
Special issue: The future of software engineering for security and privacy

Progress in Informatics, No. 5, pp.35–47, (2008) 35

Survey Paper

A survey on security patterns

Nobukazu YOSHIOKA1, Hironori WASHIZAKI2, and Katsuhisa MARUYAMA3

1,2National Institute of Informatics
2The Graduate University for Advanced Studies
3Department of Computer Science, Ritsumeikan University

ABSTRACT
Security has become an important topic for many software systems. Security patterns are
reusable solutions to security problems. Although many security patterns and techniques for
using them have been proposed, it is still difficult to adapt security patterns to each phase of
software development. This paper provides a survey of approaches to security patterns. As
a result of classifying these approaches, a direction for the integration and future research
topics is illustrated.

KEYWORDS
Security, software engineering, design patterns, security patterns, refactoring

1 Introduction
In the face of an increasing number of business ser-

vices on open networks and distributed platforms, secu-
rity issues have become critical. Devanbu et al. stated
this as follows [1]:

“Security concerns must inform every phase
of software development, from requirements
engineering to design, implementation, test-
ing, and deployment.”

It is difficult to do so, however, because not all soft-
ware engineers are security specialists and there are
many concerns in security. Patterns are reusable pack-
ages incorporating expert knowledge. Specifically, a
pattern represents a frequently recurring structure, be-
havior, activity, process, or “thing” during the software
development process. A security pattern includes secu-
rity knowledge and is reusable as a security package.

Recently, many security patterns have been pro-
posed. Nevertheless, it is still difficult to adapt security
patterns to each phase of software development. In this
paper, we survey current security patterns and offer a
classification of them. This then leads us into a num-
ber of problems and an indication of potential future

Received October 2, 2007; Revised December 3, 2007; Accepted January 7,
2008.
1) nobukazu@nii.ac.jp,
2)washizaki@nii.ac.jp,
3)maru@cs.ritsumei.ac.jp

research directions for security patterns.
This paper is structured as follows. Section 2 defines

security concepts as used in this paper. Section 3 de-
scribes various security patterns from the development
phase viewpoint. Then, we discuss the problems and
potential research directions in section 4. Finally, we
conclude this paper in section 5.

2 Background of security
This section defines security concepts and describes

security patterns.

2.1 Security concepts
The following are general security concepts and def-

initions, based on the definitions in [2]:

Asset: Information or resources that have value to an
organization or person.

Stakeholder: An organization or person who places a
particular value on assets.

Security objective: A statement of intent to counter
threats and satisfy identified security needs.

Threat: A potential for harm of an asset.

Attack: An action intended to violate the security of
an asset.

Attacker: An entity that carries out attacks.
Vulnerability: A flaw or weakness that could be ex-

ploited to breach the security of an asset.
DOI: 10.2201/NiiPi.2008.5.5

c©2008 National Instiute of Informatics



36 Progress in Informatics, No. 5, pp.35–47, (2008)

Countermeasure: An action taken to protect an asset
against threats and attacks.

Risk: The probability that a successful attack occurs
and the impact of successful violation.

In this paper, we focus on the above security con-
cerns and conduct our survey by paying specific atten-
tion to them.

2.2 Security pattern languages
A pattern can be characterized as “a solution to a

problem that arises within a specific context” [2].
In addition, a pattern includes not only the solution

but also the context and problem for which the solution
is used. Hilside1) defines a pattern as follows:

“Each pattern is a three-part rule, which ex-
presses a relation between a certain context,
a certain system of forces which occurs re-
peatedly in that context, and a certain soft-
ware configuration which allows these forces
to resolve themselves.”

We adapt this concept to security patterns. This means
that we do not consider general methods such as
SQUARE [3], Tropos [4], UMLsec [5], and so forth.

The following is the general pattern format shown
in [2], though it is not the only possible format:

Name, Also Known As, Example,
Context: The situation in which the pattern may apply.
Problem: The problem the pattern addresses, includ-

ing a discussion of its associated forces.
Solution: The fundamental solution principle underly-

ing the pattern
Structure: A detailed specification of the structural as-

pects of the pattern, using appropriate notations.
Dynamics: Typical scenarios describing the run-time

behavior of the pattern.
Implementation: Guidelines for implementing the

pattern.
Example Resolved: Discussion of important aspects

for resolving the example.
Variants: A description of variants or specializations

of the pattern.
Known Uses: Examples of using the pattern.
Consequences: The benefits that the pattern provides

and any potential liabilities.
See Also

In addition, we adapt the following definitions for
this paper:
1) http://www.hillside.net/patterns/definition.html

A pattern describes both a process and a
thing: the ‘thing’ is created by the ‘process’
[6].

A pattern language is a network of tightly
interwoven patterns that defines a process
for resolving a set of related, interdepen-
dent software development problems system-
atically [7].

In general, we can define security patterns as patterns
with respect to the security concepts described in sec-
tion 2.1.

3 Security patterns
In this section, we categorize security patterns from

the software lifecycle point of view. Then, we describe
security patterns in term of security concepts for each
phase of software development. Finally, we discuss en-
gineering achievements and ongoing research on uti-
lizing those security patterns from the pattern lifecycle
point of view. Specifically, we show patterns for the re-
quirement phase in section 3.1. Section 3.2 illustrates
patterns for the design phase, and then patterns for the
implementation phase are described in section 3.3. Sec-
tion 3.4 describes the achievements and research on uti-
lizing security patterns, including methodologies to de-
velop secure software systems by using patterns.

3.1 Security patterns for requirement phase
In this phase, we first decide what to protect, i.e., the

“assets.” In addition, we analyze the reasons for pro-
tecting these assets in order to decide how to protect
them and to what degree. Finally, we specify the secu-
rity requirements as part of the system requirements.

3.1.1 Analysis process patterns
There are several analysis process patterns for this

phase. Security Needs identification for Enterprise As-
sets is a pattern [2] helps identify assets and illustrates
what kinds of information in a system are assets. The
pattern includes the identification of business assets,
business factors with security influence, the relation be-
tween assets and business factors, and the security type
for each asset. Fig. 1 illustrates the process.

There are four kinds of security properties [2]:

• Confidentiality is the property that data is dis-
closed only as intended by the enterprise.

• Integrity is the property that enterprise assets are
not altered in a manner contrary to the enterprise’s
wishes.

• Availability is the property that enterprise assets,
including business processes, will be accessible
when needed for authorized use.



A survey on security patterns 37

Identify

enterprise assets

Identify

business drivers

Determine business-drivers-

asset relation

Identify

security properties

Determine security needs for 

asset types

Fig. 1 Security needs identification for enterprise assets.

• Accountability is the property that actions affect-
ing enterprise assets can be traced to the actor re-
sponsible for the action.

The Asset Valuation Pattern [2] illustrates the guide-
lines and criteria for asset valuation. Specifically, it de-
fines six degrees of valuation, from negligible to ex-
treme, from three different points of view: security re-
quirements, financial value, and business impact.

It is impossible to develop a completely secure sys-
tem because of the cost, time, and resources needed for
the development, and because of new kinds of attacks.
Thus, we must also decide the priority for each asset,
which implies a criterion for the threshold of security
vs. cost during the development process. The priority
of an asset is decided according to not only the value
but also the risk for the asset, including likelihood and
impact. Therefore, we need to analyze the threat and
vulnerability of a system in order to evaluate the risk.
Specifically, we use the analysis of the threat to a sys-
tem as a means of identifying why we protect assets.
In addition, the vulnerability of a system is analyzed in
order to understand what we are protecting the system
from.

The Threat Assessment Pattern [2] is used to reveal
the threats to a system. The pattern lists typical threat
sources, actions, and consequences. Threat sources can
be environmental forces such as earthquakes, deliberate
attacks, or accidental errors. To identify and rate system
vulnerability, the Vulnerability Assessment Pattern [2]
can be used. In addition, the Risk Determination Pat-
tern [2] helps calculate the qualitative rather than quan-
titative risks for each asset, in order to evaluate the risks
relatively.

The Enterprise Security Approaches Pattern [2] helps
decide abstract approaches for asset protection. These

approaches include prevention, detection of attacks,
and response to attacks. The approaches offer a strategy
of design, implementation, and maintenance of security
functions.

An antipattern describes a pattern that initially ap-
pears to be beneficial but ultimately results in bad con-
sequences. Kis proposed antipatterns with respect to se-
curity [8]. The solutions for these antipatterns describe
situations of successful attacks or bad implementation
of security functions.

3.1.2 Model based patterns
There are some patterns using models, such as Tro-

pos or Problem Frame [9], for analysis and specifica-
tion of security requirements. Tropos [4] is a model for
analysis of requirements among stakeholders. A Prob-
lem Frame defines an identifiable problem class.

Giorgini et al. proposed patterns specifying a kind
of confidentiality by using Secure Tropos in [10]. Se-
cure Tropos is an extension of Tropos that allows for
the expression of Ownership, Trust, and Delegation re-
lations. The patterns in [10] are monitoring patterns for
when agents transfer personal information. We can use
Secure Tropos to formally analyze from whom the per-
mission to handle information should be obtained.

We can model attack situations in which an agent
has an attacker’s role by using Tropos. Mouratidis et
al. proposed patterns for protection against malicious
agents by using Tropos [11]. Specifically, they define
the Agent Authenticator, Agency Guard, Access Con-
troller, and SandBox patterns.

Hatebur et al. used the Security Problem Frame,
based on the Problem Frame, to specify security pat-
terns with security requirements [12]–[14]. The pat-
terns illustrate the requirements specifying that impor-



38 Progress in Informatics, No. 5, pp.35–47, (2008)

Fig. 2 Secure logger pattern with secure log store strategy.

tant information does not leak to an improper person
using a malicious subject frame. In addition, the pat-
terns also specify generic security protocols by using
sequence diagrams.

3.2 Security patterns for design phase
This section describes security patterns for decisions

on conceptual architecture and the detailed design of
systems. In the design phase of software development,
we should design security functions to satisfy the se-
curity properties of assets identified in the requirement
phase. Specifically, we can design such functions us-
ing access control, authentication, cryptography, elec-
tric signatures, and logging components or services2).
What security functions are needed depends on not only
the security properties but also the security strategy,
such as prevention against attacks or detection of at-
tacks. Against a wiretapping attack, an instance of vi-
olating confidentiality, we need to keep logs for detec-
tion, in addition to encryption of data for prevention.

Yoder and Barcalow first introduced conceptual se-
curity architecture as patterns [15]. They provided a
natural language description of seven security patterns:
Single Access Point, Check Point, Roles, Session, Full
View with Errors, Limited View, and Secure Access
Layer Patterns.

Fernandez and Pan illustrated security patterns by us-
ing UML diagrams [16] such as that shown in Fig. 2, as
well as design patterns [17]. Specifically, the Autho-
rization, Role-Based Access Control, Multilevel Secu-
rity, and File Authorization patterns are catalogued.

The security patterns book [2] includes 25 total ar-
chitectural and design-level patterns. In addition, it in-
troduces seven patterns for secure Internet applications.

The following section 3.2.1 describes how to use de-
sign patterns with respect to security properties. In sec-
tion 3.2.2, we introduce some approaches to bridge be-
tween design patterns and security requirements. Then,
section 3.2.3 shows some domain-specific security pat-

2) We focus on security functions in this paper, although there are other meth-
ods of enforcing security properties for assets, such as moral education and
enforcement by law or organizational governance.

terns.

3.2.1 Design of security properties
Access control models are used to achieve confiden-

tiality of assets in a situation of open networks. In [2],
five access control models are introduced as conceptual
security patterns. In addition, six access control archi-
tecture patterns are described. Three of these indicate
how to control access to services: Single Access Point,
Check Point, and Security Session. Two user interface
patterns with respect to access control are also intro-
duced: Full Access with Errors, and Limited Access.
These patterns are based on proposals in [15] and [16].

Even if access control of data works well, attackers
may read the data by wiretapping it through the net-
work. In this case, the confidentiality property of the
data is violated. We can avoid this by using Secure
Channels [2] or Secure Pipe [18]. Jürjens proposed a
secure data transfer pattern denoted by UMLsec [5].

Integrity of assets is achieved by refusing to permit
modifications by unauthorized people. A digital signa-
ture is attached to prove the fact that an authorized per-
son modifies it. In [19], the Signed Authenticated Call
Pattern for Voice over IP Networks (VoIP) is introduced
to guarantee the integrity of calls.

Firewall patterns can be applied to ensure the avail-
ability of services. The following three firewall patterns
are introduced in [2] for each implementation level:

• IP Level: Packet Filter Firewall pattern

• Transport Level: Proxy Firewall pattern

• Service Level: Stateful Firewall pattern

Firewalls can not only mitigate attacks but also sat-
isfy confidentiality of services with an access policy, in
addition to providing for availability.

For accountability, there are five accounting patterns
in [2]: Security Accounting Requirements, Audit Re-
quirements, Audit Trail, Intrusion Detection Require-
ments, and Non-Repudiation Requirements. These are
process patterns.



A survey on security patterns 39

3.2.2 Bridge between security design patterns and se-
curity properties

Almost all of the patterns described in section 3.2.1
do not clearly indicate their relations with the security
requirements, such as security properties and strategy.

Weiss proposed an approach to determining the rela-
tion between design patterns and security properties by
using a non-functional requirements (NFR) model [20].
A link from a pattern to a security property indicates
the contribution of the property denoted by a goal of
NFR. Weiss modeled security properties, the reasons
for a pattern, security design, and the relations among
these. Therefore, we can apply reasoning to security
properties. For example, if pattern A is used by pat-
tern B, then the properties held by pattern A might be
satisfied by pattern B.

3.2.3 Domain-specific design patterns
If the design patterns in [17] are implemented on

a distributed object framework, such as CORBA or
DCOM, network-based attacks might result. There
have been several proposals for making design patterns
secure. In [21], a Secure Broker pattern is introduced
for a Broker pattern [22]. The security patterns book [2]
introduces a Controlled Object Factory pattern in which
secure objects are created with respect to an Abstract
Factory Design pattern [17]. In addition, the Secure
Service Facade pattern [18] is a secure extension of the
Session Facade pattern [23].

There are security patterns for the OS level [2], [24],
[25] as well. In [2], eight patterns are introduced for
operating system access control. Hafiz proposed a se-
cure pre-forking pattern by which a task can be forked
securely and efficiently in a multitasking environment
[25].

There is a security pattern catalogue for the Web and
J2EE in [18]. In this book, 23 security design patterns
are introduced for designing Web applications by using
UML and Java. Fig. 2 illustrates the class diagram of
the Secure Logger pattern with the Secure Log Store
strategy.

Security patterns for privacy have also been proposed
[26], [27]. In [26], a protection pattern using a client-
side proxy to prevent unnecessary leakage of private in-
formation is shown. In addition, Romanosky et al. pro-
posed three privacy patterns, such as “informed consent
for web-based transactions,” in [27].

Application-specific security patterns have been also
proposed. For instance, security patterns for VoIP are
described in [19].

3.3 Security patterns for implementation phase
Implementation is the task of writing software that

satisfies a given design. To construct secure software,

programs must correctly implement various mecha-
nisms that support security. Even if software has the
correct security features in its design, the actual pro-
gram could contain serious security bugs. Software
consisting of vulnerable programs cannot be considered
secure. To prevent implementation-level attacks, it is
sufficient to write program code that does not include
security bugs.

An implementation flaw (bug) is a mistake made
while a programmer writes a software program. A se-
curity flaw could pose a potential security risk. Un-
fortunately, not all programmers have knowledge suf-
ficient to create a secure system. Although some are
experts on security, they are not perfect and sometimes
make mistakes. Therefore, many researchers have de-
veloped guidelines that support the sharing of knowl-
edge about how to write secure code or that help the de-
tection of security flaws existing in code. We consider
these traditional guidelines immature, however, since
programmers do not easily or adequately reuse them.
The guidelines should be more sophisticated. We need
implementation-level security patterns, which are semi-
structured documents or standard vocabularies that ex-
plicitly express these guidelines and contain artifacts
associated with them. Such patterns enable program-
mers to be familiar with various kinds of secure coding
techniques and to apply suitable techniques while writ-
ing software.

3.3.1 Secure programming guidelines
Many implementation flaws related to security have

been documented in a variety of formats for years.
For example [28], presents 18 implementation rules that
programmers should note in order to eliminate common
security programming problems. These rules are all in-
formally described in natural language. Similar rules
are shown in [29], which provides lists, including a to-
tal of more than 20 practices, of recommended prac-
tices (good practices) in six categories, and one list of
23 flawed practices (bad practices).

A set of design and implementation guidelines em-
phasizing the programmer’s viewpoint for writing se-
cure programs is, in general, called secure program-
ming [30]. provides well-known guidelines for writ-
ing secure programs for Linux and Unix system. This
article describes not only guidelines for several secu-
rity vulnerabilities (input validation, buffer overflow,
etc.) but also language-specific issues for C/C++, Perl,
Python, shell scripting (sh and csh derivatives), Ada,
Java, Tcl, and PHP [31]. introduces 12 rules for writ-
ing security-critical Java code. Jslint [32] is an auto-
mated tool that can detect security vulnerabilities by
using these 12 rules. In addition, [33] takes up six top-
ics on security vulnerabilities often caused by Java pro-



40 Progress in Informatics, No. 5, pp.35–47, (2008)

grammers and presents security-specific coding guide-
lines to minimize the likelihood of such vulnerabilities.

Almost all collections of secure programming guide-
lines emphasize the topics of input validation and buffer
overflow. Some of them touch on access control, cryp-
tography, authentication and authorization, networking,
and I/O (input/output). For example, [34] and [35] both
provide guidelines specific to C and C++ [36]. targets
Java and its platform, and [37] targets Microsoft .NET
[38]. focuses on network applications.

These guidelines have been pragmatically collected
from actual programming experiences. Each of them
shows concrete security flaws, vulnerabilities and ex-
ploits that might be caused by the flaws, and mitiga-
tion methods to prevent or limit exploits against vul-
nerabilities. Unfortunately, there is no overriding, con-
sistent method for documenting these guidelines, even
though they contain descriptions that should be de-
scribed through secure patterns.

3.3.2 Attack pattern catalog
To the best of our knowledge, there are two books

[39], [40] that provide semi-structured documents re-
lated to implementation-level (plus design-level) secu-
rity. Both books focus attention on how to break soft-
ware. Thus, these seem to be collections of attack pat-
terns [39]. [41] presents 19 attack patterns and exam-
ples for practically applying these attacks to actual ap-
plications (Microsoft Windows Media Player, Mozilla,
and OpenOffice.org). [40] shows 24 attack patterns for
web applications.

In these books, each attack pattern consists of a name
(or concise sentence) and sections starting with a spe-
cial keyword, which is either WHEN, WHAT, or HOW.
A WHEN section explains a situation in which the at-
tack might be successful. From the perspective of pro-
grammers (developers), this shows the properties of the
developed program. The properties must be tested be-
fore the program is actually used. A WHAT section
indicates causal faults, i.e., what faults make the attack
successful. The programmers remove faults (probably
implementation bugs or design flaws) described in this
section. A HOW section is mainly used to explain how
to determine whether security is compromised and how
to conduct the attack. Although these attack patterns do
not directly help coding, they are all useful for improv-
ing the implementation of developed programs.

3.3.3 Secure refactoring
As our focus shifts from the literature on security

to software refactoring, we find that several refactor-
ings are related to security characteristics. For ex-
ample, Fowler’s catalogue [42] contains several refac-
torings that can remove the security flaws of existing

object-oriented programs. Refactoring is the process of
altering the internal structure of existing code without
changing its external (observable) behavior [42], [43].
A cataloged refactoring seems to be a kind of modifi-
cation (transformation) pattern for a design specifica-
tion or code, since its documentation is well-formed in
describing recurrent problems (requirements) and their
solutions (plus consequences).

In [42], the Encapsulate Field refactoring converts
the accessibility setting of a field from public to private
in order to make it harder for any client (an attacker
in most cases) to access the value of the encapsulated
field. If such a field is set at development time and
will be never altered, the Remove Setting Method
refactoring can be further applied, removing the set-
ting method for the field and declaring the field final.
A private final field without a setting method prevents
a client from changing the value of the field. The En-
capsulate Collection refactoring replaces the setting
method for a collection (e.g., an array, list, or set) by
adding or removing methods for the collection, and it
rewrites the getting method of the collection so that it
returns either an unmodifiable view or a copy. The code
after this transformation does not allow any client to
freely change the contents of the encapsulated collec-
tion. In addition, the Encapsulate Classes with Fac-
tory refactoring in Kerievsky’s catalog [44] reduces the
possibility of malicious access from any client by hid-
ing classes that do not need to be publicly visible. No
attacker can access sensitive data stored in the encapsu-
lated classes, since attackers have no way to know the
names of such classes or to obtain references to their
instances.

One of us successfully developed four new refac-
torings increasing the security level of existing code,
which are called secure refactorings [45]. These refac-
torings change the internal structure of existing soft-
ware to make it more secure without changing its ob-
servable behavior. Each refactoring has a name, moti-
vation, mechanics, and examples. The motivation de-
scribes why the refactoring should be applied and the
result of its application. The mechanics demonstrate
a situation in which the refactoring should be applied
(called the security smell), and they present concise
procedures for how to carry it out. The examples show
code snippets before and after application of the refac-
toring.

In [45], the Introduce Immutable Field refactoring
protects any field from malicious modification. The
Replace Reference with Copy refactoring prevents
attackers from changing internal data by exploiting an
obtained reference. The Prohibit Overriding refactor-
ing changes code so that it cannot allow an arbitrary
(possibly malicious) class to redefine a method exist-



A survey on security patterns 41

ing in the code. The Clear Sensitive Value Explicitly
refactoring explicitly clears the value of a variable stor-
ing sensitive data at the earliest possible time in order
to protect such information from theft. All the trans-
formations of these secure refactorings can be codified
into an automated tool.

3.4 Security pattern engineering
From the pattern lifecycle point of view, activities

using software patterns can be classified into two pro-
cesses: extraction and application.

• The extraction process consists of several activi-
ties: (E1) finding a pair of a recurring problem and
its corresponding solution from knowledge and/or
experiences of software development; (E2) writ-
ing the found pair with forces in a specific pattern
format (such as that shown in section 2.2); (E3) re-
viewing and revising the written pattern; and (E4)
publishing the revised pattern via some public (or
private, if necessary) resource such as a book, the
WWW, or specific repositories.

• The application process also consists of several ac-
tivities: (A1) recognizing contexts and problems
in software developments; (A2) selecting software
patterns, from public or private resources, that are
thought to be useful for solving the recognized
problems; (A3) applying the selected patterns to
the target problem; and (A4) evaluating the appli-
cation result.

These activities are thought to be common for se-
curity patterns. Therefore in the following, we show
several engineering achievements and ongoing research
on utilizing security patterns by relating those achieve-
ments and research to the above pattern activities.

3.4.1 Representation of security requirements and pat-
terns

As shown in section 2.2, software patterns are
loosely structured documents. Most security patterns
are structured by using the GoF [17] or POSA [22] for-
mats that have been used for describing design or ar-
chitecture patterns. This is somewhat reasonable be-
cause many security patterns provide processes for cre-
ating particular design structures. These general for-
mats, however, are not specific enough to capture se-
curity requirements as target problems. The nature of
security patterns regarding their formats makes it diffi-
cult to select appropriate security patterns satisfying the
target security requirements.

To overcome this situation, research [46], [47] has fo-
cused on modeling and describing security patterns for-
mally and precisely in order to develop a tool for sup-

porting a mapping mechanism from security patterns to
requirements and for retrieving patterns based on the
map.

Schumacher proposed an approach for implementing
a security pattern search engine [46]. Using a symbolic
ontology representation language F-Logic [48], this ap-
proach defines a knowledge base composed of a secu-
rity ontology, mappings between security concepts and
security pattern elements, and inference rules among
patterns (such as pattern p1 requires another pattern
p2 in its solution). By using the knowledge base, de-
velopers can retrieve security patterns that meet given
queries, such as contexts and problems. Moreover, this
approach provides a way to find all required security
patterns according to a pattern hierarchy, and to detect
conflicting and alternative patterns.

In addition, Supaporn et al. proposed an approach
to construct extended-BNF-based grammars of security
requirements from security patterns in order to translate
from the security needs of any project or organization
to system security requirements [47]. Moreover, they
also proposed a prototyping tool for defining security
requirements based on the constructed grammars. This
tool supports developers in selecting types of security
requirements by providing lists of security properties
and related security patterns, and in instantiating the
selected security patterns by displaying forms for the
developers to fill in the necessary information.

The research is helpful mainly for supporting activi-
ties E2 and A2 in the above-mentioned classification.

3.4.2 Classification of security patterns
The large number of security patterns makes selec-

tion of the right pattern for a job a daunting task [49];
we need guidance for developers on how to select ap-
propriate patterns. To provide good guidance for se-
curity pattern selection, it is necessary to clarify the
relations among patterns. There has been some such
research [2], [50]–[52] on classifying security patterns.

Konrad et al. proposed a classification method of or-
ganizing security patterns by using the aspect types of
the patterns (creational, structural, or behavioral, as de-
fined in [17]) and the abstraction level (network, host,
or application) [50]. Similar classification can be found
elsewhere [2], [51]. Rosado et al. related typical se-
curity requirements to security patterns, and classified
patterns into architectural and design patterns [51].

Hafiz et al. proposed several ways to classify and
organize security patterns [52], such as a classification
based on the CIA model [53], which describes three
key aspects of security (confidentiality, integrity, and
availability), a tabular classification based on patterns’
application contexts and the Zachman framework [54],
and a classification based on the STRIDE model [55],



42 Progress in Informatics, No. 5, pp.35–47, (2008)

which categorizes different types of threats.
All of the above-mentioned classifications are con-

ducted manually through experts consideration. In con-
trast, there is a challenge [56] to classify security pat-
terns automatically by applying a relation extraction
technique [57]. There is a tradeoff between scalabil-
ity and validity. Manual classification techniques are
thought superior in terms of validity. In contrast, auto-
matic classification techniques are superior in terms of
scalability.

These classifications are helpful mainly for support-
ing activity A2 above.

3.4.3 Repository of security patterns

In relation to the above section, there are several
repositories and inventories collecting and categoriz-
ing a number of software patterns including security
patterns. Some of these use existing classification
schemes, such as those shown in section 3.4.2, and are
helpful for supporting activity A2.

Yskout et al. developed an inventory in which each
security pattern is classified as an architectural pattern
or a design pattern [58]. The relationships among pat-
terns and the quality tradeoff for each pattern were an-
alyzed and explicitly described.

Moreover, there are several online repositories of all
kinds of software patterns, such as patternshare [59]
and the Portland Pattern Repository [60]. These online
repositories are useful for supporting activities E4 and
A2; however, these are not specific to security patterns,
so mechanisms for security-specific classification and
search are unavailable.

3.4.4 Quality analysis of security patterns

There is also research on assessing the overall quality
of security patterns, which mainly supports activities
E3 and A2.

Halkindis et al. qualitatively analyzed a set of se-
curity patterns by using Viega and McGraw’s ten secu-
rity principles [61] as evaluation criteria [62]. Similarly,
Konrad et al. applied the same evaluation criteria to an-
other set of security patterns [50].

Heyman et al. used different quantitative criteria for
a larger set of security patterns [49]. They assessed se-
curity patterns according to three dimensions: appro-
priateness (i.e., whether a pattern can be used construc-
tively for developing the architecture or designing an
application), the quality of the pattern’s documentation,
and the distribution of security patterns over the secu-
rity objectives. For example, they found that the most
well-represented objective of existing security patterns
is access control [49].

3.4.5 Development methodology with security patterns
As mentioned previously in this paper, there are a

number of security patterns and catalogs that organize
related security patterns; most of them, however, do
not provide any clear information about when to apply
them within the entire software/system life cycle pro-
cess. To complement such information, a development
methodology utilizing security patterns is needed.

Fernandez et al. proposed a methodology that incor-
porates security patterns in all the life cycle stages [63],
[64]. This methodology proposes guidelines for incor-
porating security from the requirements stage through
analysis, design, implementation, testing, and deploy-
ment [64].

There are other methodologies for developing secure
software systems by using security patterns together
with other tools or techniques [63]. For example, these
include aspect-oriented security design methodologies,
in which the security aspects are modeled using pat-
terns and weaved into functional models [65], [66]; a
security engineering process based on problem frames
[9] with security patterns [14]; and an approach using
security patterns and UMLSec [67] (a UML extension
for modeling security constraints) in the secure soft-
ware development life process [68].

These methodologies directly support the entire pro-
cess of security pattern application (A1 through A4) in
our above classification.

4 Discussions
In this section, we first discuss the ease of pattern

use, and the effectiveness and the sufficiency of security
patterns for security engineering; then, we show what
kinds of security patterns will be needed in the future.
We then discuss how previous security patterns can be
adapted to system models that point to future research
directions.

4.1 Ease of security pattern use
There are interrelations between the quality and the

ease of use of patterns. As described in section 3.4.4,
Heyman et al. defined the appropriateness and the
quality of the pattern’s documentation [49]. For ap-
propriateness, they used two kinds of definitions: a
negative definition (patterns vs. concepts and mecha-
nisms), and a positive definition (scoped problem with
a time-proven, constructive solution). Consequently,
they found that 55% of patterns are classified as core
patterns, 35% are guidelines and principles, and 10%
are process activities. In addition, for the quality of a
pattern’s documentation, they defined a good descrip-
tion of the problem and forces, the solution, and the
consequences and assigned scores to these in order to
measure the quality of patterns.



A survey on security patterns 43

According to this classification, analysis process pat-
terns are regarded as process activities rather than core
patterns. For instance, the asset valuation pattern [2]
does not include any solutions for security measures, al-
though it illustrates a kind of domain analysis. As men-
tioned in section 3.1, however, we should define secu-
rity requirements in the requirements phase. Therefore,
it is useful to define process activities for the specifica-
tion of typical security requirements and examples as
security patterns.

The problem of analysis process patterns, described
in section 3.1.1, does not indicate the specific context
but a general one. Therefore, the specification is ab-
stract, so that the application of patterns depends on en-
gineer’s experience rather than knowledge of patterns.
This implies that it is difficult to apply such analysis
process patterns to each problem. We need to make the
patterns specific to particular domains.

In [49], one of the qualitative criteria for a pattern’s
documentation is the use of images such as UML di-
agrams. Patterns in the design phase are easily un-
derstood through such UML diagrams. For example,
the solutions of the patterns in [18] are illustrated us-
ing class diagrams, such as that shown in Fig. 2, and
sequence diagrams. The ease of understanding of pat-
terns, however, does not imply ease of application of
the patterns.

For example, it is easy to understand the secure pipe
pattern [18], but its actual application is not easy. The
problem is described as follows:

“You need to provide privacy and prevent
eavesdropping and tampering of client trans-
actions caused by man-in-the middle at-
tacks.”

In the pattern, however, the definition of the private data
and insecure networks that should be protected are not
specified. As a consequence, instantiation of the pattern
is not so easy. For ease of pattern application, analysis
process patterns and methodologies for developing se-
cure systems might be important.

Patterns in the implementation phase should be so-
phisticated, as described in section 3.3. Many patterns
in this phase only indicate techniques and guidelines
in term of the solution, while the problem and context
are not clear. In the problem and context sections of
patterns, the vulnerabilities should be described con-
cretely.

4.2 Effectiveness of security patterns
Security patterns are intended to be secure and to use

security functions efficiently. For example, the authen-
tication enforcer pattern in [18] aims to use authenti-
cation functions efficiently with requests from multiple

clients. This pattern effects the reusability and main-
tainability of authentication functions. The effective-
ness can be measured the usual metrics. For example,
Vokac explored the relation between defect frequency
and the application of five design patterns [69].

For the effectiveness of security, we need to define
a security metric, such as the frequency of security vi-
olations or the inconsistency of security requirements
and a function. After applications of security patterns,
threats might be mitigated, and a system might main-
tain a proper security level.

4.3 Sufficiency of security patterns
The table in Fig. 3 illustrates the relative density of

security patterns proposed for each phase in software
development. In this table, each column and row spec-
ifies a security concept and a phase, respectively. Each
cell in the table shows an activity with respect to a se-
curity concept and how many security patterns appear.
A “+” indicates that many security patterns exist, with
“++” meaning a relatively larger number.

We can infer the following facts from the data in the
table:

• In the requirements and analysis phases, there are
many attack patterns. In contrast, there are few
patterns for countermeasures.

• In the architecture and design phases, there are rel-
atively small numbers of attack patterns and pat-
terns for security specification.

• In the implementation phase, there are many at-
tack patterns and patterns for countermeasures but
only a small number of patterns for security spec-
ification.

These results seem to imply that we need more pat-
terns for the areas with smaller numbers of patterns in
the table in order to improve sufficiency. We do not
know, however, whether all kinds of patterns are useful.
In [46], Schumacher shows possible overlaps where we
need to clarify the security concepts for each phase.
The bubbles in Fig. 3 indicate the overlaps 3) which il-
lustrate areas important to other phases. In other words,
we can bridge the gap from security requirements to im-
plementation of security functions seamlessly by using
patterns in the overlapping areas. In addition, pattern
languages might play an important role in connecting
phases with each other.

Consequently, we realize that we need patterns for
risk and attacks in the design phase to bridge the gap
between the requirement phase and the design phase.
Additionally, these patterns are needed to bridge the

3) We omit some phases and concepts because of space limitations.



44 Progress in Informatics, No. 5, pp.35–47, (2008)

+

++

+

++

+

++

++

+

+

++

+

+

+

+

++

++

+

+ MeasuredEstimatedIdentifiedRisk

TestedFeasibilityIdentifiedVulnerability

Implemented

with security

Designed with 

security
DefinedAsset

TestsReviewsDefinedStakeholder

VerifiedReviewedDefinedSecurity objective

ImplementedFeasibilityIdentifiedCountermeasure

Implementation PhaseArchitecture and 

Design Phase

Requirements and 

Analysis Phase

Phase

Concept

TestedFeasibilityIdentifiedAttacker

TestedFeasibilityIdentifiedAttack

TestedFeasibilityIdentifiedThreat

specification

Fig. 3 Security concepts and security patterns in development phases.

gap between the security requirements and implemen-
tation.

Nevertheless, it seems difficult to find threats, at-
tacks, and vulnerabilities of systems at the design level.
The reason is that it is difficult to find the influence of
attacks at the design level when the the inner details of
a system have not yet been implemented. Therefore,
we need to establish a methodology for designing at-
tack patterns at the design level. We might consider a
method using the monitoring of attackers in a mainte-
nance phase, or designing attacks in a manner similar
to system design.

4.4 Unifying security patterns and system models
In [1], Devanbu showed the challenges for the next

generation of software engineering for security. The
following are two of the challenges:

• Unifying security with system engineering
• Unifying security and system models

The enrichment of security patterns seems to meet the
former challenge. We need a deeper analysis mech-
anism or formalism of systems for security patterns,
however, in order to support the analysis and selection
of security features.

For the latter challenge, we need compatibility with
system models. The following models have been pro-
posed for security modeling in early phases.

• Problem-Frame-based models: abuse frame [70],
anti-requirements [71], malicious subject, etc

• Tropos-based models: i*/Tropos, Secure Tropos
[72], attacker agents, trust relations, etc

• UML-based models: abuse case, misuse Case
[73], misuse actions [74], etc

In the future, we might need to integrate the above mod-
els into security patterns.

UML-based models are widely used for design. For
modeling security concerns, models such as UMLsec
[67] and SecureUML [75] have been proposed, so we
need to adapt such models to security patterns.

There is existing research in which UML-based mod-
els are adapted to security patterns [5], [50], [76]. In
[5], [50], security properties can be checked precisely
by using formal methods. In [76], we can find the appli-
cable parts of security patterns, because the contexts of
patterns are denoted using a deployment diagram and
a sequence diagram without security functions. This
means that systems before security functions are at-
tached will be matched with the diagrams in context.

5 Conclusions
In this paper, we have categorized security patterns

according to software development phases and then an-
alyzed the patterns with respect to security concepts
and discussed their sufficiency. Consequently, we have
showed the potential needs for security patterns with at-
tack design. In addition, we gave a research direction
for modeling in security patterns.

Our future work will include a proposal of a design
method and a model for security patterns with attacks.

References
[1] P. T. Devanbu and S. Stubblebine, “Software engineer-

ing for security: a roadmap,” in Proceedings of the Con-
ference on The Future of Software Engineering, pp.227–
239, 2000.

[2] M. Schumacher, E. B. Fernandez, D. Hybertson, F.
Buschmann, and P. Sommerlad, Security Patterns: Inte-
grating Security And Systems Engineering, John Wiley
& Sons Inc, 2006.

[3] E. Houg, N. R. Mead and T. R. Stehney, “Security qual-
ity requirements engineering (square) methodology,”



A survey on security patterns 45

Technical Report CMU/SEI-2005-TR-009, CMU/SEI,
2005.

[4] P. Bresciani, P. Giorgini, F. Giunchiglia, and J. My-
lopoulos, “Tropos: An agent-oriented software develop-
ment methodology,” JAAMAS, vol.8, no.3, pp.203–236,
2004.

[5] J. Jürjens, G. Popp, and G. Wimmel, “Towards using
security patterns in model-based system development,”
in Proceedings of PLoP 2002 Conference, 2002.

[6] C. Alexander, The Timeless Way of Building, Oxford
University Press, 1979.

[7] F. Buschmann, K. Henney, and D.C. Schmidt, Pattern-
Oriented Software Architecture: On Patterns and Pat-
tern Languages, John Wiley & Sons Inc, 2007.

[8] M. Kis, “Information security antipatterns in software
requirements engineering,” in the PLoP 2002 confer-
ence, 2002.

[9] M. A. Jackson, Problem Frames: Analysing and struc-
turing software development problems, Addison Wes-
ley, 2000.

[10] P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zan-
none, “Modelling security requirements through owner-
ship, permission and delegation,” in 13th IEEE Interna-
tional Conference on Requirements Engineering 2005,
pp.167–176, 2005.

[11] H. Mouratidis, M. Weiss, and P. Giorgini, “Modelling
secure systems using an agent-oriented approach and se-
curity patterns,” International Journal of Software En-
gineering and Knowledge Engineering, vol.16, no.3,
pp.471–498, 2006.

[12] D. Hatebur, M. Heisel, and H. Schmidt, “Security en-
gineering using problem frames,” in Proceedings of
the International Conference on Emerging Trends in
Information and Communication Security (ETRICS),
vol.3995, pp.238–253, Springer Berlin, Heidelberg,
2006.

[13] D. Hatebur, M. Heisel, and H. Schmidt, “A pattern sys-
tem for security requirements engineering,” in Proceed-
ings of the International Conference on Availability, Re-
liability and Security (AReS), pp.356–365, IEEE, 2007.

[14] D. Hatebur, M. Heisel, and H. Schmidt, “A security en-
gineering process based on patterns,” in Proceedings
of the International Workshop on Database and Ex-
pert Systems Applications (DEXA), pp.734–738, IEEE,
2007.

[15] J. Yoder and J. Barcalow, “Architectural patterns for en-
abling application security,” in Proceedings of PLoP ’97
Conference, 1997.

[16] E. B. Fernandez and R. Pan, “A pattern language for
security models,” in Proceedings of PLoP 2001 Confer-
ence, 2001.

[17] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, De-
sign Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley Professional, 1995.

[18] C. Steel, R. Nagappan, and R. Lai, Core Security Pat-
terns: Best Practices and Strategies for J2EE, Web Ser-
vices, and Identity Management, Prentice Hall, 2005.

[19] E. B. Fernandez, J. C. Pelae, and M. M. Larrondo-
Petrie, “Security patterns for voice over ip networks,” in
Proceedings of the International Multi-Conference on
Computing in the Global Information Technology (IC-
CGI’07), 2007.

[20] M. Weiss, Integrating Security and Software Engineer-
ing: Advances and Future Vision, Chapter VI: Mod-
elling Security Patterns Using NFR Analysis, pp.127–
141, Idea Group Publishing, 2006.

[21] P. Morrison and E. B. Fernandez, “Securing the bro-
ker pattern,” In Proceedings of the 11th European Con-
ference on Pattern Languages of Programs (EuroPLoP
2006), 2006.

[22] F. Buschmann, R. Meunier, H. Rohnert, P. Sommer-
lad, and M. Stal, Pattern-Oriented Software Architec-
ture Volume 1: A System of Patterns, Wiley, 1996.

[23] D. Alur, J. Crupi, and D. Malks, Core J2EE Patterns:
Best Practices and Design Strategies, Second Edition,
Prentice Hall, 2003.

[24] E. B. Fernandez, T. Sorgente, and M. M. Larrondo-
Petrie. “Even more patterns for secure operating sys-
tems,” in Proceedings of PLoP 2006 Conference, 2006.

[25] M. Hafiz, “Secure pre-forking - a pattern for perfor-
mance and security,” in Proceedings of PLoP 2005 Con-
ference, 2005.

[26] M. Sadicoff, M. M. Larrondo-Petrie, and E. B. Fernan-
dez, “Privacy-aware network client pattern,” in Proceed-
ings of PLoP 2005 Conference, 2005.

[27] S. Romanosky, A. Acquisti, J. Hong, L. F. Cranor, and
B. Friedman, “Privacy patterns for online interactions,”
in Proceedings of PLoP 2006 Conference, 2006.

[28] M. Bishop, Computer Security: Art and Science, Chap-
ter 29: Program Security, pp.869–921, Addison Wesley,
2003.

[29] M. G. Graff and K. R. Wyk, Secure Coding: Principles
and Practices, Chapter 4: Implementation, pp.99–123,
O’Reilly, 2003.

[30] D. A. Wheeler, “Secure Programming for Linux
and Unix HOWTO,” 1999. http://www.dwheeler.com/
secure-programs/.

[31] G. McGraw and E. Felten, “Twelve rules for developing
more secure java code,” 1998; http://www.javaworld.
com/javaworld/jw-12-1998/jw-12-securityrules.html.

[32] J. Viega, G. McGraw, T. Mutdosch, and E.W. Felten,
“Statically scanning java code: Finding security vulner-
abilities,” IEEE Software, vol.17, no.5, pp.68–74, 2000.

[33] Sun Microsystems, Security code guidelines, 2000.
http://java.sun.com/security/seccodeguide.html.

[34] J. Viega and M. Messier, Secure Programming Cook-
book for C and C++, O’Reilly, 2003.



46 Progress in Informatics, No. 5, pp.35–47, (2008)

[35] R. C. Seacord, Secure Coding in C and C++, Addison
Wesley, 2006.

[36] S. Oaks, Java Security, 2nd ed. Addison-Wesley, 2001.

[37] M. Howard and D. LeBlanc, Writing Secure Code, Sec-
ond Edition, Microsoft Press, 2002.

[38] C. Wysopal, L. Nelson, D. D. Zovi, and E. Dustin, The
Art of Software Security Testing, Addison-Wesley, 2006.

[39] J. A. Whittaker and H.H. Thompson, How to Break Soft-
ware Security, Addison Wesley, 2001.

[40] M. Andrews and J. A. Whittaker, How to Break Web
Software, Addison-Wesley, 2006.

[41] G. Hoglund and G. McGraw, Exploiting Software: How
to Break Code, Addison-Wesley, 2004.

[42] M. Fowler, Refactoring: Improving the Design of Exist-
ing Code, Addison-Wesley, 1999.

[43] W. F. Opdyke, Refactoring Object-Oriented Frame-
works. PhD thesis, University of Illinois, Urbana-
Champaign, 1992.

[44] J. Kerievsky, Refactoring to Patterns, Addison-Wesley,
2004.

[45] K. Maruyama, “Secure refactoring: Improving the se-
curity level of existing code,” in Proc. Int’l Conf. Soft-
ware and Data Technologies (ICSOFT 2007), pp.222–
229, 2007.

[46] M. Schumacher, Security Engineering With Patterns:
Origins, Theoretical Models, and New Applications,
Springer, 2003.

[47] K. Supaporn, N. Prompoon, and T. Rojkangsadan, “An
approach: Constructing the grammar from security
pattern,” in Proc. 4th International Joint Conference
on Computer Science and Software Engineering (JC-
SSE2007), 2007.

[48] M. Kifer, G. Lausen, and J. Wu, “Logical foundations
of object oriented and frame based languages,” Journal
of ACM, vol.42, pp.741–843, 1995.

[49] T. Heyman, K. Yskout, R. Scandariato, and W. Joosen,
“An analysis of the security patterns landscape,” in
3rd International Workshop on Software Engineering
for Secure Systems (SESS07), Proc. 29th International
Conference on Software Engineering Workshops (IC-
SEW’07), IEEE CS, 2007.

[50] S. Konrad, B. H. C. Cheng, L. A. Campbell, and R.
Wassermann, “Using security patterns to model and an-
alyze security requirements,” in International Workshop
on Requirements for High Assurance Systems, 2003.

[51] D. G. Rosado, C. Gutierrez, Eduardo Fernandez-
Medina, and M. Piattini, “Security patterns related
to security requirements,” in Proc. 4th International
Workshop on Security in Information Systems (WOSIS),
2006.

[52] M. Hafiz, P. Adamczyk, and R.E. Johnson, “Organizing
security patterns,” IEEE Software, vol.24, no.4, pp.52–
60, 2007.

[53] Commission of European Communities, Information
technology security evaluation criteria, version 1.2,
1991.

[54] J. A. Zachman, “A framework for information systems
architecture,” IBM Systems Journal, vol.26, no.3, 1987.

[55] F. Swiderski and W. Snyder, Threat modeling, Microsoft
Press, 2004.

[56] A. Kubo, H. Washizaki, and Y. Fukazawa, “Extracting
relations among security patterns,” Submitted to 1st In-
ternational Workshop on Software Patterns and Quality
(SPAQu’07).

[57] A. Kubo, H. Washizaki, A. Takasu, and Y. Fukazawa,
“Extracting relations among embedded software design
patterns,” Journal of Design & Process Science, vol.9,
no.3, pp.39–52, 2005.

[58] K. Yskout, T. Heyman, R. Scandariato, and W. Joosen,
“An inventory of security patterns,” in Technical Report
CW-469, Katholieke Universiteit Leuven, Department
of Computer Science, 2006.

[59] Microsoft, Patternshare; http://patternshare.org/.

[60] Cunningham & Cunningham, Inc., Portland pattern
repository; http://c2.com/ppr/.

[61] J. Viega and G. McGraw, Building Secure Software:
How to Avoid Security Problems the Right Way,
Addison-Wesley, 2001.

[62] S. T. Halkidis, A. Chatzigeorgiou, and G. Stephanides,
“A qualitative evaluation of security patterns,” in Proc.
International Conference on Information and Commu-
nications Security (ICICS), 2004.

[63] E. B. Fernandez, M.M. Larrondo-Petrie, T, Sorgente,
and M. VanHilst. Integrating Security and Software En-
gineering: Advances and Future Vision, Chapter V: A
methodology to develop secure systems using patterns,
pages 107–126, Idea Group Publishing, 2006.

[64] E. B. Fernandez, “Security patterns,” in Procs. Eigth In-
ternational Symposium on System and Information Se-
curity (SSI’2006), Keynote talk, 2006.

[65] G. Georg, I. Ray, and R. France, “Using aspects to
design a secure system,” in Proc. Eighth IEEE Inter-
national Conference on Engineering of Complex Com-
puter Systems, 2002.

[66] I. Ray, R. France, N. Li, and G. Georg, “An aspect-based
approach to modeling access control concerns,” Infor-
mation and Software Technology, vol.46, no.9, pp.575–
587, 2004.

[67] J. Jürjens, Secure Systems Development with UML,
Springer, 2004.

[68] A. Apvrille and M. Pourzandi, “Secure software devel-
opment by example,” IEEE Security & Privacy, vol.3,
no.4, pp.10–17, 2005.

[69] M. Vokac, “Defect frequency and design patterns: an
empirical study of industrial code,” Transactions on
Software Engineering, vol.30, no.12, pp.904–917, 2004.



A survey on security patterns 47

[70] L. Lin, B. Nuseibeh, D. Ince, M. Jackson, and J. Mof-
fett, “Analysing security threats and vulnerabilities us-
ing abuse frames,” Open University Technical Report
No:2003/10, 2003. Abuse Frame.

[71] R. Crook, D. Ince, L. Lin, and B. Nuseibeh, “Security
requirements engineering: When anti-requirements hit
the fan,” in Proceeding of the 10th Requirements Engi-
neering Conference (RE’02), pp.9–13, 2002.

[72] P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zan-
none, “Requirements engineering meets trust manage-
ment: Model, methodology, and reasoning,” in Proc.
of iTrust’04, LNCS 2995, pp.176–190, Springer-Verlag,
2004.

[73] P. Hope, G. McGraw, and A.I. Anton, “Misuse and
abuse cases: Getting past the positive,” IEEE Security
& Privacy, vol.2, no.3, pp.90–92, 2004.

[74] E. B. Fernandez, M. VanHilst, M.M. Larrondo, and
S. Huang, “Defining security requirements through mis-
use actions,” in IFIP International Federation for Infor-
mation Processing, pp.123–137, 2006.

[75] T. Lodderstedt, D. A. Basin, and J. Doser, “SecureUML:
A UML-based modeling language for model-driven se-
curity,” in Proceedings of the 5th International Confer-
ence on The Unified Modeling Language, pp.426–441,
2002.

[76] N. Yoshioka, S. Honiden, and A. Finkelstein, “Security
patterns: a method for constructing secure and efficient
inter-company coordination systems,” in Proceedings of
Enterprise Distributed Object Computing Conference
2004 (EDOC’04), pp.84–97, 2004.

Nobukazu YOSHIOKA
Nobukazu YOSHIOKA is a re-
searcher at the National Institute of
Informatics, Japan. Dr. Nobukazu
Yoshioka received his B.E degree in
Electronic and Information Engineer-
ing from Toyama University in 1993.

He received his M.E. and Ph.D. degrees in School of
Information Science from Japan Advanced Institute of
Science and Technology in 1995 and 1998, respec-
tively. From 1998 to 2002, he was with Toshiba Cor-
poration, Japan. From 2002 to 2004 he was a re-
searcher, and since August 2004, he has been an as-
sociate professor, in National Institute of Informatics,
Japan. His research interests include agent technol-
ogy, object-oriented methodology, software engineer-
ing for secure systems, and software evolution. He
is a member of the Information Processing Society of
Japan (IPSJ), and Japan Society for Software Science
and Technology.

Hironori WASHIZAKI
Hironori WASHIZAKI is an assis-
tant professor at National Institute of
Informatics, Tokyo, Japan. He is
also an assistant professor at the The
Graduate University for Advanced
Studies, Japan. He obtained his Doc-

tor’s degree in Information and Computer Science from
Waseda University in 2003. His research interests in-
clude software reuse, quality assurance and patterns.
He has published more than 35 research papers in ref-
ereed international journals and conferences. He re-
ceived Takahashi Encouraging Award from JSSST in
2004, SES2006 Best Paper Award from IPSJ/SIGSE,
and Yamashita Memorial Research Award from IPSJ in
2007. He has served as member of program commit-
tee for several international conferences and workshops
including REP’04, ASE’06, Profes’04-08, APSEC’07,
SPACE’07, JCKBSE’08 and ISA’08, as workshop co-
chair for ASE’06, as publicity chair for APSEC’07, and
as program co-chair for SPAQu’07. He is a member of
IEEE, ACM, IEICE, JSSST, IPSJ, DBSJ, JUSE, JSQC
and Hillside Group.

Katsuhisa MARUYAMA
Katsuhisa MARUYAMA received
B.E. and M.E. degrees in electri-
cal engineering and a ph.D in infor-
mation and computer science from
Waseda University, Japan, in 1991,
1993, and 1999, respectively. He is

a professor of the Department of Computer Science at
College of Information and Engineering, Ritsumeikan
University. He has worked for NTT (Nippon Tele-
graph and Telephone Corporation) and NTT Communi-
cations Corporation before he joined Ritsumeikan Uni-
versity. He was a visiting researcher at Institute for
Software Research (ISR) of University of California,
Irvine (UCI) from 2003 through 2004. His research in-
terests include software refactoring, program analysis,
software reuse, object-oriented design and program-
ming, and software development environments. He is
a member of the IEEE Computer Society, ACM, IPSJ,
IEICE, and JSSST.


