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ABSTRACT
This paper proposes a statistical string similarity model for approximate matching in in-
formation linkage. The proposed similarity model is an extension of hidden Markov model
and its learnable ability realizes string matching function adaptable to various information
sources. The main contribution of this paper is to develop an efficient learning algorithm for
estimating parameters of the statistical similarity model. The proposed algorithm is based
on the Expectation-Maximization (EM) technique where dynamic programing technique is
used to update parameters in EM process.
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1 Introduction
String similarity is a basic information for linking

records and documents. When linking records, we usu-
ally measure similarity between corresponding fields,
then merge them to obtain a similarity between records.
String similarity is often used for field similarity (e.g.,
[1]). It has been studied in the literature of approximate
string matching [7].

The edit distance is the most frequently used string
similarity that is defined as the minimum number of
edit operations required to convert one string to another.
Since the cost of each edit operation is fixed, it can-
not represent similarity pattern specific to objective data
set.

To solve this problem several string similarity mod-
els have been proposed. They are categorized into two
groups: one is a discrete similarity model, such as a
confusion table and automaton; the other is a quan-
titative model, such as a statistical confusion matrix.
Quantitative models have the advantage of constructing
a more precise model when a large quantity of training
data is available. Probabilistic models are especially
suitable for integrating a language model with a simi-
larity model such as in speech recognition [9].

The statistical confusion matrix [3] is a typical sim-
ilarity model for OCR errors. Myka et al. [6] reported
that it had good performance in their comparative study
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of text search. However, string mapping handled in
the confusion matrix are limited to the (1,1) substi-
tution operation. Li and Lopresti proposed a model
where string mapping patterns were categorized from
the viewpoint of string lengths [5]. In this model, a pair
(i, j) of lengths of compared strings are used as string
mapping pattern, and weight or cost is assigned to each
pattern in order to calculate the similarity of two strings
by dynamic programming matching. This model can
represent insertion, deletion, and framing operations,
as well as substitution operation. However, in order
to utilize the model, we must determine the weight for
each pattern. Furthermore, the weight is the same if
the mapping pattern is the same. Ohta et al. [8] pro-
posed a probabilistic automaton that handles insertion
and deletion operations as well as substitution opera-
tion and showed that the model is effective for fuzzy
full text searches. Ristad proposed a statistical model
for the cost of edit operations [10]. In this model, the
edit operations converting strings is regarded as a state
transition sequence of a hidden Markov model. The
cost of edit operations is defined via parameters of the
model. They are estimated from training pairs of simi-
lar strings.

This paper proposes a similarity model that handles
any pair of lengths of original and recognition strings
including insertion, deletion, and substitution opera-
tions, and derives an efficient parameter estimation al-
gorithm. The proposed model is similar to Ristad’s
model, but it is designed to handle record structure [11]
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as well as unstructured string. The rest of this paper is
organized as follows. Section 2 defines the proposed
model. Section 3 proposes a parameter estimation al-
gorithm for the model based on the expectation maxi-
mization (EM) technique. Appendix derives the update
formulas in EM step.

2 Statistical String Similarity Model
In order to handle various types of string similarity,

we introduce an extended hidden Markov model called
the dual variable length output hidden Markov model
(DVHMM) that produces pairs of similar strings [12].
The states of the DVHMM correspond to the string
mapping patterns from the viewpoint of output string
length, and they are characterized by a pair of lengths
of similar strings. For example, a pair (2,1) of output
string lengths means that two consecutive characters are
similar to one character. As an output symbol, the state
corresponding to a pair (i, j) produces a pair of similar
strings whose lengths are i and j, respectively. For ex-
ample, suppose a set {a,b} is output characters. Then,
the output symbols of the state (2, 1) are {(aa, a), (aa, b),
(ab, a), (ab, b), (ba, a), (ba, b), (bb, a), (bb, b)}. A state
(1,0) means that the length of the original (resp. con-
verted) output string is 1 (resp. 0), i.e., an insertion op-
eration, whereas a state (0,1) corresponds to a deletion
operation. A state (1,1) corresponds to a substitution
operation. The states of the DVHMM are categorized
into two groups:

• non-null states that produce a pair of similar
strings and

• null states that produce a null output and work to
prohibit undesirable output production.

Fig. 1 shows an example of a DVHMM in which the
output symbols are omitted due to space restrictions.
Three non-null states q, r and s corresponds to delete,
insert, and substitute operations, respectively. On the
other hand, there is one null state f that stands for
the termination of state transition. With this statistical
model, we start a transition from any non-null state ac-
cording to the initial probability distribution, moves to
any non-null state according to the transition probabili-
ties, then stop at the null state f. At each non-null state,
the model produces a pair of strings of corresponding
lengths.

Let us define the DVHMM formally. First, we define
the notation used in the following discussion. Gener-
ally, an upper case letter denotes a set, a bold face letter
denotes a sequence and a string, calligraphic letter de-
notes a function symbol, and a Greek letter denotes a
parameter. For a set S , S l denotes the set of sequences
of length l consisting of elements in S . |S | denotes the

Fig. 1 An example of DVHMM

cardinality of a set S . |x| denotes the length of x, xi de-
notes the ith component of x, and xi: j denotes a partial
sequence of x starting at the ith character and ending
at the jth character of x. A partial sequence x:i and xi:

denote a prefix ending at the ith component and a suffix
starting at the ith component of x, respectively.

The DVHMM is denoted by a tuple M ≡ (A, S , θ).

• The set A is an alphabet.

• The set S is states consisting of non-null states S x

and null states S 0, i.e., S = S x ∪ S 0. Each non-
null state q produces pairs of strings {(a, b) | a ∈
Aa, b ∈ Ab} where a and b are the lengths of the
original and converted strings of s. Os denotes the
set of pairs of strings produced by the state s.

• The parameters θ consists of the following initial,
transition, and output probabilities:

– For a state s ∈ S , the probability π(s) denotes
the initial probability.

– For a state s and r in S , the probability τ(s, r)
denotes the transition probability from a state
s to a state r.

– For a state s ∈ S and a pair (a, b) ∈ Os

the probability o(s, a, b) denotes the output
probability that a state s produces a and b
as an original and a converted string, respec-
tively.

From the definition of the DVHMM, a sequence s ≡
s1s2 · · · sn of state transitions uniquely decomposes the
pair (u, v) of strings into the sequence

(u1, v1), (u2, v2), · · · , (un, vn) .

This means that a state transition sequence represents
an alignment of a pair of strings. The probability that
a DVHMM produces the pair (u, v) with the state se-
quence s is given by
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Pr(u, v, s | θ) = π(s1)
n−1∏

i=1

{τ(si, si+1) · o(si, ui, vi)}

(1)

[Example 1] For a pair (abaa, aba) of original and
converted strings, let us consider a sequence s ≡ sqss of
state transitions shown in Fig. 1. Then, non-null states
s, q, s and s produce the pairs (a,a), (b, φ), (a, a) and
(a, a), respectively. These pairs of strings represent the
alignment of (abaa, aba) with s.

For a pair (u, v) of strings, Q(u, v) denotes a set of se-
quences of state transitions that produces (u, v). Then,
we can solve the alignment of (u, v) by finding the fol-
lowing optimal state transition sequence

s∗ ≡ argmax
s∈Q(u,v)

Pr(u, v, s | θ).

We refer to s∗ as the most likely state transition. We use
the joint probability Pr(u, v, s∗) for the most likely state
transition as the similarity of the pair (u, v) of strings.

For a pair (u, v), the joint probability of the pair is
obtained by

Pr(u, v | θ) =
∑

s∈Q(u,v)

Pr(u, v, s | θ) .

DVHMM can be used to measure similarity in approx-
imate string matching.

There are several studies on HMM handling vari-
able length sequences such as the polygram model [4]
and the multigram model [2]. The DVHMM was orig-
inally introduced to handle variable length recognition
errors. However, it is similar to the multigram model in
that it decomposes a sequence into partial sequences of
variable length, although the DVHMM differs from the
multigram model in its handling of a pair of sequences
that require a more complex parameter estimation algo-
rithm.

3 Parameter Estimation of DVHMM
This section derives a maximum likelihood (ML) pa-

rameter estimation algorithm for the model described
in Section 2. The proposed algorithm is based on the
EM technique.

3.1 EM Algorithm
Let T = {(u1, v1), (u2, v2), · · · , (u|T|, v|T|)} be a set of

training pairs of similar strings. We assume that each
string pair (ui, vi) in T is generated by a DVHMM in-
dependently. Then,

Pr(T | θ) =
|T|∏

i=1

∑

si∈Q(ui ,vi)

Pr(ui, vi, si | θ) . (2)

In ML estimation, we obtain the parameter θ that maxi-
mizes the likelihood Eq. (2). By Jensen’s inequality, we
obtain

ln Pr(T | θ)

=

|T|∑

i=1

ln
∑

si∈Q(ui,vi)

qi(si)
Pr(ui, vi, si | θ)

qi(si)

≥
|T|∑

i=1

∑

si∈Q(ui ,vi)

qi(si) ln
Pr(ui, vi, si | θ)

qi(si)

≡ F (q1(si), · · · , q|T|(s|T|), θ) (3)

where qi(si) (1 ≤ i ≤ |T|) is any probability distribu-
tion over the state sequences that generate the training
pair (ui, vi). In EM-algorithm, we modify the distribu-
tions qi(si) and θ alternately. Hereafter we denote qi(si)
simply as q(si).

In E-step, we calculate the distributions q(si) that
maximize the lower bound of Eq. (3) using tth parame-
ters θt. Using a Lagrange multiplier λ, we obtain

∂

∂q(si)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
F − λ(1 −

∑

si∈Q(ui ,vi)

q(si))

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= ln Pr(ui, vi, si | θt) − ln q(si) − c = 0 (4)

where F is abbreviation of F (q(si), · · · , q(s|T|), θt).
From this equation, we obtain

q(si) =
1

c(ui, vi)
Pr(ui, vi, si | θt) (5)

where c(ui, vi) is normalizing constant given by

c(ui, vi) =
∑

si∈Q(ui ,vi)

Pr(ui, vi, si | θt)

= Pr(ui, vi | θt) . (6)

In M-step, we calculate the parameters θt+1 that
maximize the lower bound of Eq. (3) by fixing q(si).
Suppose a pair (u, v) of strings are segmented into
{(u1, v1), · · · , (u|s|, v|s|)} by the state transition sequence
s. Then, let us first define the following functions:

• For a state s and a state sequence s, Cπ(s, s) = 1 if
the initial state of s is s. Otherwise Cπ(s, s) = 0.

• For states s, r, and a state sequence s, Cτ(s, s, r)
denotes the number of state transitions from the
state s to r in the sequence s.

• Suppose a state sequence s produces a pair (u, v)
of strings. For a state s and an output pair (a, b)
of strings at s, Co(s, s, a, b) denotes the number of
emissions of the pair (a, b) at the state s when the
state sequence s produces the pair (u, v).
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Using these functions, Eq. (1) is written by

ln Pr(u, v, s | θt+1)

=
∑

s∈S
Cπ(s, s) ln πt+1(s) ·

∑

s,r∈S
Cτ(s, s) ln τt+1(s, r) ·

∑

s∈S

∑

(a,b)∈Os

Co(s, s, a, b) ln ot+1(s, a, b) (7)

where πt+1, τt+1, and ot+1 denote the (t + 1)th initial,
transition and output probabilities.

For each state s, the following equation gives the op-
timal parameter

∂

∂πt+1(s)

⎧⎪⎪⎨⎪⎪⎩F − λ(1 −
∑

r∈S
πt+1(r))

⎫⎪⎪⎬⎪⎪⎭

=
1

πt+1(s)

|T|∑

i=1

∑

si∈Q(ui ,vi)

q(si)Cπ(si, s) − λ = 0 (8)

where λ is Lagrange multiplier. From this equation, we
obtain

πt+1(s) =

∑|T|
i=1

∑
si∈Q(ui ,vi) q(si)Cπ(si, s)

∑|T|
i=1

∑
r∈S
∑

ri∈Q(ui,vi) q(ri)Cπ(ri, r)

=

∑|T|
i=1〈Cπ(si, s)〉q(si)∑|T|

i=1

∑
r∈S 〈Cπ(si, r)〉q(si)

(9)

where 〈·〉P denotes the expected value with respect to
the probability distribution P, and the probability dis-
tribution q(si) is given by Eq. (5).

Similarly we obtain the following equations for tran-
sition and output probabilities

τt+1(s, r) =

∑|T|
i=1〈Cτ(si, s, r)〉q(si)∑|T|

i=1

∑
t∈S 〈Cτ(si, s, t)〉q(si)

(10)

ot+1(s, a, b) =

∑|T|
i=1〈Co(si, a, b)〉q(si)∑|T|

i=1

∑
(c,d)∈Os

〈Co(si, c, d)〉q(si)

(11)

Using Eqs. (9), (11), and (11) the following EM al-
gorithm is derived
1. set initial parameters θ0.
2. repeat until convergence :

(a) calculate the (t + 1)th parameters θt+1 by
Eqs. (9), (11), and (11) using tth parameters θt.

3.2 Reestimation Algorithm
To update parameters in the EM-algorithm derived

in the previous section, we need to calculate the
expected values 〈Cπ(si, s)〉q(si), 〈Cτ(si, s, r)〉q(si), and
〈Co(si, a, b)〉q(si) for initial, transition and output prob-
abilities, respectively. Because calculating q(si) for all

state transitions is computationally prohibited, we in-
troduce forward and backward probabilities just like the
parameter estimation of HMM. For a state s, let los and
lcs denote the lengths of the original and converted out-
put symbol of a state s, respectively. For a prefix pair
(u:i, v: j) of training data and a state s, a forward prob-
ability of a DVHMM M, denoted as Fi, j(u, v, s), is de-
fined as the probability that M reaches the state s after
producing (u:i, v: j). The forward probability is calcu-
lated inductively in the following manner:

F0,0(u, v, s) = π(s)

Fi, j(u, v, s) =
∑

r∈S
Fĩ, j̃(u, v, r) τ(r, s) o(s, a, b)

(12)

where

ĩ = i − lor

j̃ = j − lcr

a = ui−ĩ+1:i

b = v j− j̃+1: j (13)

hold.
Form the definition of the forward probabilities, we

derive the following equation

Pr(u, v | θ) =
∑

s∈S
F|u|,|v|(u, v, s) (14)

Similarly, for a suffix pair (ui:, v j:) of training data
and a state s, the backward probability of M, denoted
by Bi, j(u, v, s), is defined as the probability that M pro-
duces (ui:, v j:) from a state q. The backward probability
is calculated inductively in the following manner:

B|u|+1,|v|+1(u, v, s) = 1.0

Bi, j(u, v, s) =
∑

r∈S
o(s, a, b) τ(s, r) Bî, ĵ(u, v, r)

(15)

where

î = i + los

ĵ = j + lcs

a = ui:i+los−1 (16)

b = v j: j+lcs−1 (17)

hold.
For a pair (i,j) of positions of strings and a transi-

tion from a s to a state r let us consider the probability
ξ(u, v, i, j, s, r) that

• the model reaches the state s after producing the
prefices (u:i, v: j),
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• produces prefices ui:i+los and v j: j+lcs j

• moves to the state r, and

• produces the remaining suffices by the state tran-
sitions starting with r.

This probability is represented with the forward and
backward probabilities

ξ(u, v, i, j, s, r)

= Fi, j(u, v, s) o(s, ui:ĩ−1, v j: j̃−1)

τ(s, r) Bĩ, j̃(u, v, r) (18)

where ĩ = i + los and j̃ = j + lcs.
From the definition, the expected value for the initial

probability is given by

〈Cπ(s, s)〉q(s) = π(s) B1,1(u, v, s) . (19)

Similarly the expected value for the transition probabil-
ity is given by

〈Cτ(si, s, r)〉q(si) =
∑

i, j

ξ(u, v, i, j, s, r) (20)

and, the expected value for the output probability is
given by

〈Co(si, a, b)〉q(si)

=
∑

i, j

∑

r∈S
ξ(u, v, i, j, s, r)δ(u, v, i, j, a, b, s) (21)

where δ(u, v, i, j, a, b, s) = 1 if

a = ui:los

b = vi:lcs ,

otherwise it is 0.
In calculating the forward and backward probabili-

ties, we must take care of the null state. If a null state
s has a null transition to a state r, for every i and j
Fi, j(u, v, s) must be calculated before Fi, j(u, v, r) and
Bi, j(u, v, s) must be calculated afterBi, j(u, v, r). By this
constraint, the DVHMM is not allowed to have a loop
consisting of only null states. In order to handle null
states, let N be an ordered set of states in S that satis-
fies the following conditions:

• any null state is located before any non-null state,
and

• for any pair of null states s and r, if s <N r holds,
there is no direct transition from a state r to a state
s

estimate(T, M) // EM-algorithm for DVHMM
input: a set T of training pairs of similar strings,

DVHMM M
output: a set θ of parameters
begin
set initial values to θ
until the lower bound (3) converges

foreach training pair (ui, vi)
foreach positions i, j, and a state s

F[i][ j] ← Fi, j(u, v, s) by Eq. (12)
foreach positions i, j, and a state s

B[i][ j]← Bi, j(u, v, s) by Eq. (15)
foreach states s, r and strings a, b

add 〈Cπ(si, s)〉q(si) to Eπ[s] by Eq. (19)
add 〈Cτ(si, s, r)〉q(si) to Eτ[s][r] by Eq. (20)
add 〈Co(si, s, a, b)〉q(si) to Eo[s][a][b] by Eq. (21)

end
update θ by Eqs. (9), (11), and (11)

end
end

Fig. 2 EM-algorithm for DVHMM.

where s <N r means that s is located before r in N.
Fig. 2 shows an outline of the parameter estimation

procedure. For each training pair (u, v) of training data
T, arrays F and B are used to keep forward and back-
ward probabilities in the dynamic programming algo-
rithm according to Eqs. (12) and (15). On the other
hand, arrays Eπ, Eτ and Eo are used to keep the sum
the numerators and denominators of Eqs. (9), (11), and
(11). The outline of the procedure is the same as for the
ordinary HMM parameter estimation algorithm. The
procedure differs from the ordinary HMM algorithm
in its handling of the forward and backward probabil-
ities that are defined for each pair i, j of positions in
a training pair u and v as defined in Eqs. (12) and (15),
whereas they are defined for each position i in a training
string in the ordinary HMM.

4 Conclusion
This paper proposes a string similarity model called

a DVHMM and gives a parameter estimation algorithm
based on the EM algorithm. Although existing proba-
bilistic models are limited to substitution (1,1), inser-
tion (1,0), and deletion (0,1) errors, the DVHMM can
handle error patterns of any pair (i, j) of lengths includ-
ing substitution, insertion, and deletion.
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