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ABSTRACT
A major challenge in the implementation of quantum computers is mitigating the impact
of undesired couplings with the environment that lead to decoherence. Here, we discuss an
error-avoiding strategy that is based upon freedoms inherent in decomposing a quantum al-
gorithm into fundamental gates. Although this approach is specific to a particular algorithm
and a collective noise model, it does not the require complicated encodings or significant ad-
ditional qubit resources of more general error-correcting codes. This paper also includes an
overview of quantum computation, including a discussion of the quantum search algorithm.
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1 Introduction

In future quantum information processing systems,
quantum bits (qubits) of information are likely to be
stored in identical two-level systems (e.g. spins, or
pseudospins) that are spatially separated to simultane-
ously allow independent control of single qubits and
mutual interaction between qubits. In such systems,
information is encoded in the delicate quantum corre-
lations that exist between qubits, and is manipulated
over time by unitary single and two-qubit operations.
Unwanted interactions of the qubits with their environ-
ment can lead to errors in the computation result, either
by energy-relaxation (i.e., dissipation or T1 processes)
or by degradation of relative phase information (i.e.,
decoherence or T2 processes). To avoid such errors,
an ideal quantum computer should be wholly shielded
from its environment. However, as one needs to couple
the qubits to the outside world to apply single and two-
qubit operations, it is inevitable that a quantum com-
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puter will be prone to some residual environmental in-
teractions that lead to decoherence.

A sophisticated theory of error-avoiding and error-
correcting codes has been developed to protect the out-
put of quantum computers from errors due to general
dissipative and decohering processes. [1]–[20] Among
these methods is the labeling of logical qubits in a
decoherence-free subspace, in which the encoded infor-
mation is immune to system-environment interactions.
However, these methods require complicated encodings
of information amongst the two-level systems and/or a
large number of auxiliary qubits and intermediate mea-
surements.

The error-avoiding technique discussed here lever-
ages the fact that there is considerable freedom in the
decomposition of a given quantum algorithm into a se-
quence of elementary single and two-qubit gates. As
the quantum computer evolves in time, the collection of
qubits traces out a path in its state space that depends
upon the sequence of gates. In the absence of decoher-
ence, all trajectories lead to the same final state. How-
ever, if there is undesired system-environment cou-
pling, the final state is erroneous. Furthermore, the er-
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ror depends upon the chosen trajectory, and thus the
elementary-gate sequence. If the system-environment
interaction exhibits a high-degree of symmetry, a sim-
ple geometrical argument can be made to find a tra-
jectory that minimizes the impact of decoherence for
selected quantum algorithms. The strategy employed
here leverages the idea of decoherence-free subspaces,
in that the state is steered through a region of the Hilbert
space in which the coupling between the system and
environment is presumed to be minimal. However, un-
like decoherence-free subspaces, this approach encodes
qubits in the standard computational basis, avoiding the
difficult encoding issues that complicate the implemen-
tation of the former.

The decoherence model considered here is collec-
tive in the sense that all qubits couple symmetrically
with the environment. This model is applicable if the
characteristic wavelength of the environment is longer
than the largest physical distance between qubits. This
model might be relevant for solid-state implementa-
tions, where qubits are two-level systems (e.g., selected
ionic or atomic levels) that couple to long-wavelength
modes of a cold phonon bath. The electric-dipole cou-
pling of closely-spaced atoms to a fluctuating electro-
magnetic field is another such example.

As an example of this procedure, we demonstrate
that a judicious decomposition of the quantum search
algorithm can mitigate the impact of dissipation. While
this is demonstrated for cases where the number of
qubits is small, the geometric argument used to derive
the gate decomposition extends to an arbitrary number
of qubits.

It should be emphasized that this strategy does
not constitute a general, scalable method of error-
correction. However, it does highlight the fact that the
intrinsic physical interactions coupling qubits to their
environment should play a role in determining how se-
quences of gates should be composed. Furthermore, we
might envision a testbed quantum computer, composed
of a few tens of qubits, for which the overhead required
to implement error-correcting codes is steep. In other
words, if we redundantly encode each qubit using five
physical two-level systems, we may not have many log-
ical qubits to work with. In such a case, an alternative
means to mitigate decoherence is advisable, such as the
scheme described in this paper.

To aid readers outside of the field of quantum compu-
tation, Sec. 2 provides an extended background of rel-
evant topics. In particular, we address the following
fundamental questions:

• What distinguishes quantum computation from
“classical” computers?

• What are the required elements of a quantum com-

puter?
• Why might quantum computers be useful, and for

what applications? In other words, which algorithms
are interesting?

In Sec. 3, we introduce a parameter to qualitatively de-
scribe the instantaneous dissipation rate due a collective
interaction with a reservoir of boson modes. A modi-
fication to the quantum search algorithm is proposed
based upon its geometric structure, and the average dis-
sipation rates of the original and modified algorithms
are compared.

2 Background
2.1 Classical and quantum computers

Before venturing into a description of quantum com-
puters, it is convenient to first discuss a classical
model for computing machines. While the Turing ma-
chine [21], [22] is of great historical and theoretical im-
portance, a model based on Boolean circuits is a more
accurate representation of everyday desktop and laptop
computers. In the latter model, a computer consists of
a collection of n binary variables, or bits. An algorithm
is represented by a network of Boolean gates that per-
forms a sequence of logic operations on the binary in-
puts. Of seminal importance is the fact that arbitrary
computable functions can be constructed out of a finite
set of primitive circuit elements, or gates. One com-
mon set [23] consists of a FANOUT gate that copies
one bit to two, a gate to exchange two input bits, and the
NAND gate, which is the composition of the Boolean
AND and NOT gates.

The complexity of a given algorithm is quantified by
the number of primitive gates required to generate an
output1). If the number of gates scales polynomially
with the number of bits n, the algorithm is deemed effi-
cient. While this criterion may seem arbitrary, it has
two important advantages. First, the composition of
two efficient algorithms is itself efficient, as polynomi-
als are closed under composition. Thus, a complicated
efficient algorithm can be constructed from efficient
subroutines. Second, the modern or strong Church-
Turing thesis conjectures that the time required for one
computational model to evaluate a computable function
is a polynomial function of the time required by any
other computational model. If true, the strong Church-
Turing thesis implies that the notion of efficiency is uni-
versal. If an efficient algorithm can be found for a given
problem, the strong Church-Turing thesis would imply
that the problem may be solved efficiently by all physi-
cally reasonable computational models.

A quantum computer can be defined by a generaliza-

1) This metric is equivalent to the total computation time, assuming that each
primitive gate requires a constant time to execute.
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tion of the Boolean circuit model for computation [23],
[24]. Consider a collection of n two-level quantum sys-
tems (qubits); each two-dimensional complex vector
space is spanned by the kets |0〉 and |1〉. The overall
2n dimension Hilbert space is spanned by the computa-
tional basis vectors

∣∣∣x〉, where x ∈ {0, 1, 2, · · · , 2n − 1}.
The underline denotes that the state of each qubit may
be inferred from the n-bit binary string for the integer
x.

It is assumed that each qubit is initialized in the fidu-
cial |0〉 state at the outset of a computation. Logic oper-
ations consist of a sequence of unitary transformations
(i.e. gates) on single qubits or pairs of qubits2). A primi-
tive set of gates can be chosen to allow arbitrary unitary
transformations; such sets are universal. One univer-
sal set consists of all single-qubit gates along with the
controlled-NOT gate, which maps the two-qubit state
|x, y〉 to |x, x ⊕ y〉, where ⊕ denotes the exclusive-OR
operation. The output of the computation is derived by
the projective measurement of the qubits in the com-
putational basis. This model is often denoted as the
standard model of quantum computation.

The standard model subsumes the classical Boolean
circuit model. This statement seems problematic at
first, as unitary operations are invertible, whereas
Boolean gates such as NAND are irreversible. How-
ever, a classical circuit can use reversible gates with no
loss of power by adding a reasonable number of scratch
bits. [25], [26] Thus, any efficient algorithm on a classi-
cal computer can be translated into an efficient algo-
rithm on a quantum computer given sufficient ancil-
lary qubits. It is the lack of a converse statement that
makes quantum computation so interesting. Indeed,
there exist problems for which an efficient quantum al-
gorithm is known with no classical counterpart, calling
the strong Church-Turing thesis into question (for re-
views of elementary quantum algorithms, refer to Refs.
[23], [27], [28]). Integer factorization [29], [30] is one
such example. Furthermore, the computation time of
search problems can be dramatically reduced by quan-
tum algorithms, as is discussed in the next subsection.

2.2 Quantum search algorithms
Grover’s unstructured database search algo-

rithm [31], [32] is one of several algorithms discovered
in the mid-nineties that spurred great interest in the
potential computational power of quantum computers
relative to their classical counterparts. Although the
utility of the algorithm lies in its application as a
building block in other problems, it is easiest for us to
analyze with the algorithm in its original form, with

2) As each two-level qubit can be considered as a spin or pseudospin, transfor-
mations can be expressed using the Pauli operators σ̂x , σ̂y and σ̂z .

a slight modification [33] to allow for multiple target
states.

We are given a function f : ZN → {0, 1} that maps
the integers 0 through N − 1, where N = 2n, to a single
Boolean output. We are told there exists a nonempty set
for which the function yields output 1:

X = {x| f (x) = 1}, |X| ≡ r, 0 < r < N. (1)

Given a black box that can be queried for function eval-
uations of f (x), we seek an element of X with a mini-
mum expected number of queries over all f . The func-
tion f (x) can be thought of as a database with unknown
structure for which the subset X of inputs are desired
records, or targets. An obvious heuristic is to guess
values of x at random; O(N/r) evaluations will find a
solution with a minimum guaranteed probability of suc-
cess.

A quantum algorithm in the standard model can solve
an equivalent problem with O(

√
N) invocations of an

oracle ÛX , which encodes the function f (x) as a unitary
operator. ÛX is defined on an n-qubit Hilbert space:

ÛX =

N−1∑
x=0

(−1) f (x)
∣∣∣x〉 〈

x
∣∣∣ = Î − 2

∑
x∈X

∣∣∣x〉 〈
x
∣∣∣ , (2)

where Î is the identity operator, and the sec-
ond summation includes computational basis states{∣∣∣0〉

,
∣∣∣1〉

, · · · , ∣∣∣N − 1
〉}

that are targets. Acting on a gen-

eral n-qubit state, ÛX shifts the phase of target compo-
nents by π, and does nothing to remaining components.

Consider the operator Q̂ = −ĤÛ0ĤÛX acting on an
N-dimensional Hilbert space; Ĥ is the Hadamard oper-
ator on all n qubits, and Û0 flips the phase of the

∣∣∣0〉
state:

Û0 = Î − 2
∣∣∣0〉 〈

0
∣∣∣ . (3)

Note that Ĥ is self-inverse, so Ĥ = Ĥ†. Define the equal
superposition state |σ〉 and the superposition state over
all targets

∣∣∣X̄〉
:

|σ〉 = Ĥ
∣∣∣0〉
=

1√
N

N−1∑
x=0

∣∣∣x〉 (4a)

∣∣∣X̄〉
=

1√
r

∑
x∈X

∣∣∣x〉 (4b)

Q̂ leaves invariant the two-dimensional subspace Q0

spanned by |σ〉 and
∣∣∣X̄〉

; i.e., Q̂ = Q0 ⊕ Q⊥0 . This is
easily verified, as

Q̂ |σ〉 = −Ĥ
(
Î − 2

∣∣∣0〉 〈
0
∣∣∣) Ĥ

1 − 2
∑
x∈X

∣∣∣x〉 〈
x
∣∣∣
 |σ〉
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(5a)

= − (1 − 2 |σ〉 〈σ|)
1 − 2

∑
x∈X

∣∣∣x〉 〈
x
∣∣∣ |σ〉

(5b)

=

(
1 − 4r

N

)
|σ〉 + 2

√
r
N

∣∣∣X̄〉
, (5c)

and

Q̂
∣∣∣X̄〉
=

∣∣∣X̄〉
− 2

√
r
N
|σ〉 . (6)

Let
∣∣∣X̄⊥〉 be a vector in the invariant subspace such that∣∣∣X̄⊥〉 is orthogonal to

∣∣∣X̄〉
:

∣∣∣X̄⊥〉 =
√

N
N − r

|σ〉 −
√

r
N − r

∣∣∣X̄〉
. (7)

The matrix representation of Q̂ on the two-dimensional
subspace spanned by

∣∣∣X̄〉
and

∣∣∣X̄⊥〉 is then

Q̂ =


1 − 2r

N
−2
√

r(N − r)
N

2
√

r(N − r)
N

1 − 2r
N

 . (8)

As the determinant of the matrix is 1, each invocation
of Q0 is a rotation by an angle θ, where

θ = sin−1

(
2
√

r(N − r)
N

)
, (9)

which approaches 2/
√

N for N 	 r. Note that the angle
between |σ〉 and

∣∣∣X̄〉
is

cos−1
∣∣∣∣〈σ| X̄〉∣∣∣∣ = cos−1

(
1√
N

)
, (10)

which approaches π/2 if N 	 r. Thus, the number of
iterations K of Q̂ required to rotate |σ〉 to the state

∣∣∣X̄〉
is

K =
cos−1

(
1/
√

N
)

θ
≈ π
√

N
4

. (11)

To find a target state with near unity probability, the sys-
tem is initialized in the |σ〉 = H

∣∣∣0〉
state, K iterations

of Q̂ are performed, requiring O(
√

N) oracle calls, and
projective measurement in the computational basis is
carried out. The measurement of the n qubits yields the
n-bit representation of a target state in set X with near
certainty.

Brassard and Høyer [34] and Grover [35] showed
that the search algorithm can be generalized, in

that there is freedom to modify the initial state and
Hadamard operations. To be precise, consider the oper-
ator

Q̂′ = −V̂ÛγV̂†ÛX , (12)

where V̂ is any unitary operator on all n qubits, Ûγ is
defined by

Ûγ = Î − 2 |γ〉 〈γ| , (13)

and |γ〉 is the initial state. A little algebra shows that
the two-dimensional subspace spanned by V̂ |γ〉 and∑

x∈X Vxγ

∣∣∣x〉 are invariant under Q̂′, where

Vxγ =
〈
x
∣∣∣ V̂ |γ〉 . (14)

V̂ causes a rotation in the invariant subspace by an angle

sin−1

2
√√√∑

x∈X

∣∣∣Vxγ

∣∣∣2 −
∑

x∈X

∣∣∣Vxγ

∣∣∣2
2
 (15)

The generalized algorithm can be useful in a couple
ways. First, if the problem that we wish to solve is a
search problem with a known structure, it may hold that
V̂ can be chosen to reduce the number of required calls
to the oracle. For example, Grover [36] showed that if
it is known that the target states are a fixed Hamming
distance k from a known n-bit string y, then the number
of required iterations can be reduced by selecting |γ〉 =∣∣∣∣y〉 and defining the single-qubit operator V̂ as

V̂ =

[ √
1 − k/n

√
k/n√

k/n −√1 − k/n

]
. (16)

Second, as we will discuss in Sec. 3, replacement of
Hadamard gates in the unstructured search algorithm
with other single qubit gates that preserve Vxγ = 1/

√
N

can be advantageous in reducing the impact of decoher-
ence. Such modifications do not modify the gate count
of the unstructured search algorithm, but could be ben-
eficial if unwanted interactions are present between the
system and the environment.

3 Error avoidance by gate design
In the standard model of quantum computation, an

algorithm such as quantum search is implemented by
decomposing the unitary evolution into a sequence of
single-qubit and two-qubit unitary gates. This decom-
position is not unique; there is an infinite variety of
ways to expand a given unitary operation as a se-
quence of single-qubit and controlled-NOT gates. Ide-
ally, one would employ a general optimization proce-
dure in which the gate decomposition for a particu-
lar algorithm is manipulated until the error due to un-
wanted system-environment interaction is minimized.
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However, such an approach is not feasible, as each gate
decomposition must be explicitly simulated on a clas-
sical computer to compute the error. Simulation of a
quantum circuit on a classical computer is generally in-
efficient due to the exponential size of the Hilbert space.
The approach of mitigating decoherence by gate design
is useful only if both the algorithm and the decoher-
ence model possess a structure that immediately sug-
gests an advantageous gate decomposition. In this sec-
tion, we examine the quantum-search algorithm as such
as example, in the presence of a collective, dissipative
system-environment interaction.

3.1 Dissipation model
A general hamiltonian for the system and environ-

ment is

Ĥ = ĤS ⊗ ÎE + ÎS ⊗ ĤE + ĤSE. (17)

We consider the environment to be composed of a reser-
voir of boson modes, such that

ĤE =
∑

k

ωk

(
â†k âk + 1/2

)
. (18)

For the system-reservoir interaction, we assume a
simple model to reflect the exchange of energy between
the qubits and the environment. The n qubits are cou-
pled to the environment by a Jaynes-Cummings-like in-
teraction

ĤSE =
1
2

n∑
i=1

∑
k

(
g∗i,kσ̂

+
i ⊗ âk+gi,kσ̂

−
i ⊗ â†k

)
. (19)

which may reflect the physical scenario of two-level
atoms dipole-coupled to an external bosonic field. This
interaction leads to energy exchange between the qubits
and the reservoir, as the raising and lowering operators
σ̂+ and σ̂− lead to bit-flips.

We assume that the n qubits interact collectively with
the reservoir, such that gi,k = gk. Defining the total spin

operator Ŝ α =
1
2

n∑
i=1

σ̂αi , this implies that

ĤSE =
∑

k

(
g∗kŜ + ⊗ âk + gkŜ − ⊗ â†k

)
. (20)

Furthermore, we assume that the reservoir is at zero
temperature, so that each environment mode is in the
vacuum state, which we denote as |0〉E . We notate
as |k〉E the reservoir state where all modes are in the
ground state except for mode k, which has one exci-
tation (e.g., a single phonon in mode k for vibrational
modes in a solid-state system). Consideration of the
single-excitation manifold will be sufficient to derive a
first-order transition rate.

This collective interaction corresponds to the physi-
cal scenario in which the qubits are closely spaced rel-
ative to the wavelength of the cold reservoir.

In the interaction picture associated with ÎS ⊗ ĤE , the
hamiltonian is

Ĥint = ĤS ⊗ ÎE+
(
g∗ke−iωk tŜ + ⊗ âk+gkeiωk tŜ −⊗â†k

)
.

(21)

As the system-environment hamiltonian is expressed
entirely in terms of the total spin operators, it is conve-
nient to use the so-called collective angular momentum
state (or Dicke-state) basis, as opposed to the computa-
tional basis.

3.2 Collective angular momentum states
Consider a collection of n spin-1/2 particles. One

complete set of basis states consists of the tensor prod-
uct of σ̂z

i eigenstates for all spins i; these are the in-
dividual “spin-up” states |↑〉 or “spin-down” states |↓〉
for each two-level system. Alternatively, we can con-
sider the simultaneous eigenstates of the total squared
angular momentum operator and the total z-component
angular operator. To be precise, define

Ĵγ =
1
2

n∑
i=1

σ̂
γ
i (22)

for γ ∈ {x, y, z},
Ĵ2 =

(
Ĵ x

)2
+

(
Ĵy

)2
+

(
Ĵz

)2
, (23)

and Ĵ± = Ĵ x + iĴy. The Cartesian operators satisfy the
commutation relations[

Ĵα, Ĵβ
]
= iεαβγ Ĵγ, (24)

where εαβγ is the antisymmetric Levi-Cevita tensor.
Recognizing Eq. 24 as the fundamental commutation
relations for angular momentum, we immediately know
that there exist simultaneous eigenstates | j,m, α〉 of Ĵ2

and Ĵz such that

Ĵ2 | j,m, α〉 = j( j + 1) | j,m, α〉
Ĵz | j,m, α〉 = m | j,m, α〉 (25)

for half-integral j and m ∈ {− j,− j+1, · · · , j}. The label
α distinguishes degenerate states, and will be labeled by
positive integers.

The allowed states and their degeneracies can be
computed by the theory of addition of angular momen-
tum. For the case of n spin-1/2 particles, the calculation
is particularly simple. First, note that the tensor product
of n spin-up/spin-down states is an eigenstate of Ĵ2 with
eigenvalue m in the set {−n/2,−n/2+1, · · · , n/2}. Thus,
j ∈ {n/2, n/2 − 1, · · · , 0 (1/2)}; the minimum value of
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Fig. 1 Collective angular momentum states for n = 2, 3, 4. The degeneracy of each state is indicated in bold.

j depends on whether n is even or odd. The allowed
values of j and m can be represented graphically, as in
Fig. 1

Before examining simple examples, first note that
the fundamental commutation relations imply that[
Ĵz, Ĵ+

]
= Ĵ+. Thus,

Ĵz
(
Ĵ+ | j,m, α〉

)
=

(
Ĵ+ Ĵz + Ĵ+

)
| j,m, α〉

= (m + 1)Ĵ+ | j,m, α〉 , (26)

implying that Ĵ+ | j,m, α〉 is also an eigenstate of Ĵ2 and
Ĵz, unless Ĵ+ | j,m, α〉 = 0. The eigenvalue j is unmodi-
fied, and m→ m + 1. Similarly,

Ĵ− | j,m, α〉 = c | j,m − 1, α〉 (27)

where c is an as-yet undetermined constant. As
| j,m − 1, α〉 is normalized,

|c| =
√
〈 j,m, α| Ĵ+ Ĵ− | j,m, α〉. (28)

From Eq. 23 and the commutation relations in Eq. 24, it
can be shown that

Ĵ+ Ĵ− = Ĵ2 −
(
Ĵz

)2
+ Ĵz. (29)

Thus,

|c| =
√

j( j + 1)−m2 + m =
√

j( j + 1)−m(m − 1).

(30)

A similar derivation for Ĵ+ yields

Ĵ− | j,m, α〉 = √
j( j + 1) − m(m − 1) | j,m − 1, α〉

(31a)

Ĵ+ | j,m, α〉 = √
j( j + 1) − m(m + 1) | j,m + 1, α〉 ,

(31b)

Consider the simplest example, where n = 2.
Amongst all four possible tensor products of spin-
up/spin-down states, there only exists one for which
m = −1, so

| j = 1; m = −1;α = 1〉 = |↓↓〉 . (32)

Successively applying Ĵ+ =
1
2

(σ̂+1 + σ̂
+
2 ), we find

| j = 1; m = 0;α = 1〉 = |↓↑〉 + |↑↓〉√
2

| j = 1; m = 1;α = 1〉 = |↑↑〉 . (33)

The | j = 0; m = 0〉 states consist of all independent spin
states with as many spins up as down that are orthog-
onal to | j = 1; m = 0;α = 1〉. There is only one such
state, which is the singlet

| j = 0; m = 0;α = 1〉 = |↓↑〉 − |↑↓〉√
2

. (34)

For n = 3, we again deduce that the only state for
which m = −3/2 has all spins down. The j = 3/2
manifold is then computed by successive applications
of Ĵ+,

| j = 3/2; m = −3/2;α = 1〉 = |↓↓↓〉
| j = 3/2; m = −1/2;α = 1〉 = |↓↓↑〉 + |↓↑↓〉 + |↑↓↓〉√

3

| j = 3/2; m = 1/2;α = 1〉 = |↓↑↑〉 + |↑↓↑〉 + |↑↑↓〉√
3
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| j = 3/2; m = 3/2;α = 1〉 = |↑↑↑〉 . (35)

There are three configurations where a single spin
points down, and thus three degenerate states for m =
−1/2. The j = 1/2, m = −1/2 subspace is two-
fold degenerate, and spanned by kets orthogonal to the
j = 3/2, m = −1/2 subspace. Thus,

| j = 1/2; m = −1/2;α = 1〉 = 2 |↓↓↑〉 + |↓↑↓〉−|↑↓↓〉√
6

| j = 1/2; m = −1/2;α = 2〉 = |↓↑↓〉 − |↑↓↓〉√
2

(36)

| j = 1/2; m = 1/2;α = 1〉 = −2 |↑↑↓〉 + |↑↓↑〉 + |↓↑↑〉√
6

| j = 1/2; m = 1/2;α = 2〉 = − |↑↓↑〉 + |↓↑↑〉√
2

. (37)

This procedure can be continued in a similar fash-
ion for larger n. For n = 4, we list only the two-fold
degenerate j = 0, m = 0 singlet states:

| j = 0; m = 0;α = 1〉
=
|↑↓↑↓〉−|↑↓↓↑〉 − |↓↑↑↓〉 + |↓↑↓↑〉

2
| j = 0; m = 0;α = 2〉
=

2 |↑↑↓↓〉 + 2 |↓↓↑↑〉 − |↑↓↑↓〉 − |↓↑↓↑〉 − |↑↓↓↑〉 − |↓↑↑↓〉√
12

(38)

3.3 Collective dissipation enhancement factor
The hamiltonian Ĥint leads to transitions between the

collective angular momentum states | j,m, α〉S . These
transitions can be explained by a simple first-order
perturbation theory argument. [37], [38] Assume that
at time t = 0, the system and environment are in
the state | j,m, α〉S ⊗ |0〉E , which we compactly notate
as | j,m, α; 0〉. A general state (limited to the single-
excitation manifold) is

|ψ〉SE =
∑
j,m,α

c j,m,α;0 | j,m, α; 0〉+
∑

k

c j,m,α;k | j,m, α; k〉
 .

(39)

The coefficients evolve under the Schrödinger equation

iċ j′,m′,α′;k′(t)

=
∑

j′′,m′′,α′′,k′′
c j′′ ,m′′,α′′;k′′ (t)

〈
j′,m′, α′; k′

∣∣∣Ĥint
∣∣∣ j′′,m′′, α′′; k′′

〉
.

(40)

Near t = 0,

c j′′,m′′ ,α′′ ,k′′(t) = δ j, j′′δm,m′′δα,α′′δk,0, (41)

implying

ċ j′ ,m′,α′;k′ (t) = −i
〈

j′,m′, α′; k′
∣∣∣ Ĥint | j,m, α; 0〉 .

(42)

Now, assume that no control hamiltonian is applied, so
ĤS is zero. Then, from Eq. 21,

ċ j′ ,m′,α′;k′ (t)

= −i
∑

k

gkeiωkt 〈 j′,m′, α′; k′
∣∣∣ Ŝ − ⊗ â†k | j,m, α; 0〉

= −i
∑

k

gkeiωkt 〈 j′,m′, α′
∣∣∣ Ŝ − | j,m, α〉〈k′∣∣∣ â†k |0〉

(43)

where we have noted that âk acting on the vacuum
state is zero. The first matrix element is obtained from
Eq. 31a,〈

j′,m′, α′
∣∣∣ Ŝ − | j,m, α〉

=
√

j( j + 1) − m(m − 1)δ j, j′δm−1,m′δα,α′ , (44)

while the second matrix element is simply δk,k′ . Substi-
tuting Eq. 44 into Eq. 43 and integrating from 0 to t,

∣∣∣c j,m−1,α,k′
∣∣∣2= [

j( j +1) −m(m −1)
] |gk′ |2 sin2 (ωk′ t)

ω2
k′

.

(45)

By probability conservation, the population of the orig-
inal qubit state | j,m, α〉 decays as

∣∣∣c j,m,α,0

∣∣∣2 = 1 − E( j,m)
∑

k′

|gk′ |2 sin2 (ωk′ t)

ω2
k′

, (46)

where

E( j,m) ≡ j( j + 1) − m(m − 1). (47)

E( j,m) is a collective enhancement factor that can aug-
ment or reduce the transition rate; it is the source of
“superradiance” in quantum optics. [39] Note that for
a single qubit (i.e., pseudospin) in the excited state
| j = 1/2,m = 1/2〉, the collective enhancement factor
is 1. Thus, E( j,m) represents the enhancement in the
transition rate compared to a single spin.

The collective enhancement factors are depicted in
Fig. 2 for n = 8. The states | j; m = − j;α〉 have
E( j,m) = 0; no transitions can occur in these “subra-
diant” or “dark” states as Ŝ − | j; m = − j;α〉 = 0. In-
deed, these states form the decoherence-free subspace
for the hamiltonian in Eq. 19. By contrast, the states
| j = n/2; m = 0 or ± 1/2;α〉 are superradiant and have
significantly higher dissipation rates than independent
spins.
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Fig. 2 The collective enhancement factor j( j + 1) − m(m −
1) for n = 8. Superradiant states are shown in red, while
subradiant states are in blue.

This analysis suggests a crude estimate of the instan-
taneous dissipation rate for a given n-qubit pure state.
The collective angular momentum or Dicke-states form
a complete basis, so an arbitrary n-qubit pure state can
be expanded as

|ψ〉S =
∑
j,m,α

a j,m,α | j,m, α〉 . (48)

Define the state-averaged collective enhancement fac-
tor

γ1 =
∑
j,m,α

E( j,m)
∣∣∣a j,m,α

∣∣∣2 =∑
j,m

E( j,m)
∑
α

∣∣∣a j,m,α

∣∣∣2
=

∑
j,m

E( j,m)
∑
α

∣∣∣〈 j,m, α| ψ〉S ∣∣∣2 . (49)

A state with a large probability amplitude in the sub-
radiant (superradiant) states will yield a small (large)
value of γ1. This suggests that states with large
state-averaged collective enhancement factors interact
strongly with the environment. Note that γ1 is en-
tirely determined by the probability weights for each
( j,m) value,

∑
α |a j,m,α|2. These probability weights and

the corresponding values of γ1 are plotted for selected
states |ψ〉S in Fig. 3.

For a given algorithm, in the absence of noise, the
state evolves from an initial fiducial state |ψ(0)〉 to a
final state |ψ(T )〉 according to the hamiltonian that gen-
erates the sequence of fundamental unitary gates. If
we simulate the algorithm on a classical computer, the
state-averaged collective enhancement factor γ1(t) can
be calculated at each time in the interval [0, T]. This
parameter is then proposed as an estimate of the instan-
taneous enhancement in the dissipation rate.

(a)

(b)

(c)

Fig. 3 Bar plots of the probability weights
∑
α |aj,m,α|2 for

selected eight-qubit states, and the associated value of
γ1. Subradiant (DFS) states are dark blue, while super-
radiant states are bright red. (a) State | j = 4,m = −4〉 =
|00000000〉. (b) Equal superposition state |σ〉 ≡
(|0〉 + |1〉)⊗8 /

√
256. (c) Singlet-like superposition state |σ′〉 ≡

[(|0〉 + |1〉) ⊗ (|0〉 − |1〉)]⊗4 /
√

256.



Algorithm-based analysis of collective decoherence in quantum search 13

We emphasize that γ1 provides a qualitative esti-
mate of the impact of collective decoherence, and does
not necessarily correlate to a true physical dissipation
rate3).

3.4 Modifying the quantum search algorithm
Recall that to perform the quantum search algorithm,

one first applies a Hadamard transformation Ĥ to all of
n qubits to create the equally-weighted superposition
state

|σ〉 = 1√
N

N−1∑
x=0

∣∣∣x〉 . (50)

Then, one repeatedly applies the operator Q̂ =

−ĤÛ0ĤÛX , where ÛX and Û0 are defined as

ÛX = Î − 2
∑
x∈X

∣∣∣x〉 〈
x
∣∣∣ (51a)

Û0 = Î − 2
∣∣∣0〉 〈

0
∣∣∣ . (51b)

In the subspace spanned by |σ〉 and the state
∣∣∣X̄〉

, de-
fined as

∣∣∣X̄〉
=

1√
r

∑
x∈X

∣∣∣x〉 , (52)

Q̂ can be interpreted as a rotation by a fixed angle θ,
given in Eq. 9. After a given number of applications of
Q̂, the superposition state |σ〉 is rotated near

∣∣∣X̄〉
, and

a projective measurement yields one of the solutions to
the search problem with near certainty. The number of
required rotations is O(

√
N/r).

Note in Fig. 3 (b) that the equal superposition state
|σ〉 has a large state-averaged collective enhancement
factor γ1, as it exhibits a high probability weighting
near the superradiant states4). Thus, in the initial part
of the quantum search algorithm, as we start to rotate
from |σ〉 towards

∣∣∣X̄〉
, we expect the dissipation rate to

be high. It would be preferable if the algorithm could be
carried out as a rotation in a different two-dimensional
subspace, spanned by a subradiant state and

∣∣∣X̄〉
.

3) The reason for this is threefold. First, we have neglected the system hamil-
tonian ĤS in the above discussion of transition rates. The control hamiltonian
can influence and even eliminate the impact of system-environment coupling.
Second, the state-averaged collective enhancement factor ignores phase infor-
mation, as it averages over probabilities as opposed to probability amplitudes.
Third, γ1 is computed from the ideal trajectory of the state ket through the
Hilbert space (i.e., the state in the absence of system-environment interaction).
However, the system-environment coupling entangles the qubits with the reser-
voir, and the qubit state is correctly described by a reduced density matrix,
tracing over the environmental degrees of freedom.
4) As |σ〉 is symmetric under qubit permutations, only the maximal j = n/2
components have non-zero probability amplitudes.

For example, consider replacing |σ〉 by the superpo-
sition state∣∣∣σ′〉 = ( |0〉 + |1〉√

2

)
⊗

( |0〉 − |1〉√
2

)
⊗

( |0〉 + |1〉√
2

)

⊗
( |0〉 − |1〉√

2

)
⊗ · · ·

=
1√
N

N−1∑
x=0

m(x)
∣∣∣x〉 , (53)

in which m(x) keeps track of the minus signs inher-
ent in expanding out the first line, and thus takes value
±1. The state-averaged collective enhancement factor
of |σ′〉 is given in Fig. 3 (c) for n = 8. The parameter
γ1 is substantially improved compared to |σ〉, due to the
significant probability amplitude in subradiant states5).

The modification required to change the invariant
two-dimensional subspace is simple. Replace the
Hadamard transformations in Q̂ by the operator V̂mod,
whose matrix representation in the computational basis
is defined as

Vmod =
1√
2

[
1 1
1 −1

]
⊗ 1√

2

[−1 1
1 1

]

⊗ 1√
2

[
1 1
1 −1

]
⊗ 1√

2

[−1 1
1 1

]
⊗ · · · (54)

Like the n-qubit Hadamard operator, V̂ is a sequence
of simple single-qubit gates on all n qubits. They dif-
fer only in the diagonal elements of the operators on
alternating qubits.

To show that the operator Q̂mod ≡ V̂modÛ0V̂modÛX

yields a rotation in the desired subspace, we recall
the discussion of the generalized search algorithm.
[34], [35] By Eqs. 12 through 15, the invariant subspace
is spanned by

V̂mod

∣∣∣0〉
=

∣∣∣σ′〉 (55)

and √
N
r

∑
x∈X

∣∣∣x〉 〈
x
∣∣∣ V̂mod

∣∣∣0〉
=

√
N
r

∑
x∈X

∣∣∣x〉 〈
x
∣∣∣ σ′〉

=
1√
r

∑
x∈X

m(x)
∣∣∣x〉 .

(56)

The rotation angle, given by Eq. 15, is

θ = sin−1

2
√√√∑

x∈X

∣∣∣∣〈x
∣∣∣ V̂mod

∣∣∣0〉∣∣∣∣2−
∑

x∈X

∣∣∣∣〈x
∣∣∣ V̂mod

∣∣∣0〉∣∣∣∣2


2


5) The small value of γ1 for |σ′〉 can be understood by noting that (|0〉 + |1〉) ⊗
(|0〉 − |1〉) = |00〉 − |11〉 + |10〉 − |01〉. The states |00〉 and |10〉 − |01〉 are the
subradiant triplet and singlet states.
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= sin−1

[
2
√

r(N − r)
N

]
, (57)

where we have noted that
∣∣∣∣〈x

∣∣∣ V̂mod

∣∣∣0〉∣∣∣∣2 =[
h(x)/

√
N

]2
= 1/N. The angle in Eq. 57 is iden-

tical to that of the original algorithm (cf. Eq. 9).
In summary, the “modified algorithm” commences

by applying V̂mod to the initial state
∣∣∣0〉

, leading to |σ′〉.
Successive applications of Q̂mod rotate |σ′〉 towards the

1√
r

∑
x∈X m(x)

∣∣∣x〉 state. After O(
√

N/r) rotations, pro-
jective measurement yields one of the solutions in X
with near-unity probability.

As the probability amplitudes of |σ′〉 in the collec-
tive angular momentum basis are large near the subra-
diant states, we intuit that the error induced by dissi-
pation in the modified algorithm would be less than in
the original algorithm. In the next section, we present
simulation data of γ1 for various instances of the search
algorithm to bolster this claim.

3.5 Simulation data for the collective enhancement
factor

In this section, we present simulation data of the
state-averaged collective enhancement factor γ1(t) for
instances of the original and modified quantum search
algorithms. The simulations described in this section
decompose a given instance of the search algorithm into
a sequence of elementary gates, and then evaluate γ1

after each gate. We first show how this decomposition
is carried out for the original and modified algorithms.
We then argue why it is reasonable to discretize the con-
tinuous function γ1 after each fundamental gate. Last,
we show simulation data for selected instances of the
search problem.

As the fundamental gate set, we consider controlled-
NOT (CNOT) gates along with arbitrary single-qubit
operations. This choice is arbitrary, but it facilitates
the simple decomposition of the operators required in
the search algorithm. Each of the unitary operators in
Q̂ = −ĤÛ0ĤÛX or Q̂mod = −V̂modÛ0V̂modÛX must
be compiled into fundamental gates. The Hadamard
and V̂mod gates are straightforward; for the n-qubit
search problem, each can be performed as a sequence
of n elementary single-qubit gates. Recall that Û0, de-
fined in Eq. 51b, applies a phase-shift of π to the

∣∣∣0〉
state, and leaves other computational basis states un-
modified. Given an ancillary qubit initialized in the
(|0〉 − |1〉) /√2 state, Û0 can be decomposed as shown
in Fig. 4. The circuit requires 2n single-qubit gates and
one “n-controlled-NOT” gate. The latter applies a NOT
gate to the target ancillary qubit if all n control qubits
are in the logical |1〉 state. Barenco et al. [40] presented

Fig. 4 A circuit to implement the Û0 unitary operator on
the n “data” qubits. The ⊕ symbols denote single-qubit
NOT (bit-flip) gates that transform |0〉 �→ |1〉 and |1〉 �→ |0〉.
The circuit applies a NOT gate to the ancillary qubit if all
of the n other control qubits are in the |0〉 state. This maps
(|0〉 − |1〉)/√2 to (|1〉 − |0〉)/√2 = −(|0〉 − |1〉)/√2, yielding the
π-phase shift. Note that the ancillary bit remains unentan-
gled.

three different methods to compile the n-controlled-
NOT gate into elementary gates. In this work, we use
the “Gray-code” decomposition, described in Ref. [40].
This method is best for small n when no additional work
qubits are available.

For simplicity, we only consider instances of the
quantum search algorithm where there is a single tar-
get state (i.e., f (x) = 1 for only a single input). The
oracle ÛX is then implemented in an identical fashion
to Û0; the only difference lies in the NOT gates that
conjugate the n-controlled-NOT operator.

The simulation data were generated as follows. The
n-qubit state vector consists of 2n complex compo-
nents, which are initialized to the

∣∣∣0〉
state. The com-

piler breaks down the unitary operations required for
the given instance of the search algorithm into funda-
mental gates. Each unitary elementary gate is applied
to the state vector in sequence. After each gate, the
state is projected on the Dicke-state basis and the state-
averaged enhancement factor γ1 is calculated. We im-
plicitly assume that the evolution times for all single-
qubit and CNOT gates are equal.

Note that this procedure computes γ1 only at discrete
times. However, one can argue that the variation of
γ1 over a gate time is small; solving for γ1 after each
fundamental gate is a reasonable approximation to the
continuous function. To justify this assertion, note that
a general n-qubit state can be expanded in the Dicke-
state basis as Eq. 48. A unitary transformation Û due to
a single-qubit or CNOT gate maps |ψ〉S to

Û |ψ〉S =
∑

j′,m′,α′
b j′,m′,α′

∣∣∣ j′,m′, α′〉 (58)
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where

b j′,m′,α′ =
∑
j,m,α

a j,m,α
〈

j′,m′, α′
∣∣∣ Û | j,m, α〉 . (59)

As a consequence of the Wigner-Eckart theorem, [41]–
[43] the matrix element in Eq. 59 is nonzero only for
restricted values of | j′ − j| and |m′ − m|. For a single
qubit gate, 〈 j′,m′, α′| Û | j,m, α〉 is zero unless both∣∣∣ j′ − j

∣∣∣ ≤ 1,∣∣∣m′ − m
∣∣∣ ≤ 1. (60)

To understand the consequence of this restriction, con-
sider how a single-qubit gate can transform the graph

of probability weights
∑
α

∣∣∣a j,m,α

∣∣∣2 for the |σ〉 state,
shown in Fig. 3 (b). This state has a large value of γ1

due to the significant superradiant components. After
the application of a single-qubit gate, the probability

weights are
∑
α′

∣∣∣b j′,m′,α′
∣∣∣2. By Eq. 60, Û only couples

the a j,m,α probability amplitudes to b j′,m′,α′ coefficients
that are represented by adjacent bars in Fig. 3. Thus,
single-qubit gates only cause small “local” changes in

Fig. 5 Collective enhancement for the original seven-bit
search algorithm with one ancillary qubit; the target state is
|0000000〉 (i.e., ÛX = Î − 2 |0000000〉 〈0000000|). Red dashed
lines indicate the beginning of each of the eight Q̂ oper-
ators. As rapid variations in γ1 cannot be resolved in the
main plot, the expanded section is provided.

the graph of probability weights, and lead to modest
changes in γ1.

Similarly, for CNOT gates, 〈 j′,m′, α′| Û | j,m, α〉 is
zero unless both∣∣∣ j′ − j

∣∣∣ ≤ 2,∣∣∣m′ − m
∣∣∣ ≤ 1. (61)

In Figs. 5 and 6, plots of γ1 versus gate number
are shown for an instance of the original and modi-
fied search algorithms, respectively. The data shown
are for the seven-bit search algorithm with the target
state

∣∣∣0〉
= |0000000〉; i.e., ÛX = Î − 2

∣∣∣0〉 〈
0
∣∣∣. There

are a total of n = 8 qubits, in addition to the seven
“data” qubits, there is one ancillary qubit prepared in
the (|0〉− |1〉)/√2 state to aid in constructing the Û0 and
ÛX operators. For the seven-bit search algorithm, the
rotation angle engendered by Q̂ or Q̂mod is 0.1770 (cf.
Eq. 9). Eight invocations of Q̂ (or Q̂mod) are required
to rotate the initial σ̂ state to the target state. Each Q̂
(or Q̂mod) operation decomposes into 1316 fundamental
gates; the dashed red vertical lines in the figures denote
the beginning of each Q̂ (or Q̂mod) operator.

The large-scale structure of Fig. 5 can be understood
by a simple argument. The Hadamard gates at the very
beginning of the algorithm place the seven data qubits
in the equal superposition state,

|σ〉 ≡ 1√
27

27−1∑
x=0

∣∣∣x〉 , (62)

which has a large superradiant component, and thus
a large value of γ1. Halfway through the first Q̂ =

−ĤÛ0ĤÛX operator (near gate 660, when only ĤÛX

Fig. 6 Collective enhancement for the modified seven-bit
search algorithm with one ancillary qubit; the target state is
again |0000000〉.
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(a)

(b)

Fig. 7 Collective enhancement for the (a) original and
(b) modified seven-bit search algorithm with one ancillary
qubit; the target state is |0001111〉. The average collective
enhancement factor γ1 is 8.00 for the original algorithm and
4.91 for the modified case.

has been applied), the value of γ1 drops significantly.
Note that

ĤÛX |σ〉 = Ĥ
(
Î − 2

∣∣∣0〉 〈
0
∣∣∣) |σ〉

= Ĥ

(
|σ〉 − 2√

27

∣∣∣0〉)

=
∣∣∣0〉
− 2√

27
|σ〉 . (63)

The probability amplitude of the subradiant
∣∣∣0〉

compo-
nent is large, and it is not surprising that γ1 decreases
markedly. Now, consider γ1 immediately after each in-
vocation of Q̂; i.e., to the right of each vertical red line.
Each application of Q̂ rotates the initial |σ〉 state to-
wards the target

∣∣∣0〉
state, and γ1 steadily decreases.

Comparison of Figs. 5 (a) and 5 (b) show that the
collective enhancement parameter γ1 is significantly

smaller for the modified algorithm compared to the ini-
tial algorithm. Let γ1 represent the average of γ1 over
all gates. For the original algorithm, γ1 = 10.28, while
γ1 = 4.74 for the modified case.

As a further typical example, the collective enhance-
ment factor is shown for the original and modified
seven-bit search algorithm with target state

∣∣∣31
〉
=

|0011111〉 in Fig. 7. The modified algorithm improves
the parameter γ1 from 8.00 to 4.91.

These two examples demonstrate the principle; fur-
ther data is presented in Ref. [44]. In all simulations,
the modified algorithm yielded a smaller gate-averaged
collective enhancement factor.

4 Conclusion
We demonstrated that the quantum search algorithm

can be modified to mitigate the impact of collective in-
teraction with a boson reservoir on a qualitative param-
eter characterizing the dissipation rate. The modifica-
tion was predicated on interpreting the quantum search
algorithm as a rotation in a two-dimensional subspace,
and selecting a subspace that diminishes the rate of the
system-environment interaction via the gate decompo-
sition.

Although the parameter used here to quantify dissi-
pation is a simple first-order transition rate, simulations
have been performed using a more rigorous quantum
master equation approach. [44]

While the presented error-avoidance strategy is ap-
plicable to a specific algorithm and noise model, it il-
lustrates the general importance of judicious decompo-
sition of an algorithm into primitive gates. It is an open
question whether it can be leveraged to improve the per-
formance of other algorithms under more general noise
models.
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