
Special issue: The future of software engineering for security and privacy

Progress in Informatics, No. 5, pp.7–18, (2008) 7

Research Paper

PORTAM: Policy, requirements, and threats ana-
lyzer for mobile code applications

Haruhiko KAIYA1, Kouta SASAKI2, and Kenji KAIJIRI3
1,2,3Shinshu University

ABSTRACT
Users and providers of an information system should clearly understand the threats caused
by the system as well as clarify the requirements for it before they actually use or develop it.
In particular, they should be more careful when certain components or services are provided
by third-parties. However, few tools can help identify and highlight threats to the security
requirements. In this paper, we present a support tool called “PORTAM” for such users and
providers to better understand the threats and the requirements. Suppose some requirements
cannot be satisfied when some threats are avoided, and vice versa. In such cases, they should
decide whether the requirements could be satisfied or the threats avoided. The tool also helps
them to decide these kinds of trade-offs. The current version of this tool handles Java mobile
code applications, thus users of our tool can readily understand the existence of real threats.
Although the current version deals with only Java components, the ideas behind the tool can
be applied to software in general. We complete this report by discussing some experimental
results to confirm the usefulness for pedagogical purposes.

KEYWORDS
Requirements analysis, security policy, mobile code application, tool

1 Introduction
Mobile code technology is useful because software

services can be integrated on the fly, that is, codes can
be downloaded and assembled at runtime. In addition,
alternative codes can be selected for meeting ad hoc
changes to requirements preferences because the mo-
bile software components can be reused at a finer gran-
ularity. For example, suppose there are many alterna-
tive codes for data communication, and their efficiency
and license costs are different from each other. Al-
though an integrator will normally select a code that is
not relatively fast but cheap, in an urgent situation they
could replace the code on the fly with another that is
very fast but expensive.

One of the more significant problems that arises
when using mobile codes is the existence of malicious
codes. If malicious codes are not restricted, valuable

Received September 13, 2007; Revised November 19, 2007; Accepted Decem-
ber 11, 2007.
1) kaiya@acm.org, 3)kaijiri@cs.shinshu-u.ac.jp

resources can be leaked and/or destroyed. For example,
your credit card information could be stolen. In this
paper we call such harmful effects by malicious codes
threats. Therefore, we have to identify which require-
ments should be satisfied and which threats should be
avoided when we integrate a mobile code application.
In many cases it is impossible to both satisfy all the re-
quirements and completely avoid all the threats. One
has to make a compromise with software systems to
deal with unsatisfied requirements and tolerable threats.
Therefore, we have to also decide on the trade-offs be-
tween satisfying the requirements and dealing with tol-
erant threats. Unfortunately, a user does not explic-
itly understand the importance of specifying the neces-
sary requirements and threats of an information system,
even through we meet the actual threats every day via
the Internet.

We have already proposed a method to identify the
tradeoffs between the requirements and threats for Java
mobile code applications [11], [12]. However, it would

DOI: 10.2201/NiiPi.2008.5.3

c©2008 National Instiute of Informatics

8 Progress in Informatics, No. 5, pp.7–18, (2008)

be difficult evaluate our method without supporting
tools, because the method requires tedious human ef-
fort. In this paper, we introduce a supporting tool and
some results for applying the tool into security educa-
tion. The main contribution of this paper is to show
how much our tool can support a security requirements
analysis and security requirements education.

Security issues in requirements engineering have re-
cently become the focus of much research effort due to
increasing use of Internet applications [6]. Our tool is
designed to be simple enough for students to learn the
importance of security requirements in a classroom. We
hypothesize that learners can meet real threats caused
by an application and they can analyze the reasons by
using our tool. Such activities can improve their un-
derstanding of security requirements. This hypothesis
was partially confirmed in our case study. Although
there are many complex and complete models/tools for
security requirements, it is not so easy for learners to
have experiences where they run malicious programs
by themselves. For this reason we choose to use the
Java mobile code applications.

The rest of this paper is as follows. In the next
section, we explain the Java mobile code applications
mechanism. Although Java systems are rather sim-
ple, they resemble typical security problems. Section 3
summarizes the requirements of our analysis tool based
on its previous discussion. In Section 4, we introduce
our tool in more detail. In Section 5, we report on a
case study we performed to confirm the usefulness and
educational benefits of our tool. In Section 6, our re-
lated works are discussed, and finally we conclude with
our current results and show some of our future work.

2 Mobile code applications
In this section, we explain the security architecture of

the Java system. Although the Java security architec-
ture supports fundamental security issues, such as in-
tegrity, confidentiality, and availability, it is very easy to
understand and suitable for educating people in the im-
portance of security requirements. Therefore, the Java
system is suitable for educating people in the impor-
tance of security.

The Java security architecture is based on the sand-
box security model [17]. There are a lot of security re-
lated features in the Java security architecture, but we
only focus on the permissions and security policies, be-
cause the access control mechanism specified by these
items is one of the most important security issues. Each
permission corresponds to the right to access system re-
source(s), such as files, network connections, running
processes, and so on. To grant the pieces the right to a
Java application, the security policy is given to the ap-
plication. Fig. 1 shows an example of the environment

for a Java application. An application in this figure con-
sists of three pieces of codes and it accesses a file and
a property, and establishes a network connection to an-
other machine.

When inadequate policy is given to an application,
malicious codes can be activated, thus security threats
can be made. Examples of threats for each type of se-
curity issue are listed as follows.

• Integrity: Files or system properties are illegally
modified because the security policy inadequately
grants the right to files or system properties.

• Confidentiality: Data are illegally leaked because
the policy inadequately grants the right to files and
network connections.

• Availability: Calculation is illegally aborted be-
cause the policy permits the right to kill the cal-
culation process.

To avoid the threats caused by malicious codes, the
codes are distinguished with respect to both the site
where a code was placed and the signature, and are re-
stricted in different ways. If a code is downloaded from
a trusted site or a trusted agent signed the code, we may
believe the code does not cause any threats.

However, we cannot or do not in fact always use
only trusted codes, e.g., different kinds of free software.
In addition, even the trusted codes may cause security
threats because of internal bugs or our inadequate us-
age. Therefore, application integrators and users have
to investigate which requirements are satisfied and what
kinds of threats can be caused by a mobile code appli-
cation.

We assume a support tool is needed and would be
useful for investigating such issues. The usage of our
tool is explained in detail in Section 4.3, and we report
on its evaluation results in Section 5. We also assume
archiving such investigation information can improve
their understanding about mobile codes and security. A
part of a case study outlined in Section 5 was designed
for checking this assumption.

3 Requirements for supporting tool
Based on our previous works [11], [12] and the dis-

cussion in the previous sections, we specify the require-
ments for the tool as follows.

1. It shall support the requirements analysis for a
Java mobile code application.

2. It shall record both an application’s requirements
and its threats, which are inconvenient results
caused by the application.

3. It shall record the permissions that are required to
satisfy each requirement.

PORTAM: Policy, requirements, and threats analyzer for mobile code applications 9

Fig. 1 Environment for a Java application.

4. It shall record the permissions that activate a
threat.

5. It shall record the available mobile codes.
6. It shall be able to extract the security related per-

missions from each mobile code.
7. It shall be able to generate a security policy that

grants permissions for the available mobile codes.
8. It shall be able to modify the security policy to

satisfy the requirements and to avoid threats.
9. It shall be able to check whether the requirements

are satisfied or not, and which threats are avoided
or not under the security policy.

10. It shall allow its user to abandon some of the re-
quirements and/or accept some of the threats if
they choose to satisfy other requirements or avoid
other threats.

4 Overview of PORTAM
This tool helps support application integrators and

users in identifying which requirements are satisfied by
a mobile code application. In addition, the tool also
helps in identifying threats caused by the application.
Since most mobile codes are intended for reuse, threats
can be avoided by tightening up the security policies
and/or by replacing the mobile code, including any ma-
licious parts, with another compatible code. In some
cases, some requirements cannot be satisfied because
of tightened policies, thus we have to sometimes give
up some of the requirements or to accept some threats.

This tool also supports in finding such trade-offs.

4.1 Major functions
Our tool mainly provides the following six functions.

By using such functions during a requirements analysis
process, integrators and users can identify the achieve-
ments of the requirements and understanding the possi-
bility of threats, and decide on the acceptable trade-offs
between the requirements and threats.

4.1.1 Network deployment function
Our tool consists of several internal windows

(Fig. 2). The top-left window, called the “Virtual Net-
work Frame” window, is an analogical model of a de-
ployment of computers, each of which provides mobile
codes. In addition, the permissions that are required
by such codes are semi-automatically extracted from
the source or byte codes, and listed in a middle win-
dow called the “Permission Table” window. By using
this function, users can understand what kinds of secu-
rity related functions could be activated by each mobile
code.

The extracted permissions are not always used in
each run because the permissions are extracted by us-
ing a static source code analysis. In addition, the tar-
gets of each permission, such as the file names or host
names, sometimes cannot be automatically extracted
because they are sometimes represented as variables in
the source codes. The tool’s user has to manually edit

10 Progress in Informatics, No. 5, pp.7–18, (2008)

Fig. 2 A snapshot of PORTAM.

the targets in such cases.

4.1.2 Policy edit function
Based on the deployment of mobile codes shown in

the “Virtual Network Frame” window (Fig. 2), our tool
can automatically generate a security policy that grants
all the permissions required by all codes. The generated
policy is put in the right top window called the “Policy
Editor” window, and users can freely edit the policy.
The policy shown in this figure is already edited so as to
revoke some permissions. Users may also edit a policy
from scratch, but they can easily arrive at the intended
policy by removing the granted permissions from the
generated policy.

4.1.3 Policy check function
According to the policy in the “Policy Editor” win-

dow, each permission in the “Permission Table” win-
dow is automatically checked whether it works or not
under the policy. The column labeled “Check” in the
“Permission Table” window shows the results. For ex-

ample, the first, fifth, and last permissions in Fig. 2 are
marked “NG”, thus they cannot work under the policy
listed in Fig. 2. The outline of this algorithm is as fol-
lows.

foreach pol in (set of policy in PolicyEditor)
foreach per in (set of permissions)
per.Check="NG"

if(pol.codeBase==per.Code.codeBase
& pol.permission==per.Permission
& pol.target_per.Target
& pol.action_per.Action) then

per.Check="OK"
fi

end
end

In addition, we can easily identify which require-
ments or threats use the permission. By clicking a row
in the “Permission Table” window, the requirements
and threats in the “Requirements” and “Threats” win-
dows are colored. For example, the tool in Fig. 2 tells
us that the last permission in the “Permission Table”

PORTAM: Policy, requirements, and threats analyzer for mobile code applications 11

window is used in the third requirement in the “Re-
quirements” window and the second and third threats in
the “Threats” window when we click a row in the “Per-
mission Table” that corresponds to the permission. The
“#perms” column of the rows in the “Requirements”
and “Threats” windows corresponding to the require-
ment and threats is colored in blue.

4.1.4 Requirements and threats edit function
Users can list their requirements in the left bottom

window labeled “Requirements” in Fig. 2. The require-
ments are simply itemed as shown in the figure. Users
can also list their identified threats in the right bottom
window labeled “Threats” in the same way. Each re-
quirement or threat has the following properties.

• A list of permissions that are required by the re-
quirement or the threat. A requirement is satisfied
or a threat can be activated when all these corre-
sponding permissions work. A tool user should
manually specify the list of permissions because
it is hard to automatically evaluate the meaning
of such list. Because requirements and threats are
written in natural language and our tool does not
have the functionality for natural language pro-
cessing, our tool cannot detect incorrect links be-
tween permissions and requirements/threats.

As mentioned in Section 4.1.1, permissions are not
always used in each runtime because of the static
analysis. Therefore, the list of permissions does
not always guarantee that a requirement is satis-
fied or a threat is activated. However, the list of
permissions helps a requirements analyst to ex-
plore the possibility of threats, because such per-
missions are sometimes used in runtime.

• A truth value whether a requirement or a threat can
be activated. If all permissions above are “OK”,
the value is true, otherwise it’s false.

• A truth value whether the user abandons the re-
quirement or accepts the threat.

These properties are shown on the GUI of PORTAM.
For example, if the “Threats” window in Fig. 2 is the fo-
cus, we can see there are four threats listed. If we then
focus on the last threat “any information can be leaked
to the card company”, we can see that the threat has two
related permissions. The permissions are the second
and fifth ones, and they are colored in the middle win-
dow “Permission Table”. Because the fifth permission
in the “Permission Table” is “NG”, the threat cannot be
activated. Thus, the check box “avail?” of the threat
is not checked. We do not have to accept this threat,
because the threat cannot be activated in this situation.

4.1.5 Requirements check function
Whether a requirement is satisfied or not is decided

according to the status of permissions related to the re-
quirement. A requirement has three states, which are
shown by given colors.

• Satisfied status (white): The corresponding re-
quirement will be satisfied, because all related per-
missions can be permitted.

• Accepted status (yellow): Although the require-
ment cannot be satisfied by the revoked permis-
sions, the user decides to abandon the requirement.

• Unstable status (pink): The requirement cannot be
satisfied now, but the user does not accept the fact.
The user has to decide to accept the fact or to mod-
ify the security policy to change the status of the
requirement.

To finish the requirements analysis, the requirements
that are unstable should be completely eliminated. In
Fig. 2, there are six requirements. The second and
fourth requirements are colored in yellow, thus they are
accepted. The third requirement is colored pink, thus it
is unstable.

4.1.6 Threat check function
Whether a threat can be avoided or not is also de-

cided according to the status of permissions related to
the threat. There are also three statuses of a threat and
the status is also shown by color on the GUI.

• Avoided status (white): The corresponding threat
will be avoided because at least one of the related
permissions cannot be permitted.

• Accepted status (yellow): Although the threat can
be activated by all the granted permissions, the
user decides to accept the threat.

• Unstable status (pink): The threat can be activated
now, but the user does not accept the fact. The user
has to decide to accept the fact or to modify the
security policy to change the status of the threat.

In the same way as with the requirements check, the
threats that are unstable should be completely elimi-
nated to finish the requirements analysis. In Fig. 2,
there are four threats, and they are all in the avoided
status.

4.2 Technologies used in our tool
To extract permissions required by a code, we have

to analyze the code, especially the method calls from
the code to other codes. Security-related permissions

12 Progress in Informatics, No. 5, pp.7–18, (2008)

are required only when specific methods in Java stan-
dard API are called for. Thus, our tool is good enough
to identify the method calls from the code to such API
methods. Our tool is able to conduct a static source
code analysis by using an XML-based representation
for Java source codes (JavaML). Our tool invokes an
extended version of a Java compiler called jikes1) to
convert a Java source code to a JavaML representation.
The converter is not written in Java, thus our tool in-
vokes it as an external program.

Our tool can handle Java class files (byte codes) by
using a decompiler called jode.2) Our tool was devel-
oped as a Java application and the decompiler jode was
also written in Java, thus it is easily invoked from our
tool.

4.3 Typical processes
One of the typical processes when using this tool is

to explore threats and policy under given mobile codes
and requirements. A case study in the next section is
categorized in this way. According to the codes and
their deployment, our tool can list the permissions in
the codes in the “Permission Table”. By using the re-
quirements and threats edit function of our tool men-
tioned in Section 4.1.4, each requirement is related to
several permissions. A user should explore the threats
to browse the list of permissions and note that each
threat is also related to several permissions. By using
the policy edit function of our tool mentioned in Sec-
tion 4.1.2, a security policy that grants all permissions
can be generated by the “Policy Editor”. By remov-
ing some lines from a policy in the “Policy Editor”, the
granted permissions are decreased in general, and vice
versa. When granted permissions are changed, satisfied
requirements and threats are also changed. The require-
ments, threats, and the policy are decided by repeating
such changes. Finally, a user has to decide which re-
quirements may be abandoned and which threats should
be accepted with respect to the needs of the application
users.

Another typical process is to explore suitable mo-
bile codes and policy under several requirements and
threats. To satisfy a requirement, several permissions
are required. A user drops the existing mobile codes on
“Virtual Network Frame” to explore the required per-
missions. To avoid a threat, some permissions should
not be activated. A user writes the security policy for
blocking the activation of such permissions.

1) http://www.badros.com/greg/JavaML/
2) http://jode.sourceforge.net/

5 Case study
The objective of this case study is to confirm the use-

fulness of our tool. If the following metrics are im-
proved by using our tool, we may assume that our tool
is useful in requirements elicitation.

• The amount of threats to be found.

• The amount of fatal threats to be found. Fatal
threats are defined for each exercise and subjects
off course do not know them before performing
the exercise.

• The amount of wrong threats to be found. We de-
cide if a threat is wrong when the threat cannot
be activated under the given permissions. Because
we cannot objectively decide that a threat is really
inconvenient for the subject, we do not take such
inconvenience into account.

• The efficiency of an elicitation task.

As explained in Section 4.1, our tool cannot automat-
ically find threats, but only support an analyst in finding
threats. Therefore, this kind of experimental study is re-
quired. Based on the assumptions above, we designed
our experiment as follows.

Another objective of this case study is to confirm the
educational effects by analyzing the requirements and
threats. As mentioned in the introduction, we do not
clearly understand the importance of specifying both
the requirements and threats of an information system
even though we meet the actual threats every day via the
Internet. After performing the experiment, we sent out
questionnaires to confirm the educational effects. The
contents, results, and discussion are shown in Section
5.4.

5.1 Experimental design
We performed a comparative experiment by using

several subjects. Each subject performed the following
six exercises.
S1: Learn the mechanism of the security policy for ex-

ecuting a mobile code application. Since most of
the subjects are unfamiliar with mobile code ap-
plications, they have to become familiar with such
applications through this exercise.

S2: Write their own security policy to satisfy the given
requirements. In this exercise, the existence of
threats is secret before the answer is shown. From
this experiment, the subjects can better understand
the existence of potential threats in mobile codes.

S3: Write their own security policy to satisfy the given
requirements and to avoid the given threats.

PORTAM: Policy, requirements, and threats analyzer for mobile code applications 13

S4: Perform the same exercises using our tool. This
exercise is simply used to help the subjects learn
how to use the tool.

S5: Write a security policy to satisfy the given require-
ments and find any threats. Note that the codes,
their deployment, and the policy that grants all the
permissions in the codes are also given. Half of
the subjects are permitted to use our tool, but the
other half are not. Whether a subject is permitted
to use a tool or not is decided at random.

S6: Perform the same kind of exercise as in S5 using
other requirements and codes. The subjects using
our tool in S5 are not permitted to use our tool, but
the others are.

Only the data in exercises S5 and S6 are used in our
analysis, because other exercises are basically used to
help the subjects become familiar with mobile code ap-
plications and our tool. For each result from exercises
S5 and S6 conducted by each subject, we counted the
following values.

• The number of threats that are found by the sub-
ject.

• The number of fatal threats.

• The number of wrong threats.

• The time spent to solve the problems in the exer-
cise.

By comparing the results using our tool to the results
from the subjects without tool support, we confirmed
the following hypotheses.

1. Subjects that used our tool could find more threats
than those without it.

2. Subjects that used our tool could find more fatal
threats than the others.

3. Subjects that used our tool could find fatal threats
more frequently than the others. In other words,
the ratio of fatal threats found by the subjects was
higher than the ratio by the others.

4. Subjects that didn’t use our tool wrote more wrong
threats than the others.

5. Subject that didn’t use our tool wrote wrong
threats more frequently than others. In other
words, the ratio of wrong threats by the subjects
without our tool was higher than the ratio by the
others.

6. Subjects that used our tool could perform the ex-
ercises more efficiently than the others.

5.2 Results
We were able to conduct this experiment through a

course at our university. The course took five weeks,

Table 1 Results of S5 (Average per subjects).

tool manual |t0 |
Number of threats (X) 2.9 3.3 0.791

Number of fatal threats (Y) 1.4 1.0 0.801

Number of wrong threats (Z) 0.6 0.7 0.325

Ratio of fatal threats (Y/X) 0.48 0.30 −
Ratio of wrong threats (Z/X) 0.206 0.212 −
Spending minutes 167 168 0.248

Table 2 Results of S6 (Average per subjects).

tool manual |t0|
Number of threats (X) 2.5 3.5 1.081

Number of fatal threats (Y) 0.7 0.8 0.341

Number of wrong threats (Z) 0.4 1.3 2.102

Ratio of fatal threats (Y/X) 0.28 0.22 –

Ratio of wrong threats (Z/X) 0.16 0.37 –

Spending minutes 161 153 0.774

thus exercises S3 and S4 were performed in the same
week. In each week, we spent three hours on class-
work that included these exercises. To improve the un-
derstanding of mobile codes applications, attendance
checks and answer submissions were achieved by mo-
bile code applications. About 30 third-grade bache-
lor students participated in this course. They have al-
ready studied software engineering fundamentals and
Java programming. We selected 20 students as our sub-
jects based on the following conditions.

• The student was able to perform all six exercises.

• The student agreed to the fact that his/her data was
to be used in our research.

In exercise S5, each subject analyzed a shopping sys-
tem via the Internet. Five requirements were shown and
this exercise had the following three fatal threats.

1. An account can be falsified.
2. User information can be leaked to shops.
3. User information can be leaked to a credit card

company.

In exercise S6, each subject analyzed an e-learning
system via the Internet. Six requirements were shown
and this exercise had the following two fatal threats.

1. The correct answer can be leaked to other learners.
2. A learner can unfairly read the others’ answers

(cheating).

Tables 1 and 2 show the results. In each experiment,
only half of the subjects used our tools. If a subject
used our tool in S5, the subject could not use the tool
in S6 and vice versa. The column labeled “tool” in the

14 Progress in Informatics, No. 5, pp.7–18, (2008)

tables is the data from the subjects using our tool. On
the other hand, the column labeled “manual” is the data
from the subjects that did not use our tool. Each result
is the average of each type of subject. For example, in
experiment S5, a subject found 1.4 fatal threats on aver-
age when using our tool. Because there were three fa-
tal threats in S5, we can see that a given subject found
only half the fatal threats on average. To confirm the
statistical significance, we conducted a t-test. The third
column in the table shows each t-value and the null hy-
pothesis is that each number in the table is the same in
both cases. Because t0.005,18 is 2.1009, only the num-
ber of wrong threats in S6 is significantly different in
both cases.

5.3 Discussion
As shown in Tables 1 and 2, we were unable to con-

firm all the hypotheses in Section 5.1. In particular,
the subjects without the tool (“manual” column) found
more threats than the others. However, subjects with-
out the tool tended to write more wrong threats than the
others, as shown in the third and fifth rows in Tables
1 and 2. Thus, our tool seems to contribute to the ac-
curacy for finding threats. Although the ratio of wrong
threats is relatively low (0.2 and 0.16), we investigated
into the reason for the wrong threats. When a subject
with our tool finds and specifies a threat, the subject has
to relate the threat to several permissions. We assume
there is a gap between the threat and the permissions,
because the permissions show the concepts at the im-
plementation stage, but the threats do not. Our tool has
to support the filling of such a gap.

The tool also seems to contribute to finding fatal
threats slightly based on the fourth row, “the ratio of
fatal threats”, in the tables. By investigating the con-
tents of the threats written by the subjects, the function
making relationships between a threat and the permis-
sions seem to contribute to finding fatal threats, because
the combination of permissions causes fatal threats. We
will discuss how to improve our tool based on the dis-
cussion here in the final section.

5.4 Questionnaires
Our questionnaires consisted of the following three

kinds of issues. Each issue has several questionnaires
as follows.

• Issues in a mobile code application.

M1. Can you understand the running mechanism
of mobile code applications? [yes/no]

M2. Can you understand the role of a security
policy? [yes/no]

Table 3 Results of questionnaires.

yes ever since no

M1 17 3

M2 18 2

M3 16 4

M4 12 8

R1 11 4 5

R2 20 0

R3 20 0

R4 19 1

R5 14 3 3

R6 16 4 0

yes partially no

T1 17 3

T2 9 10 1

M3. Do you wish to use mobile code applications
in the future? [yes/no]

M4. Do you wish to develop mobile code appli-
cations in the future? [yes/no]

• Issues in the requirements analysis for mobile
code applications.

R1. Are you more careful when using libraries or
programs provided by others? [yes/always
did/no]

R2. Do you understand the existence of threats in
mobile code applications? [yes/no]

R3. Do you understand that there are sometimes
trade-offs between satisfying requirements
and avoiding threats? [yes/no]

R4. Do you think compromises are sometimes
necessary in requirements and threats anal-
ysis? [yes/no]

R5. Do you now think the users of an information
system should identify both the requirements
for a system and the threats by the system?
[yes/always did/no]

R6. Do you now think the developers of an infor-
mation system should identify both the re-
quirements for a system and the threats by
the system? [yes/ever since/no]

• Issues concerning our support tool.

T1. Do you understand how to use our tool?
[yes/no]

T2. Did our tool help you find threats and/or for-
gotten requirements? [yes/partially/no]

PORTAM: Policy, requirements, and threats analyzer for mobile code applications 15

Note that “always did” means that the subject
thought or understood the issue before this experiment.
Table 3 shows the results from the questionnaires. Our
subjects understood the mobile code application itself,
but some of them worried about the unidentified threats.
Another complained that he did not always connect to
the Internet and he did not always use mobile code ap-
plications. There is a kind of mobile codes application
that works under disconnected circumstances, but we
did not mention it in this course. We have to introduce
such an application to eliminate such complaints. Most
subjects mentioned the easiness of updating software
or the usefulness of it as positive reasons with respect
to the users. With respect to the developers, more sub-
jects gave negative answers. Typical reasons were as
follows; it was hard to manage multiple versions of the
codes or to take threats into account during develop-
ment.

About the issues of requirements analysis, our ques-
tionnaires showed positive results, as shown in Table 3.
One subject who answered “no” in R1 wrote a com-
ment that it was difficult to avoid threats even if he
could identify them. Thus, we have to provide an ef-
fective mechanism for avoiding threats in the next step.
From the results of R5 and R6, our subjects assumed
that the developers were more responsible for identify-
ing the requirements and threats than the users. This
assumption seems to be quite rational because the de-
velopers have more knowledge than the users. So, our
tool is dedicated to the application developers or inte-
grators rather than the users.

Finally, we reviewed the evaluation results of our tool
used by our subjects. From the results of T1 and T2 in
Table 3, their evaluation was not bad. It seemed to be
easy for our subjects to learn our tool because less than
three hours were spent to learn it and the result T1 tells
us most of them could understand how to use it. Typical
positive comments were as follows.

• By using color changes, it is easy to identify the
permissions that are used in a requirement or a
threat.

• In the same way, it is easy to identify the require-
ments and threats that depend on the same permis-
sion.

• Automatically generated minimal policy is use-
ful. However, there were following negative com-
ments.

• It is inconvenient to make the relationship between
a requirement or a threat and the permissions.

• Because each permission is separated from the

class where the permission belongs, it is difficult
to understand the role of the permission.

5.5 Threats to validity
According to [19], we will discuss the threats to the

validity of this experiment.

• Conclusion validity: As mentioned in Section 5.2,
most of the differences between with or without
tool support were not statistically significant.

• Internal validity: According to the results of the
questionnaires, the usability of our tool was not
so bad. However, the learning effects could have
a bad influence on the result, that is, the subjects
were not so familiar with our tool.

• Construct validity: Because our tool is expected
to improve the security requirements definition,
treatments in our experiment greatly reflected the
theory of our tool.

• External validity: Our results may be generalized
to the average student in a software engineering
course in Japan. However, the results cannot be
generalized to some industry people working in
the security area.

6 Related work
We assume that information systems in this research

field use fine-grained software components such as
functions and/or classes. If these kinds of reuse are
widely accepted, the variety of components selection
available will largely increase and the markets of such
components will soundly grow. There are already many
researches concerning component selection and acqui-
sition [8], [14]. However, threats caused by components
compositions have rarely been discussed. This research
and the tool directly handle such issues and partially
support users and software integrators in dealing with
such threats.

In general, requirements elicitation using an inter-
view is costly and [3] argued that a method to make it
more efficient is required. By using our tool, require-
ments analysts can enumerate the potential threats, and
thus, the tool helps such analysts to ask and explore
what should not occur in an information system to be
developed and marketed. This function largely and ef-
ficiently contributes to eliciting requirements.

Threats in this paper are very similar to obstacles
in KAOS [18]. The difference is that the threats do
not have to obstruct existing requirements, but obsta-
cles are basically identified by obstructing existing re-
quirements or goals. Thus, threats in this paper are not

16 Progress in Informatics, No. 5, pp.7–18, (2008)

easily identified using the KAOS approach. The mis-
use case approach is also a useful method for identi-
fying security requirements, but its weakness was ar-
gued in [16]. Our tool can partially overcome such
weaknesses, for example, the process navigated by our
tool is not open-ended, but systematically terminated if
the user can compromise on a specific policy and its
consequences; giving up requirements and/or accept-
ing threats. A software fault tree [10] is also a system-
atic approach, but it is specialized for the requirements
analysis of intrusion detection systems. A system called
SoftwarePot [13] can also be applied to the problems
we have focused on. In SoftwarePot, applications are
executed in some kind of sandbox, and users have to
decide whether access to the valuable resources should
be granted or not each time. We think the SoftwarePot
approach seems practical, but it does not contribute to
improving the users’ understanding of security-related
problems.

Our research and tool focuses on one application
used by one user rather than an information system
used in an organization (many users). Thus, our re-
search does not and cannot handle multiple users and/or
roles in an information system, because the applica-
tion we focused on basically has only one role. Tak-
ing such multiple roles into account, modeling tech-
niques, such as those in [7] or [9] are required. With
respect to the Java specification and implementation,
we only focused on the so-called “code-centric style”
for right now. Therefore, we are not concentrating on
“who runs/executes a function” at this time. The Java
system already has a mechanism called a “user-centric
style” in the Java Authentication and Authorization Ser-
vice (JAAS) framework, so we want to extend our tool
by taking the roles into account when using the JAAS
framework.

In a standard Java SDK, there is a tool called the
“policytool” that is used to define security policy. The
main differences between PORTAM and policytool are
as follows. First, PORTAM can explicitly manage re-
quirements and threats. Second, PORTAM can check
whether a requirement is satisfied or a threat is achieved
based on a static code analysis.

In [2], an organizational policy is handled, but our
research is about the security policy for an application.
Thus, the discussion and results in both researches can-
not be simply compared. We think an organizational
policy is a sum or product set of policies of applica-
tions in the organization. Thus, defining each appli-
cation policy will sometimes contribute to defining the
organizational policy.

In contrast to other researches about security require-
ments, our work is too simple. However, this is one of
its advantages, because our tool can be easily and effec-

tively applied to educational settings. As shown in the
case study in the previous section, students could easily
use our tool, and they could experience actual threat ac-
tivations. In fact, the educational materials in our case
study embedded real malicious codes such as stealing
personal information, and the codes were sometimes
activated during the course. By facing such real threats,
the students could more deeply understand the impor-
tance of identifying the threats as well as the require-
ments. Tools and/or methods of other researches seem
to be too complex to use in educational settings. There
were a few researches about the requirements for en-
gineering education [5], [20], but there is no research
concerning the educational aspects of security require-
ments. As reported in the previous section, a lecture
using our tool had a profound effect on the students
with respect to better understanding requirements and
threats.

In our research and tool usage, decision making, such
as how to reach trade-offs and/or mitigate threats, is out
of the scope. Existing research results, such as WinWin
[1], DDP [4] and/or [15] can cope with our tool.

7 Conclusion
We introduce a tool in this paper called PORTAM.

The tool supports users, software providers, and/or in-
tegrators in identifying the requirements, threats, and
policies for mobile code applications. Because our tool
handles Java mobile code applications, the users of our
tool can easily find the threats caused by such applica-
tions during their analysis. We found from the results
of our case study that our tool contributed to helping
learners better understand the importance of threats as
well as requirements. Our tool also contributed to find-
ing significant threats.

Basically, threats can be caused by a combination of
several permissions, Users of our tool currently have to
manually find such combinations. We will extend our
tool to propose possible combinations. It is difficult to
decide whether a combination causes threats or not, but
it is not difficult to enumerate possible combinations by
using the dependencies and flows of data. Such combi-
nations can also suggest some of the unidentified re-
quirements of users. In addition, our tool has to support
stopping the gaps between such a combination and the
meaning of a requirement or a threat as discussed in
Section 5.3. Such gaps can be stopped by using em-
pirical knowledge such as the design patterns, because
the semantic processing of a requirement or a threat is
very difficult. Another plan is to provide a compari-
son mechanism of alternative codes. Currently, users
have to manually replace a code with another, but the
tool should recommend alternatives. If such a compar-
ison mechanism is provided, we can also compare the

PORTAM: Policy, requirements, and threats analyzer for mobile code applications 17

non-functional features, such as the costs or response of
codes. The current version of our tool does not explic-
itly handle the priority among requirements and threats.
The tool currently enables its user to put requirements
and threats in order, respectively, but the ordering is not
used formally in our tool. We will extend our tool by
using such a priority e.g., deciding on the trade-offs. Fi-
nally, we have to explore the generalization of our tool.
Our tool largely depends on the Java language and its
policy language. By introducing more abstract repre-
sentations of policies, we can handle more policies than
now. In the case of programming and specification lan-
guages limited by the policies, it is a little bit difficult
to generalize them because there are various kinds of
languages.

References
[1] B. Boehm, P. Grunbacher, and R.O. Briggs, “Develop-

ing Groupware for Requirements Negotiation: Lessons
Learned.” IEEE Software, vol. 8, no. 3, pp.46–55,
May/Jun. 2001.

[2] T.D. Breaux and A.I. Anton, “Analyzing Goal Seman-
tics for Rights, Permissions, and Obligations.” In 13th
IEEE International Conference on Requirements Engi-
neering (RE’05), pp.177–188, 2005.

[3] T. Cohene and S. Easterbrook, “Contextual Risk Analy-
sis for Interview Design.” In 13th IEEE International
Conference on Requirements Engineering (RE’05),
pp.95–104, 2005.

[4] S.L. Cornford, M.S. Feather, J.C. Kelly, T.W. Lar-
son, B. Sigal, and J.D. Kiper, “Design and Develop-
ment Assessment.” In Proceedings of the Tenth Interna-
tional Workshop on Software Specification and Design
(IWSSD’00), pp.105–114, 2000.

[5] C. Coulin and D. Zowghi, “GONDOLA: An Interactive
Computer Game-Based Teaching and Learning Envi-
ronment for Requirements Engineering.” In REFSQ’04,
pp.113–126, 2004.

[6] R. Crook, D. Ince, L. Lin, and B. Nuseibeh, “Security
Requirements Engineering: When Anti-requirements
Hit the Fan.” In IEEE Joint International Require-
ments Engineering Conference, RE’02, Essen, Ger-
many, pp.203–205, Sep. 2002.

[7] R. Crook, D. Ince, and B. Nuseibeh, “On Modelling
Access Policies: Relating Roles to their Organisational
Context.” In 13th IEEE International Conference on Re-
quirements Engineering (RE’05), pp.157–166, 2005.

[8] X. Franch and J. Pablo Carvallo, “Using Quality Models
in Software Package Selection.” Software, vol. 20, no. 1,
pp.34–33, Jan./Feb. 2003.

[9] P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zan-
none, “Modeling Security Requirements Through Own-
ership, Permission and Delegation.” In 13th IEEE In-
ternational Conference on Requirements Engineering
(RE’05), pp.167–176, 2005.

[10] G. Helmer, J. Wong, M. Slagell, V. Honavar, L. Miller,
and R. Lutz, “A Software Fault Tree Approach to Re-
quirements Analysis of an Intrusion Detection System.
Requirements Engineering, vol. 7, no. 4, pp.207–220,
Dec. 2002.

[11] H. Kaiya, K. Sasaki, and K. Kaijiri. A Method to De-
velop Feasible Requirements for Java Mobile Code Ap-
plication. IEICE Trans. Inf. and Syst., E87-D(4):811–
821, Apr. 2004.

[12] H. Kaiya, K. Sasaki, Y. Maebashi, and K. Kaijiri,
“Trade-off Analysis between Security Policies for Java
Mobile Codes and Requirements for Java Application.”
In 11th IEEE International Requirements Engineer-
ing Conference, Monterey Bay, California, pp.357–358,
Sep. 2003.

[13] K. Kato and Y. Oyama, “SoftwarePot: An Encapsulated
Transferable File System for Secure Software Circu-
lation.” Lecture Notes in Computer Science, vol. 2609,
pp.112–132, 2003.

[14] S. Lauesen, “COTS Tenders and Integration Require-
ments.” In 12th IEEE International Requirements Engi-
neering Conference (RE’04), pp.166–175, 2004.

[15] M.C. Robinson, S.E. Wallace, and D.C. Woodward,
“Risk Mitigation of Design Requirements Using a Prob-
abilistic Analysis.” In 13th IEEE International Confer-
ence on Requirements Engineering (RE’05), pp.231–
239, 2005.

[16] G. Sindre and A.L. Opdahl, “Eliciting security require-
ments with misuse cases.” Requirements Engineering,
vol. 10, no. 1, pp.34–44, Jan. 2005.

[17] Sun Microsystems, Inc. Java Security Architecture
(JDK1.2), Oct. 1998. Version 1.0.

[18] A. van Lamsweerde. “Elaborating Security Require-
ments by Construction of Intentional Anti-Models.” In
Proceedings of ICSE’04, 26th International Conference
on Software Engineering, Edinburgh, pp.148–157, May
2004.

[19] C. Wohlin, P. Runeson, M. Host, M.C. Ohlsson, B. Reg-
nell, and A. Wesslen, Experimentation in Software En-
gineering An Introduction. Kluwer, 2000.

[20] D. Zowghi and S. Paryani. “Teaching Requirements
Engineering through Role Playing: Lessons Learnt.”
In 12th IEEE International Requirements Engineering
Conference (RE’04), pp.233–241, 2004.

18 Progress in Informatics, No. 5, pp.7–18, (2008)

Haruhiko KAIYA
Haruhiko Kaiya is an associate pro-
fessor of Software Engineering in
Shinshu University, Japan. He is also
a visiting associate professor in
NII. http://www.cs.shinshu-u.ac.jp/˜
kaiya/

Kouta SASAKI
Kouta Sasaki was a graduate school
student in Shinshu University, Japan.

Kenji KAIJIRI
Kenji Kaijiri is a professor of Soft-
ware Engineering in Shinshu Univer-
sity, Japan.

