
General-purpose preconditioners for the conjugate gradient (CG) and gen-

eralized minimal residual (GMRES) type methods are proposed for solving the

linear least squares problem

min
x∈Rn

‖b− Ax‖2

and the general least squares problem

min
x∈S

‖x‖2, S = {x ∈ Rn : ‖b− Ax‖2 = min
ξ∈Rn

‖b− Aξ‖2},

where A ∈ Rm×n and b ∈ Rm. Numerical experiments show their effectiveness.

We develop their convergence theory and evaluate one of the proposed methods

for practical problems.

Background.

Solving linear least squares problems is a fundamental requirement in a wide range

of areas across science, engineering, industry, and statistics, in particular, signal

processing, control, tomography, geodetics, curve fitting, optimization etc. Hence,

a significant point is to design robust, efficient, and reliable methods for com-

puting least squares solutions. Conventional solution methods for the problems



are direct methods such as the Cholesky and QR factorizations, and the singu-

lar value decomposition. Such methods are effective for solving relatively small or

dense problems. However, there are ever-increasing demands for solving large-scale

and complex problems. Such requirements are far beyond existing computers and

computational methods. Thus, it is becoming difficult to apply those methods to

recent large and sparse problems in terms of time and space complexity. With

improvement of computational methods, this work attempts to take measures to

deal with this coming serious situation.

Iterative methods are also well-established solution methods for the problems.

The Jacobi and successive overrelaxation type methods (JOR and SOR) applied

to the normal equations inspired by the Kaczmarz method and the Cimmino

method, and Krylov subspace iterative methods such as the CGLS method pro-

posed by Hestenes and Stiefel [12] and the LSQR methods developed by Paige

and Saunders [16] have been studied and used for solving large and sparse linear

least squares problems arising from many application fields. If the problems are

well-conditioned, then these methods converge fast. Otherwise, the convergence

becomes slow. Then, preconditioning is necessary to accelerate the convergence. It

is known that appropriate preconditioners dramatically improve the convergence of

Krylov subspace methods and achieve less storage requirement for Krylov subspace

methods.

Motivation.

The majority of the studies on preconditioning Krylov subspace methods for least

squares problems is devoted to incomplete matrix factorizations such as the robust

incomplete factorization (RIF) developed by Benzi and Tůma [2]. However, such

techniques require preconditioning time and memory for computing and storing

incomplete matrix factors of the matrix.

Different types of preconditioners called inner iterations have been extensively

studied and developed in the context of solutions to square systems of linear equa-

tions, e.g., DeLong and Ortega [8, 9] and Saad [17]. However, these types of

preconditioners have not been studied so much and the sufficient conditions for

their convergence are not well known in the context of solutions to least squares

problems (cf Aoto, Ishiwata and Abe [1]).



On the other hand, an application of the generalized minimal residual (GM-

RES) method developed by Saad and Schultz to linear least squares problems was

proposed by Hayami, Yin and Ito [11], where the right- and left-preconditioned

GMRES methods (AB- and BA-GMRES) were combined with RIF. The conver-

gence conditions of GMRES for singular systems are well understood due to the

work by Brown and Walker [3] and Hayami and Sugihara [10]. These studies

motivated us to investigate AB- and BA-GMRES more in depth in the thesis.

Previously AB- and BA-GMRES preconditioned by RIF was comparable with,

but not definitely superior to, the reorthogonalized CGLS (or the CG normal error

(CGNE) method) preconditioned by RIF in terms of time complexity. Moreover,

many previous preconditioners based on incomplete matrix factorization such as

RIF will break down for rank-deficient matrices. The Greville preconditioner pro-

posed by Cui, Hayami and Yin is an exception, but was not definitely superior

to previous methods [5]. Few authors addressed the problem of preconditioning

Krylov subspace methods for solving rank-deficient least squares problems with

sufficient theoretical justification. To the author’s knowledge, little has been done

in preconditioning in the rank-deficient case.

Least squares problems have an infinite number of solutions if the problems

are not full column rank. On the other hand, general least squares problems

have a unique solution called the pseudo-inverse solution, whose Euclidean norm is

minimum. CGLS without preconditioning with an appropriate initial approximate

solution determines the pseudo-inverse solution. However, little has been done in

preconditioning general least squares problems even though the pseudo-inverse

solution is useful in many applications such as inverse problems and control.

Objectives.

Based on the above mentioned points, the main objectives for proposing the new

preconditioners is to reduce time and space complexity significantly, broaden the

scope of problems that can be solved to the rank-deficient case, and remove the

above-mentioned drawbacks. Based on the understanding of the solution methods

for least square problems, we describe a comprehensive treatment of precondition-

ers for least squares problems and general least squares problems.



Organization.

The thesis is organized as follows. In Chapter 1, we describe the background,

motivation, and objectives of the thesis. In Chapter 2, we prepare relevant basics

and notations, and explain about the least squares problems which to be solved.

In Chapter 3, we describe existing methods for solving least squares problems,

including direct approaches, stationary iterations, Krylov subspace methods, and

preconditioners.

In Chapter 4, we present the main results. We design new general-purpose

preconditioners based on linear stationary iterative methods for Krylov subspace

methods such as CGLS, CGNE, and AB- and BA-GMRES for solving linear least

squares problems including the rank-deficient case. The proposed preconditioners

are given by several steps of linear stationary iterative methods, which are regarded

as inner iterations, and serve as preconditioners for the Krylov subspace methods,

which are regarded as outer iterations.

We first consider using general linear stationary iterative methods applied to

the normal equations as the inner-iteration preconditioners. With the help of the

convergence theory for GMRES- and CG-type methods for least squares problems

including the rank-deficient case and linear stationary iterative methods for singu-

lar systems of linear equations, we develop a general convergence theory for AB-

and BA-GMRES, CGNE, and CGLS preconditioned by inner iterations. That

is, we show that a sufficient condition for the proposed methods to determine a

least squares or the pseudo-inverse solution within r iterations without breakdown

for arbitrary initial approximate solution is that the inner-iteration matrix H is

semi-convergent, i.e., lim
i→∞

H i exists, where r = rankA. This theory holds irrespec-

tive of whether A is over- or under-determined and whether A is of full-rank or

rank-deficient. In addition, we correct the previous convergence theory for AB-

and BA-GMRES given by Hayami, Yin and Ito [11] .

We next consider using specific linear stationary iterative methods as the inner-

iteration preconditioners. It was shown by Dax [7] that JOR and (S)SOR applied

to the normal equations give a semi-convergent iteration matrix with a value of the

relaxation parameter in an appropriate range. There exist efficient implementa-

tions of these specific iterative methods called the Cimmino-NE and NR and NE-

and NR-(S)SOR methods in terms of time and space complexity and we use them.



Compared to previous preconditioners based on incomplete matrix factorizations,

the advantage of these methods is that they enable one to avoid computing and

storing the normal equation matrix and factors of the preconditioning matrix ex-

plicitly.

We analyze the spectrum of the preconditioned coefficient matrix, and charac-

terize it by the spectral radius of the inner-iteration matrix ρ(H) and the number

of inner iterations � and then show that the nonzero eigenvalues lie inside the circle

of radius ρ(H)� with center at unity and they approach unity as the number of in-

ner iterations � increases. This theoretical result is tested by numerical examples.

In addition, we show that the zero eigenvalues do not affect the residual norm

convergence of the proposed GMRES-type methods.

We left the analysis of the convergence rate for the proposed methods for the

future. It is know that the residual norm convergence of GMRES for general

matrices is not necessarily determined only by the spectrum of the matrices. On

the other hand, experiments often show a correlation between the spectrum and

the convergence property. Hence, we hope to study more in depth the convergence

analysis in connection with the spectrum of the preconditioned matrix given by

inner iterations.

The SOR-type inner-iteration preconditioner uses two parameters, the relax-

ation parameter and the number of inner iterations. CPU time for the precon-

ditioned iterative method varies with the values of these parameters. Hence, we

need to determine the values of these parameters before the outer iterations start.

In Chapter 5, we propose a procedure to automatically tune the value of the pa-

rameters in terms of time complexity, and showed that it is effective.

In Chapter 6, numerical experiments on large and sparse overdetermined least

squares problems with artificial ill-conditioned and practical matrices from [6] il-

lustrate that the proposed methods are efficient and robust, and serve as powerful

preconditioners especially for ill-conditioned and rank-deficient problems, outper-

forming previous methods such as the CGLS and CGNE methods preconditioned

by the diagonal scaling and RIF.

More work has to be done regarding the stopping criteria. In the experiments,

we judged the convergence of the methods explicitly by using the residual norm

of the normal equations ‖ATrk‖2. However, it would be ideal to judge the conver-

gence of the methods in terms of estimates of the residual norm ‖ATrk‖2, error



norm ‖xk−x∗‖2, and backward error of min
x∈Rn

‖b−Ax‖2, where x∗ is a least squares

solution.

The inner-iteration preconditioning in Chapter 4, the automatic parameter

tuning procedure in Chapter 5, and numerical experiment results in Chapter 5

were presented by the author and Hayami [13] (see also [?]). The convergence

theory in Chapter 4 was given by the author and Hayami [14].

Numerical experiments on the proposed methods comparing with previous

methods on test least squares problems led us to focus on the behavior of AB-

GMRES for inconsistent problems. In Chapter 7, we indicate that AB-GMRES

numerically fails to converge for inconsistent problems even though it is theoreti-

cally convergent. Based on this observation, in order to overcome the defect, we

propose using BA-GMRES for solving inconsistent problems instead. We have not

completed the analysis of the numerical behavior of the GMRES-type methods

applied to inconsistent problems. We hope to study more in depth these subjects

in conjunction with numerical experiments on the proposed methods in the future.

In Chapter 8, we consider preconditioning and solving general least squares

problems. We present preconditioned CG and GMRES-type methods for general

least squares problems, give their convergence theories, and evaluate the methods

through numerical experiments. However, more numerical experiments on test

problems are required to fully evaluate the proposed methods comparing them

with CGLS.

In Chapter 9, in order to evaluate the proposed methods in a practical ap-

plication, we apply AB-GMRES preconditioned by SOR-type inner iterations to

image reconstruction problems arising from the use of electron microscopes in bi-

ology, where large least square problems arise. Here, we combine the method with

the Tikhonov regularization in order to smooth the images, and with restarts in

order to satisfy the non-negativity constraint, and call this the restarted regular-

ized AB-GMRES (RRAB-GMRES) method. Numerical experiments on relatively

small and large problems show that the method performs competitively with previ-

ous methods such as the Algebraic Reconstruction Technique (ART) and CG-type

methods, although not decisively.

A part of the results in Chapter 9 was presented by the author, Hosoda and

Hayami [15].

We did not address the problem of how to choose the regularization parameter



and operator and set the stopping criterion. Further investigation in terms of

numerical experiments on more test problems is required. Also, in order to improve

the accuracy, we need to utilize the characteristic of the problem. Introducing

appropriate constraints to the approximate solution would give a better solution.

In Chapter 10, we conclude the thesis and summarize the results obtained

for the proposed methods for least squares problems and general least squares

problems, respectively. BA-GMRES with NR-SOR is recommended for solving

overdetermined and inconsistent underdetermined problems. AB-GMRES with

NE-SOR is recommended for solving consistent underdetermined problems. Our

theory filled a gap by investigating preconditioners for rank-deficient cases and

applying AB- and BA-GMRES to the case of general least squares problems.

Contributions.

This work contributes to the development of new methods for solving least squares

problems.

Recently, linear stationary iterative methods alone are regarded as classical

approaches and not useful in general. However, this work showed that some of

them combined with Krylov subspace methods as preconditioners serve as pow-

erful preconditioners and play a significant role in accelerating the convergence

of the Krylov subspace methods, when used as inner iterations for least squares

problems. Investigations of stationary iterative methods would still contribute to

the development of preconditioners.

From the theoretical point of view, we showed that semi-convergence of the

inner-iteration matrix is intrinsically significant in the determination of conver-

gence of CG- and GMRES-type methods preconditioned by inner iterations. Semi-

convergence is a useful property for the convergence analysis of linear stationary

iterative methods for solving singular systems of linear equations. Here, we uti-

lize this property for the convergence analysis of the Krylov subspace methods

preconditioned by inner iterations for least squares problems in the full rank and

rank-deficient cases.

Our methods are promising candidates which would meet the increasing de-

mands for solving large-scale least squares problems in the future.



Future work.

We are interested in the application of the proposed methods to least squares

problems arising from the interior point method for linear programming prob-

lems [4] and tomographic imaging reconstruction problems arising from the use

of electronic astronomical telescopes in which least squares problems with sparse,

ill-conditioned and sometimes rank deficient coefficient matrices arise.
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