NI1 Journal No. 3 (2001.11)

Research paper
A Fast Algorithm for Enumerating Non-Bipartite Maximal Matchings
oo ouououot

Takeaki UNO

National Institute of Informatics
ggooo

gooboooo

ABSTRACT

Foragraph G = (V, E), astable set in G is a vertex set such that no pair of vertices in the set are connected by an edge.
Stable set enumeration problems have been studied because of their applications to optimization, computational geometry,
etc. However, the problem of speeding up enumeration algorithms for stable sets is still open. In this paper, we consider the
problem of enumerating all maximal matchings of agiven non-bipartite graph G = (V, E), which isaspecial case of the stable
set enuemration problem, and propose an algorithm with asimple structure. By applying the stable set enumeration algorithms
to this problem, the computation time is O(|V'|| E|? N'). Our agorithm runsin O(|E| + |V| + AN) time, very fast compared
with those algorithms. Here N denotes the number of maximal matchingsin G, and A denotes the maximum degree of G.

og

000 G=(V,E)000000,0000000000000000000000.00000000000000000
0000,000,0000000000000000000000.000,000000000000000,000000
0000000000000000000,000000000.0000000000000000,0000000000
00000000,00000000000000.000000000000000000000000000000000,
0000 O(V||E|?N)000D0,000000000000000 O(E|+|V|+AN)OOO,0000000000.0
00 NODODOODOOODOOO,AD GOO000D00000D0.

[Keywords]
enumeration, enumeration tree, listing, maximal matching
[Doooo]
oo0,000,00000000,0000000
1 Introduction Enumeration problems of stable sets have also been stud-

For agraph G = (V, E), astable set in G is a vertex ied. Enumeration of stable sets also has applications, such

. . . as optimization problems of triangulation. Since enumer-
set such that no pair of vertices in the set are connected P P g

by an edge. Stable set i a fundamental object in combi- ation of maximum stable sets in a non-hipartite graph is
quite hard, enumeration of maximal stable sets has been
studied. In 1977, S. Tsukiyama, M. Ide, H. Ariyoshi and I.
Shirakawa proposed an algorithm for enumerating maxi-
mal stable sets. Itstime complexity is O(|E||V|N) where

N is the number of output (number of stable sets), and

natorial problems, and optimization problems of stable sets
have numerous applications. Although severa kinds of sta-
ble set optimization problems (for an example, finding a
maximum weight stable set) are quite hard, for that rea
son, many approaches and algorithms, such as branch and

bound, cutting plane, heuristics, etc., have been proposed. Its space complexity is O(|V[+ |). In pracical terms,

89

A Fast Algorithm for Enumerating Non-Bipartite Maximal Matchings

the algorithm is quite slow. One remarkable point of this
field of study is that no improved algorithm has been pro-
posed since 1977 while many linear time or constant time
algorithms have been proposed for enumeration problem of
other combinatorial objects, such as spanning trees, paths,
and bipartite matchings. Here alinear time enumeration al-
gorithm means an algorithm running in linear time of input
size per output, and a constant time enumeration algorithm
means an algorithm running in constant time per output.
Speeding up stable set enumeration algorithm appears to
be a difficult task.

On the other hand, for this reason, severa closely re-
lated problems have been studied. In 1992, T. Kashi-
wabara , S. Masuda, K. Nakgjima and T. Fujisawa stud-
ied the case of bipartite graphs and circular arc graphs,
and proposed algorithms for enumerating maximum stable
sets. The agorithms run in O(|E||V|*/? + N) time and
O(|E||V|*/? + N) time, respectively.? The success of
these algorithmsis built on properties of the subject graphs.

In this paper, we consider another special case of the
enumeration problem of stable sets, the enumeration of
maximal matchings in a non-bipartite graph. Since match-
ings have good properties which are not satisfied by stable
sets, we can obtain a significant improvement, i.e. thetime
complexity is reduced to O(|E| + |V| + AN), where A
denotes the maximum degree of G.

Again, we introduce our problem in detail. Let G =
(V, E) be anon-bipartite undirected graph with vertex set
V and edge set E = {eu, ..., em }. We denote the number
of vertices by n. Let e; have an index i. We assume that
there are neither isolated vertices nor parallel edges. A de-
notes the degree of a vertex of the maximum degreein G.
A matching M of the graph G is an edge set such that no
two edgesin M sharetheir endpoints. For amatching M of
G = (V,E),let E(G, M) denote the edges of E\ M adja-
cent to no edge of M. Notethat E(G, M) = E if M = ().
We call amatching whichis contained in no other matching
amaximal matching. M isamaximal matching of G if and
only if E(G, M) = (. This paper considers the problem of
enumerating all maximal matchingsin G.

A matching in agraph G isequivaent to astable set in
the line graph of G. The line graph of G is (E, E) such
that (e,¢’') € E x Eisincluded in E if and only if e and
e’ are adjacent in G. The problem of enumerating max-
imal matchings is reducible to the problem of enumerat-

90

ing stable sets of the line graph, hence we can enumerate
maximal matchings by using the algorithm of Tsukiyama et
al.¥ Since the line graph of G' has m vertices and O(nm)
edges, their algorithm takes O(nm?N) time and O(nm)
space where N denotes the number of maximal matchings
in G. The computation timeis probably too slow to be prac-
tical. In 1988, D. S. Johnson, M. Yannakakis, and C. H. Pa-
padimitriou® proposed another algorithm for enumerating
maximal stable sets, however their algorithm has the same
time complexity as Tsukiyamaet a’s.

Matchings have some “good” properties that stable sets
do not have, hence many matching problems can be solved
more easily than stable set problems. For example, we
can find a maximum matching of a graph in polynomial
time,*¥ but the maximum stable set problem is known to
belong to the class of NP-hard problems. Therefore, there
naturally seem to exist possibilities of making a fast algo-
rithm for enumerating maximal matchings, if not for stable
sets. In this paper, we use such “good” properties, and im-
prove on the algorithm of Tsukiyama et a. by adapting it
to maximal matchings.

Our improvements also are composed of two areas. The
first isthat we use several techniques to speed up iterations.
Inthisway, we reduce the time complexity from O(nm?>N)
to O(mNN). The second is that we introduce a preprocess-
ing of the input to the algorithm to decrease the number
of iterations and amortized time complexity. By detailed
analysis, we reduce the time complexity to O(AN). Our
improvements also result in optimal memory complexity.

In the following sections, we describe our enumeration
algorithm and its method of analysisin detail. We describe
the framework of our algorithm and the improvements in
the first areain section 2. In section 3, we explain the im-
provements we made in the second area, and analyze the
time complexity in detail so that we can show the reduction

in time complexity.

2 Reverse Search Algorithm for Maximal Match-
ings
In this section, we describe the framework of our algo-
rithm obtained by modifying the algorithm of Tsukiyama et
al. We also show our techniques to reduce the computation
time of an iteration.
For constructing enumeration agorithms, we have

a scheme called reverse search!® The agorithm of

o
o

G:

Gs

IS

E-E-E).

!

O

i

NI1 Journal No. 3 (2001.11)

o
o

i_g\
i

CRC
®- &

Figure 1: Aninstance of enumeration tree.

Tsukiyama et al. can be considered as a type of re-
verse search, and our algorithm is thereby based on reverse
search. Reverse search is a scheme for enumerating all ele-
ments of a set. It utilizes a parent-child relationship among
elements of the set, which has to satisfy the following two
conditions:

(2) any element except one element has its unique parent

(2) no element is a proper ancestor of itself.
The graph expression of thisrelationship, composed of ver-
tices corresponding to its elements and edges connecting
children to their parents, forms a tree under these condi-
tions. The tree is called an enumeration tree. Reverse
search traverses all vertices of thetreein adepth first search
manner, and outputs all elementsin the order in which they
are visited. A feature of reverse search is that its memory
complexity does not depend on the number of output.

Reverse search does not store thewhole enumeration tree
in the memory, but stores only the vertex of the tree that is
currently being traversed. Reverse search findsthe root ver-
tex of the enumeration tree, then finds a child of the root.
The search then moves to the child, and enumerates all de-
scendants of the child, recursively. After visiting all de-
scendants of the child, reverse search returns to the root
vertex, and finds another child of the root vertex. If there
is no other child, reverse search stops. Otherwise, reverse
search enumerates all descendants of the child in the same

91

way. The depth first traversal of the enumeration tree is
thus achieved in this way. Therefore, a reverse search al-
gorithm can be based on simply finding al children of the
vertex currently being traversed. An important part of are-
verse search algorithm is to construct a fast algorithm for
this task.

Let us look at the operation of reverse search for max-
imal matchings arising from the method of Tsukiyama et
a. Let G; = (V, E;) where E; = {e1,...,e;}. A maxi-
mal matching M of a subgraph G; is called an i-maximal
matching, and is denoted by (M, i). Our parent-child rela-
tionship inthe following is defined among all the i-maximal
matchings. The 1-maximal matching, which is the unique
maximal matching of G1, hasno parent in our relationship.
The parent of an i-maxima matching (M,),: # 1, de-
noted by p(M, 7), isdefined by the (i — 1)-maximal match-
ing obtained by the following procedure.

Procedure OBTAIN_PARENT ((M, 1))

(OP1) If e; ¢ M then output (M,7 — 1) ; stop

(OP2) M" := M \ {e;}

(OP3) If E(Gi—1, M') = () then output (M’,i — 1) ;
stop

(OP4) M’ := M U { the edge with the minimum
index among E£(Gi_1, M')}

(OP5) Goto (OP3)

A Fast Algorithm for Enumerating Non-Bipartite Maximal Matchings

From thisalgorithm, p(M,) is defined uniquely, and no
i-maximal matching is its proper ancestor. Hence, we ob-
tain an enumeration tree the vertices of which correspond
to al the -maximal matchings. The leaves of the tree cor-
respond to all the maximal matchingsin G (see Figure 1).

Next we explain how to find all children of an (i — 1)-
maximal matching (M, i — 1). The method is based on the
following lemma. Let E(M,) be the set of edges of M
that are adjacent to e;.

Lemmal (M',:)isachildof (M,i—1) if and onlyif one
of the following conditions hold.

(a) E(M,i) # 0,and M' = M

(b) E(M,3) =0,and M' = M U {e;}

(c) E(M,3) # 0, p(M',3) = (M,i —1),and M’ =
MU {e;} \ E(M,1).

Proof: Wefirst statethe“if” part. In each caseof (a), (b)
and (c), M’ isani-maximal matching. If (a) holds, then e;
is adjacent to an edge of M. Hence, p(M',i) = (M,i —
1). If (b) holds, then e; isincludedin M’. Since M’ \ {e;}
isan (i — 1)-maximal matching, p(M’,i) = (M,i—1). If
(c) holds, then obviously p(M', i) = (M, — 1).

We next state the “only if” part. Supposethat (M’,4) is
achildof (M, —1). If M’ doesnotincludee;, then M =
M’ and E(M,4) # 0. Hence, (a) holds. If M’ includes
e; and M’ \ {e;} isan (i — 1)-maximal matching, then
M = M\{e;},and E(M, i) = (). Hence, (b) holds. If M’
includese; and M’ \ {e; } isnot an (i — 1)-maximal match-
ing, then E(M,7) # 0, and M’ = M U {e;} \ E(M,1i).
Hence, (c) holds.

Therefore, the lemmaholds. |

We illustrate the case of (c¢) of the lemma in Figure
2. From the proof of the lemma, we can see that any i-
maximal matching has a child satisfying (a) if E(M,) #
(), and a child satisfying (b) if E(M,i) = 0. Moreover,
any ¢-maximal matching has at most one child satisfying
(¢). Wecall achild satisfying (a) or (b) atype-1 child, and
a child satisfying (c) type-2 child. From this, we can see
that there are no fewer i-maximal matchings than there are
(7 — 1)-maximal matchings.

A type-1 child (M’,4) of (M, — 1) is obtained from
(M, %) in O(1) time by adding e; if e; is adjacent to no
edge of M. Thereis not always a type 2 child. Hence, we
have to check for the existence of a type-2 child. Check-

92

Figure 2: Generating atype-2 child: bold edges are edges
of M. We obtain a matching M’ by adding (w1, ws) to
M and removing (w1, u1) and (wz, uz). If (wi,u1) hasa
larger index than e; or e, then M’ isatype-2 child of M.
If thereisan edge (u1, u2), then M isnot maximal.

ing for the existence in a simple way takes O(m) time.
Hence, to speed this up, we introduce the following vari-
ables and state several lemmas. For an i-maximal matching
(M, i) and a vertex v, let A(v, M, 1) be the set of edges
(v,u) € E; such that u isincident to no edge of M. If v
isincident to an edge e; of M, we define [(v, M, i) by the
number of edges e; of A(v, M,4) withl < j. Let wy and
wy denote the endpoints of e;. An instance of A(v, M, 1)
and (v, M, 1) isillustrated in Figure 3.

Lemma2 Supposethat |[E(M,i—1)| =1,and E(M,i—
1) = {(u1,w1)} for avertex u;. Then, (M,i — 1) has
a type-2 child if and only if the following conditions (1-a)
and (1-b) hold.

(1-a) A(ui, M,i—1) = 0.

(2-b) l(w1,M,i — 1) = 0, and (u1,w2) has a larger
index than (w1, wy) if (u1,w2) € Ej;.

Proof: Supposethat (M’ 1) isatype-2 child of (M,i —
1). Then M’ = M\ {(u1,w1)}U{e;}, andu; isincident to
no edge of M’. Hence, any vertex adjacent to «; isincident
to an edge of M’. Since w; isincident to (u1,w1), (1-8)
holds. From this, it follows that £(G;, M \ {e;}) iscom-
posed of edgesin A(w1, M,i — 1), and includes (u1, w2)
if (u1,w2) € E;. Hence, (1-b) holds.

Let M' = M \ {(u1,w1)} U {e;}. Suppose that (1-a)
and (1-b) both hold. From (1-a), E(Gi, M \ {(u1,w1)})
is composed of edges in A(w1, M,i — 1) U {(u1,w2)}.
Hence, E(G;,M') =
ing, and p(M’,4) includes exactly one edge ¢’ that is
not included in M’. From (1-b), ¢’ = (u1,w1). Hence,
p(M' i) = (M,i—1).

@, M’ is an i-maximal match-

e2
el

e3

e6
e4

e5

_O—

Figure 3: Aninstance of A(v, M, i) and l(v, M,1i):
The bold edges are edges of M. Inthiscase, A(v, M,i) =
{e2,es}and l(v, M,i) = 1.

Lemma 3 Supposethat |E(M,i—1)| = 2,and E(M,i—
1) = {(u1,w1), (u2,w2)} where (u1,w:) has a smaller
index than (uz,w2). Then, (M, — 1) hasatype-2 child if
and only if the following conditions, (2-a), (2-b), and (2-
c), hold.

(2-a) A(uj, M,i— 1) = 0 for each j, and (u1,u2) ¢
E;_1.

(2-b) l(wi,M,i — 1) =
(w1, u2) hasalarger index than (w1, u1).

(2-¢) I(w2, M,i—1) =0.

0 and any of (w2,u1) and

Proof: Thiscaseisillustrated in Figure 2. Refer the fig-
ure for reading the proof. Suppose that (M’ 1) is atype-2
childof (M,i—1). Then M" = M\{(u1,w1), (u2, ws2)}U
{ei}, and each w; is adjacent to no edge of M’. Hence,
E; does not include (u1,us2). Since each w; is incident
to (uj,w;), A(uz, M,i — 1) = (. Hence, (2-a) holds.
From this, it follows that £(G;, M’ \ {e:}) is composed
of edgesin A(wi, M,i — 1) U A(we, M,i — 1), and in-
cludes (u1,w2) and (uz,wn) if they exist in E;. Hence,
(2-b) holds. From (2-b), E(Gi, M'\ {e; }U{(u1,w1)}) =
A(wz, M, i — 1). Hence, (2-c) holds.

Let M' = M\ {(u1,w1), (uz,w2)} U {e;}. Suppose
that (2-a), (2-b) and (2-c) hold. From (2-a), E(G;, M') =
¢, and M’ is an i-maximal matching. p(M’,3) is ob-
tained by removing e; and adding the minimum index
edges among E(Gi, M’ \ {e;}) repeatedly. Hence, from
(2-b) and (2-c), p(M’,i) = (M, i —1).

93

NI1 Journal No. 3 (2001.11)

By using this, we obtain the following reverse search al-
gorithm. In each iteration of the algorithm, A, and [, are
equal to A(v, M,1) and (v, M,3). Setting A, and [, to
A(v,{e1},1) and i(v,{e1}, 1), respectively, and then ex-
ecuting ENUM_MAXIMAL_MATCHING ({e1}, 1), we can
enumerate all maxima matchings in G. To output maxi-
mal matchings, we use the compact output method!”® in
(EM1), (EM2) and (EM18). We describe the details | ater.

ALGORITHM ENUM_MAXIMAL_MATCHING (M,)
(EM1) O; := edgesin M \ p(M, 1) adjacent to e; and

adjacent to no edge e; with i < j
(EM2) Output edges of O;
(EM3) If 4 = n then output “matching” ;

goto (EM18)
(EM4) If e; 41 isadjacent to an edge of M

then M' := M else M’ := M U {e;+1}
(EM5) Update each A, and I, to A(v, M, + 1)

and (v, M’ i +1)
(EM6) Call ENUM_MAXIMAL_MATCHING (M’,i + 1)
(EM7) Update each A, and [, to A(v, M, ©)

and l(v, M, 1)
(EMS8) If e;+1 isadjacent to no edge of M

then goto (EM18)
(EM9) For each (v,w;) € E(M,i+ 1)

if A,z 0 orl, > 0thengoto(EM18)
(EM10) If |E(M, i+ 1)| = 2 then do
(EM11) If (u1,u2) € E; then goto (EM18)
(EM12) For eache; € {(u1,w2), (u2,w1)}

If j < anyindex of any edgein E(M,i + 1)
then goto (EM18)
(EM13) End If
(EM14) M’ := M U{eip1} \ BE(M,i+1)
(EM15) Update each A, and I, to A(v, M’ i + 1)
and (v, M' i+ 1)
(EM16) Call ENUM_MAXIMAL_MATCHING (M',i + 1)
(EM17) Update each A, and [, to A(v, M, 7)
and l(v, M, 1)

(EM18) Output “delete” and the edges of O;

Here we explain the compact output method usedin (EM1),
(EM2) and (EM18). In (EM1), since edges of O; are adja
cent to no edge e; withi < 7, any edge of O; isincluded in
all j-maximal matchingswith j > 4 which are descendants
of (M, 7). Since edges of O; are adjacent to e;, any edge of

A Fast Algorithm for Enumerating Non-Bipartite Maximal Matchings

O; isnotincludedinany O; with j < . Hence, in the case
i=n,wehave M =" O;. Therefore, instead of out-
putting edges of M, we can output maximal matchings by
outputting edges of O; at the beginning of an iteration, and
cancel it at the end of the iteration. Thisideais called the
compact output method. For the aim, (EM1) outputs edges
of O;, if i = n then (EM3) outputs a message “ matching”
instead of outputting edges of M, and (EM18) cancels the
output edges of O;. To execute (EM1), we have to check at
most two edges of M. Hence, it can be donein O(1) time.
Therefore, the computation time for output is reduced to
O(1) time per iteration.

(EM4) constructs the type-1 child, and (EM6) generates
a recursive call with respect to the type-1 child. (EM8)
through (EM 13) check the existence of atype-2 child. If a
type-2 child exists, then (EM 14) generates the type-2 child,
and (EM16) generates a recursive call with respect to it.
(EM5), (EM7), (EM15) and (EM17) update A, and [,,.
Lemma4 The time complexity of
is O(mN) the
space complexity of it isO(m + n).

ENUM_MAXIMAL_MATCHING and

Proof: The memory complexity is obviously O(m). As
we saw, an iteration takes O(1) except for (EM5), (EM7),
(EM15) and (EM17). We note that E(M,i + 1) can be
obtained in O(1) time by putting a pointer from each vertex
v to the edge of M that is incident to v, and maintaining
these pointers as M changes in each iteration. Next, we
explain the computation time required to update A, and
l,. Without loss of generality, we explain this for the case
of computing A(v, M’,i + 1) and I(v, M’,i + 1) from
A(v, M,4) and I(v, M, i), where (M, 1) is the parent of
(M',i+1).

Let FAF' denote the symmetric difference between
two sets F and F’. For an edge set F, V(F) de
notes the vertices incident to an edge of F. Any
vertex v satisfying A(v, M,i) # A(v,M’';i + 1) or
l(v,M,i) # l(v,M',i + 1) is adjacent to a vertex of
V(MAM'). Since V(MAM') includes at most four ver-
tices, |A(v, M, i) AA(v, M’ i+ 1)] < 4. Hence,

2

v|[(v,u)EE,ueV(MAM')

Z 4d(v)

veV(MAM!')

o(4),

|A(v, M,) AA(w, M’ 4 1)]

IA

94

where d(v) is the degree of v. Therefore, A(v, M’ i +
1) for al vertices v can be obtained from A(v, M, 1)
in O(A) time. For any vertex v ¢ V(MAM'), we
can aso obtain I(v, M’,i + 1) from I(v, M, i) in O(1)
time since no edge of MAM’' is adjacent to v. For a
vertex v € V(MAM'), we can obtain I(v, M',i +
1) in O(d(v)) time. Hence, to obtain (v, M’ i + 1)
for all vertices v, we take O(ZUEV(MAM,) d(v)) time.
From these, (EM5), (EM7), (EM15) and (EM17) take
O(X v (aranr d(v)) = O(A) time. If (EM15) and
(EM17) are executed, then a type-2 child is generated.
Since the number of type-2 children generated over al it-
erationsis N — 1, the total computation time required for
(EM15) and (EM17) isO(AN).

Let C be the set of (M,4) of the enumeration tree
such that (M, 1) is a type-2 child of p(M,). Consider a
graph obtained from the enumeration tree by deleting edges
((M,4),p(M, 1)) for each (M, i) € C. The graph is com-
posed of paths. We call each of these paths type-1 child
paths, and use P to denote the set of all the type-1 child
paths. An isolated vertex is also considered to be a type-1
child path. An example of generation of P isshown in Fig-
ure 4. Since any interna vertex has a type-1 child, one of
theendpointsof any P € P must bealeaf, hence|P| = N.
For a path P in the enumeration tree, let T'(P) be the to-
tal computation time except for (EM15) through (EM17)
required by iterations corresponding to verticesin P.

Supposethat P € P iscomposed of maximal matchings
(M, k), ..., (My,,n). From the above,

DS

i=k veV(M;AM; 1)

= 02 > dw)

vEV (Mp\ My,)
= O(m)

T(P) = d(v))

since any pair of M; and M, satisfies M; C M.
Therefore, the time complexity of this algorithm is
O(mN).

In the next section, we reduce the time complexity with-
out modifying the algorithm. We introduce away of assign-
ing indices to edges to decrease the number of iterations.

81

NI1 Journal No. 3 (2001.11)

fff?i

Hi/TA L

Figure 4: Partitioning the enumeration tree: the left sideis partitioned into type-1 paths, and the right side is partitioned to paths

of P.

3 Reduce the Time Complexity

This section describes a further improvement of our al-
gorithm. In the previous section, we bound the time com-
plexity by O(mN) since any type-1 child path can have a
length up to m. If the mean length of type-1 child paths
is smaller than ©(m), then we can reduce the time com-
plexity. The lengths of type-1 child paths change with the
indices of the edges changes. So, by finding a good or-
dering of edges, we may obtain a smaller time complexity.
Consider an enumeration tree. If any type-1 child path P
includes a number of vertices having type-2 children that is
proportional to the length of P, then the computation time
per type-1 child path can be reduced. Conversely, if severa
type-1 child paths have subpaths composed of matchings
that have no type-2 child, then we may not be able to pro-
duce no ‘good’ analysis. Thus, we introduce an ordering of
edgesin consideration of these conditions.

Let uslook at the following algorithm for generating de-
sired indices of edges. The algorithm takes G as its input,
By of £
which are generated in the computation of the algorithm.

then assigns indices by using a partition By, ...,

Algorithm PUT_INDICES (G = (V, E))
(PI1) b, b" := edges adjacent to each other
(P12) If no such pair existstheni :=1; B, := E;

Ko :=0
(PI3) Else S := {b,b’, and all edges adjacentto b or b’}
(P14 E:=FE\S;i:=PUTlNDICES(G); E:=FEUS
(PI5) b;:=b;b,:=b;B;:=8

(P16) End if

(PI7) K; := K;—1 + | Bi]

(PI8) Assign unique indices ranging from ;1 + 1
to K; to al edges of B;

(PI9) Return ¢

Each K; satisfies K; = E _, |Bj|, hence the edges are
assigned unique indices. The indices satisfy the property
that the index of any edge e € B; is smaller than that of
any edge e’ of B; if i < j. For any i, we have | B;| < 3A
and b; and b} are adjacent to no edge of B;, for any j < i.
Since any edge of G is deleted only once by the algorithm,
thisalgorithm takes O(m +n) time and O(m+n) memory.

Consider a partition of a type-1 child path obtained by
removing edges (M, K; +1),p(M, K; + 1)) for all pos-
sible Ks. Let P bethe set of all subpaths obtained by par-
titioning each type-1 child path. An example of the gen-
eration of P is shown in Figure 4. For apath P € P, let
the head of P be the vertex of P which is an ancestor of
all the other vertices of P. Since B; isamatching, any G;
that has: < K has only one maximal matching. Hence,
only a path P, satisfies the property that the head (M, ¢)
of P satisfies i < K, among al paths in 2. When the
indices assigned by the algorithm are used, P satisfies the
following properties.

Property 1 For any P € P, T(P) = O(A).

Proof: Suppose that P is composed of maxima match-
ings {(Mp,p)7(MP+1’p+ 1)77(MQ7q)} If P = P07

A Fast Algorithm for Enumerating Non-Bipartite Maximal Matchings

then the maximum degree of any G;,p < i < g isone,
hence T'(P) = O(p — g + 1) = O(A). Consider the case
P # P,. Since all edges of B; are adjacent to b; or b},
Mg, \ M, includes at most three edges. Hence, from the
proof of Lemma 4, the condition can be seen to hold. |

Property 2 For any vertex (M, K;),1 < K; < n, at least
two K;41-maximal matchings are descendants of (M, K;).

Proof: Since K; > 1, both b; and b} are defined. Since
b; and b; are incident to no edge of B; for any j < i,
there are two K;1-maximal matchings (M1, Kit1), M U
{bi} € My and (M3, K1), M U {b;} C M. To obtain
the parent of any (M’ j), no edge with an index smaller
than j isdeleted. Hence, for each (M}, K1), theancestor
(M, K;) of (M}, K;11), whichisa K;-maximal matching,
includes all edges of M. Since M isa K;-maximal match-
ing, M = M. g

Property 3 P includes at most 2V paths.

Proof: We describe afunction f : P\ {Po} — C such
that for any ¢ € C, at most two paths P € P\ { P} satisfy
f(P)=c. Notethat |C| = N—1.Forany P € P\{Po},if
the head ¢ of P isan element of C, then we define f(P) =
c. If not, from Property 2, at least one vertex of P has a
type-2 child ¢’. Hence, we define f(P) = ¢. From this, f
is defined on all pathsin P \ { Py}, and at most two paths
P e P\ {Py} saisfy f(P) = cforany ¢ € C. Thus, we
have [P| < 2N.

From these properties, we can bound the time complex-
ity of the algorithm.

Theorem 1 All maximal matchings of a non-bipartite
graph G = (V, E)) can be enumerated in O(|E| + |V| +
AN) timewithin O(|E| + |V'|) memory space where N is
the number of maximal matchingsin G, and A isthe degree
of the maximum degree vertex of G.

Proof: From the above properties, we have

> 1P > o)

PEP PeP
Plo(a)
O(AN).

Hence, thetime complexity of the algorithm isO(A N) and
the space complexity isO(m + n). |

96

4 Conclusion

We have considered the problem of enumerating all max-
imal matchings of agiven non-bipartitegraph G = (V, E).
We have constructed a simple algorithm by improving the
algorithm of Tsukiyama et d., and proved that the time
complexity of the algorithm is bounded by O(AN) by as-
signing indices to the edges in our way. The space com-
plexity of the algorithm is O(| E|), the same as that of the
algorithm of Tsukiyama et a. Here N denotes the num-
ber of maximal matchingsin the graph, and A denotes the
maximum degree of G. The second area where we have
made improvements is not based on modification of the
algorithm, which can be considered interesting from the
viewpoint of algorithm engineering. However, the problem
of decreasing the time complexity of stable set enumeration
is still open. Further research may achieve solid resultsin
thisarea.

Acknowledgement

We gratefully acknowledge Professor Masakazu Kojima
of Tokyo Institute of Technology for giving a variety of
comments. We also owe a specia debt of gratitude Pro-
fessor Akihisa Tamura of Kyoto University.

References

[1] TsukiyamaS. ; Ide M. ; Ariyoshi H. ; Shirakawall.,
“A New Algorithm for Generating All the Maximum
Independent Sets” SAM J. Comp., 6, pp.505-517,
1977.

[2] KashiwabaraT.; MasudaS. ; NakgimaK. ; Fujisawa
T., “Generation of Maximum Independent Sets of a
Bipartite Graph and Maximum Cliques of a Circular-
Arc Graph,” J. Algorithms, 13, pp.161-174, 1992.

[3] JohnsonD. S. ; Yannakakis M. ; Papadimitriou C. H.,
“On Generating All Maximal Independent Sets,” Info.
Processing Lett., 27, pp.119-123, 1988.

[4] Edmonds J., “Paths, Trees and Flowers,” Canadian J.
Math. 17, pp.1-13, 1965.

[5] Hopcroft J. E. ; Karp R. M., “An n®/? Algorithm
for Maximum Matching in Bipartite Graphs,” S AM
J. Comp., 2, pp.225-231, 1973.

[6] AvisD. ; FukudaK., “Reverse Search for Enumera-
tion,” Discrete Appl. Math. 65, pp.21-46, 1996.

[7] Kapoor H. N. ; Ramesh H., “Algorithms for Gen-
erating All Spanning Trees of Undirected, Directed

NI1 Journal No. 3 (2001.11)

and Weighted Graphs,” Lec. Notes Comp. Sci., 519,
Springer-Verlag, pp.461-472, 1992.

[8] ShiouraA.; TamuraA.; Uno T., “An Optimal Algo-
rithm for Scanning All Spanning Trees of Undirected
Graphs, ” SAM J. Comp., 26, No. 3, pp.678-692,
1997.

97

