

NII Journal No. 3 (2001.11)

45

Special issue：Information Platform

Research paper

Multimedia Device Information Engine for Symbiotic Applications

共生アプリケーションのためのマルチメディア・デバイス情報エンジン

Frédéric, ANDRES

National Institute of Informatics

フレデリック アンドレス

国立情報学研究所

Kinji, ONO

National Institute of Informatics

小野 欽司

国立情報学研究所

Hideaki, TAKEDA

National Institute of Informatics

武田 英明

国立情報学研究所

ABSTRACT

Multimedia device networks are being widely deployed for emerging applications mediating the symbiosis between hu-

man and informatics data. In these new applications, exploration and interaction are not only done by end-users alone, but it

also actively implicate computerized environment often called Symbiotic Systems. Symbiotic Systems generally consist of

large numbers devices (robots, surveillance devices, sensors…), each of which has diverse characteristics and interacts

selectively in dynamic manner. It is generally high-speed computerized network sustaining these environments. Both long-

running queries and short-running queries coexist. Symbiotic Applications rely on distributed system for collecting and ex-

changing device data. However, these systems are still emerging and they have a lack of customizability for data collection

and management. They also don’t scale to a large number of devices because large volumes of raw data are transferred with-

out query-type optimization. In our approach of Multimedia Device Information Engine, queries decide which data should

be extracted from the devices. In this paper, we define a model for Multimedia Device Information Engine. We also describe

the design and the implementation of the BT Engine prototype.

要旨

マルチメディア･デバイス･ネットワークは人間と情報システムの共生を仲介する新しいアプリケーションにお

いて広く使われるものである．これらの新しいアプリケーションにおいては，情報探索や情報との相互作用はエ

ンドユーザ単独で行なわれるのではなく，シンビオティックシステムと呼ばれるコンピュータ化された環境を含

めて行なわれるものである．シンビオティックシステムはロボットや監視装置，センサなど多数のデバイスから

なり，そのそれぞれが独自の特徴をもち動的に相互作用を行なう．このような環境には高速のコンピュータネッ

トワークが使われる．このネットワークにおいては長期にわたるクエリと短期で終わるクエリの両方がある．シ

ンビオティックシステムにおけるアプリケーションは分散システム，すなわち各種のデバイスのデータを収集し

たり交換するシステムの上に実現される．しかし，このようなシステムはまだ新しいものであり，データ収集や

マネージメントに対する柔軟な取り扱いが解決しなければならない課題である．本研究のマルチメディア･デバ

Multimedia Device Information Engine for Symbiotic Applications

46

イス情報エンジンのアプローチでは，クエリ自身がデバイスからどのデータを取り出せばよいのかを決定するこ

とができる．本論文ではこのマルチメディア・デバイス情報エンジンのモデルを定義する．またこのシステムの

設計と実装についても言及する．

[Keywords]

Device Information Engine, Multimedia, Fault Tolerance, PHASME, Open Platform

[キーワード]

装置情報エンジン，マルチメディア，フォールトレランス，PHASME，オープンプラットフォーム

1 Introduction

The widespread deployment of mobile devices is trans-

forming Internet into InterSpace[1] area, “Symbiotic zones”,

or cyberspace[2]. Symbiotic Devices such as robots,

surveillance devices, sensors…do not only produce

multimedia data (text, images, sound, video, …) but they

also embed computing and communication capabilities.

Furthermore, devices are able to store, to process locally

and to transfer multimedia data they produce.

Symbiotic Applications monitor Interspace area by query-

ing and analyzing multimedia data produced by devices.

Examples of Symbiotic applications include remote robot

supervision, information collecting in remote area. Typically,

these applications involve information related to the device

network and device multimedia data. Such information and

data are stored in what we call Multimedia Device Informa-

tion Engine.

This paper focuses on device query processing – the de-

sign, algorithms, and implementations used to run querying

over multimedia device information engine as part of sym-

biotic systems. Any query issued by a device is called in

the following of the paper, device query. The concepts

developed in this paper have been developed under the

COE Symbiotic project[3]. We define a device query as a

query expressed over a device information engine.

As in relational databases, queries are easiest to express

at the logical level. Queries are formulated regardless of

the physical structure or the organization of the device

network. The actual structure and population of the device

network (e.g. number of connected robots or symbiotic

devices) may vary over the lifespan of any query.

Clearly, there are similarities with relational database

query processing. Most symbiotic applications combine

device data with stored data. Device data refer to data cre-

ated by the device itself. Stored data come from outside of

the device. However, the features of device queries de-

scribed here do not lend themselves to easy mapping to

relational databases and device data is different from tradi-

tional relational data (since it is not stored in a database

server and device data varies over the time).

There are two approaches for processing device queries:

the warehousing approach and the distributed approach.

The warehousing approach represents the current state-of-

the art. In this approach, processing of device queries and

access to the device network are separated. The device

network is simply used as a data collection mechanism.

The warehousing approach proceeds in two steps. First,

data is extracted from the device network in a predefined

way and is stored in information engine located on a

unique front-end server. Subsequently, query processing

takes place on the centralized information engine. The

warehousing approach is well suited for answering prede-

fined queries over historical data.

In the distributed approach, the query workload deter-

mines the device data that should be exchanged between

the devices. The distributed approach is thus flexible –

different queries can extract different multimedia data from

the device network. In addition, the distributed approach

allows the device information engine to leverage the com-

puting resources on the device nodes: a device query can

be evaluated at the front-end server, or in the device net-

work, or at each device, or at some combination of the

three.

In this paper, we describe a device information engine in

a distributed environment and the present the choices we

have made in the current implementation of our Device

Information Engine called the BT engine. This paper

makes the following contributions:

NII Journal No. 3 (2001.11)

47

1. We propose a data model and long-running query se-

mantics for any device information engine. As we pre-

viously mentioned, a device information engine mixes

stored data and device data. Each long-running query

defines a persistent view, which is maintained during a

given time interval.

2. We describe the design of our BT Device Information

Engine. The BT Engine extends the PHASME applica-

tion-oriented system. Each device can customize the BT

engine according to plug-ins. Queries can be formulated

either in SQL or in PHASME Interface Language. We

extended the query execution layer with new mecha-

nism for the execution of device plug-ins to support

long-running queries.

Addressing these issues is the necessary first step to-

wards a device information engine. In addition, a device

information engine should take into account devices and

communication failures; it should consider device data. We

believe that these challenging issues can only be addressed

once the data model and international representation issues

have been involved. In Section 2, we propose a model for

Device Information Engine. Section 3 introduces the BT

engine and section 4 overviews the resource management

of BT. Then the approach on the Fault Tolerance manage-

ment is described in Section 5. Section 6 introduces an

overview of previous works. Finally, Section 7 concludes.

2 A Model for Device Information Engine

In this section, we will define more the features related

to the notation of “device databases” and device queries.

The PHASME system[4] is extended to support a data

model for device data and algebra of operators to formulate

device queries.

2.1 Device Database

A device database includes stored data and device data

as it has been mentioned. In addition, stored data include

the set of devices that participate in the device database

together with characteristics of the devices (e.g. device’s

location) or characteristics of the Interspace environment.

The stored data are best represented as binary relations.

The key issues are: How to represent device data? First

device data are generated by device processing functions.

Second, representation for device data should facilitate the

formulation of device queries (data collection, time correla-

tion, and aggregates over time windows).

Time plays an important role. Possibly, device-processing

functions return output repeated over the time, and each

output having a time-stamp. In addition, querying optimiza-

tion introduces constraints on the device data time-stamps.

Given these constraints, we represent the device multime-

dia data as time series. The representation of the device time

series is based on the Extended Binary Graph (so called

EBG) structure[5]. The EBG structure provides the storage

for the device data that includes ordering. EBG operators are

n-ary mappings on the EBG structure. All EBG operators

can be composed. In addition, they include the following

functions: select, find, search, join, and aggregates over a set

of positions.

We represent device data as time series with the following

properties:

1. The set of records corresponds to the outputs of de-

vice function over the time.

2. The ordering domain is a discrete time scale.

3. All the outputs of device-processing functions are as-

sociated to a position.

4. Whenever a device function produces an output, the

base sequence is updated at the physical position cor-

responding to the production time.

2.2 Device queries

Device queries involved stored data and device data, i.e.

binary relations and time-based data. We define a device

query as an acyclic graph of EBG operators. The inputs of an

EBG operator are EBGs or the results of another EBG opera-

tor.

A device query defines a persistent EBG during its associ-

ated time interval. So, this persistent EBG is maintained to

reflect the updates on the multimedia device information

engine. Any EBG can be maintained incrementally without

accessing to the complete content. This property is hold in

our device information engine.

3 The BT Device Information Engine

In this section, we discuss the representation of device

data, as well as the way of device query management. Fur-

thermore, we discuss the limitations of the target BT sys-

tem (see Figure 1) and how we will go over them.

Multimedia Device Information Engine for Symbiotic Applications

48

We have introduced in Section 2 a model of device in-

formation engine. Two major elements influenced our re-

search:

1. User representation: How devices and device processing

functions can be modeled in the data schema? How can

we formulate device queries?

2. Internal representation: How is device data repre-

sented within the information engine components

from the definition layer to the query execution layer?

How can we classify device queries in short and long-

running query type?

3.1 User representation

In the BT multimedia device system, processing func-

tions are represented as plug-ins following application-

oriented implementation[5]. This approach improves tradi-

tional Object-relational databases ADT (so called Abstract

Data Type) support as it has been pointed out in[6]. A device

plug-ins is defined for compatible devices. The public in-

terface of a device plug-ins includes specific data process-

ing supported by one type of device. One plug-ins in the

information engine corresponds to one device. Device

queries can be formulated in SQL in order to be compatible.

3.2 Internal Representation

Query processing takes place on one multimedia infor-

mation engine front-end while data processing functions

are executed on the device nodes involved in the query.

Figure 2 points out the resource manager of the BT system.

The resource manager includes mechanism (resource

planer, admission controller, resource allocation manager)

for interacting with remote devices and resources. On each

device, a lightweight information engine is responsible for

execution processing functions and sending back data to

the front-end.

In BT, we assume that there are no modifications to

stored data during the execution of queries. A transaction

manager based on strict two-phase locking is implemented

on the information engine front-end. Each query can be

classified as short or long-running query. Queries are con-

sidered as persistent views.

3.2.1 Shortcomings with traditional ADT

function execution

In current object-relational database systems, ADT func-

tions are used to form expressions combined with constants

and variables. When an expression including an ADT func-

tion is evaluated, a function is called to obtain the return

value. It is mostly assumed that this return value is avail-

able on-demand. This assumption does not hold in a device

information engine for the following reasons:

1. Device ADT functions incur high latency due to their

location or because they are asynchronous;

2. When evaluating long-running queries, Device ADT

functions return multiple outputs.

3.2.2 Virtual EBGs

To overcome the problems previously outlined, we in-

troduced an EBG operator to model the execution of de-

vice ADT functions. This operator is a variant of the join

between an EBG that includes the device item and the

device plug-ins. The representation of the device plug-ins

is called a virtual EBG.

A virtual EBG is a plug-ins. It follows the definition of

plug-ins of application-oriented information engine.

The observation of symbiotic applications gave the fol-

lowing inputs:

Figure 1: The BT System

Application

Level

Active

Object

Management

RT Support
Non RT Support

Multimedia

Resource Manager

BT System

BT Interface

Data processing

 Components
Active

Object

Active

Object

FT API

RT API

QoS API

Security API

NII Journal No. 3 (2001.11)

49

l A virtual EBG is append-only: new data are appended

to the virtual EBG when the associated device process-

ing function returns a result. Data in virtual EBGs are

never updated or deleted.

l A virtual EBG is naturally partitioned across all devices

represented by the same device plug-ins. A virtual EBG

is associated to a device plug-ins, to each device of

these type is associated a fragment of the virtual EBG.

A device information engine is internally represented as

a distributed database. Virtual EBGs are partitioned across

a set of devices. Based EBGs are stored on the information

engine front-end. Distributed query processing techniques

are based on the application-oriented concept.

3.2.3 Query Execution Plan

Virtual EBGs appear in the query execution plan at the

same level as base EBGs. Base EBGs are accessed through

EBG operators. Each fragment of Virtual EBGs is accessed

on devices using virtual operators. A virtual operator in-

corporates in the query execution plan the adequate

mechanism necessary to support long-running queries.

3.2.4 Internal Uniform Task Model

The resource management follows a task model that

yields a uniform presentation of applications within the BT

system. Such model needs to be flexible enough to express

the stringent timeliness requirements of different applica-

tions. Furthermore, it must cope with the complexity of

multimedia tasks, such as variable bit rate compression of

video streams. The major feature is a single abstraction for

reasoning about multimedia and real-time system.

Let define A [] ∫ +
=+

τ
τ

tt
dxxatt

,
)(,

as the execution time necessary to complete the work-

load that arrives for the system in the time interval [t, t+τ].

Then the workload that arrives for a task can be charac-

terized by a task envelope A* which provides an upper

bound on A, that is , for all timesτ≥ 0 and t ≥ 0 as it has

been shown in [7]:

(1) [])(*, ττ AttA ≤+

A task envelope A* should be sub-additive, that is,

should satisfy

(2))(*)(*)(* 2121 ttAtAtA +≥+

0, 21 ≥∀ tt

if a task envelope A*1satisfies (1) but is not sub-additive, it

can be replaced by the sub-additive task envelope A*2 such

that A*2(t) ≤ A*1(t) for all t ³0.

The processing requirements of a task are described as

follows: Let S[t,t+τ] denote the amount of service time

that a processor can devote to processing one or more in-

stances of the task in time interval [t,t+τ]. With the task

envelope A* and a deadline for completing an instance of

this task, say D, a task always meets its deadline if for all τ

≥ D we have: min {A*(t-τ) = S[0, t]}} ≤ D. We use S*(t)

= A*(t - D) to denote the service envelope of the task. If a

processor can guarantee for each time interval of length t

that a task obtains a service of at least S*, then a deadline

violation will never occur.

4 The Resource Management

Critical component of the BT platform is its ability to

manage a large, globally distributed set of resources effi-

ciently. Therefore, the BT Platform requires end-to-end

resource management, including physical resources (such

as devices), end systems resources (such as CPUs, memory,

and network interface virtual circuits), and communication

resources (such as link bandwidth). We assume that the

network and operating systems provide resource manage-

ment.

Service Manager

Resource Planner

Resource Allocation

Admission Controller

Application-oriented Service Programming Interface

Resources

BT

Supervision

Manager

Figure 2: The Resource Manager of the BT System

Multimedia Device Information Engine for Symbiotic Applications

50

Based on this primitive resource management, the Har-

mony platform will provide an end-to-end adaptive re-

source manager (see Figure 2) that supports applications

with widely varying QoS requirements, such as require-

ments on timeless, fault tolerance, and security. The fol-

lowing support is needed inside Harmony’s resource man-

ager to achieve these capabilities:

Support for an application-oriented service-programm-

ing interface that enables application programmers to spec-

ify their desired QoS without requiring knowledge of the

underlying low-level resource management entities.

Support for a mapping mechanism to transform qualita-

tive and quantitative application-oriented service require-

ments into quantitative resource allocations. The service

manager generates execution plans of the service-

dependent QoS requests from applications according to the

uniform task model described in the following of this sec-

tion.

Support for a dynamic network and system resource

management that can maximize global system resource

utilization.

Support for admission control to check if the resource

and QoS requirements of the new application are accept-

able for The Harmony System without compromising the

QoS guarantees made to currently applications.

Maximizing global system resources is related to the use

of a planning component. The planning component keeps

track of the dynamic behavior of resource usage. By main-

taining information not only of the current state of resource

utilization, but also of past and (predicted) future usage,

the resource management scheme can adapt to the chang-

ing resource demands in the entire system. This feature is

particularly important during peak loads, when the respon-

siveness of the system is particularly essential to ensure

mission- critical response.

Application-oriented Service Interface

The application-oriented Service interface (AOS API)

provided by the Harmony platform is designed to satisfy

several constraints. First, this API allows application devel-

opers to access the full functionality of the Harmony plat-

form without being burdened with internal system details,

such as scheduling or primary/secondary memory manage-

ment. Second, the API must be simple enough to provide

an intuitive and customizable internal representation. Thus,

the trade-off of such an API is between the requirements

for application customizability and internal simplicity.

5 Adaptive Fault Tolerance Management

Given the large and growing size of device networks,

faults may occur frequently and at inopportune times.

Adaptive fault tolerance management, such as the approach

being defined for the OMG specification is needed to pro-

tect the system against common security breach points.

A first approach can follow an adaptive information en-

gine solution for non-malicious faults. The following fault

hypotheses will be considered: processors may fail silently

(multiple failures are possible); transient faults may occur

due to power glitches, software bugs, and timing faults can

occur where data is out of date or not available in time. If

the global virtual information engine can handle these

faults and operate efficiently, then it should be robust and

useful under some scenario.

Our solution proposes a service-oriented and adaptive

fault tolerance management.

Service-oriented Fault Tolerance: the BT system will

have a behavior according to the following services:

Read only queries: Such kind of workload can be either

dynamically requested by device or automatically triggered

by the actions in the active data processing part of the BT

System. These queries can have soft deadlines and can

retrieve any kind of data types (text, audio, video).

Update transactions: These transactions can be user in-

voked or automatic. They update any type of data includ-

ing temporal data according to the permission.

• Write transactions.

• Multimedia devices: Such devices have time con-

straints, are large in volume, include synchronized,

and can be degraded in term of resolution if neces-

sary.

• Analysis devices: Such device received data for

processing requirements in distributed environments.

Support for Adaptive Fault Tolerance: device information

engine may access any number of objects. To support fault

tolerance services, the underlying system model needs to be

based adaptive (secure) fault tolerant (real-time) objects. The

fault tolerance can become very expensive, the cost of fault

NII Journal No. 3 (2001.11)

51

tolerance should be tailored according to the requirements of

each device. In this approach, each object represents data

and methods on the data and various types of semantic in-

formation that support adaptive (secure) fault tolerance in

real-time.

Processing description: in addition to the parameters re-

quired for its functionality, the input of an object can be the

time requirement, the QoS requirement, the degree of fault

tolerance, and the level of security. Control modules are

inside the objects and transparent for the devices. They are

used to meet the incoming requirements dynamically based

on the request and the current state of the environment.

Again, also for this service, one key research issue is the

mapping of the service level of the fault tolerance request

to the underlying objects. Given the underlying object

mechanisms that support adaptive fault tolerance, the key

issue is the objects composition to meet the service level

requirements.

6 Previous works

Several works have done in the field of symbiotic systems

such as[7-9]. They try to take more synthetic approach to in-

clude basic principles of intelligence in the context of infor-

mation systems. In addition, they propose new underlying

principles of intelligence using high degree by using symbi-

otic systems with multiple perception channels, such as vi-

sion, auditory, tactile, etc.

7 Conclusions

Device information engines are a promising new field

for database research. We described a data model and long-

running query semantics for device database systems

where stored data are represented as relations and device

data are presented as sequences. The BT system that we

presented is the 1st effort toward a device information

engine. This approach demonstrated that the application of

database technology shows much promise for providing

customizable and scalable access of large collections of

devices as part of symbiotic systems. It enabled us to iden-

tify a set of challenging issues that we are addressing with

our ongoing research in the Symbiotic COE project:

l Due to large scale of a network of device, it is impor-

tant to include failure tolerance as some of the devices

and some of the communication links will fail at some

points during the processing of long-running queries.

One issue is the way that device information engines

can be optimized.

l Device data can be classified as measurements. We

are defining a data model and related operators for rep-

resenting and manipulating continuous distributions.

l Because of the large scale and dynamic nature of a

device network, metadata management requires a layer

of metadata servers. This study concerns the way to

manage distributed metadata and the way to utilize the

information to devise good query plans.

Acknowledgements

We would like to thank Professor Haruki Ueno who
helped to start the initial research work of this paper. Thank
you also to all the reviewers for their valuable comments.

References

[1] http://www.canis.uiuc.edu/projects/interspace/

[2] Anderson, C., “Cyberspace offers chance to do 'virtu-

ally' real science”, Science, vol. 264, pp. 900-901,

May, 1994.

[3] Ampornaramveth, Vuthichai; Ueno, Haruki, “Introduc-

tion to Research on Symbiotic Information Systems

and an Agent-Based Robot Manipulator Sharing over

the Internet”, Proc. WAINS 7, pp. 145-154, 2000.

[4] Andres, F.; Ono, K., “The Distributed Management

Mechanism of the Active Hypermedia Delivery System

platform”, IEICE Transactions, August, 2001.

[5] Andres, F.; Ono, K., “Phasme: A High Performance

Parallel Application-oriented DBMS”, Informatica

Journal, Special Issue on Parallel and Distributed Da-

tabase Systems, Vol.22, pp. 167-177, May, 1998.

[6] Andres, F.; Boulos, J.; Ono K., “Accessing Active

Application-oriented DBMS from the World Wide

Web”, Proceedings of the Intern. Symp. on COopera-

tive DAtabase Systems for Advanced Applications

(CODAS), pp. 232-234, Dec. 1996.

[7] Kinoshida, T.; Sugawara, K., “ADIPS Framework for

flexible Distributed Systems”, Proc. Pacific Rim In-

ternational Workshop on Multi-Agents (PRIMA '98),

pp. 161-175, 1998.

Multimedia Device Information Engine for Symbiotic Applications

52

[8] Imielinski, T.; Goe, S. l., “Data space -querying and

monitoring deeply networked collections of physical

objects”, Proc. of the Int. Workshop on Data Engi-

neering for Wireless and Mobile Access (MobiDE'99),

Seattle, WA, August 1999.

[9] Hoff, J.; Bekey, G., “An Architecture for Behavior

Coordination Learning”, IEEE International Confer-

ence on Neural Networks, Perth, Australia, vol. 5,

pp. 2375-2380, November 1995.

