower Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Our Result</td>
<td>Cormode et al.</td>
</tr>
<tr>
<td>$s < k/8$</td>
<td>$O\left(\frac{k \log(n/s)}{\log(k/s)}\right)$</td>
<td>$O(k \log n)$</td>
</tr>
<tr>
<td>$s \geq k/8$</td>
<td>$O(s \log (n/s))$</td>
<td>$O(s \log n)$</td>
</tr>
</tbody>
</table>

$k = \text{number of sites}$
$n = \text{Total size of streams}$
$s = \text{desired sample size}$
High-Level Idea

• Each element assigned random weight in [0,1]

• Coordinator Maintains the set of elements with the s smallest weights
Algorithm

1

2

k

Coordinator

Distributed Random Sampling
Algorithm: Element arrives at 1

1
2
k

Coordinator
Weight of each element
= random number in [0,1]

Weight for each element
Weight for each element

Distributed Random Sampling
Algorithm

Distributed Random Sampling
Algorithm: Random Sample

Random Sample = set of Elements with s smallest Weights

$u = 0.33$
s-th smallest weight seen so far

Distributed Random Sampling
Algorithm: Sites “Cache” value of u

u_1 is 1’s view of $u = 0.6$
$u_2 = 0.5$
$u_k = 0.33$

$u = 0.33$

Distributed Random Sampling
Algorithm: Sites “Cache” value of u

$u_1 = 0.6$
$u_2 = 0.5$
$u_k = 0.33$

u_1, u_2, \ldots, u_k are all at least u
So, elements that belong to The sample are definitely sent

$u = 0.33$

Coordinator

Random Sample

0.2 0.33

Distributed Random Sampling
Element at 1

\[u_1 = 0.6 \]

\[u_2 = 0.5 \]

\[u_k = 0.33 \]

\[u = 0.33 \]

Distributed Random Sampling
Discarded Locally

\[u_1 = 0.6 \]

\[u_2 = 0.5 \]

\[u_k = 0.33 \]

\[u = 0.33 \]
Element at 1

$u_1 = 0.6$

1

$u_2 = 0.5$

2

$u_k = 0.33$

k

$u = 0.33$

Coordinator

Random Sample

0.2 0.33

Distributed Random Sampling
“Wasteful” Send

\[u_1 = 0.6 \]

\[u_2 = 0.5 \]

\[u_k = 0.33 \]

\[u = 0.33 \]

Distributed Random Sampling
Discarded by Coordinator

\[u_1 = 0.6 \]

\[u_2 = 0.5 \]

\[u_k = 0.33 \]

Distributed Random Sampling
But: Coordinator Refreshes Site’s View

\[u_1 = 0.6 \]

\[u_2 = 0.5 \]

\[u_k = 0.33 \]

Distributed Random Sampling
Site’s View is Refreshed

\[u_1 = 0.33 \]

\[1 \]

\[u_2 = 0.5 \]

\[2 \]

\[u_k = 0.33 \]

\[k \]

\[u = 0.33 \]

Coordinator

Random Sample

0.2

0.33
Algorithm Notes

• A message from site to coordinator either
 – Changes the coordinator’s state
 – Or Refreshes the client’s view
Algorithm at Site i when it receives element e

// u_i is i’s view of the minimum weight so far in the system
// u_i is initialized to ∞

1. Let $w(e)$ be a random number between 0 and 1

2. If $(w(e) < u_i)$ then
 1. Send $(e, w(e))$ to the coordinator, and receive u' in return
 2. $u_i \leftarrow u'$
Algorithm at Coordinator

1. Coordinator maintains u, the s-th smallest weight seen in the system so far

2. If it receives a message $(e,w(e))$ from site i,
 1. If $(u > w(e))$, then update u and add e to the sample
 2. Send u back to i
Analysis: High Level View

- An execution divided into a few “Epochs”
- Bound the number of epochs
- Bound the number of messages per epoch
Analysis: Epochs

- Epoch 0: all rounds until u is $1/r$ or smaller
- Epoch i: all rounds after epoch $(i-1)$ till u has further reduced by a factor r
- Epochs are not known by the algorithm, only used for analysis

u is the s-th smallest weight seen in the system, so far.

- Round = 0
 - $u = \infty$

- Epoch 0
 - $u = m_1 \leq \frac{1}{r}$

- Epoch i
 - $u = m_i \leq \frac{m_i}{r}$

- Rounds
Bound on Number of Epochs

Let ξ denote the number of epochs in an execution.

Lemma: $E[\xi] \leq \left(\log\left(\frac{n}{s}\right) \right) + 2$

Proof: $E[\xi] = \sum_{i \geq 0} \Pr[\xi \geq i]$

At the end of i epochs, $u \leq \frac{1}{r^i}$

At the end of $\left(\frac{\log(n)}{\log r} \right) + j$ epochs, $u \leq \left(\frac{s}{n} \right) \frac{1}{r^j}$

We can show using Markov rule, $\Pr\left[\xi \geq \left(\frac{\log(n)}{\log r} \right) + j \right] \leq \frac{1}{r^j}$
Algorithm B versus A

• Suppose our algorithm is “A”. We define an algorithm “B” that is the same as A, except:
 – At the beginning of each epoch, coordinator broadcasts u (the current s-th minimum) to all sites
 – B easier to analyze since the states of all sites are synchronized at the beginning of each epoch

• Random sample maintained by “B” is the same as that maintained by A

• Lemma: The number of messages sent by A is no more than twice the number sent by B
 – Henceforth, we will analyze B
Analysis of B: Bound on Messages Per Epoch

- $\mu = \text{total number of messages}$
- μ_j: number of messages in epoch j
- X_j: number messages sent to coordinator in epoch j
- ξ: number of epochs

\begin{align*}
\cdot \mu &= \sum_{j=0}^{\xi-1} \mu_j \\
\cdot \mu_j &= k + 2X_j \\
\cdot \mu &= \xi k + 2 \sum_{j=0}^{\xi-1} X_j
\end{align*}

Now, only need to bound X_j, the number of messages to coordinator in epoch j
Bound on X_j

• Lemma: For each epoch j, $E[X_j] \leq 1 + 2rs$

• Proof:
 – First compute $E[X_j]$ conditioned on n_j and m_j
 – Remove the conditioning on n_j (the number of elements in epoch j)
 – Remove the conditioning on m_j (the value of u at the beginning of epoch j)
Upper Bound

Theorem: The expected message complexity is as follows

- If $s \geq \frac{k}{8}$ then $E[\mu] = O \left(s \log \left(\frac{n}{s} \right) \right)$

- If $s < \frac{k}{8}$ then $E[\mu] = O \left(\frac{k \log \left(\frac{n}{s} \right)}{\log \frac{k}{s}} \right)$

Proof: $E[\mu]$ is a function of r. Minimize with respect to r, to get the desired result.
Suppose m elements observed so far.
Lower Bound: Execution 1

Suppose m elements Observed so far

Site 1 saw $\frac{m}{s}$ more elements

s is the sample size

Suppose m elements Observed so far
Suppose m elements Observed so far

Site 1 saw $\frac{m}{s}$ more elements

Constant probability that one of site 1’s elements will be included in the sample

s is the sample size
Suppose m elements observed so far.

Site 1 saw $\frac{m}{s}$ more elements and (on expectation) sent a constant number of messages to coordinator.

There is a constant probability that one of site 1’s elements will be included in the sample.

s is the sample size.
Lower Bound: Execution 2

Suppose m elements observed so far

Site 2 saw $\frac{m}{s}$ more elements
And (on expectation) sent a constant number of messages to coordinator

Suppose m elements observed so far

s is the sample size
Suppose m elements observed so far.

Site 2 saw $\frac{m}{s}$ more elements.

Site 1 saw $\frac{m}{s}$ more elements.

Cannot distinguish from Execution 2, unless it received a message from coordinator – message cost here.

s is the sample size.
Lower Bound: Execution 3

Cannot distinguish from Execution 2, unless it received a message from coordinator – message cost here

Site 2 saw $\frac{m}{s}$ more elements

Suppose m elements Observed so far

Site 1 saw $\frac{m}{s}$ more elements

Cannot distinguish from Execution 1, unless it received a message from coordinator – message cost here

Distributed Random Sampling
Lower Bound

Theorem: For any constant \(q, 0 < q < 1 \), any correct protocol must send

\[
\Omega\left(\frac{k \log\left(\frac{n}{s}\right)}{\log\left(1+\frac{k}{s}\right)}\right)
\]

messages with probability at least \(1-q \), where the probability is taken over the protocol’s internal randomness.

\begin{itemize}
 \item \(k = \text{number of sites} \)
 \item \(n = \text{Total size of stream} \)
 \item \(s = \text{desired sample size} \)
\end{itemize}
Summary

• Random Sampling without replacement on distributed streams, with Optimal message complexity

• Algorithm for Random Sampling with Replacement
Plan

• Random Sampling Over Distributed Streams

• Distributed Streaming Models
 – When to Evaluate a Query (Triggers)
Stream Monitoring: When is an Answer Needed?

- **One-Shot:** only at the end of observation

- **Continuous:** at each time instant
 - Distributed continuous streaming model

- **In general:** somewhere in between
 - Specified by a “Trigger” policy
Trigger Policies in Streaming Systems (Ex: IBM Infosphere Streams)

• Generally: When a function g exceeds a threshold, the trigger is fired, and then resets

• Most Popular:
 – Count-based: $g = \text{number of tuples observed}$
 – Time-based: $g = \text{Current Time}$
 – Sometimes, $f = g$
Centralized vs Distributed Triggers

• Centralized Trigger Maintenance Usually Trivial
 – Count Based
 – Time Based

• Distributed Trigger Maintenance is not
Distributed Time-Based Trigger

- Every t time units, a result must be produced
 - No need to maintain the function continuously
- Assume clocks are synchronized across sites

Problem 1: Develop Distributed Protocols for Function Maintenance With Time-Based Triggers
Distributed Count-Based Trigger

• Every n elements, a result must be produced
 – Every n element arrivals, a random sample of the stream

Problem 2: Develop Distributed Protocols for Function Maintenance Over Count-Based Triggers
Distributed Count-Based Trigger Approach 1

• Use a continuous monitoring algorithm to monitor function f at all times (Algo f-Monitor)

• Use a continuous count monitoring algorithm to monitor count at all times (Algo count-Monitor)

• When count-Monitor triggers, return the result maintained by f-Monitor
Distributed Count-Based Trigger

Problems with Approach 1

• Algo f-Monitor result needed only occasionally, yet it is working at all times
Distributed Count-Based Trigger: Approach 2

• Run count-Monitor continuously
 – Cost: $O(k \log \tau)$ messages per trigger

• When count-Monitor triggers, contact all sites for updates
 – Coordinator refreshes the value of the function only at this point
Distributed Count-Based Trigger

• Approach 2 works reasonably well

• Observations:
 1. Performance of count-Monitor very important
 2. Performance of f-Monitor does not matter as long as it is better than count-Monitor
 3. Algorithm f-Monitor should be able to handle multiple elements arriving in same instant
Research Problem

• Protocols and Lower Bounds for Distributed Stream Monitoring Under
 – Time-based triggers
 – Count-based triggers
Questions