
Progress in Informatics, No. 4, pp.15–28, (2007) 15

Research Paper

Rewriting XQuery by child-path folding

Hiroyuki KATO1, Soichiro HIDAKA2 and Masatoshi YOSHIKAWA3

1,2National Institute of Informatics
3Kyoto University

ABSTRACT
An XQuery optimization by rewriting based on a partial evaluation using folding expressions
is proposed. It consists of two parts: one is the main algorithm, which is a recursive algorithm
based on an inductive definition of XQuery expressions. The other is invoked by the main
algorithm with an expression whose subexpressions are already folded as its input, and it
applies the expression-specific folding function. The main contributions of this paper is to
propose an algorithm of an expression-specific folding called “child-path folding”. For a given
query to the child axis over an element constructed by another XQuery, that is, a composite
XQuery, this folding eliminates redundant element construction operators and expressions.
These kinds of queries are typical in Global-As-View approach to data integration systems.
We also show that all redundant element construction operators and expressions in child-path
expressions are eliminated by applying auxiliary transformations. In addition to child-path
folding, we discuss folding of major XQuery constructors including FLWOR and quantified
expressions. Moreover, we improve the rewriting algorithm based on pruning by adding two
annotations to the parsed trees of XQuery expressions.

KEYWORDS
Query optimization, functional language, database, XQuery

1 Introduction
An XQuery is often mapped to the queries supported

by the underlying models and it can use their optimiza-
tion features. However, optimizing XQuery by rewrit-
ing is very important because rewriting queries at a
high level can dramatically improve the query complex-
ity [1].

In this paper, we present a partial evaluation algo-
rithm for XQuery expressions. This algorithm exploits
the functional aspects of XQuery, and it is universal
in nature, so many other partial evaluation techniques
for functional languages in general (including those not
specifically mentioned in this paper) can be easily com-
bined with it.

To make our algorithm universal, it consists of two

Received August 29, 2006; Revised January 19, 2007; Accepted February 8,
2007.
1)kato@nii.ac.jp, 2)hidaka@nii.ac.jp, 3)yoshikawa@i.kyoto-u.ac.jp

parts: the main function, peval, is a recursive algorithm
based on the inductive definition of the XQuery ex-
pression; the fold function is invoked by peval with an
expression whose subexpressions are already folded as
its input, and it invokes an expression-specific folding
function. Consequently, in general, for an expression e
which is defined inductively as

e ::= op(e1, ...eN),

the partial evaluation of e — i.e., peval(e) — can be
applied by our algorithm as

peval(e)
def
= fold(op(peval(e1), ...,peval(eN))),

where op is an operator that represents XQuery con-
structors such as FLWOR.

One of the main contributions in this paper is an
algorithm of an expression-specific folding function,
child-path folding. For a given query to a child axis

DOI: 10.2201/NiiPi.2007.4.3

c©2007 National Instiute of Informatics

16 Progress in Informatics, No. 4, pp.15–28, (2007)

over an element constructed by another XQuery — that
is, a composite XQuery — this folding eliminates re-
dundant element construction operators and redundant
expressions. These composite queries are typical in
a Grobal-As-View-based approach [2], which is anal-
ogous to view expansion in traditional database sys-
tems, adopted in data integration systems [3] because
element construction operators correspond to schema
definitions in XQuery expressions used as schema
mapping [4]. The performance improvement of input
XQuery expressions enabled by our rewriting algorithm
is equal, at most, to the evaluation cost of redundant ele-
ment construction operators because applying the child-
path folding to input expressions eliminates those re-
dundant element constructions. The evaluation cost of
element construction operators is the evaluation cost of
the expressions enclosed by the operators in addition
to the copy cost of evaluated values of the enclosed
expressions [5]. The actual cost of element construc-
tion operators for the existing famous XQuery engine
Galax [6] is consistent with the above estimation [7].

Let us consider the following XQuery expression
(Q1);

(for $b in doc("bib.xml")/bib/book,
$a in $b/author

return <pub>{$a}, {$b/title}</pub>)/author

This XQuery forms expr/en, where expr is an XQuery
expression, a FLWOR expression in this case, and en is
an element name, “author”. By referring to the XQuery
specification [5] the following equation holds.

expr/en ≡ expr/child::node()/self::en · · · (1)

By referring to the XQuery formal semantics [8],
we can distinguish two properties: one for expr/
child::node(),

(a) <a>expr′/child::node() =1) expr′

and the other for expr/self::en;

(b) expr′/a/self::a = expr′/a

Through these properties, child-path folding results in
the following XQuery (Q2);

for $b in doc("bib.xml")/bib/book,
$a in $b/author

return $a

Query Q2 is more efficient than Q1 because of the re-
moval of both the unnecessary element construction op-
erator for pub and the path expression $b/title.
1) This equality is actually value-based. The accommodation of node-id equal-
ity is part of our ongoing work.

We will show that by applying auxiliary transfor-
mation rules, we can eliminate all redundant element
construction operators which exploit property (a) and
all redundant expressions which exploit property (b).
Moreover, the child-path folding algorithm is improved
through pruning by adding two annotations to parsed
trees of XQuery expressions.

In this paper, we focus on the child and self axes for
the axis steps because the main purpose of this paper is
to explain child-path folding algorithm by using prop-
erties (a) and (b) described above. However, as we will
show, our algorithm can be easily extended for new ex-
pressions including other axes such as descendant, at-
tribute, or parent axes.

This paper is structured as follows. After related
works are described in the next section, our target
XQuery expressions and their notation are shown in
Section 3. Section 4 provides an overview of our al-
gorithm. Section 5 describes one of the main contri-
butions, child-path folding. In Subsection 5.1, func-
tion cpf is defined for an expression-specific child-path
folding as a composite function to exploit the two prop-
erties mentioned above. In Subsection 5.2, auxiliary
transformation functions to support child-path folding
are shown. Some of these functions are already known.
In Subsection 5.3, we introduce two annotations to
parsed trees (XQuery expressions) for pruning recur-
sions. In Section 6, our algorithm is constructed from
the functions defined in the previous sections, and its
correctness and termination are shown. We conclude in
Section 7 and consider our future work.

2 Related works
In the database world, most studies on XQuery opti-

mizations have been for the underlying engines; that
is, for relational engines [1] [9], or for their own en-
gines [10]–[12]. In contrast, our optimization is uni-
versal in that it applies to any engine.

XQuery Core [8] is a subset of XQuery. While there
have been studies on optimizing XQuery Core [13]
[14], none mention the XQuery folding that we pro-
pose.

An ad hoc enumeration of rewriting rules has been
done for XQuery [15] [12]. In particular [12], deals
with the folding of element construction operators like
ours. However, compared with the technique presented
there, ours is much simpler and is powerful enough to
be extensible. Thus, it is more general and more widely
applicable than the folding described in [12].

3 Target XQuery
This section describes the XQuery expressions that

are to be taken as input for our algorithm and the nota-
tion we use for these expressions.

Rewriting XQuery by child-path folding 17

XQ ::=
FLWOR((bt,vn,XQ)+, XQ, XQ) FLWOR
| QE((q f ,vn,XQ)+, XQ) quantified
| PE(XQ+) parenthesized
| EC(en, XQ) element constructors
| SPE(XQ,axis,en) simplified path
| IF(XQ,XQ,XQ) if
| VR(vn) variable references
| d-v(SPE(XQ,axis,en)) distinct-values
| doc(arg) doc
| NAryOp(XQ) n-ary operators
| ε an empty sequence ()
| Literal literals

Fig. 1 Abstract syntax for XQuery with our notation.

Fig. 1 shows an abstract syntax for our target XQuery
according to our notation. This syntax tree is almost the
same as the original XQuery syntax, except for minor
changes. Thus, we believe that it will be easy to incor-
porate our optimizing technology into existing XQuery
engines made for the original XQuery syntax.

“Literal” represents literals including the
Boolean values “TRUE” and “FALSE”. In this paper,
Boolean values as XQuery expressions are represented
by � for “TRUE” and ⊥ for “FALSE”. Note that we
use “TRUE” and “FALSE” in the meta-language to
explain our algorithm.

Function calls whose function bodies are defined by
XQuery can be naturally expanded into XQuery expres-
sions. For a given function name, the function expan-
sion can be the function body with the formal parame-
ters bound by the argument expressions of the function.
We assume that each XQuery-defined function call is
expanded in this way.

By introducing n-ary operators, our algorithm can
take almost all XQuery expressions as inputs. How-
ever, expressions accommodated by using these n-ary
operators cannot benefit from our optimization tech-
niques proposed in this paper. For example, our algo-
rithm deals with a FLWOR expression having an order
by clause as an n-ary operator. A distinct-values func-
tion call with a simplified path expression as its argu-
ment can enjoy our optimization techniques, whereas
this function call with expressions other than simplified
path expressions are dealt with as n-ary operators and
cannot benefit from our techniques.

Note that, if operands of n-ary operators are not n-ary
operators these expressions can benefit from our opti-
mization techniques. For example, if a FLWOR expres-
sion having order by clauses has an element constructor
as a “where” expression, the “where” expression can
enjoy our optimization techniques. A limitation of our
input expressions, though, is that for simplified path ex-
pressions only the “child axis” and the “self axis” are
allowed, because the main purpose of this paper is to

explain the child-path folding algorithm.
We want to emphasize that other expressions includ-

ing other axes, such as descendant, attribute, or parent
axes, cannot gain from our optimization techniques be-
cause these expressions are treated as n-ary operators.
However, as we will describe, our algorithm can be eas-
ily extended for these new expressions.

3.1 Notation for sequence manipulation
The following notation is used in the meta-language

to explain our algorithm. We use [] for sequence con-
structors.
Let S = [s1, · · · , sn] be a sequence of si (1 ≤ i ≤ n);

• |S | is the length of S (= n).

• for some k (1 ≤ k ≤ |S |)
– S [k] denotes the k-th element from the head

of S (sk).

– S [< k] denotes a subsequence of S with
length k − 1 where for each i (1 ≤ i ≤ k − 1),
S [< k][i] = S [i].

– S [>= k] denotes a subsequence of S with
length |S | − k + 1 where for each j (k ≤ j ≤
|S |), S [>= k][j] = S [j].

• append sl into S
def
= [s1, · · · , sn, sl]

3.2 Notation of XQuery expressions
VR(v) represents a variable reference, where v de-

notes a variable name. The semantics of a variable ref-
erence is the value of the expression to which the rele-
vant variable is bound. We call this expression a bind-
ing expression. We refer to two types of XQuery bind-
ing variable, in-binding and let-binding. In in-binding,
a variable is bound to each element of the sequence,
which is an evaluated value of the binding expression;
in let-binding, a variable is bound to the whole value of
the binding expression. An in-binding expression de-
notes an expression that follows “in”.

A static environment Γ which maps a variable to the
corresponding binding expression expr is introduced.
For a given variable name v, the variable expansion
ve(v, Γ) is defined as follows;

ve(VR(v), Γ) ≡
{

expr if v is let-binding
each(expr) if v is in-binding

FLWOR(f bs, ew, er) represents a FLWOR expression,
where;

• f bs is a binding sequence that consists of let-
clauses and/or for-clauses, which are denoted by
(btype, var, expr).

18 Progress in Informatics, No. 4, pp.15–28, (2007)

– btype is a binding type, i.e., “in” for a for-
clause or “let” for a let-clause.

– var is a variable name.

– expr is an expression of XQ.

– f bs[1] corresponds to the outer-most bind-
ing clause.

– f bs[| f bs|] corresponds to the inner-most
binding clause.

– f bs[i] is farther out than f bs[j] iff. i < j.

• ew is an expression preceded by “where” (a where-
expression) which is an expression of XQ.

• er is an expression preceded by “return” (a return-
expression) which is an expression of XQ.

Γ + fbs represents a static environment by updating Γ
with the variable bindings in fbs.

The following equation can be verified by the formal
semantics of FLWOR expressions [8]. For each i(1 ≤
i ≤ | f bs|),
FLWOR(f bs, ew, er)
≡ FLWOR(f bs[< i],�,FLWOR(f bs[>= i], ew, er))

· · · (EF1)

where, FLWOR(f bs[< 1],�,FLWOR(f bs[>= 1], ew, er))
≡ FLWOR(f bs, ew, er).
QE(q f r, qbs, es) represents a quantified expression,

where;

• qfr is a quantifier; i.e., “some” or “every”.

• qbs is a sequence of binding clauses denoted by
(var, expr) in the quantified expressions

– var is a variable name.

– expr is an expression of XQ.

– qbs[1] corresponds to the outer-most binding
clause.

– qbs[|qbs|] corresponds to the inner-most
binding clause.

– qbs[i] is farther out than qbs[j] iff. i < j.

• es is an expression preceded by “satisfies” (called
a satisfies-expression), which is an expression of
XQ.

The following equation can be verified by the formal
semantics of quantified expressions. For each i(1 ≤ i ≤
|qbs|),
QE(q f r, qbs, es)
≡ QE(q f r, qbs[< i],QE(q f r, qbs[>= i], es))

· · · (EC1)

where

QE(q f r, qbs[< 1],QE(q f r, qbs[>= 1], es)) ≡ QE(q f r,
qbs, es).
EC(en, e) represents an element constructor, where

en is an element name and e is an expression of XQ.
SPE(e, axis, en) represents a simplified path expres-

sion, where e is an expression of XQ, axis is either
child or self, and en denotes element names. We
call SPE(e,child, en) a child-path expression.
PE[e1, ..., eN] represents parenthesized expressions,

where each ei is an expression of XQ.
IF(ec, et, e f) represents an if-expression, where ec,

et, and e f are expressions of XQ that respectively repre-
sent the “test” expression, “then” expression, and “else”
expression.

4 Overview of our algorithm
Our algorithm that returns a partially evaluated

XQuery expression for an input XQuery expression
consists of three functions: peval, f old, and cp f .

4.1 Main function: peval
peval is the main procedure, and it is a recursive al-

gorithm based on the inductive definition of XQuery
expressions shown in Fig. 1.

Property 1 An XQuery expression e is processed by
peval after its subexpressions have been processed
because of the recursive definition of peval accord-
ing to the inductive definition of XQuery expres-
sions. For example, when a simplified path expression
SPE(e′, axis, en) is to be processed by peval, the subex-
pression e′ will have already been processed by peval.
�

As we explain in subsection 5.3, thanks to Property 1
our algorithm can employ recursion pruning by adding
annotation to the parsed trees.

Property 2 When peval processes expressions hav-
ing variable binding such as FLWOR expressions and
quantified expressions, the binding expressions are pro-
cessed before processing of the expressions including
the variable references bound by these binding expres-
sions. For example, a given FLWOR(f bs, ew, er), for all
i from 1 to | f bs|, f bs[< i].expr is processed by peval
before f bs[>= i].expr, ew or er are processed. �

Property 2 implies that for each variable reference
VR(v), its binding expression obtained by using the vari-
able expansion function ve(v) has already been pro-
cessed by peval. Thus, peval does not need to process
variable references. Fig. 2 shows function peval. Note
that we improve the part where the binding expression
is processed in Section 6.1.

Rewriting XQuery by child-path folding 19

function peval(e : XQ, Γ : Env) result XQ {
var Γ′ : Env;

switch(e){
case FLWOR(f bs, ew, er): /* improving binding part later */

copy Γ to Γ′;
foreach f bs[i] from i := 1 to | f bs|{

replace f bs[i].expr by peval(f bs[i].expr,Γ′);
append f bs[i] into Γ′;

} /* end foreach, binding part first (property 2) */
return f old(FLWOR(f bs, peval(ew,Γ

′), peval(er ,Γ
′)));

case QE(q f r, qbs, es): /* improving binding part later */
copy Γ to Γ′;
foreach qbs[i] from i := 1 to |qbs|{

replace qbs[i].expr by peval(qbs[i].expr,Γ′);
append qbs[i] into Γ′;

} /* end foreach, binding part first (property 2)*/
return f old(QE(q f r, qbs, peval(es));

case PE[e1, ..., eN]:
return f old(PE[peval(e1,Γ), ..., peval(eN ,Γ)]);

case EC(en, e′):
return f old(EC(en, peval(e′,Γ)));

case SPE(e′, axis, en):
return f old(SPE(peval(e′,Γ), axis, en),Γ);

case IF(ec, et, ef):
return f old(IF(peval(ec,Γ), peval(et,Γ), peval(ef ,Γ));

case d-v(e′):
return f old(d-v(peval(e′,Γ)));

case VR(v): case doc(arg): case Literal:
return f old(e);

case NAryOp(e1, ..., eN):
return f old(NAryOp(peval(e1,Γ), ..., peval(eN ,Γ)));

case ε:
return ε;

} /* end switch
}

Fig. 2 Partial evaluation function peval.

4.2 Expression-specific folding function; fold
The function f old, shown in Fig. 3, is invoked by

peval with an expression whose subexpressions are
already folded as its input, and applies expression-
specific folding. For example, for an “if” expression
IF(ec, et, e f), if et is equvalent to e f , the “if” expres-
sion could be et without evaluating ec. This is a clas-
sical partial evaluation technique. Also, for a FLWOR
expression having an in-binding expression equvalent
to an empty expression, f old returns an empty expres-
sion. The function anno in f old is placed just before
the exit and is used for adding the annotations described
later. At this point in our discussion, we can view anno
to be an identity function.

Theorem 1 Except for simplified path expressions,
the function “fold” returns expressions having

function f old(e : XQ, Γ : Env) result XQ{
switch(e){

case SPE(e′, axis, en):
if e′ is ε

return ε;
if (e.ind is TRUE) and (axis == “child”)

return f old(cp f (e, en,“c”, Γ));
elseif axis == “self”

return f old(cp f (e, en,“s”, Γ));
else

return anno(e);
case IF(ec, et, ef):

if (ec is ε) or (et == ef)
return et;

return anno(e);
case FLWOR(f bs, ew, er):

if there is a (“in”, v,ε) in f bs /* (cf1) */
or (ew is ε) or (er is ε)

return ε;
return anno(e);

case QE(q f r, qbs, es):
if there is a (v, ε) in qbs /* (cq1) */

{q f r is “some”} ? {return ⊥;} : {return �;}
return anno(e);

case PE[e1, ..., eN]:
reform e by eliminating ε expressions

from e1, ..., eN into e′;
if e′ is PE[nil]

return ε;
if e′ has a single expression like PE[ek];

return ek;
return anno(e′);

case EC(en, [e1, ..., eN]):
return anno(EC(en, f old(PE[e1, ..., eN])));

case d-v(e):
{e is ε} ? {return ε;} : {return anno(d-v(e);)}

case VR(v):
{ve(v, Γ) is ε} ? {return ε;} : {return anno(e);}

case doc(arg): case Literal:
return anno(e);

} /* end switch */
}

Fig. 3 Expression-specific folding function f old.

• the same semantics as the input expressions, and

• the same or more efficient evaluating costs than
those of the input expressions.

The former can be verified through the formal seman-
tics [8], and the latter is trivial because the size of an
output expression is reduced or remains the same com-
pared with the corresponding input. A precise discus-
sion of these costs is given in [7]. �

20 Progress in Informatics, No. 4, pp.15–28, (2007)

4.3 Child-path expression folding function; cpf
The function cp f is invoked by the f old with a child-

path expression and it returns a folded expression by
partial evaluation. This is described in the next section.

5 Child-path folding
In this section, we describe folding of a child-path

expression SPE(e,child, en) based on partial evalua-
tion.

To begin with, function cpf is defined for an
expression-specific child-path folding as a composite
function to exploit the two properties mentioned in Sub-
section 5.1. Next, auxiliary transformation functions to
support child-path folding are shown in Subsection 5.2.
After that, we introduce two annotations to parsed tree
(XQuery expressions) for pruning recursions in Subsec-
tion 5.3.

5.1 Composite function to fold child-path expressions
In this subsection, an expression-specific folding

function cpf is presented for child-path expressions.
Function cpf eliminates redundant element construc-
tion operators and expressions according to the follow-
ing equation and properties.

The following equation can be verified by the
XQuery specification [5]. This is the same as equa-
tion (1) with our notation.

SPE(e,child, en)
≡ SPE(SPE(e,child,node()),self, en) · · · (2)

Properties 3 and 4 are the form of
SPE(e,child,node) and the form of
SPE(e,self, en), each of which appear on the
right-hand side of equation (2), respectively.

Property 3 For XQuery expressions with the form
of SPE(e,child,node()), the following equations
hold. Note that the first equation can hold if a value-
based equality is used.

• SPE(EC(en, expr),child,node()) = expr

• SPE(QE(qfr, qbs, es), child,node()) = ε

• SPE(Literal,child,node()) = ε

• SPE(ε,child,node()) = ε

�

Property 4 For XQuery expressions with the form of
SPE(e,self, en), the following equations hold:

• SPE(EC(en, e),self, en′)

=

{
EC(en, e); if en = en′
ε; else

• SPE(SPE(e, axis, en),self, en′)

=

{
SPE(e, axis, en); if en = en′
ε; else

�

Definition 1 For each XQuery expression, Fig. 4
shows the definitions of two folding functions: cnode
which exploits the property 3, and σen which exploits
the property 4. �

Theorem 2 For an input expression e, func-
tions cnode and σen return expressions having the
same semantics as SPE(e,child,node()) and
SPE(e,self, en), respectively. This can be verified
from the formal semantics [8]. �

Definition 2 By using equation (2) for a given child-
path expression SPE(e,child, en), the folding of the
expression through Properties 3 and 4,
� SPE(e,child, en), Γ� fold is defined as a composite
function of cnode and σen:

�SPE(e,child, en),Γ� f old
def
= σen(cnode(e, Γ), Γ)

�

Property 5 The composite function defined in Defini-
tion 2 can be implemented using the following function,
cp f (e, en,mode, Γ), where

cp f (e, en,mode, Γ)

def
=

{
cp f (cnode(e, Γ), en, “s”, Γ) (mode = “c”)
σen(e, Γ) (mode = “s”)

Fig. 5 shows function cp f according to this definition.
This property is easily verified through Properties 3

and 4. �

Theorem 3 For all child-path expressions, cp f re-
turns expressions which have the same semantics as the
input expressions, these expressions have the same or
lower costs than the evaluating costs of the inputs, and
cp f terminates.

The first part can be verified by referring to the for-
mal semantics [8]. The second can be verified by not-
ing that if input expressions exploit Property 3 or 4, the
number of subexpressions composing the output expres-
sions will be reduced, otherwise the number remains
unchanged. A precise discussion of these costs is given
in [7]. The third is verified by structural induction on
XQuery expressions. �

Rewriting XQuery by child-path folding 21

e(∈ XQ) cnode(e, Γ) σen(e,Γ)

VR(v) (let-bindig) cnode(ve(v,Γ),Γ) σen(ve(v,Γ),Γ)
VR(v) (in-binding) SPE(e,child,node()) SPE(e,self, en)
PE[e1, ...eN] PE[cnode(e1,Γ), ..., cnode(eN ,Γ)] PE[σen(e1,Γ), ..., σen(eN ,Γ)]
FLWOR(fbs, ew, er) FLWOR(fbs, ew, cnode(er ,Γ + fbs)) FLWOR(fbs, ew, σen(er, Γ + fbs))
QE(q f r, qbs, es) ε ε

EC(en′, e′) e′
e (if en = en′)
ε (else)

SPE(e′, axis, en′) SPE(e,child,node())
e (if en = en′)
ε (else)

IF(ec, et, ef) IF(ec, cnode(et ,Γ), cnode(ef ,Γ)) IF(ec, σen(et,Γ), σen(ef ,Γ))
d-v(e′) SPE(e,child,node()) d-v(σen(e′, Γ))
doc(arg) SPE(e,child,node()) ε

NAryOp(e′) SPE(e,child,node()) SPE(e,self,en)
Literal ε ε

ε ε ε

Fig. 4 Definitions of two functions, cnode and σen, each of which exploits the property 3 and 4, respectively.

function cp f (e : XQ, en : QName, mode : “c” | “s”, Γ : Env)
result XQ{

switch(e){
case VR(v):

if v is a let-bound variable
return cp f (ve(v,Γ), en,mode, Γ);

else /* v is an in-bound variable */
if mode =“c” /* cnode */

return SPE(e,child,node())
else /* σen */

return SPE(e,self, en)
case EC(en′, e′)):

if mode = “c” /* cnode */
return cp f (e′, en,“s”,Γ);

else /* σen */
{en = en′} ? {return e;} : {return ε;}

case SPE(e′, axis, en′):
if mode = “c” /* cnode */

return SPE(e,child, en);
else /* σen */
{en = en′} ? {return e;} : {return ε;}

case FLWOR(fbs, ew, er):
return FLWOR(fbs, ew, cp f (er , en,mode, Γ));

case PE[e1, ..., eN]:
return PE[cp f (e1, en,mode, Γ), ..., cp f (eN , en,modeΓ)];

case QE(qbs, es):
return ε;

case IF(ec, et, ef):
return IF(ec, cp f (et, en,mode, Γ), cp f (ef , en,mode, Γ));

case d-v(e′): case doc(arg): case NaryOp(e1, ..., eN) :
return SPE(e,child,en);

case Literal: case ε:
return ε;

} /* end switch */

Fig. 5 Function cp f as a composite function of cnode and
σen.

5.2 Auxiliary transformations to support child-path
folding for in-bound variables

So far, the algorithm we’ve built up in this discus-
sion seems unable to fold in-bound variable references.
However, there is a case in which it can fold such vari-
able references. Consider the following query:

for $v1 in for $v11 in e11

return (<a>e13,<c>$v11</c>
<d>e12</d>),

$v2 in $v1/b

return <result> $v1/c , $v2</result>

In this query expression, it is unnecessary to evaluate
the element constructor <d>e12</d> because it does
not contribute to the answer of this query. However, be-
cause the variable expansion ve(v1) cannot distinguish
the redundant expression <d>e12</d>, cp f as it is de-
fined can not be applied to $v1/b or $v1/c.

This situation is due to in-bound variables whose
run-time values would be the result of evaluating
“parenthesized” expressions. When the following ex-
pressions occur as in-binding expressions, the same
problems will arise.

• “parenthesized” expressions.

• variable references in which the corresponding
variable expansion expressions are “parenthe-
sized” expressions.

• FLWOR expressions in which the “return” expres-
sions are “parenthesized” expressions.

• “if” expressions in which “true” expressions
and/or “false” expressions are “parenthesized” ex-
pressions.

22 Progress in Informatics, No. 4, pp.15–28, (2007)

fbs(binding sequence of FLWOR) function definition

(“in”, v, PE[e1, ...eN]) ⊕ fbs′
fpe(FLWOR(fbs, ew, er))
def
=PE[FLWOR((“in”, v, e1) ⊕ fbs′, ew, er), ..., FLWOR((“in”, v, eN) ⊕ fbs′, ew, er)]

(“in”, v, FLWOR(fbs′, e′w, e′r)) ⊕ fbs′′ ffl(FLWOR(fbs, ew, er))
def
= FLWOR(fbs′, e′w,FLWOR((“in”, v, e′r) ⊕ fbs′′, ew, er))

(“in”,v, IF(ec, et, ef)) ⊕ fbs′
fif (FLWOR(fbs, ew, er))
def
=IF(ec,FLWOR((“in”,v, et) ⊕ fbs′, ew, er),FLWOR((“in”,v, e f) ⊕ fbs′, ew, er))

(“in”,v, VR(v′)) ⊕ fbs′ fvr(FLWOR(fbs, ew, er)
def
=



FLWOR((“in”, v, ve(v′)) ⊕ fbs′, ew, er)
if v′ is a let-bound variable

FLWOR((“let”,VR(v′)) ⊕ fbs′, ew, er)
if v′ is an in-bound variable

(“in”, v, e) ⊕ f bs′

where e is a unit type.
f un(FLWOR((“in”, v, e) ⊕ fbs, ew, er))

def
=FLWOR((“let”, v, e) ⊕ fbs, ew, er)

qbs(binding sequence of quantified) function definition

(v,PE[e1, ..., eN]) ⊕ qbs′

qpe(QE(q f r, qbs, es))

def
=



Or(QE(q f r, (v, e1) ⊕ qbs′, es), ...,QE(q f r, (v, eN) ⊕ f bs′, es))
if q f r is “some”

And(QE(q f r(v, e1) ⊕ qbs′, es), ...,QE((q f r, (v, eN) ⊕ f bs′, es))
if q f r is “every”

(v, FLWOR(fbs, ew, er)) ⊕ qbs′

q f l(QE(q f r, qbs, es))

def
=



QE(q f r, qbs′′,And(ew,QE(q f r, (v, er) ⊕ qbs′, es)))
if q f r is “some”

QE(q f r, qbs′′,Or(Not(ew),QE(q f r, (v, er) ⊕ qbs′, es)))
if q f r is “every”

where for all i(1 ≤ i ≤ |fbs|),
qbs′′[i].vname = fbs[i].vname ∧ qbs′′[i].expr = fbs[i].expr

(v, IF(ec, et, ef)) ⊕ qbs′
qi f (QE(q f r, qbs, es))
def
= IF(ec,QE(q f r, (v, et) ⊕ qbs′, es), QE(q f r, (v, et) ⊕ qbs′, es))

qbs = (v, VR(v′)) ⊕ qbs′ qvr(QE(q f r, qbs, es))
def
=



QE(q f r, (v, ve(v′)) ⊕ qbs′, es)
if v′ is a let-bound variable

QE((v, e′) ⊕ qbs′, es)
if v′ is a in-bound variable

where ve(v′) = each(e′)

(v, e) ⊕ qbs′

where e is a unit type.
qun(QE(q f r, qbs, es))

def
=



FLWOR([(“let”, v, e)], nil,QE(q f r, qbs′, es))
if |qbs′| ≥ 1

FLWOR([(“let”, v, e)], nil, es)
if |qbs′| = 0

Fig. 6 Auxiliary transformation functions for FLWOR and quantified expressions.

In this subsection, we present transformation rules
which eliminate the above expressions, including
“parenthesized”, FLWOR, and “if” expressions, and
variable references from in-binding expressions. Some
of these are already known [12] [13] [16]. By trans-
forming expressions through these rules, function cp f
can eliminate all redundant element construction opera-
tors and all redundant expressions in child-path expres-
sions.

Only FLWOR expressions and quantified expres-
sions can have in-binding expressions in their binding
sequences. Note that it is sufficient that only the follow-
ing FLWOR and quantified expressions are considered
without loss of generality by using equation (EF1) and

(EQ1).

• FLWOR expressions such as FLWOR(fbs, ew, er)
with fbs=(“in”, v, e) ⊕ fbs′

• quantified expressions such as QE(q f r, qbs, es)
with qbs = (v, e) ⊕ qbs′.

Here, ⊕ inserts an element at the top of a sequence.

Example 1 For a given expression FLWOR(fbs′, e′w,
e′r) such that fbs′ = [(“let”,v1, e1), (“let”,v2, e2), (“in”,
v3, e3)], we can get the expression
FLWOR([(“in”, v3, e3)], e′w, e′r) by equation (EF1)
FLWOR(fbs′, e′w, e′r) ≡
FLWOR(fbs′[< 3],�,FLWOR([(“in”,v3, e3)], e′w, e′r)) �

Rewriting XQuery by child-path folding 23

Fig. 6 shows these transformation functions which
eliminate “parenthesized”, FLWOR, and “if” expres-
sions, as well as variable references, from in-binding
expressions. Fig. 6 also shows two functions, fun and
qun, which turn an in-binding clause whose binding ex-
pression would be evaluated to a singleton2). at run-
time into a let-binding (clause). Such expressions,
namely element constructors, quantified expressions
and literals, are called unit-type expressions. Chang-
ing in-binding clauses to let-binding ones makes it easy
to treat a variable reference by using simple variable
expansion.

Some of these transformations are from [13] [16], or
[12]. For example, functionffl stems from the “associa-
tive law” of for-expressions in XQuery Core [13], and
is almost the same as (R2) of the “Standard XQuery
Rewriting Rules” in [12]. The correctness of these
functions — that is, that the resultant expressions have
the same semantics as the inputs — is verified through
the formal semantics [8].

Note that a FLWOR expression which is handled by
function q f l is limited to a (nested) for-expression in
XQuery Core for the sake of easy transformation. We
omit the rationale for this minor limitation because of
space constraints.

By applying these functions in Fig. 6, we have
only to consider simplified path expressions, “distinct-
values” functions, “doc” functions, and n-ary operators
as in-binding expressions.

5.3 Recursion pruning by two annotations
Composite function cp f defined in Definition 2 in-

vokes cp f recursively according to its definition shown
in Fig. 5. This recursion can be avoided by hav-
ing two annotations with respect to the exploitabil-
ity of Properties 3 and 4 for an input expression.

2) A sequence containing exactly one item is called a singleton [5]

e(∈ XQ) ind(e, Γ) ptype(e, Γ)

VR(v) ind(ve(v, Γ)) ptype(ve(v, Γ))
PE[e1, ...eN] ind(e1)∨, ...,∨ind(eN) ptype(e1)∪, ...,∪ptype(eN)
FLWOR(fbs, ew, er) ind(er ,Γ + fbs) ptype(er , Γ + fbs)
QE(q f r, qbs, es) TRUE ∅
EC(en′, e′) TRUE {en′}
SPE(e′, axis, en′) FALSE {en′}
IF(ec, et, ef) ind(et, Γ) ∨ ind(ef , Γ) ptype(et ,Γ) ∪ ptype(ef , Γ)
d-v(e′) FALSE ptype(e′,Γ)
doc(arg) FALSE ∅
NAryOp(e′) FALSE ANY
Literal TRUE ∅
ε TRUE ∅

Fig. 7 Definition of annotations ind and ptype for each XQuery expression.

function anno(e : XQ, Γ : Env) result XQ{
switch(e){

case VR(v):
e.ind := (ve(v, Γ)).ind;
e.ptype := (ve(v, Γ)).ptype;

case SPE(e′, axis, en′):
e.ind := FALSE ;
e.ptype := {en′};

case IF(ec, et, ef):
e.ind := et.ind ∨ ef .ind;
e.ptype := et.ptype ∪ ef .ptype;

case FLWOR(fbs, ew, er):
e.ind := er .ind;
e.ptype := er .ptype;

case QE(q f r, qbs, es):
e.ind := TRUE;
e.ptype := ∅;

case PE[e1, ..., eN]:
e.ind := e1.ind∨, ...,∨eN .ind;
e.ptype := e1.ptype∪, ...,∪eN .ptype;

case EC(en′, e′):
e.ind := TRUE;
e.ptype := {en′};

case d-v(e′):
e.ind := FALSE;
e.ptype := e′.ptype;

case NAryOp(e):
e.ind := FALSE;
e.ptype := { ANY };

case doc(arg): case Literal: case ε:
e.ind := FALSE;
e.ptype := ∅ ;

} /* end switch */
return e;

}

Fig. 8 Annotation adding function anno.

24 Progress in Informatics, No. 4, pp.15–28, (2007)

e(∈ XQ) cp f (e, en,“c”,Γ) cp f (e, en,“s”,Γ)

VR(v) (let-bound)
cp f (ve(v,Γ), en,“c”,Γ) (if e.ind =TRUE)
SPE(e,child, en) (if e.ind =FALSE)

ε (if en � e.ptype)
cp f (ve(v,Γ), en,“s”,Γ) (if en ∈ e.ptype)

VR(v) (in-bound for SPE) SPE(e,child, en) (e.ind is always FALSE)
ε (if en � e.ptype)
e (if en ∈ e.ptype)

VR(v) (in-bound for d-v) SPE(e,child, en) (e.ind is always FALSE)
ε (if en � e.ptype)
e (if en ∈ e.ptype)

VR(v) (in-bound for doc) SPE(e,child, en) (e.ind is always FALSE) ε (en � e.ptype because of e.ptype = ∅)
VR(v) (in-bound for NAryOp) SPE(e,child, en) (e.ind is always FALSE) SPE(e,self, en)

EC(en′, e′) cp f (e′, en,“s”,Γ)
ε (if en � ptype)
e (if en ∈ ptype)

SPE(e′, axis, en′) SPE(e,child, en) (e.ind is always FALSE)
ε (if en � ptype)
e (if en ∈ ptype)

FLWOR(fbs, ew, er)
SPE(e,child, en) (if e.ind =FALSE)
FLWOR(fbs, ew, cp f (er , en,“c”, Γ))

(if e.ind =TRUE)

ε (if en � ptype)
FLWOR(fbs, ew, cp f (er, en,“s”, Γ))

(if en ∈ ptype)
QE(qbs, es) ε ε

IF(ec, et, ef)
SPE(e,child, en) (if e.ind =FALSE)
IF(ec, cp f (et, en,“c”, Γ), cp f (ef , en,“c”,Γ))

(if e.ind =TRUE)

ε (if en � ptype)
IF(ec, cp f (et, en,“s”, Γ), cp f (ef , en,“s”, Γ))

(if en ∈ ptype)

d-v(e′) SPE(e,child, en) (e.ind is always FALSE)
ε (if en � ptype)
e (if en ∈ ptype)

doc(arg) SPE(e,child, en) (e.ind is always FALSE) ε (en � e.ptype because of e.ptype = ∅)
NaryOp(e1, ..., eN) SPE(e,child, en) (e.ind is always FALSE) SPE(e,self, en)
Literal ε ε

ε ε ε

Fig. 9 Definition of cp f using two annotations ind and ptype after applying auxiliary transformation functions.

For example, consider the case where function cp f
is invoked with FLWOR(fbs, ew, er) and mode =“c” as
its arguments. In this case, cp f is recursively in-
voked with er and mode =“c” as its arguments ac-
cording to the definition in Fig. 5. If er is a simpli-
fied path expression, the first invocation cp f can re-
sult in SPE(FLWOR(fbs, ew, er),child, en) without re-
cursive invocation of cp f because simplified path ex-
pressions can not exploit Property 3. Similarly, cp f
with FLWOR(fbs, ew, er) and mode =“s” can result in ε
without recursion if er is an element constructor with
element name en′ and en � en′ because this element
constructor does not exploit Property 4.

Our algorithm can be improved naturally by mak-
ing use of the above annotations. When function peval
processes an expression e, all subexpressions of e are
processed first by peval according to Property 1. By
adding annotations when expressions are folded, our al-
gorithm can use, when processing an expression, anno-
tations of subexpressions of the expression. Function
call anno in function f old just before exit adds these
annotations.

Definition 3 We now introduce the two annotations
ind and ptype to parsed trees (expressions). For a given

expression (a parsed tree) e,

• e.ind is a Boolean value which denotes whether e
can exploit Property 3.

• e.ptype is a set of element names which can be
used to determine whether e can exploit Prop-
erty 4.

�

Definition 4 For a given expression e, e.ind is trivial
from the definition of cnode. However, this annotation
can also be defined by recursive function ind, which re-
sults a Boolean value. In addition, e.ptype is defined
by recursive function ptype(e) which returns a set of
element names that can occur when evaluating the ex-
pression e. Fig. 7 shows the definition of these two func-
tions. �

According to Property 1, recursion to subexpressions
when annotating an expression is not necessary. Anno-
tations which are already associated with these subex-
pressions can be used instead. Fig. 8 shows function
anno which adds two annotations ind and ptype this
way. By using these two annotations, each result of

Rewriting XQuery by child-path folding 25

function cp f (e : XQ, en : QName, mode : “c” | “s”, Γ : Env)
result XQ{

if (mode =“c”) and (e.ind is FALSE) /* cnode-pruning */
return anno(SPE(e,child, en));

if (mode =“s”) and (en � e.ptype) /* σen-pruning */
return ε;

switch(e)
case VR(v):

if mode = “c” /* let-bound and e.ind is TRUE */
return cp f (ve(v,Γ), en,mode, Γ);

else /* mode = “s” and en ∈ e.ptype */
if v is an in-bound variable

if e.ptype = {ANY} /* in-bound for NAryOp */
return SPE(e,self,en);

elseif .e.ptype = ∅ /* in-bound for doc */
return ε;

else /* in-bound for SPE or d-v */
return e;

else /* v is a let-bound variable */
return cp f (ve(e,Γ), en,mode, Γ);

case EC(en′, e′):
if mode =“c”

return cp f (e′, en,“s”, Γ);
else /* mode =“s” and en ∈ e.ptype */

return e;
case SPE(e′, axis, en′): case d-v(e′):

return e; /* mode =“s” and en ∈ ptype(e) */
case IF(ec, et, ef):

return IF(ec, cp f (et, en,mode, Γ), cp f (ef , en,mode, Γ));
case FLWOR(fbs, ew, er):

return FLWOR(fbs, ew, cp f (er , en,mode, Γ + fbs));
case PE[e1, ..., eN]:

return PE[cp f (e1, en,mode, Γ), ..., cp f (eN , en,mode, Γ)];
case NaryOp(e′):

return SPE(e,self, en);
case QE(q f r, qbs, es): case Literal: case ε:

return ε;
} /* end switch */

}

Fig. 10 Revised “cpf” function using annotations.

function cp f , for each XQuery expression, is re-defined
as shown in Fig. 9. We assume that an input expression
has already had auxiliary transformation functions ap-
plied to it.

Property 6 Each annotation ind of all in-bound vari-
able references is FALSE after application of the aux-
iliary transformation functions described in subsec-
tion 5.2. �

Function cp f can now be revised as shown in
Fig. 10 by using these two annotations. Note that be-
cause function f old, with a simplified path expression

SPE(e,child, en) as its argument, invokes cp f with e
as its argument, e is already folded. In the beginning
of revised function cp f shown in Fig. 10, two recur-
sion prunings — cnode-pruning using annotation ind
and σen-pruning using annotation ptype — are applied.

• cnode-pruning
A function invocation of cp f with an expres-
sion e and mode =“c” as its arguments results
in SPE(e,child, en) if e.ind is FALSE. All in-
bound variable references are processed through
this pruning because of Property 6.

• σen-pruning
A function invocation of cp f with an expression
e and mode =“s” as its arguments results in ε if
en � e.ptype, where for all element names en, en �
e.ptype does not hold if ANY ∈ e.ptype.

6 The algorithm
In this section, we present our algorithm. We show

its correctness and its termination. We also show the
extensibility of the algorithm.

6.1 Improving binding parts
Because function peval may change the forms of

input expressions through the invocation of f old or
cp f , the auxiliary transformation functions mentioned
in Subsection 5.2 are applied after applying peval to
in-expressions.

Figs. 11 and 12 respectively show the processing
for FLWOR expressions and quantified expressions in
function peval with the processing of binding parts im-
proved by applying the auxiliary transformation func-
tions. Note that (f1) and (q1), which are expression-
specific foldings in function f old are moved to these
binding parts because of pruning for the processing of
“where” , “return”, and “satisfies” expressions.

We can now show our algorithm as follows:

Algorithm 1 Rewriting Algorithm:

Input: an XQuery expression shown in Fig. 1

Output: an XQuery expression having the same or less
query complexity [17] compared with the input

Method: Call function peval in Fig. 2 with the input.
Note that

• the processing for FLWOR and quantified ex-
pressions are replaced as shown by Fig. 11
and Fig. 12, respectively.

• function cp f invoked by function f old is
shown in Fig. 10

26 Progress in Informatics, No. 4, pp.15–28, (2007)

case FLWOR(fbs, ew, er):
copy Γ to Γ′;
foreach fbs[i] from i := 1 to |fbs|{

replace fbs[i].expr by peval(fbs[i].expr,Γ′);
if (fbs[i].var is a let-bound variable) or (fbs[i].expr.aux is FALSE) or (fbs[i].expr.ind is FALSE)

append fbs[i] into Γ′;
else /* (fbs[i].var is an in-bound variable) and (fbs[i].expr.aux is TRUE) */

switch(fbs[i].expr){ /* applying auxiliary transformation functions */
case VR(v):

return fold(FLWOR(fbs[<i], nil, peval(fvr(FLWOR(fbs[>=i], ew, er)),Γ′)));
case PE(e1, ..., eN):

return fold(FLWOR(fbs[<i], nil, peval(fpe(FLWOR(fbs[>=i], ew, er)),Γ′)));
case FLWOR(fbs′, e′w, e′r):

return fold(FLWOR(fbs[<i], nil, peval(ffl(FLWOR(fbs[>=i], ew, er)),Γ′)));
case IF(ec, et, ef):

return fold(FLWOR(fbs[<i], nil, peval(fif (FLWOR(fbs[>=i], ew, er)),Γ′)));
case EC(en, e): case QE(qfr, qbs, es): case Literal:

return fold(FLWOR(fbs[<i], nil, peval(f un(FLWOR(fbs[>=i], ew, er)),Γ′)));
case ε: /* (f1) this condition is moved from fold */

return ε;
default:

append fbs[i] into Γ′; } /* end switch */ } /* end foreach */
return fold(FLWOR(fbs, peval(ew,Γ

′), peval(er, Γ
′)));

Fig. 11 Process for FLWOR expressions with the binding part improved in function peval.

case QE(qfr, qbs, es):
copy Γ to Γ′;
foreach qbs[i] from i := 1 to |qbs|{

replace qbs[i].expr by peval(qbs[i].expr,Γ′);
if mathitqbs[i].expr.mathitaux is FALSE

append qbs[i] into Γ′;
else

switch (qbs[i].expr){
case VR(e1, ..., eN):

return fold(QE(qfr, qbs[<i], peval(qvr(QE(qfr, qbs[>=i], es)),Γ′)));
case PE(e1, ..., eN):

return fold(QE(qfr, qbs[<i], peval(qpe(QE(qfr, qbs[>=i], es)),Γ′)));
case FLWOR(f bs′, e′w, e′r):

return fold(QE(qfr, qbs[<i], peval(qfl(QE(qfr, qbs[>=i], es)),Γ′)));
case IF(ec, et, ef):

return fold(QE(qfr, qbs[<i], peval(qif (QE(qfr, qbs[>=i], es)),Γ′)));
case EC(en, e): case QE(qfr′, qbs′, e′s): case Literal:

return fold(QE(qfr, qbs[<i], peval(qun(QE(qfr, qbs[>=i], es)),Γ′)));
case ε: /* (q1) this condition is moved from fold */

{qfr ==“some”} ? {return ⊥;} : {return �;}
default:

append qbs[i] into Γ′;
} /* end switch ((qbs[i].expr))*/

} /* end foreach */
return fold(QE(qfr, qbs, peval(es));

Fig. 12 Process for quantified expressions with the binding part improved in function peval.

Rewriting XQuery by child-path folding 27

�

Theorem 4 For an XQuery expression our algorithm

• results in an XQuery expression having the same
semantics as the input expression, and;

• results in an XQuery expression with the same or
less query complexity than the input, and then

• terminates.

The first and second statements are verified by Theo-
rem 1, Theorem 3 and the correctness of the auxiliary
functions mentioned in Subsection 5.2. The third is ver-
ified by structural induction on XQuery expressions. �

6.2 Extensibility of the algorithm
Our algorithm can be extended for a new expression

op(e1, ..., eN) as follows:

1. add a branch in peval in which peval is recursively
called for operands e1,...,eN

2. add a branch in f old which describes expression-
specific folding rules

3. add auxiliary transformation rules for the expres-
sion if necessary.

7 Conclusion and future work
In this paper, we have proposed an algorithm for the

partial evaluation of XQuery. This algorithm exploits
the property that among XQuery expressions only el-
ement constructors define a “child axis”. Our algo-
rithm is capable of eliminating all redundant element
constructors from input expressions. We have begun to
implement the rewriting algorithm.

Our rewriting algorithm runs in polynomial time in
terms of the query size in the worst case because the
auxiliary rewriting may require repeatedly visiting the
same subexpressions. This rewriting cost is feasible
compared with the well-known query rewriting tech-
niques such as magic set rewriting [18] and Predicate
Move-Around [19].

This work is still in progress. Future work will in-
clude

• further improvement through the introduction of
additional annotations,

• the inclusion of axes of other directions, such
as descendant, attribute, parent axes in simplified
path expressions,

• more formal discussion, and

• accommodation of node-ID-based equality.

References
[1] R. Krishnamurthy, P. Kaushik, and J. Naughton, “Effi-

cient XML-to-SQL Query Translation: Where to Add
the Intelligence?,” in Proceedings of the Thirtieth In-
ternational Conference on Vary Large Data Bases,
pp.144–155, 2004.

[2] M. Lenzerini, “Data Integration: A Theoretical Per-
spectives,” in Proceedings of the twenty-first ACM
SIGMOD-SIGACT-SIGART symposium of Principles of
database systems, pp.233–246, 2002. Tutorial.

[3] A. Y. Halevy, “Structures, semantics and statistics,” in
Proceedings of the Thirtieth International Conference
on Vary Large Data Bases, pp.4–6, 2004. Keynote.

[4] I. Tatarinov and A. Y. Halevy, “Efficient Query Refor-
mulation in Peer Data Management Systems,” in Pro-
ceedings of the ACM International Conference on Man-
agement of Data, pp.539–550, 2004.

[5] World Wide Web Consortium. XQery1.0 : An XML
Query Language. http://www.w3.org/TR/xquery, Sept.
2005.

[6] The Galax team. The Galax XQuery and XPath 2.0 in-
terpretor, version 0.3.0.
http://db.bell-labs.com/galax/.

[7] S. Hidaka, H. Kato, and M. Yoshikawa, “An XQuery
Cost Model in Relative Form,” Technical report, Na-
tional Institute of Informaitcs, NII-2005-016E, 2005.
http://research.nii.ac.jp/TechReports/05-016E.html

[8] World Wide Web Consortium. XQery1.0 and XPath2.0
Formal Semantics. http://www.w3.org/TR/xquery-
semantics, Sept. 2005.

[9] A. Deutsch and V. Tannen, “Reformulation of XML
Queries and Constraints,” in Proceedings of 8th Inter-
national Conference on Database Theory, pp.225–241,
2003.

[10] H.V. Jagadish, S. Al-Khalifa, A. Chapman, L.
Lakshmanan, A. Nierman, S. Paparizos, J. Patel, D.
Srivastava, N. Wiwatwattana, Y. Wu, and C. Yu, “TIM-
BER: A Native XML Database,” The VLDB Journal,
vol.11, no.4, pp.274–291, 2002.

[11] D. Florescu, C. Hillery, D. Kossmann, P. Lucas,
F. Riccardi, T. Westmann, M. J. Carey, and A.
Sundararajan, “The BEA streaming XQuery processor,”
The VLDB Journal, vol.13, no.3, pp.294–315, 2004.

[12] A. Deutsch, Y. Papakonstantinou, and Y. Xu, “The
NEXT Framework for Logical XQuery Opimization,”
in Proceedings of the Thirtieth International Conference
on Vary Large Data Bases, pp.168–179, 2004.

[13] M. Fernandez, J. Simeon, and P. Wadler, “A Semi-
monad for Semi-structured Data,” in Proceedings of 8th
International Conference on Database Theory, pp.263–
300, Jan. 2001.

[14] M. Fernandez and J. Simeon, “Building an Extensible
XQuery Engine: Experiences with Galax,” in Second
International XML Database Symposium, (XSym2004),
pp.1–4, 2004.

28 Progress in Informatics, No. 4, pp.15–28, (2007)

[15] M. Grinev and S. D. Kuznetsov, “Towards an Exhaus-
tive Set of Rewriting Rules for XQuery Optimization:
BizQuery Experience,” in Proceedings of 6th East-
European Conference on Advances in Databases and
Information Systems (ADBIS ’02), pp.340–345, Sept.
2002.

[16] A. Poulovassilis and C. Small, “Algebraic query qop-
timization for database programming languages,” The
VLDB Journal, vol.5, pp.119–132, 1996.

[17] G. Gottlob, C. Koch, and R. Pichler, “Efficient Algo-
rithms for Processing XPath Queries,” in Proceedings of
the 28th International Conference on Vary Large Data
Bases, pp.95–106, 2002.

[18] I. S. Mumick, S. J. Finkelstein, H. Pirahesh, and R.
Ramakrishnan, “Magic is relevant,” in Proceedings of
the ACM SIGMOD International Conference on Man-
agement of Data, pp.247–258, Atlantic City, N.J., May
1990.

[19] A. Y. Levy, I. S. Mumick, and Y. Sagiv, “Query opti-
mization by predicate move-around,” in Proceedings of
the Twentieth International Conference on Very Large
Databases, pp.96–107, Santiago, Chile, 1994.

Hiroyuki KATO
received his degree in doctorate from
Nara Institute of Technology in 1999.
He is now an assistant professor at the
National Institute of Informatics. His
research interests are in XML query
languages and Topic Maps query lan-

guages.

Soichiro HIDAKA
received his bachelor’s degree in en-
gineering and doctorate from the Uni-
versity of Tokyo in 1994 and 1999.
He is now an assistant professor at
the National Institute of Informatics
and The Graduate University for Ad-

vanced Studies, studying XML query processing and
parallel processing.

Masatoshi YOSHIKAWA
received B.E., M.E. and Ph.D. de-
grees from Department of Informa-
tion Science, Kyoto University in
1980, 1982 and 1985, respectively.
He was on the faculty of Kyoto
Sangyo University from 1985 until

1993. From 1989 to 1990, he was a visiting scientist at
Computer Science Department, University of Southern
California. In 1993, he joined Nara Institute of Science
and Technology (NAIST) as a faculty member. From
April 1996 to January 1997, he has stayed at Depart-
ment of Computer Science, University of Waterloo as a
visiting associate professor. From June 2002 to March
2006, he served as a professor at Nagoya University.
From April 2006, he has been a professor at Kyoto Uni-
versity. His general research interests are in the area of
databases. His current interests include XML databases
and index structures for text and multimedia data.

