
Special issue: The future of software engineering for security and privacy

Progress in Informatics, No. 5, pp.65–74, (2008) 65

Research Paper

CAMNEP: An intrusion detection system for high-
speed networks
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ČELEDA5, and Vojtěch KRMÍČEK6
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ABSTRACT
The presented research aims to detect malicious traffic in high-speed networks by means of
correlated anomaly detection methods. In order to acquire the real-time traffic statistics in
NetFlow format, we deploy transparent inline probes based on FPGA elements. They provide
traffic statistics to the agent-based detection layer, where each agent uses a specific anomaly
detection method to detect anomalies and describe the flows in its extended trust model. The
agents share the anomaly assessments of individual network flows that are used as an input
for the agent’s trust models. The trustfulness values of individual flows from all agents are
combined to estimate their maliciousness. The estimate of trust is subsequently used to filter
out the most significant events that are reported to network operators for further analysis.
We argue that the use of trust model for integration of several anomaly detection methods and
efficient representation of history data shall reduce the high rate of false positives (legitimate
traffic classified as malicious) which limits the effectiveness of current intrusion detection
systems.
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1 Introduction
Increasing Internet traffic obliges the backbone oper-

ators and large end users to deploy high-speed network
links to match the bandwidth demands. The increase of
bandwidth is apparent not only on backbone links, but
the consumer hosts are more and more connected with
bandwidth capacity that was available only for enter-
prise clients few years ago. However, besides all ben-
eficial effects, this new high-bandwidth infrastructure
presents novel challenges in the domain of security and
robustness, as the manual oversight of such high traf-
fic volumes is nearly impossible and only the events of
extraordinary scale are typically reported [10].

Received September 13, 2007; Revised November 29, 2007; Accepted Decem-
ber 11, 2007.
1) mrehak@labe.felk.cvut.cz, 2)pechouc@labe.felk.cvut.cz,
5)celeda@ics.muni.cz, 6)vojtec@ics.muni.cz

Our research aims to give the operators of these net-
works a highly autonomous network intrusion detection
system (NIDS), which will use network behavior anal-
ysis techniques as outlined in recent classification [17].
Network behavior analysis systems are not based on the
signature matching, but use the network traffic statis-
tics acquired in form of TCP/IP flows to identify rele-
vant malicious traffic, such as vertical scanning (used
to determine the services offered by a host), horizontal
scanning (used to map the network for on-line hosts,
and used for worm and malware propagation [5]), de-
nial of service attacks and other relevant events. Our
approach does not aim to detect targeted compromise
of single hosts (this service being provided by IDS de-
ployed on LANs), but concentrates on the events that
are significant on the network level, providing broader
perspective on current threats and allowing the opera-
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tors to address the most significant ones. Furthermore,
the methods outlined in our system aim to detect the ac-
tivity of the hosts in their networks that were taken over
by an attacker (typically using zombie networks [5])
and are used to stage further zombie recruiting, DoS
attacks [10] or spam propagation.

Our work is based on the analysis of the network
traffic statistics. We aggregate the network data to
capture the information about network flows, unidirec-
tional components of TCP connections (or UDP, ICMP
equivalent) identified by shared source and destination
addresses and ports, together with the protocol, and de-
limited by the time frame used for data acquisition (see
Section 3.1). This information provides no hint about
the content of the transmitted data, but by detecting the
anomalies in the list of flows acquired over the moni-
toring period, we can detect irregularities and possible
attacks.

2 Related work
In order to detect an attack from the flow informa-

tion on the backbone level, especially without any feed-
back from the affected hosts, it is necessary to ana-
lyze the behavioral patterns in the traffic data, com-
pare them with normal behavior and conclude whether
the observed anomalies are caused by attacks, or are
mere false alarms. This approach to Network Intru-
sion Detection, typically based on the flow informa-
tion captured by network flow probes is currently an
important field of research into Anomaly Based Intru-
sion Detection, or more specifically Network Behavior
Analysis. Numerous existing systems, based on traf-
fic volume analysis modeled by Principal Component
Analysis (PCA) methods [7], models of entropy of IP
header fields for relevant subsets of traffic [9], [22], or
just count of the flows corresponding to the selected
criteria [6] offer each a particular valid perspective on
network traffic.

The MINDS system [6] represents the flow by basic
NetFlow aggregation features (srcIP, srcPrt, dstIP, dst-
Prt, protocol) and complements them by the number of
the flows from the same srcIP, to the same dstIP and
their combinations with dstPrt and srcPrt respectively.
These properties are assessed both in time and number
of connections defined windows, to account for slow
scanning. The anomalous traffic is detected by means
of clustering, using local outlier factor, and the operator
can use dedicated system modules to support him when
creating the rules describing identified attacks, so that
they can be applied to future traffic.

The system proposed by Xu et al. [22] for traffic anal-
ysis on backbone links also uses the NetFlow based
identity 5-tuple. The context of the single connection
is defined by the normalized entropy of srcPrt, dstPrt

and dstIP dimensions of the set of all connections from
the given host in the current time frame. These three
dimensions define a feature space, where the method
applies predefined rules to separate legitimate and ma-
licious traffic.

Two methods adopted from the work of Lakhina et
al. [8], [9] share several common properties: they were
originally designed for detection of anomalous origin-
destination flows, defined as a sum of all flows arriving
from one network and leaving to another network. In
order to identify the anomalous behavior, both variants
use Principal Component Analysis (PCA) to model the
normal traffic, using the past flow sets to predict traf-
fic volumes [8]. Differences between predicted and ob-
served values are then used to identify the anomalies.

In the alternative approach [9], the PCA method is
used to model the normal and residual entropy of the
destination IP addresses and source and destination
ports of all flows originating from the same srcIP. Sub-
tracting the modeled values from the observed data sub-
tracts normal traffic entropies and allows us to concen-
trate on anomalous residual entropy. Technically, the
approach is analogous to the previous method, the only
difference is in the fact that we model three parameters
instead of one, and that these parameters are based on
entropies, rather than volumes.

Besides the above mentioned sample of backbone
anomaly detection mechanisms, there are numerous re-
search and commercial systems designed to protect lo-
cal networks. A typical representative of recently de-
veloped system is a SABER [18], which addresses not
only threat detection, but attempts to actively protect
the system by automatically generated patches. Techni-
cal perspective on many existing IDS systems, includ-
ing SNORT [20] and other signature matching tech-
niques that detect intrusions by detecting patterns spe-
cific to known attacks in network traffic, can be found
in [13]. A good, even if slightly outdated review of
classic research and systems in the domain is provided
by [2].

3 Architecture
In our approach, we have decided not to develop a

novel detection method, but rather to integrate several
methods [6], [8], [9], [22] with an extended trust mod-
els of a specialized agent. This combination allows us
to correlate the results of the used methods and to com-
bine them to improve their effectiveness. Most anomaly
detection methods today are not fit for commercial de-
ployment due to the high ratio of misclassified traffic.
While their current level of performance is a valid sci-
entific achievement, the costs associated with supervi-
sion of such systems are prohibitive for most organi-
zations. Therefore, our main research goal is to com-
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Fig. 1 System architecture overview.

bine the efficient low-level methods for traffic obser-
vation, with multi-agent detection process to detect the
attacks with comparatively lower error rate, and to pro-
vide the operator with efficient incident analysis layer.
This layer supports operator’s decisions about detected
anomalies by providing additional information from re-
lated data sources. The layer is also responsible for
visualization of the anomalies and the detection layer
status.

The architecture consists of several layers with vary-
ing requirements on on-line processing characteristics,
level of reasoning and responsiveness. While the low-
level layers need to be optimized to match the high
wire-speed during the network traffic acquisition and
preprocessing, the higher layers use the preprocessed
data to infer the conclusions regarding the degree of
anomaly and consecutively also the maliciousness of
the particular flow or a group of flows. Therefore, while
the computation in the higher layers must be still rea-
sonably efficient, the preprocessing by the lower layers
allows us to deploy more sophisticated algorithms. The
system can be split into these layers, as shown in Fig. 1.

Traffic acquisition and preprocessing layer
The components in this layer acquire the data from

the network using the hardware accelerated NetFlow
probes [3] and perform their preprocessing. This ap-
proach provides the real-time overview of all active uni-
directional connections on the observed link. In order
to speed-up the analysis of the data, the preprocess-
ing layer aggregates meaningful global and per-flow (or
group of) characteristics and statistics.

Cooperative threat detection layer
This layer principally consists of specialized, hetero-

geneous agents that seek to identify the anomalies in
the preprocessed traffic data by means of their extended
trust models [16]. Their collective decision regarding
the degree of maliciousness of a flow with certain char-
acteristics use a reputation mechanism. The agents run
inside the AGLOBE agent platform [19] and use its
advanced features like agent migration and cloning to
adapt the system to the traffic and relevant threats.

Operator and analyst interface layer
This layer is responsible for interaction with the net-

work operator. The main component is an intelligent
visualization agent that helps the operator to analyze
the output of the detection layer, by putting the pro-
cessed anomaly information in context of other relevant
information. When the detection layer detects suspi-
cious behavior on the network, it is reported to visu-
alization. The visualization agent then opens the new
case and retrieves relevant information from available
data sources. The network operator can explore and
evaluate the reported case subsequently. Another part
of this layer is a set of lightweight, specialized visual-
ization agents that allows the operator to follow only
the selected characteristics of the system.

3.1 Traffic acquisition and preprocessing
The traffic acquisition and preprocessing layer is re-

sponsible for network traffic acquisition, data prepro-
cessing and distribution to upper system layers. It only
uses the flow characteristics based on information from
packet’s headers.

In general, each flow is a set of packets defined by
common source and destination IP address, port num-
bers and protocol. Flows are thus unidirectional and
all their packets travel in the same direction. For the
flow monitoring we use NetFlow protocol developed by
Cisco Systems [4].

The amount of traffic in nowadays high-speed net-
works increases continuously and traffic characteristics
change heavily in time (network throughput fluctua-
tion due to time of day, server backups, DoS attacks,
scanning attacks, etc.). Performance of network probes
must be independent of such states and behave reliably
in all possible cases. The quality of provided data sig-
nificantly effects the upper layers and chances to detect
traffic anomalies.

Therefore we use hardware accelerated NetFlow
probes called FlowMon. The FlowMon probe is a pas-
sive network monitoring device based on the COMBO
hardware [3], which provides high performance and ac-
curacy. The probe handles 1 Gb/s traffic at line rate in
both directions and exports acquired NetFlow data to
different collectors.

The collector servers store incoming packets with
NetFlow data from FlowMon probes into its internal
database. Each collector server provides interface to
graphical and text representation of raw network traffic,
simple flow filtration, aggregation and statistics evalu-
ation, using source and destination IP addresses, ports
and protocol.

To process acquired IP flows by upper system layers
the preprocessing must be performed on several levels
and in different manners. Packets can be sampled (ran-
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dom, deterministic or adaptive sampling) on input and
the sampling information is added to NetFlow data. On
the collector side several statistics (average traffic val-
ues, entropy of flows) are computed. The collectors
provide traffic statistics via tasd (Traffic Acquisition
Server Interface Daemon) interface to the AGLOBE
agent platform.

Even after probes deployment in monitored network,
the probes can be reprogrammed to acquire new traf-
fic characteristics. The system is fully reconfigurable
and the probes can adapt their features and behavior to
reflect the changes in the agent layer.

3.2 Cooperative threat detection
The goal of the cooperative threat detection layer is

to provide the assessment of maliciousness of the indi-
vidual flows in each flow set observed by the system.
To achieve this goal, we use the trust modeling tech-
niques, and extend them to cover the domain-specific
needs.

Each detection agent contains one of the anomaly
detection methods (discussed in Section 2 and detailed
in [14]), coupled with an extended trust model defined
in [16]:

• MINDS agent [6], which reasons about the num-
ber of flows from and towards the hosts in the net-
work, and detects the discrepancies between the
past and current traffic,

• Xu agent [22], which reasons about the traffic from
individual hosts using the normalized entropies
and rules,

• Lakhina Entropy [9] agent, which builds a model
that predicts the entropy of traffic features from
individual hosts and identifies anomalies as differ-
ences between predicted and real value, and

• Lakhina Volume agent [8], which applies the same
method to traffic volumes.

All agents, regardless of their type, process the data
received from the acquisition layer in three distinct
stages (see Fig. 2):

• anomaly detection,
• trust update,
• collective trust conclusion.

Before the description of each these three stages, we
will define the terms and techniques used in our ap-
proach. Trust of x in y is defined by Marsh as “x expects
that y will behave according to x best interests, and will
not attempt to harm x” [12]. In the network security do-
main, low trustfulness of the flow means that the flow
is considered as a part of an attack. Trustfulness is de-
termined in the [0, 1] interval, where 0 corresponds to

Fig. 2 Agent layer operation.

complete distrust and 1 to complete trust. The identity
of each flow is defined by the features we can observe
directly on the flow: srcIP, dstIP, srcPrt, dstPrt, pro-
tocol, number of bytes and packets. If two flows in
a data set share the same values of these parameters,
they are assumed to be identical. The context of each
flow is defined by the features that are observed on the
other flows in the same data set, such as the number
of similar flows from the same srcIP, or entropy of the
dstPrt of all requests from the same host as the evalu-
ated flow. While the agents in our system use the same
representation of the identity, the context is defined by
the features used by their respective anomaly detection
methods to draw the conclusions regarding the anomaly
of the flow. Identity and context are used to define the
feature space, a metric space on which the trust model
of each agent operates [16]. The metrics of the space
describes the similarity between the identities and con-
texts of the flows, and is specific to each agent.

Anomaly detection
During the anomaly detection stage, the agents use

the embedded anomaly detection method to determine
the anomaly of each flow as a value in the [0, 1] inter-
val, where 1 represents the maximal anomaly, and zero
no anomaly at all. The anomaly values are shared with
other detection agents, and used as an input in the sec-
ond phase of the processing.

Trust update
During the trust update, the agents integrate the

anomaly values determined for individual flows during
the first phase into their trust models. As the reasoning
about the trustfulness of each individual flow is both
computationally infeasible and unpractical (the flows
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are single shot events by definition), the model holds
the trustfulness of significant flow samples (e.g. cen-
troids of (fuzzy) clusters) in the identity-context space,
and the anomaly of each flow is used to update the trust-
fulness of centroids in its vicinity. The weight used
for the update of the centroid’s trustfulness with the
anomaly values provided for the flow decreases with
distance from the centroid. Therefore, as each agent
uses a distinct distance function, each agent has a differ-
ent insight into the problem — the flows are clustered
according to the different criteria, and the cross corre-
lation implemented by sharing of the anomaly values
used to update the trustfulness helps to eliminate ran-
dom anomalies.

Collective trust estimation
In the last stage of processing, each agent determines

the trustfulness of each flow (with an optional normal-
ization step), all agents provide their trustfulness as-
sessment (conceptually a reputation opinion) to the ag-
gregation agents and the visualization agents, and the
aggregated values can then be used for traffic filtering.

In order to be successful, the trustfulness aggregated
by the system should be as close as possible to the ma-
liciousness of the flow. When we reason about the ma-
licious and untrusted flows as sets (they are actually
fuzzy sets), we wish them to overlap as much as pos-
sible. We can define the common misclassifications
errors using the trustfulness and maliciousness of the
flow. The flows that are malicious and trusted are de-
noted as false negatives, and the flows that are untrusted
but legitimate are denoted false positives. Typically,
when we tune the system to reduce one of these sets, the
size of the other increases. Intuitively, it may seem that
we may be ready to ignore higher rate of false positives,
rather than false negatives. However, this is rarely the
case in the IDS systems deployed for operational use,
as the legitimate traffic vastly outnumbers the attacks
and even a low rate of false positives makes the system
unusable [1].

Performance of an isolated detection agent would be
similar to the performance of the anomaly detection
method it is based on. The application of trust mod-
eling mechanism in the layer above the anomaly detec-
tion allows the agents to eliminate probable false pos-
itives identified as malicious only by a single method.
We shall note that each agent represents the flows in its
feature space, and that the context subspace definition
depends on the anomaly detection algorithm applied by
the agent. The context of each flow depends on the (i)
flow identity, (ii) characteristics of other (similar) flows
in the current observed flow set, and (iii) the current
state of the agent’s anomaly detection model, which
is typically based on past flow sets. This implies two

defining features of our methodology, method integra-
tion and history integration.

Method integration
Proximity in the identity-context space of one of

the agents doesn’t imply the proximity in the identity-
context space of another agent — as all agents use dif-
ferent contexts to compare the traffic, the anomalies
signaled by a single agent will likely be noticed if they
are consistent with the other anomalies (provided by the
same agent or different agents) of similar flows, that
share the centroids. The key aspect is that flow similar-
ity is assessed by each trusting agent using its own crite-
ria — when one of the agents signals an anomaly in the
flow that falls into the centroid with mostly trusted traf-
fic, this anomaly will be dispersed and will not manifest
itself in the trustfulness evaluation. On the other hand,
when the anomaly falls into/near the cluster with exist-
ing lower trustfulness (or a new cluster), and is consis-
tently reported by most anomaly providers, the agent
will return a low trustfulness for this flow. The Fig. 3,
illustrates the concept — all attack flows are concen-
trated next to a single centroid in agent’s trust model,
and the situation is similar in the trust models of other
agents. The legitimate traffic is dispersed among other
clusters.

History integration
Trust model provides an efficient method for the in-

tegration of the past observations by aggregating the
trustfulness values from the history of anomalies of

Fig. 3 A peek into the trust model of a detection agent.
Attack flows displayed as tree extremities attached to
the closest centroid of the trust model, shown as a
chrysanthemum-like structure on the right side of image. In
the background, we can see other centroids, with the rest
of the more trusted traffic attached to them.
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similar flows acquired in the previous data sets. This
aggregation also helps to eliminate individual anomaly
peaks specific to one flow set that are not consistent
with global assessment.

The overall impact of aggregations over history and
over several anomaly detection algorithms aims to
eliminate singular anomalies identified only occasion-
ally by single anomaly detection method, and thus re-
duce the number of false positives. On the other hand,
some small-scale attacks may be missed by the system.
We consider this as an acceptable trade-off, because the
system is designed to provide warnings in the case of
large-scale events, and not detailed protection of indi-
vidual hosts.

It shall also be noted that our design helps to inte-
grate various anomaly detection models. However, as
the computational performance of the system is one
of the main goals, each agent only uses the data that
is relevant to its anomaly detection (and consecutively
flow representation features) method. This makes the
direct translation between the trust models of different
types of agents largely unfeasible — trustfulness is at-
tached to centroids in their feature spaces, and there is
no guarantee whatsoever regarding the compatibility of
the metrics. Furthermore, direct translation is also diffi-
cult for the agents sharing the same anomaly detection
method, but working with different data (acquired by
distinct probes). As the identity-context space metrics
often depends on the data observed in the past, direct
merging of the models does not provide any guarantees
of consistence.

To compensate this problem, our architecture puts
the interactions at the processing stages where the
agents share the same language, i.e. the identity of spe-
cific network flows. When sharing the anomalies and
trustfulness (which may be normalized into degree of
trust [14]) values, these values are relevant to individ-
ual network flows, and each agent is able to position
them in its feature space.

In the last phase of evaluation, each agent shares the
trustfulness of flows with other agents. Agents then
use a simple reputation mechanism to reach a collec-
tive conclusion regarding the trustfulness of observed
flows, allowing to filter the traffic by trustfulness for
analysis. Collectively accepted flows are then sent to
analyst interface layer for further filtering based on user
preferences, and possibly assisted analysis by analyst.

The decision whether a given flow is trusted or un-
trusted depends on the typical degree of anomaly in
the observed network traffic. This parameter varies
widely with network type — the number of anomalies
is typically low on corporate or government networks,
but is significantly higher on public Internet backbone
links, or in the university settings. To avoid the prob-

lems with manual tuning of the system, we use a fuzzy-
inference process integrated with the trust model to de-
cide whether the given flow is malicious, by computing
its inference with Low and High trust values. These
values are determined similarly to the trustfulness of
individual flow representations, but are represented as
two fuzzy intervals [15].

When we look at the problem from the ma-
chine learning perspective [21], it is difficult to decide
whether the trust learning as implemented in our system
is supervised or unsupervised. It is clear that there is no
dedicated supervisor entity, but each agent provides the
inputs (i.e. anomalies) to the others, and their adapta-
tion is mutual. On the other hand, these inputs are pro-
vided by the anomaly detection methods of individual
agents, and these can be in some cases considered as
supervisors for the trustfulness learning.

4 System evaluation and performance
In order to evaluate the effectiveness of our system,

we have deployed one probe at the main network gate-
way of one of the university campuses, and we have
used the standard tools to attack the hosts inside the ob-
served network, on the background of regular network
traffic. We present a selection of results that we have
obtained.

In the results, we want to validate several properties
of the system. First and foremost, the system shall be
able to identify the introduced attack as malicious. This
requires the agents to assign low trustfulness to the at-
tack traffic, while assigning higher trustfulness to nor-
mal traffic.

While this requirement is important, there are also
other properties that we want to validate. As the trust
management system described in [14] and Section 3.2
effectively performs fuzzy classification of flows to the
more or less trusted classes defined by the centroids in
the identity-context space, we want the traffic relative to
single attack to fall into the same class (or few classes).
The trustfulness of these classes shall be low to com-
ply with the previous requirement, but their low number
and proximity in the identity-context space shall allow
classification of attacks and signifies that the features
used to define the space, the metrics using these fea-
tures and the algorithm used for centroid creation are
well adjusted to detect this type of attack in the current
environment.

In the experimental results provided below, we illus-
trate the capabilities of the system by showing the data
from the actual attack we have launched against our ex-
perimental platform. The attacks were performed using
the nmap [11] tool, which is used by network admin-
istrators and attackers alike to map the network and to
identify the services running on individual hosts. We
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Fig. 4 Trustfulness of all flows as determined by the
agents.

have performed several vertical scans of a single host,
probing different ports for listening services using the
SYN scan.

In Fig. 4, we can see the histogram of trustfulness
of the flows for 1024 ports SYN scan as determined
by detection agents [14] based on MINDS, Xu. et al.
and the agent based on entropy prediction as introduced
by Lakhina et al. (Lakhina Entropy). The trustfulness
is displayed on [0, 1] scale, 0 denotes complete dis-
trust, while 1 corresponds to complete trust. Each of
the agents maintains its trust model using the processes
described in Section 3.2, and we present the distribu-
tion of the traffic on the trustfulness scale as assessed
by each of them. We can note that the trustfulness of
most traffic falls between 0.3 and 0.75 for the MINDS
method, 0.4 and 0.6 for the Lakhina Entropy method,
and 0.4 and 0.8 for the Xu method. We can clearly
observe the ability of all agents to distinguish the un-
trusted traffic on the left side of the distribution from
the trusted traffic on the right side, but we can also see
that each agent provides a different shape of the his-
togram.

In Fig. 5, we only present the traffic corresponding
to our attack. We can distinguish the peaks observed
on the first graph, and we can assert that the attack we
have generated was clearly identified by the method as
an attack. For both Lakhina Entropy and Xu distri-
butions, it even constitutes the lower boundary of the
trustfulness of the observed flows. When we analyze
the traffic contributing to the 0.3 peak on the left side
of the attack peak in the MINDS distribution, we can
mostly distinguish peer-to-peer networks, heavy web
use (e.g. http proxies), and several clear examples of
false positives, mostly due to the irregularities in the
activity of observed servers. When we combine the re-

Fig. 5 Trustfulness of SYN scan attack flows as deter-
mined by the agents. Note the different scale from Fig. 4.

Fig. 6 Aggregated trustfulness of all flows as averaged for
each flow from the values provided by the agents. Note the
isolated peak on the left, which contains attack flows.

sults of the agents in the AND mode, the attack remains
the only event (i.e. group of flows) which is classified
with trust lower than 0.5 by all three agents. This is eas-
ily observed in Fig. 6, where we show the distribution
of flows over the aggregated trustfulness. In this ob-
servation, we can observe the attack flows forming an
isolated peak on the left side of the distribution, around
0.4, and that the rest of the traffic falls into the main
part of the distribution. We can note the peak on the
left side of the main distribution — most of the traffic
in this peak corresponds to the response to scan, and the
associated lower trustfulness is thus justified.

We also need to address the other criteria of quality.
In the results shown above, the agents assign the flows
contributing to the attack to the neighborhood of very
few centroids, showing that the trust models are set to
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Fig. 7 Operator’s view of the attack through the GUI with
applied filtering.

an appropriate level of granularity [16] which makes a
trade-off between precision and efficiency. In Fig. 3, we
can look into the trust model of the Lakhina Entropy
agent, and we can see the attack flows attached to the
single centroid (with low trustfulness) on the right front
side of the image, while the rest of the traffic is attached
to other centroids. The results for other agents are sim-
ilar, and this consistency shows that the granularity of
the trust model is well adapted to current network sta-
tus.

While Fig. 3 provides an interesting insight into the
reasoning process of the trusting agents, it is of limited
use to network administrators that need more practical
representation of data. Therefore, the system contains a
dedicated visualization agent which allows the adminis-
trators to filter out the trusted traffic, as assessed by the
agents, and to concentrate on the analysis of untrusted
traffic. In case of the attack presented above, the result
is shown in Fig. 7.

While the single attack attempt can illustrate the
function of the system, it offers only a limited insight
into its effectiveness. Therefore, we present a graph
which illustrates the effectiveness of the system in de-
tecting the vertical scans of with different parameters,
techniques (TCP CONNECT/SYN scan, UDP scan),
speed and ordering. We will show the trustfulness at-
tributed to the events by individual agents (including
the aggregation) in function of the number of flows dur-
ing the acquisition period. The Fig. 8 shows that the at-
tacks with more than several hundreds flows (typically
corresponding to number of ports scanned on the tar-
get machine) are consistently discovered by all agents.
The slower attacks, using lower number of flows (300
and less) are more tricky. While the aggregated trustful-
ness values are typically low, the higher average trust-
fulness attributed to these attacks means that they can
blend into the normal traffic.

The results we have presented show that the use of
trust models for the integration of several anomaly de-

Fig. 8 Trustfulness of various types of scanning attacks
as estimated by the agents as a function of the number
of flows in the attack.

tection methods improves the results of network behav-
ior analysis, and that this method can be efficiently in-
tegrated with real traffic using efficient inline NetFlow
probes. While we have only presented the results rela-
tive to identification of vertical scanning, the other re-
sults show that our method is effective against other rel-
evant threats, such as worms and other malware propa-
gation, horizontal scanning, peer-to-peer networks and
other irregularities. The evaluation of effectiveness of
our method against these threats is an important topic
of our current and future work, together with improve-
ments of the method itself.

5 Conclusions and future work
The research presented in this paper uses highly ab-

stract methods from the field of multi-agent trust mod-
eling, and extends them to efficiently fulfill the needs
of network operators: identification of significant mali-
cious traffic events in the supervised network, without
being bothered by comparatively high rate of false pos-
itives.

To achieve this goal, we can not rely on agent tech-
nologies alone. The data must be acquired from the net-
work, preprocessed in the collector servers and trans-
ferred to the detection layer for filtering. The detection
process is based on the combination of agent-specific
anomaly detection techniques with extended trust mod-
eling, that each agent uses to integrate the anomaly
values from past observations, as well as anomaly as-
sessments provided by other agents. This step reduces
significantly the number of false positives, as the non-
systematic anomaly peaks are diluted between normal
traffic and anomaly values provided by other agents.

The results of the detection process performed inside
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each agent are integrated by dedicated agents, using the
reputation-like mechanism, and all trustfulness values
are used during the traffic analysis by the operator. This
analysis is performed using the Mycroft agent, that not
only uses the trustfulness for shown traffic filtering, but
also facilitates the analysis by getting additional infor-
mation about the traffic.

In our future work, we have several principal goals.
First, the primary goal is to further increase the system
effectiveness, to improve the ratio between false posi-
tives and negatives. The performance of the system is
also crucial, and while we can still improve it by rigor-
ous analysis and software engineering, we also seek al-
ternative ways. The most promising is the autonomous
adaptation — as the detection agents are self-contained,
and the system is open, we will introduce the distributed
adaptation mechanism that will select the best agents,
well adapted to the current traffic status.
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