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ABSTRACT

For a graph G = (V, E), a stable set in G is a vertex set such that no pair of vertices in the set are connected by an edge.

Stable set enumeration problems have been studied because of their applications to optimization, computational geometry,

etc. However, the problem of speeding up enumeration algorithms for stable sets is still open. In this paper, we consider the

problem of enumerating all maximal matchings of a given non-bipartite graph G = (V, E), which is a special case of the stable

set enuemration problem, and propose an algorithm with a simple structure. By applying the stable set enumeration algorithms

to this problem, the computation time is O(|V ||E|2N). Our algorithm runs in O(|E| + |V | + ∆N) time, very fast compared

with those algorithms. Here N denotes the number of maximal matchings in G, and ∆ denotes the maximum degree of G.

要旨

グラフ G = (V, E)の頂点集合で,任意の２頂点間に枝の無いものを安定集合という. 集合の意味で極大な安定集合を列挙す

る問題は,最適化,計算幾何学などの多種の応用から研究されてきた. しかし,それを解くアルゴリズムに対して,計算量を減少

させる意味での高速化ができるかどうかは,まだ分かっていない. 本論文ではこの問題の特殊形である,極大なマッチングを列

挙する問題を考え,高速化が行えることを証明する. 極大安定集合を列挙するアルゴリズムを単純にこの問題に当てはめた場合,

計算量は O(|V ||E|2N)となるが,提案するアルゴリズムの計算量は O(|E| + |V | + ∆N)となり,大幅な改善が行われた. こ

こでN は極大マッチングの数, ∆は Gの頂点の最大次数である.
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1 Introduction

For a graph G = (V, E), a stable set in G is a vertex

set such that no pair of vertices in the set are connected

by an edge. Stable set is a fundamental object in combi-

natorial problems, and optimization problems of stable sets

have numerous applications. Although several kinds of sta-

ble set optimization problems ( for an example, finding a

maximum weight stable set ) are quite hard, for that rea-

son, many approaches and algorithms, such as branch and

bound, cutting plane, heuristics, etc., have been proposed.

Enumeration problems of stable sets have also been stud-

ied. Enumeration of stable sets also has applications, such

as optimization problems of triangulation. Since enumer-

ation of maximum stable sets in a non-bipartite graph is

quite hard, enumeration of maximal stable sets has been

studied. In 1977, S. Tsukiyama, M. Ide, H. Ariyoshi and I.

Shirakawa[1] proposed an algorithm for enumerating maxi-

mal stable sets. Its time complexity is O(|E||V |N) where

N is the number of output (number of stable sets), and

its space complexity is O(|V | + |E|). In practical terms,
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the algorithm is quite slow. One remarkable point of this

field of study is that no improved algorithm has been pro-

posed since 1977 while many linear time or constant time

algorithms have been proposed for enumeration problem of

other combinatorial objects, such as spanning trees, paths,

and bipartite matchings. Here a linear time enumeration al-

gorithm means an algorithm running in linear time of input

size per output, and a constant time enumeration algorithm

means an algorithm running in constant time per output.

Speeding up stable set enumeration algorithm appears to

be a difficult task.

On the other hand, for this reason, several closely re-

lated problems have been studied. In 1992, T. Kashi-

wabara , S. Masuda, K. Nakajima and T. Fujisawa stud-

ied the case of bipartite graphs and circular arc graphs,

and proposed algorithms for enumerating maximum stable

sets. The algorithms run in O(|E||V |1/2 + N) time and

O(|E||V |3/2 + N) time, respectively.[2] The success of

these algorithms is built on properties of the subject graphs.

In this paper, we consider another special case of the

enumeration problem of stable sets, the enumeration of

maximal matchings in a non-bipartite graph. Since match-

ings have good properties which are not satisfied by stable

sets, we can obtain a significant improvement, i.e. the time

complexity is reduced to O(|E| + |V | + ∆N), where ∆

denotes the maximum degree of G.

Again, we introduce our problem in detail. Let G =

(V, E) be a non-bipartite undirected graph with vertex set

V and edge set E = {e1, ..., em}. We denote the number

of vertices by n. Let ei have an index i. We assume that

there are neither isolated vertices nor parallel edges. ∆ de-

notes the degree of a vertex of the maximum degree in G.

A matching M of the graph G is an edge set such that no

two edges in M share their endpoints. For a matching M of

G = (V, E), let Ê(G, M) denote the edges of E \M adja-

cent to no edge of M. Note that Ê(G, M) = E if M = ∅.
We call a matching which is contained in no other matching

a maximal matching. M is a maximal matching of G if and

only if Ê(G, M) = ∅. This paper considers the problem of

enumerating all maximal matchings in G.

A matching in a graph G is equivalent to a stable set in

the line graph of G. The line graph of G is (E, Ẽ) such

that (e, e′) ∈ E × E is included in Ẽ if and only if e and

e′ are adjacent in G. The problem of enumerating max-

imal matchings is reducible to the problem of enumerat-

ing stable sets of the line graph, hence we can enumerate

maximal matchings by using the algorithm of Tsukiyama et

al.[1] Since the line graph of G has m vertices and O(nm)

edges, their algorithm takes O(nm2N) time and O(nm)

space where N denotes the number of maximal matchings

in G. The computation time is probably too slow to be prac-

tical. In 1988, D. S. Johnson, M. Yannakakis, and C. H. Pa-

padimitriou[3] proposed another algorithm for enumerating

maximal stable sets, however their algorithm has the same

time complexity as Tsukiyama et al’s.

Matchings have some “good” properties that stable sets

do not have, hence many matching problems can be solved

more easily than stable set problems. For example, we

can find a maximum matching of a graph in polynomial

time,[4,5] but the maximum stable set problem is known to

belong to the class of NP-hard problems. Therefore, there

naturally seem to exist possibilities of making a fast algo-

rithm for enumerating maximal matchings, if not for stable

sets. In this paper, we use such “good” properties, and im-

prove on the algorithm of Tsukiyama et al. by adapting it

to maximal matchings.

Our improvements also are composed of two areas. The

first is that we use several techniques to speed up iterations.

In this way, we reduce the time complexity from O(nm2N)

to O(mN). The second is that we introduce a preprocess-

ing of the input to the algorithm to decrease the number

of iterations and amortized time complexity. By detailed

analysis, we reduce the time complexity to O(∆N). Our

improvements also result in optimal memory complexity.

In the following sections, we describe our enumeration

algorithm and its method of analysis in detail. We describe

the framework of our algorithm and the improvements in

the first area in section 2. In section 3, we explain the im-

provements we made in the second area, and analyze the

time complexity in detail so that we can show the reduction

in time complexity.

2 Reverse Search Algorithm for Maximal Match-

ings

In this section, we describe the framework of our algo-

rithm obtained by modifying the algorithm of Tsukiyama et

al. We also show our techniques to reduce the computation

time of an iteration.

For constructing enumeration algorithms, we have

a scheme called reverse search.[6] The algorithm of
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Figure 1: An instance of enumeration tree.

Tsukiyama et al. can be considered as a type of re-

verse search, and our algorithm is thereby based on reverse

search. Reverse search is a scheme for enumerating all ele-

ments of a set. It utilizes a parent-child relationship among

elements of the set, which has to satisfy the following two

conditions:

(1) any element except one element has its unique parent

(2) no element is a proper ancestor of itself.

The graph expression of this relationship, composed of ver-

tices corresponding to its elements and edges connecting

children to their parents, forms a tree under these condi-

tions. The tree is called an enumeration tree. Reverse

search traverses all vertices of the tree in a depth first search

manner, and outputs all elements in the order in which they

are visited. A feature of reverse search is that its memory

complexity does not depend on the number of output.

Reverse search does not store the whole enumeration tree

in the memory, but stores only the vertex of the tree that is

currently being traversed. Reverse search finds the root ver-

tex of the enumeration tree, then finds a child of the root.

The search then moves to the child, and enumerates all de-

scendants of the child, recursively. After visiting all de-

scendants of the child, reverse search returns to the root

vertex, and finds another child of the root vertex. If there

is no other child, reverse search stops. Otherwise, reverse

search enumerates all descendants of the child in the same

way. The depth first traversal of the enumeration tree is

thus achieved in this way. Therefore, a reverse search al-

gorithm can be based on simply finding all children of the

vertex currently being traversed. An important part of a re-

verse search algorithm is to construct a fast algorithm for

this task.

Let us look at the operation of reverse search for max-

imal matchings arising from the method of Tsukiyama et

al. Let Gi = (V, Ei) where Ei = {e1, ..., ei}. A maxi-

mal matching M of a subgraph Gi is called an i-maximal

matching, and is denoted by (M, i). Our parent-child rela-

tionship in the following is defined among all the i-maximal

matchings. The 1-maximal matching, which is the unique

maximal matching of G1, has no parent in our relationship.

The parent of an i-maximal matching (M, i), i ≠ 1, de-

noted by p(M, i), is defined by the (i−1)-maximal match-

ing obtained by the following procedure.

Procedure OBTAIN PARENT ((M, i))

(OP1) If ei /∈ M then output (M, i − 1) ; stop

(OP2) M ′ := M \ {ei}
(OP3) If Ê(Gi−1, M

′) = ∅ then output (M ′, i − 1) ;

stop

(OP4) M ′ := M ∪ { the edge with the minimum

index among Ê(Gi−1, M
′)}

(OP5) Go to (OP3)
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From this algorithm, p(M, i) is defined uniquely, and no

i-maximal matching is its proper ancestor. Hence, we ob-

tain an enumeration tree the vertices of which correspond

to all the i-maximal matchings. The leaves of the tree cor-

respond to all the maximal matchings in G (see Figure 1).

Next we explain how to find all children of an (i − 1)-

maximal matching (M, i − 1). The method is based on the

following lemma. Let E(M, i) be the set of edges of M

that are adjacent to ei.

Lemma 1 (M ′, i) is a child of (M, i−1) if and only if one

of the following conditions hold.

(a) E(M, i)≠∅, and M ′ = M

(b) E(M, i) = ∅, and M ′ = M ∪ {ei}
(c) E(M, i) ≠∅, p(M ′, i) = (M, i − 1), and M ′ =

M ∪ {ei} \ E(M, i).

Proof: We first state the “if” part. In each case of (a), (b)

and (c), M ′ is an i-maximal matching. If (a) holds, then ei

is adjacent to an edge of M ′. Hence, p(M ′, i) = (M, i −
1). If (b) holds, then ei is included in M ′. Since M ′ \ {ei}
is an (i− 1)-maximal matching, p(M ′, i) = (M, i− 1). If

(c) holds, then obviously p(M ′, i) = (M, i − 1).

We next state the “only if” part. Suppose that (M ′, i) is

a child of (M, i− 1). If M ′ does not include ei, then M =

M ′ and E(M, i) ≠∅. Hence, (a) holds. If M ′ includes

ei and M ′ \ {ei} is an (i − 1)-maximal matching, then

M = M \{ei}, and E(M, i) = ∅. Hence, (b) holds. If M ′

includes ei and M ′ \{ei} is not an (i−1)-maximal match-

ing, then E(M, i) ≠∅, and M ′ = M ∪ {ei} \ E(M, i).

Hence, (c) holds.

Therefore, the lemma holds.

We illustrate the case of (c) of the lemma in Figure

2. From the proof of the lemma, we can see that any i-

maximal matching has a child satisfying (a) if E(M, i)≠

∅, and a child satisfying (b) if E(M, i) = ∅. Moreover,

any i-maximal matching has at most one child satisfying

(c). We call a child satisfying (a) or (b) a type-1 child, and

a child satisfying (c) type-2 child. From this, we can see

that there are no fewer i-maximal matchings than there are

(i − 1)-maximal matchings.

A type-1 child (M ′, i) of (M, i − 1) is obtained from

(M, i) in O(1) time by adding ei if ei is adjacent to no

edge of M. There is not always a type 2 child. Hence, we

have to check for the existence of a type-2 child. Check-

w1 w2

u1 u2

Figure 2: Generating a type-2 child: bold edges are edges

of M. We obtain a matching M ′ by adding (w1, w2) to

M and removing (w1, u1) and (w2, u2). If (w1, u1) has a

larger index than e1 or e2, then M ′ is a type-2 child of M.

If there is an edge (u1, u2), then M is not maximal.

ing for the existence in a simple way takes O(m) time.

Hence, to speed this up, we introduce the following vari-

ables and state several lemmas. For an i-maximal matching

(M, i) and a vertex v, let A(v, M, i) be the set of edges

(v, u) ∈ Ei such that u is incident to no edge of M. If v

is incident to an edge ej of M, we define l(v, M, i) by the

number of edges el of A(v, M, i) with l < j. Let w1 and

w2 denote the endpoints of ei. An instance of A(v,M, i)

and l(v, M, i) is illustrated in Figure 3.

Lemma 2 Suppose that |E(M, i−1)| = 1, and E(M, i−
1) = {(u1, w1)} for a vertex u1. Then, (M, i − 1) has

a type-2 child if and only if the following conditions (1-a)

and (1-b) hold.

(1-a) A(u1, M, i − 1) = ∅.
(1-b) l(w1, M, i − 1) = 0, and (u1, w2) has a larger

index than (u1, w1) if (u1, w2) ∈ Ei.

Proof: Suppose that (M ′, i) is a type-2 child of (M, i −
1). Then M ′ = M\{(u1, w1)}∪{ei}, and u1 is incident to

no edge of M ′. Hence, any vertex adjacent to u1 is incident

to an edge of M ′. Since w1 is incident to (u1, w1), (1-a)

holds. From this, it follows that Ê(Gi, M
′ \ {ei}) is com-

posed of edges in A(w1, M, i − 1), and includes (u1, w2)

if (u1, w2) ∈ Ei. Hence, (1-b) holds.

Let M ′ = M \ {(u1, w1)} ∪ {ei}. Suppose that (1-a)

and (1-b) both hold. From (1-a), Ê(Gi, M \ {(u1, w1)})
is composed of edges in A(w1, M, i − 1) ∪ {(u1, w2)}.
Hence, Ê(Gi, M

′) = ∅, M ′ is an i-maximal match-

ing, and p(M ′, i) includes exactly one edge e′ that is

not included in M ′. From (1-b), e′ = (u1, w1). Hence,

p(M ′, i) = (M, i − 1).
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Figure 3: An instance of A(v,M, i) and l(v, M, i):

The bold edges are edges of M. In this case, A(v,M, i) =

{e2, e5} and l(v, M, i) = 1.

Lemma 3 Suppose that |E(M, i−1)| = 2, and E(M, i−
1) = {(u1, w1), (u2, w2)} where (u1, w1) has a smaller

index than (u2, w2). Then, (M, i − 1) has a type-2 child if

and only if the following conditions, (2-a), (2-b), and (2-

c), hold.

(2-a) A(uj , M, i − 1) = ∅ for each j, and (u1, u2) /∈
Ei−1.

(2-b) l(w1, M, i − 1) = 0 and any of (w2, u1) and

(w1, u2) has a larger index than (w1, u1).

(2-c) l(w2, M, i − 1) = 0.

Proof: This case is illustrated in Figure 2. Refer the fig-

ure for reading the proof. Suppose that (M ′, i) is a type-2

child of (M, i−1). Then M ′ = M\{(u1, w1), (u2, w2)}∪
{ei}, and each uj is adjacent to no edge of M ′. Hence,

Ei does not include (u1, u2). Since each wj is incident

to (uj , wj), A(uj , M, i − 1) = ∅. Hence, (2-a) holds.

From this, it follows that Ê(Gi, M
′ \ {ei}) is composed

of edges in A(w1, M, i − 1) ∪ A(w2, M, i − 1), and in-

cludes (u1, w2) and (u2, w1) if they exist in Ei. Hence,

(2-b) holds. From (2-b), Ê(Gi, M
′\{ei}∪{(u1, w1)}) =

A(w2, M, i − 1). Hence, (2-c) holds.

Let M ′ = M \ {(u1, w1), (u2, w2)} ∪ {ei}. Suppose

that (2-a), (2-b) and (2-c) hold. From (2-a), Ê(Gi, M
′) =

∅, and M ′ is an i-maximal matching. p(M ′, i) is ob-

tained by removing ei and adding the minimum index

edges among Ê(Gi, M
′ \ {ei}) repeatedly. Hence, from

(2-b) and (2-c), p(M ′, i) = (M, i − 1).

By using this, we obtain the following reverse search al-

gorithm. In each iteration of the algorithm, Av and lv are

equal to A(v,M, i) and l(v, M, i). Setting Av and lv to

A(v, {e1}, 1) and l(v, {e1}, 1), respectively, and then ex-

ecuting ENUM MAXIMAL MATCHING ({e1}, 1), we can

enumerate all maximal matchings in G. To output maxi-

mal matchings, we use the compact output method[7,8] in

(EM1), (EM2) and (EM18). We describe the details later.

ALGORITHM ENUM MAXIMAL MATCHING (M, i)

(EM1) Oi := edges in M \ p(M, i) adjacent to ei and

adjacent to no edge ej with i < j

(EM2) Output edges of Oi

(EM3) If i = n then output “matching” ;

go to (EM18)

(EM4) If ei+1 is adjacent to an edge of M

then M ′ := M else M ′ := M ∪ {ei+1}
(EM5) Update each Av and lv to A(v, M ′, i + 1)

and l(v, M ′, i + 1)

(EM6) Call ENUM MAXIMAL MATCHING (M ′, i + 1)

(EM7) Update each Av and lv to A(v, M, i)

and l(v, M, i)

(EM8) If ei+1 is adjacent to no edge of M

then go to (EM18)

(EM9) For each (v,wj) ∈ E(M, i + 1)

if Av≠∅ or lv > 0 then go to (EM18)

(EM10) If |E(M, i + 1)| = 2 then do

(EM11) If (u1, u2) ∈ Ei then go to (EM18)

(EM12) For each ej ∈ {(u1, w2), (u2, w1)}
If j < any index of any edge in E(M, i + 1)

then go to (EM18)

(EM13) End If

(EM14) M ′ := M ∪ {ei+1} \ E(M, i + 1)

(EM15) Update each Av and lv to A(v, M ′, i + 1)

and l(v, M ′, i + 1)

(EM16) Call ENUM MAXIMAL MATCHING (M ′, i + 1)

(EM17) Update each Av and lv to A(v, M, i)

and l(v, M, i)

(EM18) Output “delete” and the edges of Oi

Here we explain the compact output method used in (EM1),

(EM2) and (EM18). In (EM1), since edges of Oi are adja-

cent to no edge ej with i < j, any edge of Oi is included in

all j-maximal matchings with j > i which are descendants

of (M, i). Since edges of Oi are adjacent to ei, any edge of
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Oi is not included in any Oj with j < i. Hence, in the case

i = n, we have M =
∑n

i=1
Oi. Therefore, instead of out-

putting edges of M, we can output maximal matchings by

outputting edges of Oi at the beginning of an iteration, and

cancel it at the end of the iteration. This idea is called the

compact output method. For the aim, (EM1) outputs edges

of Oi, if i = n then (EM3) outputs a message “matching”

instead of outputting edges of M, and (EM18) cancels the

output edges of Oi. To execute (EM1), we have to check at

most two edges of M. Hence, it can be done in O(1) time.

Therefore, the computation time for output is reduced to

O(1) time per iteration.

(EM4) constructs the type-1 child, and (EM6) generates

a recursive call with respect to the type-1 child. (EM8)

through (EM13) check the existence of a type-2 child. If a

type-2 child exists, then (EM14) generates the type-2 child,

and (EM16) generates a recursive call with respect to it.

(EM5), (EM7), (EM15) and (EM17) update Av and lv.

Lemma 4 The time complexity of

ENUM MAXIMAL MATCHING is O(mN) and the

space complexity of it is O(m + n).

Proof: The memory complexity is obviously O(m). As

we saw, an iteration takes O(1) except for (EM5), (EM7),

(EM15) and (EM17). We note that E(M, i + 1) can be

obtained in O(1) time by putting a pointer from each vertex

v to the edge of M that is incident to v, and maintaining

these pointers as M changes in each iteration. Next, we

explain the computation time required to update Av and

lv. Without loss of generality, we explain this for the case

of computing A(v, M ′, i + 1) and l(v, M ′, i + 1) from

A(v, M, i) and l(v, M, i), where (M, i) is the parent of

(M ′, i + 1).

Let F
F ′ denote the symmetric difference between

two sets F and F ′. For an edge set F, V (F ) de-

notes the vertices incident to an edge of F. Any

vertex v satisfying A(v, M, i) ≠ A(v, M ′, i + 1) or

l(v, M, i) ≠ l(v, M ′, i + 1) is adjacent to a vertex of

V (M
M ′). Since V (M
M ′) includes at most four ver-

tices, |A(v, M, i)
A(v, M ′, i + 1)| ≤ 4. Hence,

∑

v|(v,u)∈E,u∈V (M�M′)

|A(v, M, i)
A(v, M ′, i + 1)|

≤
∑

v∈V (M�M′)

4d(v)

= O(∆),

where d(v) is the degree of v. Therefore, A(v,M ′, i +

1) for all vertices v can be obtained from A(v,M, i)

in O(∆) time. For any vertex v /∈ V (M
M ′), we

can also obtain l(v, M ′, i + 1) from l(v, M, i) in O(1)

time since no edge of M
M ′ is adjacent to v. For a

vertex v ∈ V (M
M ′), we can obtain l(v, M ′, i +

1) in O(d(v)) time. Hence, to obtain l(v, M ′, i + 1)

for all vertices v, we take O(
∑

v∈V (M�M′) d(v)) time.

From these, (EM5), (EM7), (EM15) and (EM17) take

O(
∑

v∈V (M�M′) d(v)) = O(∆) time. If (EM15) and

(EM17) are executed, then a type-2 child is generated.

Since the number of type-2 children generated over all it-

erations is N − 1, the total computation time required for

(EM15) and (EM17) is O(∆N).

Let C be the set of (M, i) of the enumeration tree

such that (M, i) is a type-2 child of p(M, i). Consider a

graph obtained from the enumeration tree by deleting edges

((M, i), p(M, i)) for each (M, i) ∈ C. The graph is com-

posed of paths. We call each of these paths type-1 child

paths, and use P to denote the set of all the type-1 child

paths. An isolated vertex is also considered to be a type-1

child path. An example of generation of P is shown in Fig-

ure 4. Since any internal vertex has a type-1 child, one of

the endpoints of any P ∈ P must be a leaf, hence |P| = N.

For a path P in the enumeration tree, let T (P ) be the to-

tal computation time except for (EM15) through (EM17)

required by iterations corresponding to vertices in P.

Suppose that P ∈ P is composed of maximal matchings

(Mk, k), ..., (Mn, n). From the above,

T (P ) = O(

n−1∑

i=k

∑

v∈V (Mi�Mi+1)

d(v))

= O(2
∑

v∈V (Mn\Mk)

d(v))

= O(m)

since any pair of Mi and Mi+1 satisfies Mi ⊆ Mi+1.

Therefore, the time complexity of this algorithm is

O(mN).

In the next section, we reduce the time complexity with-

out modifying the algorithm. We introduce a way of assign-

ing indices to edges to decrease the number of iterations.
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Figure 4: Partitioning the enumeration tree: the left side is partitioned into type-1 paths, and the right side is partitioned to paths

of P̂ .

3 Reduce the Time Complexity

This section describes a further improvement of our al-

gorithm. In the previous section, we bound the time com-

plexity by O(mN) since any type-1 child path can have a

length up to m. If the mean length of type-1 child paths

is smaller than Θ(m), then we can reduce the time com-

plexity. The lengths of type-1 child paths change with the

indices of the edges changes. So, by finding a good or-

dering of edges, we may obtain a smaller time complexity.

Consider an enumeration tree. If any type-1 child path P

includes a number of vertices having type-2 children that is

proportional to the length of P, then the computation time

per type-1 child path can be reduced. Conversely, if several

type-1 child paths have subpaths composed of matchings

that have no type-2 child, then we may not be able to pro-

duce no ‘good’ analysis. Thus, we introduce an ordering of

edges in consideration of these conditions.

Let us look at the following algorithm for generating de-

sired indices of edges. The algorithm takes G as its input,

then assigns indices by using a partition B1, ..., Bk of E

which are generated in the computation of the algorithm.

Algorithm PUT INDICES (G = (V, E))

(PI1) b, b′ := edges adjacent to each other

(PI2) If no such pair exists then i := 1 ; B1 := E ;

K0 := 0

(PI3) Else S := {b, b′, and all edges adjacent to b or b′}
(PI4) E := E \ S ; i := PUT INDICES (G) ; E := E ∪ S

(PI5) bi := b ; b′i := b′ ; Bi := S

(PI6) End if

(PI7) Ki := Ki−1 + |Bi|
(PI8) Assign unique indices ranging from Ki−1 + 1

to Ki to all edges of Bi

(PI9) Return i

Each Ki satisfies Ki =
∑i−1

j=1
|Bj |, hence the edges are

assigned unique indices. The indices satisfy the property

that the index of any edge e ∈ Bi is smaller than that of

any edge e′ of Bj if i < j. For any i, we have |Bi| < 3∆

and bi and b′i are adjacent to no edge of Bj , for any j < i.

Since any edge of G is deleted only once by the algorithm,

this algorithm takes O(m+n) time and O(m+n) memory.

Consider a partition of a type-1 child path obtained by

removing edges ((M, Kj + 1), p(M,Kj + 1)) for all pos-

sible K′
js. Let P̂ be the set of all subpaths obtained by par-

titioning each type-1 child path. An example of the gen-

eration of P̂ is shown in Figure 4. For a path P ∈ P̂ , let

the head of P be the vertex of P which is an ancestor of

all the other vertices of P. Since B1 is a matching, any Gi

that has i ≤ K1 has only one maximal matching. Hence,

only a path P0 satisfies the property that the head (M, i)

of P0 satisfies i < K2 among all paths in P̂ . When the

indices assigned by the algorithm are used, P̂ satisfies the

following properties.

Property 1 For any P ∈ P̂ , T (P ) = O(∆).

Proof: Suppose that P is composed of maximal match-

ings {(Mp, p), (Mp+1, p + 1), ..., (Mq, q)}. If P = P0,
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then the maximum degree of any Gi, p ≤ i ≤ q is one,

hence T (P ) = O(p − q + 1) = O(∆). Consider the case

P ≠ P0. Since all edges of Bi are adjacent to bi or b′i,

Mq \ Mp includes at most three edges. Hence, from the

proof of Lemma 4, the condition can be seen to hold.

Property 2 For any vertex (M, Ki), 1 < Ki < n, at least

two Ki+1-maximal matchings are descendants of (M, Ki).

Proof: Since Ki > 1, both bi and b′i are defined. Since

bi and b′i are incident to no edge of Bj for any j < i,

there are two Ki+1-maximal matchings (M ′
1, Ki+1), M ∪

{bi} ⊆ M ′
1 and (M ′

2, Ki+1), M ∪ {b′i} ⊆ M ′
2. To obtain

the parent of any (M ′, j), no edge with an index smaller

than j is deleted. Hence, for each (M ′
j , Ki+1), the ancestor

(M̂, Ki) of (M ′
j , Ki+1), which is a Ki-maximal matching,

includes all edges of M. Since M is a Ki-maximal match-

ing, M = M̂.

Property 3 P̂ includes at most 2N paths.

Proof: We describe a function f : P̂ \ {P0} → C such

that for any c ∈ C, at most two paths P ∈ P̂ \ {P0} satisfy

f(P ) = c. Note that |C| = N−1. For any P ∈ P̂\{P0}, if

the head c of P is an element of C, then we define f(P ) =

c. If not, from Property 2, at least one vertex of P has a

type-2 child c′. Hence, we define f(P ) = c′. From this, f

is defined on all paths in P̂ \ {P0}, and at most two paths

P ∈ P̂ \ {P0} satisfy f(P ) = c for any c ∈ C. Thus, we

have |P̂| ≤ 2N.

From these properties, we can bound the time complex-

ity of the algorithm.

Theorem 1 All maximal matchings of a non-bipartite

graph G = (V, E) can be enumerated in O(|E| + |V | +

∆N) time within O(|E| + |V |) memory space where N is

the number of maximal matchings in G, and ∆ is the degree

of the maximum degree vertex of G.

Proof: From the above properties, we have

∑

P∈P
T (P ) =

∑

P∈P̂

O(∆)

= |P̂|O(∆)

= O(∆N).

Hence, the time complexity of the algorithm is O(∆N) and

the space complexity is O(m + n).

4 Conclusion

We have considered the problem of enumerating all max-

imal matchings of a given non-bipartite graph G = (V, E).

We have constructed a simple algorithm by improving the

algorithm of Tsukiyama et al., and proved that the time

complexity of the algorithm is bounded by O(∆N) by as-

signing indices to the edges in our way. The space com-

plexity of the algorithm is O(|E|), the same as that of the

algorithm of Tsukiyama et al. Here N denotes the num-

ber of maximal matchings in the graph, and ∆ denotes the

maximum degree of G. The second area where we have

made improvements is not based on modification of the

algorithm, which can be considered interesting from the

viewpoint of algorithm engineering. However, the problem

of decreasing the time complexity of stable set enumeration

is still open. Further research may achieve solid results in

this area.
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