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Abstract

Network traffic anomalies stand for a large fraction of the Internet traffic and
compromise the performance of the network resources. Detecting and diagnos-
ing these threats is a laborious and time consuming task that network operators
face daily. During the last decade researchers have concentrated their efforts
on this problem and proposed several tools to automate this task. Thereby,
recent advances in anomaly detection have permitted to detect new or unknown
anomalies by taking advantage of statistical analysis of the traffic. In spite of
the advantages of these detection methods, researchers have reported several
common drawbacks discrediting their use in practice. Indeed, the challenge of
understanding the relation between the theory underlying these methods and
the actual Internet traffic raises several issues. For example, the difficulty of
selecting the optimal parameter set for these methods mitigates their perfor-
mance and prevent network operators from using them. Moreover, due to the
lack of ground truth data, approximate evaluations of these detection methods
prevent to provide accurate feedback on them and increase their reliability. We
address these issues, first, by proposing a pattern-recognition-based detection
method that overcomes the common drawbacks of anomaly detectors based on
statistical analysis, second, by providing both a benchmark tool that compares
the results from diverse detectors and ground truth data obtained by combining
several anomaly detectors.

The proposed pattern-recognition-based detector takes advantage of image
processing techniques to provide intuitive outputs and parameter set. An adap-
tive mechanism automatically tuning its parameter set according to traffic fluc-
tuations is also proposed. The resulting adaptive anomaly detector is easily
usable in practice, performs a high detection rate, and provides intuitive de-
scription of the anomalies allowing to identify their root causes.

A benchmark methodology is also developed in order to compare several
detectors based on different theoretical background. This methodology allows
researchers to accurately identify the differences between the results of diverse
detectors. We employ this methodology along with an unsupervised combina-
tion strategy to combine the output of four anomaly detectors. Thereby, the
combination strategy increases the overall reliability of the combined detectors
and it detects two times more anomalies than the best detector. We provide
the results of this combination of detectors in the form of ground truth data
containing various anomalies during 10 years of traffic.
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Chapter 1

Introduction

The success of Internet services results in a constant network traffic growth
along with an increasing number of anomalies such as remote attacks (e.g., DoS
attack, port scan, worm spreading) and misconfigurations. These anomalies
represent a large fraction of the Internet traffic that is unwanted and penalizes
legitimate users from accessing optimal network resources. Therefore, detecting
and diagnosing these threats are crucial tasks for network operators that are
trying to maintain the Internet resources made available. Due to the important
traffic volume, quickly and accurately identifying anomalies in Internet traffic
requires automation. Intensive studies have been carried out in this field, but
the proposed anomaly detection methods still have important drawbacks [60, 32]
that discredit their practical usage in real environment.

The goal of this dissertation is to increase the reliability in anomaly detection
by providing methods and directions that overcome the common drawbacks of
current anomaly detectors.

1.1 Problem statement

We differentiate two categories of method identifying anomalous traffic, those
based on signature matching and those based on statistical analysis. The
signature-based detectors are conceived to analyze enterprise network traffic,
they are reliable detectors but their design and computation complexity prevent
their use in the core of the Internet. Thereby, the identification of anomalies in
Internet traffic is usually addressed by conducting a statistical analysis of the
traffic. These methods follow a common approach; first, the traffic is modeled
and a reference representing normal traffic is computed, second, the traffic that
is significantly distant from the computed reference is reported as anomalous.
The main advantage of these methods is their ability to identify emerging and
unknown anomalies, contrarily to signature-based detectors that are relying on
a signature database requiring updates when a new anomaly is discovered. Since
our main interest is in Internet traffic, the work conducted in this dissertation
is focusing on statistical-based methods and their common practical drawbacks.
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Chapter 1. Introduction

1.1.1 Anomaly detectors in practice

Statistical analysis is an appealing approach to solve the anomaly detection
problem, however, resulting anomaly detectors suffer from high error rate as
investigating the output of statistical tools and tuning their parameter set in
accordance to the analyzed network traffic is challenging.

Detection performance

Contrarily to signature-based detectors that implement pattern matching tech-
niques, anomaly detectors based on statistical analysis are discriminating anoma-
lous traffic according to its singular characteristics. Thereby, these two kinds
of detectors are fundamentally different; signature-based ones are inspecting
the content of the traffic looking for well-known patterns, whereas, statistical-
based ones profile the traffic and discriminate traffic that is distant from a com-
puted reference representing normal traffic. Consequently, the statistical-based
anomaly detectors have the advantage of detecting new and unknown anomalies
that are missed by the signature-based ones; symmetrically, their drawback is to
frequently report benign traffic as anomalous whereas misreports are rare using
the signature-based detectors.

Moreover, statistical-based anomaly detectors are inherently misreporting
traffic during important anomaly outbreaks that alter the majority of the traf-
fic. Indeed, when anomalous traffic is dominant the computed reference is con-
taminated and anomalies are confused with benign traffic.

Because estimating relevant statistics from small (mice) flows is difficult, sev-
eral statistical-based detectors omit these flows, however, detecting low-intensity
anomalous traffic is essential since sophisticated or large-scale attacks tend to
be distributed processes involving numerous hosts with small amount of traffic
each.

The main challenge in designing and using an anomaly detector is to maxi-
mize the number of detected anomalies while keeping the misreport rate low. In
practice this trade off is usually controlled by adjusting the parameter set of the
anomaly detector according to the analyzed traffic and the theory underlying
the detector.

Network traffic abstraction

In order to formalize the anomaly detection problem researchers translate the
traffic to statistical observations that are easily manipulated using statistical
tools. This abstract representation of the traffic allows researchers to apply
appropriate statistical tools (e.g., outlier detection methods), however, under-
standing the relations between the analyzed traffic and the mechanisms of the
statistical tools is challenging. For example, outlier detection methods mon-
itor certain properties of the traffic using different metrics (e.g., the entropy
of the traffic) and discriminate anomalous traffic by looking at abnormal val-
ues. Thereby, outlier detection methods report statistical values characterizing
anomalies, however, inferring from this output the root causes of the anoma-
lies is usually difficult. Similarly, the parameter set of the outlier detection
methods usually consists of thresholds that are difficult to interpret in term of
network traffic. This dissertation addresses these two significant drawbacks of
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1.1. Problem statement

current anomaly detectors, namely clarifying the output and selecting optimal
parameter set in anomaly detection.

• Detector output: Understanding the output of an anomaly detector is
the first step towards feedback and improvement. Accurately pinpointing
the anomalous flows corresponding to an alarm reported by an anomaly
detector requires extra efforts because of the traffic aggregation and the
level of abstraction of statistical methods. Furthermore, contrarily to
signature-based detectors that inherently match anomalous traffic to its
root cause, anomaly detectors based on statistical analysis report anoma-
lous traffic regarding its differences with the majority of the traffic but are
unable to indicate its root cause (e.g., DoS attack, scan, or worm).

Researchers proposed several methods precisely extracting the anomalous
traffic corresponding to reported alarms [48, 16, 13], however, the root
cause analysis is a laborious and time consuming task left to the network
operators. Namely, operators investigate the traffic features extracted by
the detection methods (e.g., list of IP addresses [48, 16]) and infer the root
cause of the anomalies based on their knowledge and intuition.

Recently a few works have been focusing on the automation of this man-
ual process, for example Silveira and Diot [66] proposed a tool classify-
ing anomalous flows reported by a detector and infer the root cause of
the anomalies. Interestingly this tool is fundamentally independent from
the mechanisms of the anomaly detectors and help in understanding the
output of any detectors, however, as it does not take into account the
principles of the detectors this tool prevent from reporting feedback on
the detectors. For example, it is impractical for adjusting the parameter
settings of an anomaly detector as it ignores the theory underlying the
detectors and its relation with analyzed traffic.

• Parameter tuning: Wrong parameter setting dramatically alters the
performance of anomaly detectors, thus, the tuning of the parameter set
requires particular attention to ensure detectors reliability.

The parameter set of an anomaly detector is mainly the one of the statis-
tical analysis underlying, and usually consists of parameters for modeling
the traffic and thresholds discriminating abnormal traffic. Setting these
parameters require a strong understanding of the statistical tools and their
impact on the detection of anomalous traffic is rarely well understood.
Therefore, in practice network operators arbitrarily adjust the parameter
set of the anomaly detectors and select the optimal parameter set through
a laborious task involving many time consuming trials and errors.

Only a few works have investigated this important drawback currently
discrediting anomaly detectors. A careful study of the detectors based
on principal component analysis (PCA) was carried out by Ringberg et
al. [60]; although they identified four main challenges, including the sen-
sitivity of the parameter set to analyzed traffic, these challenges are left
unsolved. In addition, an attempt to automatically tune a method based
on gamma modeling and sketches was conducted by Himura et al. [32].
They designed a learning process for predicting the optimal parameters
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Chapter 1. Introduction

regarding the best parameters for past data. However, this method suffers
from a high error rate as unexpected events do appear.

Understanding the relations between the real Internet traffic and the the-
ory underlying the anomaly detectors is the main challenge that prevents
to quickly and accurately tune their parameter set.

1.1.2 Benchmarking anomaly detectors

Benchmarking an anomaly detector is the crucial task that enables to identify
its weaknesses and strengths, consequently, to provide feedback that is necessary
to improve its detection performance. Ideally the performance of an anomaly
detection method is evaluated using a benchmark data set in which anoma-
lous traffic is precisely located beforehand using a trustworthy method. This
annotated traffic is hereafter referred as ground truth data.

In order to perform reliable and rigorous evaluation the ground truth data
is expected to have the three following properties:

• It contains real Internet traffic, thus, the evaluation environment is sim-
ilar to the real world conditions and network operators can rely on the
detection rate measured during the evaluation.

• Similarly, the anomalous traffic located in the ground truth data is rep-
resentative of all classes of anomalies existing in the Internet. Thereby,
the evaluation emphasize, both, the classes of anomaly the detector is re-
porting and the classes of anomaly the detector is missing. Moreover, as
new Internet anomalies are constantly emerging ground truth data needs
constant updates.

• The data is publicly available so the the research community is able to
reproduce the experiments and the results from several detectors are com-
parable.

Nevertheless, the lack of trustworthy anomaly detection method prevents
the existence of such ground truth data and constrains researchers to evaluate
their anomaly detectors using less reliable evaluation methodologies.

For example, two methodologies involving manual inspection are; (1) the
result of the anomaly detector is manually inspected and validated by the re-
searchers, (2) the anomalies manually located in the analyzed traffic are used
as a ground truth data. These two methodologies are time consuming and error
prone as they rely on the knowledge and intuition of the researchers, further-
more, these evaluations are not reproducible by the research community.

Researchers also employ another evaluation methodology that consists in
building a ground truth data by injecting anomalous traffic into simulated or
real Internet traffic. In spite of enabling a thorough evaluation on the injected
anomalies, these evaluations are constrained to a specific kind of anomalies and
they usually come with additional evaluations using real traffic [59] as simulating
the diversity of the Internet traffic is impractical [19].

Another usual methodology to evaluate an anomaly detector is to compare
its results to the state of the art. The result of the proposed detector is compared
to the one of a well-known detector, usually the dissimilarities in their output
are inspected to argue the benefits or disadvantages of the proposed detector.
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1.1. Problem statement

Figure 1.1: Five alarms reported by three distinct detectors. Alarm 1, Alarm
2 and Alarm 3 report different traffics from the same host. A same port scan
is reported by two alarms; Alarm 4 identifies only a part of it (beginning of
the port range), whereas Alarm 5 identifies another part (the end of the port
range).

Although comparing diverse anomaly detectors based on different statistical
tools is particularly appealing, it raises several difficulties that have been rarely
addressed in the literature. In order to efficiently compare and evaluate anomaly
detectors this dissertation thoroughly investigates these difficulties.

Comparing detectors output

Comparing outputs from diverse detectors seems at first glance to be trivial,
but in practice, it is a baffling problem. The main issue is that detectors report
different features of the traffic that are representing distinct traffic granularities
and are difficult to systematically compare. The different traffic granularities of
the reported traffic results from the diverse traffic abstractions, dimensionality
reductions and theoretical tools employed by the detectors. For example:

• hash based (sketch) anomaly detectors [16, 48] usually report only IP
addresses and corresponding time bin, no other information (e.g. port
number) describes identified anomalies.

• The pattern-recognition-based anomaly detector proposed in Chapter 4
reports anomalies as sets of IP addresses, port numbers and timestamps
corresponding to groups of packets identified in analyzed pictures.

• Several detection methods take advantage of clustering techniques to iden-
tify anomalous traffic [63]. These methods classify flows in several groups
and report clusters with abnormal properties. Thereby, traffic reported
by these methods consists of sets of flows.

These different kinds of alarm provide distinct details of the traffic that are
difficult to systematically compare. A usual way is to digest all of them to a
less restrictive form; namely, by examining only the source or destination IP
addresses (assuming that anomaly detectors report at least one IP address),
however, this simplification is error prone.

For example, Figure 1.1 illustrates five alarms reported by three distinct
detectors. In this case comparing only IP addresses permits to determine that
Alarm 1, Alarm 2 and Alarm 3 are similar. However, the port numbers provided
by Alarm 2 and Alarm 3 indicate that these two alarms represent distinct
traffics. Consequently, an accurate comparison of these two alarms requires to

5



Chapter 1. Introduction

also take into account port numbers, but it raises other issues. First, a heuristic
is needed to make a decision when port number is not reported (for example
in comparing Alarm 1 and Alarm 2 ). Second, fuzzy equality is required to
compare Alarm 4 and Alarm 5 of Fig.1.1. So forth, inspecting various traffic
features reported by alarms makes the task harder although the accuracy of the
comparison increases.

1.2 Dissertation contributions

The work conducted in this dissertation aims at increasing the reliability in
anomaly detection. Our contributions are apparent at two scopes of the anomaly
detection domain; (1) we propose a reliable anomaly detector that overcomes
specific drawbacks identified in current detectors, (2) within a broader scope,
we propose a benchmark methodology that helps researchers in increasing the
reliability of their detectors.

1.2.1 Pattern-recognition-based anomaly detector

We address limitations of current anomaly detectors by developing an anomaly
detection method based on a technique from image processing and pattern
recognition. This detection method monitors the traffic in four picture cate-
gories standing for four traffic features, namely source IP address, destination
IP address, source port, and destination port. These pictures are designed to
highlight the anomalous traffic as linear patterns easily identifiable using a pat-
tern recognition technique called the Hough transform. These linear patterns
are illustrating a specific characteristic of anomalous traffic, which is, its ab-
normal distribution in the traffic feature space (i.e., IP address or port number
spaces). The effectiveness of the proposed anomaly detector is validated using
real Internet traffic, and its results are compared to anomaly detectors based
on different theoretical backgrounds. The comparison indicates that the only
anomalies detected by the pattern-recognition-based method are mainly mali-
cious traffic with a few packets, and the proposed method has the advantage of
reporting precisely the anomalous packets or flows.

Advantages of pattern recognition

By applying a pattern recognition technique the proposed anomaly detector is
able to detect new and unknown anomalies whereas it does not suffer from the
usual drawbacks of the outlier-based detectors. Indeed the proposed detection
method detects traffic that is statistically similar to a general pattern character-
izing unspecified anomalies, thus, it reports traffic that is featuring anomalous
behavior. Contrarily, outlier-based detectors assume that the anomalous traf-
fic stands for a minority of the traffic and reports traffic having singularities.
Therefore, the proposed detector has the advantage of performing better in the
specific case where the majority of the traffic is altered by an anomaly (e.g.,
during worm outbreak) whereas the outlier-based detectors tends to misreport
normal traffic in this case [60, 62]. The proposed detection method also has the
advantage of featuring an intuitive output and parameter set.
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1.2. Dissertation contributions

Detector output

The simple image processing underlying the proposed method permits network
operators to intuitively investigate the output of this anomaly detector. Indeed
the traffic is monitored in pictures that are familiar to the network operators,
thus, the output of the proposed detection method is easily understood by net-
work operators. In addition the proposed anomaly detector helps network oper-
ators in investigating anomalous traffic as it inherently provides the root cause
of the anomalies. For example the identification of traffic abnormally dispersed
in a picture representing the destination port space is intuitively translated as
a port scan by network operators.

Parameter tuning

We also propose to ease the use of the pattern-recognition-based detector by
investigating the relationship between its parameter set and the traffic char-
acteristics. Therefore, we analyze the evolution of the optimal parameter set
required to analyze a fluctuating traffic, and uncover the relations between the
two. This analysis highlights that constantly achieving a high detection rate re-
quires continuous adjustments to the parameters according to the traffic fluctu-
ations. Therefore, an adaptive time interval mechanism is proposed to enhance
the robustness of the detection method to traffic variations. This adaptive mech-
anism is tracking the characteristic of the traffic and constantly adjust the time
interval of the detection algorithm to ensure its optimal performance. We vali-
date the effectiveness of this adaptive anomaly detection method by comparison
with three other anomaly detectors using four years of real backbone traffic. The
evaluation reveals that the proposed adaptive detection method outperforms the
other methods in terms of the true positive and false positive rate, thus, the
adaptive mechanism enables the pattern-recognition-based detector to be more
reliable and easier to deploy in practice.

1.2.2 Benchmarking anomaly detectors

In order to assist researchers in increasing the reliability of their anomaly de-
tectors we provide them with tools that efficiently evaluate the detection per-
formance of their detectors. We address two issues faced by researchers when
evaluating their anomaly detectors; comparing diverse anomaly detectors and
ground truth data.

First, we propose a benchmark methodology based on graph theory that
allows to compare the results of diverse anomaly detectors. Second, we employ
this methodology to study four combination strategies using diverse detectors
and we provide the results of the best combination strategy in the form of ground
truth data.

Comparing diverse detectors

One of the main contribution of this dissertation is to provide a reliable method-
ology that compares the output of any kinds of anomaly detector. This method-
ology is based on graph-theory and is independent from the mechanisms under-
lying the detectors.
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The proposed benchmark method takes as input the traffic and correspond-
ing alarms reported by several detectors, and it constructs a graph where a
node represents an alarm and an edge stands for the common traffic between
two alarms. This graph emphasizes the similarities between reported alarms and
identical alarms are uncovered using a community mining algorithm. Thereby,
this proposed benchmark method outputs groups of alarms that are identifying
the same anomalous event.

This benchmark methodology enables fundamental advances in anomaly de-
tection. Currently anomaly detectors are usually compared by the mean of
receiver operating characteristics (ROC) curves that are taking into account
the ratio of anomalies correctly reported (true positive rate) and benign traffic
misreported (false positive rate). The ROC curves illustrate the accuracy of
detectors, however, they do not provide any information on the characteristics
of the traffic that is reported by the detectors.

The benefit of the proposed method is to help researchers in investigating
the results obtained from their algorithms. For instance, while developing an
anomaly detector, researchers commonly face a problem in tuning the parameter
set. Therefore, researchers usually run their application with numerous param-
eter settings, and the best parameter set is selected by looking at the highest
detection rate. Although this process is commonly accepted by the community
a crucial issue still remains. For instance, a parameter set A may give a similar
detection rate to that obtained with a parameter set B, but a deeper analysis of
reported alarms may show that B is more effective for a certain kind of anoma-
lies not detectable with the parameter set A (and vice versa). Deciding if A
or B is the best parameter is then not straightforward. This interesting case is
not solved by simply comparing detection rates. The overlap of both outputs
as exhibited by our method would help, first, to compare in which conditions a
parameter set is more effective, second, to make methods collaborate.

Synergy between diverse anomaly detectors

We apply the proposed benchmark method to implement a reliable anomaly
detection system that combines diverse detectors. Using this combination of
detectors we aim at automatically locating anomalies in a large traffic database
(i.e., the MAWI archive) and providing the research community with pseudo
ground truth data.

The basic approach underlying the proposed system is as follow; first, the
benchmark methodology aggregates similar alarms from diverse anomaly de-
tectors, second, each group of similar alarms is investigated by a combination
strategy that determines if the group stands for anomalous traffic or not. We
select and implement an unsupervised combination strategy based on dimen-
sionality reduction that is simple to use in practice as it requires no training
phase.

This system is evaluated using four independent detectors and 10 years of
backbone traffic. According to the evaluation the combination strategy per-
mits to detect twice more anomalies than the most accurate detector, and to
reject the numerous false positive alarms reported by the detectors. Significant
anomalous traffic features are extracted from the numerous alarms reported by
the detectors, thus, the labels assigned to the MAWI archive are concise. Our
results are publicly available and updated daily with new traffic in order to
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provide updated ground truth data to the research community. Furthermore,
our approach permits to include the results of upcoming anomaly detectors, to
increase the quality and variety of labels over time.

This work highlights the reliability increase achieved by cross-validating di-
verse anomaly detectors from the state of the art. Consequently, we emphasize
that combining detectors is a promising approach to solve the anomaly detection
problem, thus, it deserves more attention in future work.

1.3 Dissertation outline

The remaining of this dissertation consists of seven chapters:

• Chapter 2 summarizes the state of the art in anomaly detection.

• Chapter 3 describes the data set analyzed in our work, some terminologies
that are specific to the domain of anomaly detection and three anomaly
detectors from the literature with their results on the considered data set.

• Chapter 4 is the detailed description of the pattern-recognition-based de-
tector we proposed. We inspect its results using six years of real Internet
traffic and compare its performance to two other anomaly detectors.

• Chapter 5 describes substantial improvements of the proposed pattern-
recognition-based detector including a mechanism that helps in automat-
ically tuning its parameter set. The efficiency of these improvements are
evaluated by comparison with three other anomaly detectors using four
years of Internet traffic.

• Chapter 6 proposes a graph-based methodology that allows to systemati-
cally compare results from diverse anomaly detectors. This methodology
is applied to combine anomaly detectors and provide ground truth data.

• Chapter 7 summarizes the contributions, shortcomings and consequences
of this work.

• Chapter 8 concludes this dissertation.
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Chapter 2

Related Work

2.1 Anomaly Detection

Detecting anomalous traffic is a research topic that had recently received a
lot of attention. We categorize this topic into two domains; network intrusion
detection and Internet traffic anomaly detection. The goal of intrusion detection
is to protect a network from remote threats, thus, the detection method is
monitoring the traffic at the edge of the protected network where complete flows
and packet payload are usually accessible. In contrast, Internet traffic anomaly
detection aims at identifying anomalous traffic that is transiting in the core of
the Internet where the monitored traffic is asymmetric due to routing policies,
thus, flows are incomplete. Our work is dedicated exclusively to Internet traffic
anomaly detection, thus, in this dissertation anomaly detection refers only to
this specific domain.

For the last decade researchers have taken a strong interest in anomaly de-
tection and proposed different detection methods that are basically monitoring
traffic characteristics and discriminating outliers. We differentiate different cat-
egories of anomaly detection method; the methods monitoring the traffic volume
and those monitoring the distribution of traffic features.

2.1.1 Volume based anomaly detectors

Volume based approaches are monitoring the number of bytes, packets or flows
transmitted over time and aims at detecting abnormal variances that represent
abusive usages of network resources or resource failures. Several methods have
been proposed to effectively identify local and global traffic volume variances
that stand for respectively short and long lasting anomalies.

For example, Barford et al. [9] proposed a method based on wavelet[6] that
inspects the traffic volume at different frequencies. Their approach makes use of
the wavelet analysis to dissect the traffic into three distinct signals representing
local, normal and global variances of the traffic. The decomposed signals are
analyzed by a detection procedure that finds the irregularities and reports the
period of time they occur. Since the three signals represent the traffic at different
time scales this approach is able to report short and long lasting anomalies.
Nevertheless, as the whole traffic is aggregated into a single signal diagnosing
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the detected anomalies is challenging and anomalous flows or IP addresses are
left unknown.

Lakhina et al. [44] proposed a detection method that detects and diagnoses
anomalies in large scale networks. First, their approach monitors the traffic
using a matrix in which each cell represents the traffic volume of a link of the
network at a certain time interval. Second, the main behavior of the traffic is
extracted from the matrix with the principal component analysis (PCA) and
anomalies are detected in residual traffic. Finally, the origin and destination
nodes of the network that are affected by the anomalous traffic are identified
and reported. Later PCA has received a lot of attention in this research domain;
its main drawbacks have been identified [60] and several improvements have been
proposed [62, 37, 45, 48].

Soule et al. [69] proposed another detection method that also monitors
the traffic volume in matrices. The main idea underlying their approach is to
represent in a matrix the traffic between nodes of a large network and remove
the normal traffic using a Kalman filter. The residual traffic is analyzed with a
statistical method that detects anomalous traffic and reports the pair of nodes
affected by the anomalous traffic.

These volume-based anomaly detectors effectively report volume anomalies
while their false positive rate is low. Their design, however, restrict them to
report only a few classes of anomaly, thus, network operators need additional
detectors to identify threats that are invisible in the traffic volume (e.g., network
scan or port scan).

2.1.2 Traffic features based anomaly detectors

In order to overcome the drawbacks of volume-based anomaly detectors re-
searchers proposed to refine the traffic features that are inspected by the anomaly
detectors. For example, as numerous anomalies cause abnormal utilization of
ports or addresses, inspecting the distribution of the traffic into the port and
address spaces permits to identify anomalous traffic that is not reported by
volume-based detectors (e.g., port scan). Nevertheless, due to the size of ana-
lyzed traffic inspecting detailed traffic features is costly and impose researchers
to elaborate effective traffic aggregation schemes. The main challenge in aggre-
gating network traffic is the trade off between maintaining a concise representa-
tion of the traffic and preserving its interesting characteristics. We discriminate
four groups of detection method in regard to their traffic aggregation scheme;
namely, (1) detection methods aggregating the traffic in a single signal, (2)
those aggregating the traffic in traffic matrices, (3) methods aggregating traffic
in histograms, and (4) the other methods.

Signal

A signal provides an intuitive and coarse view of the traffic by representing
the time evolution of a single characteristic of the traffic. Contrarily to volume
based method, here the analyzed signals are obtained from fine-grained measures
providing details traffic characteristics.

The measure that probably have received the most attention in this research
domain is the entropy (i.e., Shannon entropy). The entropy helps to quantify
how the traffic is distributed in a specific traffic feature space; e.g., it allows
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to measure if the traffic is concentrated on a certain IP address or if it is well
distributed among several addresses. Nychis et al. [55] have studied in details
the entropy of several traffic features in order to estimate their correlation and
selected the best candidate.

A few other fine-grained measures have been studied, for example, Kim et al.
[41] proposed to compute a signal representing the correlation over time of IP
addresses or port numbers. Another original work has been recently proposed
by Silveira et al. [67]; their approach monitors the stationarity of the traffic and
reports anomalous traffic that violates the distribution of the flow.

Since signal analysis have been deeply investigated in the scope of detecting
volume anomalies, the detection methods that are identifying anomalies in these
fine-grained signals are similar to those of volume-based detectors. The wavelet
analysis is particularly appreciated for its multi-scale capabilities [55, 41, 51].

Traffic matrix

A traffic matrix represents a time series of flows aggregated according to the
ingress and egress routers they passed to transit on the network, also called,
origin-destination flow (or OD flow). The effectiveness of aggregating traffic
into traffic matrices have been validated in a comparative study by Soule et
al. [68].

Perhaps the most famous anomaly detection method using traffic matrices
is the PCA-based detector firstly proposed by Lakhina et al. [45] and deeply
studied by others [48, 60, 62, 37]. Similarly to their volume-based anomaly de-
tector they proposed an anomaly detector relying on PCA but analyzing the
distribution of traffic features. The traffic distribution is observed using the
entropy of four traffic features (i.e., source and destination address, and source
and destination port) that allow them to identify numerous kinds of anomalous
traffic. Therefore the monitored traffic is stored in four traffic matrices where
each cell represents the entropy of a traffic feature for a certain OD flow and a
specific time interval. Their PCA-based analysis identifies anomalies that affect
the distribution of the traffic and reports OD flow. Since OD flows is an aggre-
gation of usual traffic flows (i.e., the 5 tuple {protocol, source IP, destination
IP, source Port, destination Port}), OD flows reported as anomalous by this
PCA-based detector contains also benign flows that have to be filtered out from
the output.

Li et al. [48] proposed to extend this work to obtain a more precise identifi-
cation of anomalous traffic. Thereby, they infer the IP addresses responsible for
the detected anomalies using random projections (also called sketches). Kanda
et al. [37] also proposed to identify precisely the anomalous IP addresses and
they also proposed a mechanism to adapt the PCA-based detector to analyze
traffic from a single link (as opposed to Lakhina detector which monitors traffic
at several links of a large network).

Histogram

In statistics the distributions of data is commonly studied in the form of his-
tograms. Several works using histograms have been carried out in anomaly de-
tection, for example Dewaele et al. [16] proposed to model flows in histograms
and evaluate their geometry using the Gamma distribution model. The normal
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behavior of the traffic is computed from the distributions of the traffic majority
and outliers are reported as anomalous.

Another work taking advantage of histograms is proposed by Brauckhoff et
al. [13]. In their work the distribution of several traffic features is monitored in
a histogram representing a specific time interval. The histograms of consecutive
time intervals are compared using the Kullback-Leibler divergence, if the differ-
ence between two histograms reaches a certain threshold the anomalous traffic
is identified and reported.

Image

Similarly to our work a few image-based approaches have been proposed for
anomaly detection. Kim and Reddy [40] introduced a way to represent the traffic
as a movie and used a scene-change algorithm to detect significant changes in the
traffic. This method uses image-processing techniques; it identifies the abrupt
variances in traffic distribution and it has a short latency of detection. However,
the design of frames is mainly based on packet counters and this restricts it being
able to detect only those anomalies generating a large number of packets.

The anomaly detectors proposed in this dissertation (Chapter 4 and 5) also
relies on image processing, however, the computed pictures monitor detailed
traffic features (i.e., source IP address, destination IP address, source port, and
destination port) and permit to identify abnormal distributions in these feature
spaces.

2.2 Anomaly detector benchmark

Providing ground truth data to evaluate anomaly detectors is a challenge that
has been addressed several times in the past. We distinguish two different
approaches to evaluate an anomaly detector, namely using simulated or real
traffic.

2.2.1 Simulated traffic

Evaluating an anomaly detector with simulated traffic is appealing as it allows
researchers to work in a controlled environment where the characteristics of
the anomalies can be customized [59]. For example, researchers can focus on
a particular kind of anomalous traffic and vary the intensity of the anomalous
traffic to measure the sensitivity of their anomaly detectors [67, 13, 44, 55, 62,
64].

Nevertheless, a thorough detector evaluation requires also real Internet traf-
fic [59] as simulating the complexity and diversity of real traffic is in practice
unfeasible [19].

2.2.2 Real traffic

Providing real Internet traffic for the evaluation of anomaly detectors is chal-
lenging for two main reasons; (1) labeling anomalous traffic in real Internet
traffic is difficult because of the lack of trustworthy method and the traffic vol-
ume that makes manual labeling unpractical. (2) Providing Internet traffic is
inherently problematic because of the privacy issues.
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The DARPA Intrusion Detection Evaluation Program [50] has been a great
effort to provide labeled traffic to evaluate intrusion detection systems (IDS). It
has been extensively studied, mainly through the KDD Cup 1999 data (KDD’99),
and has been a profitable support for researchers. The main distinctions between
this work and ours are the size of the network measured and the detectors to be
evaluated. The DARPA Intrusion Detection Evaluation Program focuses on the
evaluation of IDS and provides labeled LAN traffic where the packet payload is
available and flows are complete. Whereas our work focuses on the evaluation
of backbone traffic anomaly detectors and we provide labeled backbone traffic
where the packet payload is not available, and the flows are incomplete and
asymmetric. Furthermore, several critical drawbacks of the KDD’99 have been
reported [53]. Also, the traffic data was captured in 1998, hence it contains
no traffic from recent applications or anomalies. Therefore, this data must be
carefully used as it is not representative of real traffic [70] and does not contain
recent anomalies.

Closer to our work, Owezarski [56] recently proposed a data set containing
real backbone traffic where anomalies are precisely located. In this work the
traffic is captured at different points in the RENATER network, which is sup-
posed to be anomaly free, and the researchers generate two kinds of anomalies
(i.e., flash crowd and DDoS attack). Their experiment consist of different sce-
narios where the intensity of the anomalies varies. Thus, the sensitivity of the
detectors to DDoS and flash crowd is easily identified. However, there are only
a few kinds of anomalies in their data and they are not a realistic representation
of the diverse anomalies found on the Internet. Due to privacy issues, their data
is not downloadable and only accessible by visiting their laboratory.

Being conscious of the shortcomings of previous works, this dissertation de-
sign a methodology aiming at providing to the research community a data set
containing real Internet traffic with labeled anomalies.

2.3 Anomaly detector combination

Although the combination of classifiers is a hot topic in the clustering community
[43], only a few works have been conducted in the field of network anomaly
detection. The few proposals are classified into two groups; the combination
strategies that requires a training phase (i.e., supervised combination), and
those that make no prior assumptions (i.e., unsupervised combination).

2.3.1 Supervised combination strategies

A recent study on the combination of anomaly detectors was conducted by
Ashfaq et al. [8]. They proposed a new combination strategy that takes into
account the accuracy of the detectors; first, the accuracy of each detector is
evaluated on a training data set, and then, the results of the detectors are com-
bined regarding their accuracy. Their results emphasized the benefit of taking
into account the detectors accuracies when combining them. Nevertheless, such
methods increase the necessity of human intervention as they involve a training
step.
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2.3.2 Unsupervised combination strategies

Shanbhag and Wolf [65] have studied the combination of five rate-based de-
tectors to accurately identify the real-time variance in traffic volume. They
analyzed seven different combination strategies and emphasize that the best
strategy improves the accuracy of the overall detectors. The goal of our work
differs from theirs as they aim at detecting anomalies in real time by running
several detectors in parallel. Thus, they restrict their study to a particular kind
of computationally efficient anomaly detector (rate-based detector).

The approach proposed in this dissertation focuses on diverse anomaly de-
tectors that are combined with unsupervised combination strategies.
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Chapter 3

Preliminary Analysis

3.1 Dataset: the MAWI archive

The traffic we analyze through all this dissertation is captured by the WIDE
Project and distributed in the form of a database called the MAWI (Measure-
ment and Analysis on the WIDE Internet) archive [14]. This database contains
daily traces representing 15 minutes of traffic captured from a trans-Pacific link
between Japan and the United States. The MAWI archive started in January
2001, and thus, currently contains more than 10 years of traffic. Our study fo-
cuses on the traffic captured at the samplepoints B and F of the MAWI archive.
In fact these two samplepoints are measuring at the same location a link that
has been updated three times; Since 2001 the monitored interface was a 100
Mbps link with an 18 Mbps committed access rate (CAR) and is referred as the
samplepoint B. It was replaced in 2006/07/01 by the samplepoint F which is a
full 100 Mbps link that was updated to a 150 Mbps link in June 2007.

The MAWI archive is made publicly available on the Internet1 since it re-
spects users privacy by scrambling the IP addresses and omitting the packets
payload. Therefore, the MAWI archive has enabled many researchers to study
Internet traffic characteristics [12, 29, 38, 27], or evaluate anomaly detectors
[16, 22, 20] and traffic classifiers [15, 49].

The main assets that make the MAWI archive a valuable support for study-
ing network traffic are its size, the diversity of traffic it contains and its acces-
sibility:

• The MAWI archive currently represents more than 10 years of traffic,
therefore, it highlights the longitudinal characteristics of the network traf-
fic and permits to study the evolution of Internet traffic [26]. In regard to
anomaly detection, the MAWI archive allows us to inspect short and long
lasting anomalies that appeared since 2001.

• Furthermore, the MAWI archive currently monitors daily several hundred
thousand IP addresses that are using numerous applications. Thereby, it
contains diverse anomalies ranging from well-know anomalies that have
been identified in the previous works and other unknown anomalies that
are hidden in the traffic or currently emerging. Consequently, the MAWI

1http://mawi.wide.ad.jp/mawi/
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Table 3.1: Detection theory terminology.

Detector result
Reported Ignored

Ground truth data
Anomalous true positive false negative
Benign false positive false negative

archive allows us to study various anomalies and enables a general analysis
of anomalous traffic that is not restricted to a certain kind of anomaly.

• All traffic traces from the MAWI archive are freely downloadable on the
Internet, thus, the networking research community is able to reproduce
and compare results obtained using MAWI traffic.

3.2 Background

This section presents the terminology, metrics and heuristics that are used in
this dissertation to evaluate the anomaly detectors.

3.2.1 Terminology

In order to evaluate the performance of an anomaly detector researchers require
a data set in which anomalous traffic has been identified beforehand using a
trustworthy method that is independent from the evaluated detector. This
data set is commonly referred as ground truth data in the literature and this
dissertation.

Using ground truth data researchers validate the effectiveness of their de-
tectors by measuring the amount of traffic that falls into the four following
categories:

• The traffic that is reported by both the evaluated detector and the trust-
worthy method (true positive).

• The traffic that is ignored by the evaluated detector but reported by the
trustworthy method (false negative).

• The traffic that is reported by the evaluated detector but ignored by the
trustworthy method (false positive).

• The traffic that is ignored by both the evaluated detector and the trust-
worthy method (true negative).

For clarity purpose these four different categories are referred using the con-
cise terminology commonly used in the detection theory and illustrated in Ta-
ble 3.1.

Nevertheless, in the domain of network traffic anomaly detection the lack
of ground truth data makes the evaluation of anomaly detectors challenging.
Therefore, researchers employ different approximate evaluation methods to eval-
uate the performance of the detectors. For instance, this dissertation falls back
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Table 3.2: Heuristics deduced from main anomalies previously reported [12] and
manual inspection of the MAWI archive.

Category Label Details

Attack Sasser Traffic on ports 1023/tcp, 5554/tcp
or 9898/tcp

Attack RPC Traffic on port 135/tcp
Attack Ping High ICMP traffic
Attack Other Traffic with more than 50% of SYN,

attacks RST or FIN flag. And http, ftp, ssh,
(Flood) or dns traffic with more than 30%

of flag SYN
Attack NetBIOS Traffic on ports 137/udp or 139/tcp
Special Http Traffic on ports 80/tcp and 8080/tcp

with less than 30% of SYN flag
Special dns, ftp, Traffic on ports 20/tcp, 21/tcp,

ssh 22/tcp or 53/tcp&udp with less
than 30% of SYN flag

Unknown Unknown Traffic that does not match
other heuristics

on a heuristic evaluation methodology which consists in benchmarking a detec-
tor with a pseudo ground truth data obtained using heuristics.

3.2.2 Heuristics and evaluation metric

Our evaluations of the proposed anomaly detectors rely on heuristics based on
a manual inspection of the MAWI traffic and the anomalies previously reported
in the literature [12].

Heuristics classifies traffic into three categories, attack, special, and unknown
that help in investigating the results of the anomaly detectors. The attack
category stands for traffic using port numbers commonly used by malicious
code, ICMP traffic that is abnormally high, or TCP traffic with an aberrant
proportion of SYN, RST, or FIN flag. The special category represents the
traffic corresponding to well-known protocols (e.g., http and dns), while the
unknown category stands for the traffic that is left unclassified.

An anomaly detector is expected to report more traffic classified as attacks
than those labeled special or unknown. Thus, the accuracy of a detector is
defined as the ratio of the alarms classified as attacks by the heuristics listed in
Table 3.2:

Accuracy =
#attack

#attack +#special +#unknown

Also, we ascertain the heuristics is fundamentally independent from the prin-
ciple of the proposed detection methods, thus, it is appropriate to evaluate these
anomaly detectors. Indeed, this heuristics is based on well-known port numbers
and abnormal usages of TCP flags, whereas the detection methods proposed in
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the following chapters uses only the port numbers as indexes and does not rely
on the application information related to them nor the TCP flags.

3.3 Preliminary detection

Our understanding of the MAWI traffic and its anomalies is initiated by man-
ually investigating several characteristics of the traffic and inspecting results
from detectors that have been previously proposed in the literature.

3.3.1 Manual inspection

We manually inspect the MAWI traffic to identify the prominent anomalies that
should be reported by the anomaly detectors.

We dissect the MAWI archive using the port-based classifier CoralReef [2]
and inspect the traffic corresponding to each application. By monitoring the
number of packets standing for each application we manually identify five anoma-
lous events that are significantly altering the main behavior of the traffic (Figure
3.1(a)):

• From September to December 2003 we observed a substantial number of
ICMP flows constituting a long-lasting ping flood. The root cause of this
anomalous event is undetermined, however, it has seriously impacted the
network resources as it represents 34.5% of the total number of packets
transmitted from September to December 2003.

• From August 2003 the outbreak of the Blaster worm is observed in the
MAWI traffic. This worm is spreading in the network through a Windows
security hole and has been observed all over the world.

• From June 2004 to June 2005 another worm called Sasser is observed in
the form of three peaks representing three outbreaks of different variants
of this worm.

• After the update of the link in July 2006, an important traffic against
DNS servers is observed. This traffic is particularly intense in the middle of
November 2006, for example, the DNS traffic measured on the 2006/11/11
stands for 83% of all packets recorded this day.

• From 2009 the traffic classified as unknown has suddenly and dramatically
increased. This traffic is difficult to investigate as it is observed on high
port numbers for which there is no application related information, conse-
quently, the root cause of this event is unclear. We notice, however, that a
virulent worm called Conficker is using randomly high port numbers and
emerged at a similar period of time.

Another anomalous event is observed by monitoring the traffic in regards to
the number of bytes, it starts in June 2003 and stands for the outbreak of a
worm spreading via emails that is called Sobig (Figure 3.1(b)).
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(a) Packet breakdown of the MAWI archive.

(b) Byte breakdown of the MAWI archive.

Figure 3.1: Application breakdown of the MAWI archive from 2001 to 2011.
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3.3.2 Current anomaly detectors

A deeper understanding of the MAWI traffic is achieved by analyzing the traffic
with three anomaly detectors based on different theoretical backgrounds; one is
based on the principal component analysis, one on the gamma modeling and one
on the Kullback-Leibler divergence. We selected these three dissimilar detectors
to inspect the results from different classes of anomaly detection method.

Principal component analysis

Principal component analysis (PCA) is a mathematical tool that projects a data
set onto subspaces in which the variance of the data is maximized. Therefore,
these subspaces highlight the main characteristics of the data set and help in
classifying it.

The main approach underlying a PCA-based anomaly detector is, first, to
monitor the traffic in a matrix, second, uncover the main characteristics of the
traffic using PCA (these are considered as the profile of the normal traffic), and
finally, report as anomalous the traffic that is featuring separate characteristics.

This approach based on PCA is perhaps the most studied technique for
anomaly detection, it was first proposed by Lakhina et al. [44] to detect anoma-
lous traffic transiting in a network, and it has received much attention in the
last few years [48, 60, 62, 37].

For instance, the PCA-based detector employed in our experiments is an
improved version proposed by Kanda et al. [37] that overcomes two inherent
problems of the original PCA-based detector proposed by Lahkina et al. [44],
that are; the restriction of analyzing traffic from several links and the diffi-
culty of precisely pinpointing the anomalous traffic due to traffic aggregation
[60]. Indeed, the employed detector takes advantage of random projections (or
sketches) [42, 48, 16] to analyze only traffic measured at a single link and re-
trieve the source IP addresses corresponding to the anomalous traffic. Hereafter
we refer to this anomaly detection method as the PCA-based detector.

The result of the PCA-based detector using the MAWI traffic is illustrated
by Figure 3.2(a). This detector detects the six prominent anomalies manually
reported in the previous section, although, the Blaster worm and the ping flood
are partially reported.

Gamma distribution model

The gamma distribution is a model that describes any probability distribution
(Gaussian or not) with only two parameters. Dewaele et al. introduced an
anomaly detection method based on sketches and multi-resolution gamma mod-
eling [16]. Similarly to the PCA-based detector, this detection method uncovers
the behavior of the main traffic and reports traffic with different behavior as
anomalous. Nevertheless, this detection method relies on histograms and the
gamma model that are fundamentally different from the PCA approach.

In a nutshell, this detection method splits the traffic into sketches that are
monitored using histograms (contrarily to the PCA-based detector that is rely-
ing on traffic matrix). Afterwards, the sketches are modeled using the Gamma
distribution and an adaptive reference standing for the normal traffic is com-
puted. Thereby, the traffic that is distant from the computed reference is con-
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(a) Traffic reported by the PCA-based detector.

(b) Traffic reported by the Gamma-based detector.

(c) Traffic reported by the KL-based detector.

Figure 3.2: Breakdown of the results of three detectors using the MAWI archive.
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sidered as anomalous and the corresponding source and destination IP addresses
are retrieved using the sketches.

The result of the Gamma-based anomaly detector using the MAWI traffic is
illustrated by Figure 3.2(b). This detector successfully identified four prominent
anomalies manually reported in Section 3.3.1, however, the Blaster and Sasser
worms are not reported using this detector. A careful manual investigation
revealed that the traffic corresponding to these worms consists mainly of small
flows that are missed by this detector.

Kullback-Leibler divergence

The Kullback-Leibler (KL) divergence is a data differencing metric measur-
ing the variance between two probability distributions. It has been applied to
anomaly detection by Brauckhoff et al. [13] to detect the prominent changes
in the traffic. Similarly to the gamma-based detection method this detector
monitors in histograms the probability distribution of the traffic, however, its
approach is fundamentally different as the computed reference representing nor-
mal traffic is obtained from previous observations.

The approach proposed by Brauckoff et al. [13] is to monitor the traffic
in several kinds of histograms that monitor distinct traffic features and apply
the Kullback-Leibler (KL) divergence to two consecutive observations. Conse-
quently, abnormal variances in the distribution of the monitored traffic features
result in high KL divergence values that are detected using an adaptive thresh-
old. Traffic features that alter the distribution of the traffic are retrieved using
sketches and allows to accurately extract anomalous traffic with an association
rule mining algorithm. Thus, the alarms reported by this anomaly detector are
association rules, namely 4-tuples (source and destination IP addresses, source
and destination port numbers) where at most three elements can be omitted.

The result of the KL-based anomaly detector using the MAWI traffic is
illustrated by Figure 3.2(c). We observe that this detector reports significantly
different traffic compare to the PCA-based and the gamma-based ones. The KL-
based detector successfully detected the Blaster and Sasser worms, whereas, it
completely missed the Sobig worm. Other prominent anomalies are partially
reported by this anomaly detector.
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Chapter 4

Anomaly Detection based
on the Hough Transform

4.1 Introduction

Identification of anomalies in Internet backbone traffic is an important task for
securing operational networks and maintaining optimal network resources. How-
ever, analyzing traffic taken from a high speed Internet backbone — where the
payload data is usually inaccessible, the traffic is asymmetric and often sampled
— is a challenging issue. A significant difficulty is to accurately characterize
anomalous traffic while a wide diversity of threat is constantly emerging. Re-
searchers have mainly tried to handle anomaly detection as a statistical issue
[9, 16, 45], but they have faced several common problems; normal traffic is mis-
reported when anomalous traffic is dominant, mice flows are usually omitted,
and they are in practice difficult to use as the parameter set and output requires
advanced knowledge on the underlying statistical analysis.

The main idea of our work is to apply image processing and pattern recog-
nition techniques to anomaly detection; traffic is monitored in 2-D scatter plot
where each plot represents packets and anomalous traffics appear as “lines”.
Anomalies are easily extracted with a line detector and the original data can be
retrieved from the identified plots. Thereby, the proposed approach is intuitive
to network operators, it also has the advantage of quickly and precisely report-
ing anomalies involving mice flows, and it does not assume that the normal
traffic is dominant. The method inspects only packet header information at a
single point in the network, and it requires no prior information on the traffic
or port numbers.

In [24] we proposed the basic idea of this new approach based on pattern
recognition of network-related information. Also, the proposed method was
partially validated with a single traffic trace. In this chapter, we thoroughly
investigate this method; first, we estimate the dependencies of its parameter set.
Next, we characterize anomalous behaviors in a large-scale publicly available
traffic data set (for 6 years) taken from a trans-Pacific link. We also compare the
results of our method with those of different methods based on multiresolution
gamma modeling [16] and K-means [63]. Finally, we highlight the different
strengths and weaknesses of each method, and emphasize the need for using
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different detection approaches together.

4.2 Temporal and spatial behavior of anomalous
traffic

In previous work we proposed a visualization tool that emphasize anomalies in
2-D pictures (see Appendix A), the observations made with this tool helped us
in characterizing anomalous traffic.

Thereby, we identify anomalies through their unusual uses of network traffic
features during a period of time. We consider four traffic features — source
address, destination address, source port, and destination port — and demon-
strate that anomalous traffic may be manifested by some of them having abnor-
mal distributions. By mapping traffic into a 2-D space (one feature and time),
anomalies can be intuitively identified as lines.

Figure 4.1 shows two scatter plots generated from the same traffic trace taken
at a trans-Pacific link (MAWI Samplepoint-F 2007/01/09) [14]; the horizontal
axes stand for time, while the vertical axes represent the source port space in the
upper sub-figure and the destination port space in the lower one. The color of the
plots indicates the amount of packets. The apparent “lines” represent excessive
uses of traffic features; traffic is either concentrated on a specific instance of
a feature (horizontal line), or dispersed on numerous instances (vertical and
diagonal line). The angle of diagonal lines acquaints the propagation speed of
traffic within the feature space observed.

For example the two “lines” labeled (a) in the upper panel clearly stand for
malicious traffic since all source port numbers are used in only 14 minutes. Man-
ual inspection reveals that it is only SYN packets initiated from the same source
address and directed to a few destination addresses on port 443 (HTTP over
SSL). This is a typical behavior of an attack against a protocol of the Microsoft
SSL library. The other slanted “lines” are the same kinds of attack mounted
against other services. In particular, label (b) in Fig. 1 corresponds to a DDoS
attack against a few HTTP servers (SYN packets). Because the displayed traf-
fic is bi-directional, we can see “lines” similar in the bottom scatter plot (b’)
representing the acknowledgments sent from the servers to the aggressors (SYN-
ACK packets). Also, two kinds of “lines” are repeated several times (see labels
(c) and (d) in Fig. 1); these are ACK floods from two distinct hosts against
different targets. The horizontal “lines” are anomalies consuming bandwidth,
such as DoS attacks, misconfigurations or heavy-hitters.

4.3 Anomaly detection method

On the basis of observations presented in Section 4.2, we devised an anomaly de-
tection method based on pattern recognition [24]. The key idea underlying this
approach is that traffic is monitored in pictures in which anomalous behaviors
are displayed as “lines” that can be easily identified with a line detector.

This approach inspects only IP addresses and port numbers and requires no
knowledge of the port numbers (such as application-related information). The
method does not examine the packet payload, and its low computational time
allows on-line detection.
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Figure 4.1: Scatter plots of trans-Pacific traffic data. Source port vs. time (top)
and destination port vs. time (bottom).
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Algorithm 1 Anomaly detection and classification

1: f is the number of traffic features considered
2: Set the sliding window at the beginning of the data
3: while window != EOF do
4: for all packets in the window do
5: Plot packet in f pictures and store header information
6: end for
7: for all pictures do
8: Compute the Hough space for the picture
9: Extract lines from the Hough space

10: for all lines found do
11: New event e
12: Retrieve all packet header from the line
13: e← Summarize traffic features from packet headers
14: if ∃ anomaly a with main features = main features of e then
15: Add e to a
16: else
17: Create a new anomaly
18: end if
19: end for
20: end for
21: Slide the window
22: end while

4.3.1 Algorithm

The pattern-recognition-based method is outlined as Algorithm 4.3.1. The
core of the detection process consists of three steps:

Computation of pictures (lines 4-6) Four picture categories are considered
to emphasize anomalous traffic (f = 4); all of them have time on the x axis and
a different traffic feature on the y axis (source/destination address or port).

In order to reduce the IP address space and the port number space to match
the size of pictures, we implemented two mechanisms. (1)Let say A is an IP
address represented on 32 bits. v is the mapped value defined as v = A mod 2α

(α = 13). Thus, A is mapped to a value in 213 space. We divide this space into
16 pictures (512 pixels high) to improve the accuracy of the Hough transform.
(2) Port numbers are directly aggregated into 16 pictures; in this case a pixel
represents 216/16∗512 = 8 ports. All these values have been selected empirically
and permit a low traffic aggregation not altering detection performance.

Detection: Hough transform (lines 8-9) Our method is based on a com-
mon image processing technique that extracts shapes in pictures; the so called
Hough transform. The fundament of this technique was introduced by Hough
in 1962 [33], its potential benefits to image processing have been highlighted by
Rosenfeld 7 years later [61], and the modern form of the Hough transform as it
is now employed was proposed by Duda and Hart in 1972 [17, 31]. The Hough
transform is among the most popular of all existing shape extraction methods
[34] and its success lies in its computationally efficient manner to achieve tem-
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(a) Picture. (b) Hough space.

Figure 4.2: Principles of Hough transform.

plate matching. This technique is particularly effective to detect lines in pictures
[5].

We point out two important assets of the Hough transform: (1) It allows
imperfect instances of objects to be detected; in our case, it can identify lines
with missing parts (e.g., dotted lines). Consequently, anomalies interrupted by
network or process latencies and displayed as segmented lines are also detected.
(2) It is robust against noise; it can detect anomalies surrounded by legitimate
traffic that appear as noise on the analyzed pictures.

The Hough transform consists of a voting procedure, where each plotted
point (x, y) of a picture elects lines that can pass through its position. It
enumerates all ρ and θ solving the equation of a line in polar coordinates:
ρ = x · cos θ + y · sin θ. All votes are collected in an array called a Hough
space, and all candidate lines are determined as the maximum values in this
array. We distinguish two ways to sum votes: all votes are equal so that the val-
ues of the Hough space increase linearly, or votes increase proportionally to the
current accumulated values (exponential growth). In the former case, long and
short lines are handled equally, whereas, in the latter case, the Hough transform
privileges longer lines and avoids false detections.

The peaks in the Hough space are extracted with a threshold relative to
the average value of accumulated votes. Naturally, in the case of a linear vote,
the choice of threshold can be an involved task. We discuss the role of these
parameters in section 4.3.3.

Figure 4.2 depicts an example of the Hough transform. The analyzed picture
(Fig.4.2(a)) contains three plots, and the votes for each plot are represented by
a curve in the Hough space (Fig.4.2(b)). The maximum number of votes in the
Hough space is obviously at the intersection of the three curves I = (θ0, ρ0),
identifying the line passing through the 3 plots, ρ0 = x · cos(θ0) + y · sin(θ0).

Identification (lines 10-19) For each line extracted by the Hough transform,
the initial data are recovered from all plots involved. Packet information is
summarized as a set of statistics called events. An event constitutes a report
for a specific line in a picture. Anomalies are monitored by more than one
line and cause several events. That is, events from the same address source or
aimed at the same address destination are grouped together to form an anomaly.
Since anomalies usually raise several events, single events are ignored to reduce
the number of false-positive alarms. This heuristic is a trade-off between false-
positive and false-negative alarms. It permits to avoid about 50% of false-
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positive alarms, but decrease the number of true-positive alarms by about 20%.

4.3.2 Computational complexity

The computational complexity of our method is mainly the one of the Hough
transform performed on all pictures. In our experiments, we implemented the
standard Hough transform which have a computation complexity linear to the
number of plots in picture. In the worst case, each plot represents a single
packet, and the number of plots in a picture category is equal to the total
number of packets N . Let f be the number of picture categories, p the number
of pictures for each picture category, t the traffic duration divided by the time
interval, and ni,j,k the number of plots in the picture k of category i at the time
interval j. The cost of Algorithm 4.3.1 in the worst case is linear and specified
as:

f∑
i=1

t∑
j=1

p∑
k=1

O(ni,j,k) =

f∑
i=1

O(N) = f ·O(N)

4.3.3 Parameter space

The performance of an anomaly detector strongly depends on the tuning of its
parameters. In practice, satisfactory values are obtained by finding the best
false-positive/false-negative trade-off through several tests run on well-known
traffic traces. However, these values may not be suited for traffic with different
properties. A relationship between parameter values and traffic characteristics
is difficult to establish; thus selecting optimal parameters a priori is a chal-
lenge faced by every researchers. Automatic and dynamic tuning are still open
problems.

This section pays close attention to the most significant parameters, namely
the Hough transform parameters and the time interval, and evaluates their role
in detecting anomalies in real Internet traffic.

We analyzed three sets of traces from the MAWI archive; two sets were
collected from samplepoint-B (a 18-Mbps Committed Access Rate on a 100Mbps
link) over the course of one week in 2004/08 and one week in 2005/08, and one
set was collected from samplepoint-F (a full 100Mbps link) over the course of
one week in 2006/08. The throughput at samplepoint-B was increasing during
this period, and the data taken in 2004 and 2005 showed minor differences in
volume. Moreover, samplepoint-B was replaced by samplepoint-F in July 2006,
and this considerably increased the amount of data transmitted.

Simple heuristics helped us to evaluate the amount of anomalous traffic iden-
tified by our method. These heuristics were deduced from known attacks that
occurred during the period of time analyzed and improper uses of TCP flags.
Table 3.2 lists them in the same order as executed; the first five categorize traf-
fic as “sure attacks”, and the last three categorize “suspected” traffic (meaning
that either more inspection is needed, or it is a false-positive alarm). The qual-
ity of detection is measured as the ratio of “suspected” anomalies over the total
number of anomalies reported (a lower ratio is better, see Fig. 4.3).
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Figure 4.3: Evaluation of parameters with traces from 2004/08. For the left
figure the image width is set to 100 and the time interval is set to 6 seconds.
For the right figure the weight is set to 1.6 and the threshold is set to 10.

Hough parameters

During the voting procedure of the Hough transform, a vote for a line l is defined
by a function of the form wx, where x is the current number of votes for l, and
w is a constant value named weight. A relative threshold is used to extract the
detected lines in the Hough space.

The weight and threshold are the principal parameters of our method. To
evaluate their impact on the anomaly detection, we executed our detection
method on three data sets and changed the weights and threshold (other param-
eters were fixed). This analysis confirmed our expectations, that is: (1) Large
weights (w > 1) help to highlight well-marked lines, whereas, w = 1 permits
small lines to be elected. (2) The threshold is significant only when w = 1. Us-
ing the heuristics of Table 3.2 we deduced that the detection method performed
better inspections on every trace analyzed with w = 1.6 (all thresholds tested
led to similar results).

The left graph in Fig. 4.3 displays the average result for data during a week
in August 2004. The two other data sets have provided similar results; hence,
we concluded that this parameter is robust to throughput variances.

Image size and time interval

The manner of mapping traffic in a 2-D space is a key feature of our method;
however, setting the proper resolution (pixel/second) of pictures is not intuitive.

Numerous tests on the three sets of traffic traces (the right graph of Fig.
4.3 shows the tests proceed on the traffic traces taken in 2004/08) indicated
that the optimal image width for most cases is 100 pixels, whereas the ideal
time interval depends on the analyzed traffic. The appropriate time interval
for traces taken in 2004 is around 6-8 seconds (see right graph of Fig. 4.3). A
smaller time interval (around 6 seconds) was found to be best for data recorded
in 2005, whereas 3 seconds was found to be best for data from samplepoint-F.
The main differences in the three sets of traces are their throughput and link
bandwidth; in particular, the set collected in 2006 has more than twice the traffic
volume of the one from 2005. Consequently, for the same time interval, pictures
representing the traffic taken in 2006 might plot two times more points than
those standing for the traffic from 2005 (depending on the traffic distribution).
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The Hough transform works properly only if enough points are plotted in the
pictures and the pictures are not saturated.

To maintain a certain quantity of data displayed in pictures, the time interval
should be selected in accordance with the measured traffic rate of the observed
traffic.

4.4 Evaluation

The evaluation of a detection method is an important step in validating its effec-
tiveness; however, the lack of a common database with real backbone traffic and
labeled anomalies raises a complicated issue. In Internet research community,
the evaluation of an anomaly detection technique usually consists in one of the
following processes: (1) Comparison of anomalies reported by a few different ap-
proaches [40]. (2) Analysis of real data and manual estimation of the number of
false-positives reported [9, 45, 16]. (3) Injection of malicious traffic into traces
supposed to be anomaly-free and computation of false-positive/false-negative
rates [45].

We used the processes (1) and (2) to evaluate our detection method in real-
istic conditions. In section 4.4.1 we identify anomalies in a large data set and
carefully inspect the results. In section 4.4.2 we compare the anomalies detected
by our method with those identified by a method based on gamma modeling
and a method based on K-means.

4.4.1 Anomalies of MAWI database for 6 years

We analyzed all traces of the MAWI database collected at samplepoint-B from
01/2001 to 06/2006; each trace represents 15 minutes of traffic with anonymized
IP addresses. The same data set has been dissected in [12], to show the detailed
evolution of the traffic as well as an application breakdown. Although [12] did
not aim at labeling anomalies in MAWI systematically, it does mention several
prominent anomalies that significantly altered the traffic. For example, a major
ping flood occurred on 2003/08-12, and outbreaks of the Sasser worm were
identified in 2004/08, 2004/12 and 2005/03.

Results

We used our method to analyze all traces collected from 2001 to 2006. The traces
were processed with same parameters (weight=1.6, time interval=8 seconds,
image width=100 pixels and threshold=10). Since the weight was set to 1.6 the
threshold has been arbitrary chosen (see Section 4.3.3). Figure 4.4 summarizes
the results and classifies them by the heuristics in Table 3.2. This graph plots
the number of anomalies, whereby an anomaly is as described in Section 4.3.1
(namely as a set of grouped events with respect to their sources or destinations
IP).

The large anomalies noticed in [12] can be observed in Fig. 4.4; the ping
flood appears from 2003/08 to 2004/01, and the three Sasser outbreaks are
represented as three peaks between 2004/05 and 2005/06. Our method also
identified important activity on port 135 starting in 2003/08 and lasting several
years (labeled RPC Fig. 4.4). This traffic also appears in the application break-
down of [12], and it has been attributed to MS vulnerabilities. Our manual
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Figure 4.4: Average number of anomalies per week reported by our method
on all traffic traces collected on the MAWI samplepoint B from 01/01/2001 to
30/06/2006.

inspection revealed that this anomalous traffic was initiated by a large outbreak
of the Blaster worm (also known as MSBlast/Lovsan) spreading through an
exploit in the Remote Procedure Call (RPC) protocol of almost all versions of
Windows at this time. Security holes in RPC have been frequently reported
since then, and this protocol is still a common medium for various attacks.

Mainly NetBIOS traffic was reported from January 2001 to August 2002. We
deduced from our manual verification that most flows contained a tiny number
of packets with both the port source and destination set to 137/udp. This
traffic is a manifestation of the normal behavior of the name resolution service
implemented in the Windows networking shares (even though this mechanism
is designed for local networks). We concluded that the traffic was principally
failed name resolution requests initiated by a large number of distinct hosts
and aimed at numerous destinations. We noticed that most of the sources and
destinations of the identified flows did not have other network activity, and
their bandwidth consumption was really low. In addition, the average number
of packets observed in the analyzed backbone link steadily increased during the
six years. Our detection method identified this category of traffic in 2001 and
2002 because of the fixed parameters it employed for the analysis. This means
that not enough points were displayed in the pictures to compute the Hough
transform properly. Although malicious behavior is not evident, these anomalies
still reflect a misuse of the NetBIOS protocol.

However, from 2002/10 onwards, the distribution of NetBIOS traffic com-
pletely changed and clearly indicated malicious behavior. Indeed, we observed
that various hosts were probing entire sub-networks to take advantage of the
security flaws of the Windows file sharing mechanism, and several viruses were
released during the same period (e.g., Opaserv, Bugbear).

Other attacks were mainly related to the NetBIOS protocol, but the heuris-
tics classified these as due to a high rate of SYN flags (on port 139/tcp).

This analysis of the MAWI database exposed large-scale attacks, and it
demonstrates our method’s ability to identify numerous anomalies. However,
quantitative observations conducted over a long period (for 6 years) naturally
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Figure 4.5: Several examples of anomalies detected in one traffic trace of 15
minutes (2004/10/14). Two horizontal lines: 8000/udp (iRDMI). On the left
light-colored: 5900/tcp (VNC). Three long slanted lines: 445/tcp (MS Service).
Black: 1023/tcp, 5554/tcp and 9898/tcp (Sasser).

omit occasional anomalies. Hence, the next section discusses anomalies detected
in a single day.

Examples of anomalies detected in the same day

Figure 4.5 illustrates several examples of anomalies detected in the same day;
legitimate traffic and other identified anomalies have been excluded for clarity.

The light-colored lines on the left side of Fig. 4.5 are generated by one host
probing a large sub-network on port 5900 (VNC, a remote control application).
The attack is aimed at 162 hosts of the same sub-network, but due to the
routing policy, only half of them have been contacted via the analyzed link.
Despite missing packets, the anomaly is still easily identifiable. The activity
was initiated by only one source IP address, so the detection method reports it
as a single anomaly.

The three long slanted lines stand for a similar behavior against a Windows
service (port 445), whereas the two horizontal lines display abnormally high
traffic between a couple of hosts on port 8000. These two long-lasting anomalies
started before and stopped after the detection process, meaning that they could
not be revealed by methods analyzing traffic volume. Our method had no
difficulty in identifying them.

The traffic on this day is flanked by two significant outbreaks of the Sasser
worm. Sasser activity is shown in black in Fig. 4.5, and two different propa-
gations of the worm are shown. On the one hand, long vertical lines, depicting
a large and quick spread, appear on the whole picture. On the other hand,
the small slanted lines at the top of the figure show a slowly spreading worm.
These two observations illustrate either two variants of the worm or the net-
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work/process latency effect on the worm spread.

4.4.2 Cross-validation

We compared results of our method with those of two other methods. One
consists of random projection techniques (sketches) and multiresolution gamma
modeling [16]. Hereafter we call it as the gamma-based method. The traffic
is split into sketches and modeled using Gamma laws, and anomalous traffic is
reported by using the statistical distance from the average behavior. The other
method is a distance-based outlier detection method using K-means [63]. The
traffic is clustered with K-means regarding 14 traffic features and outliers are
reported depending on their density and distance to other clusters.

Methodology

The three methods were tested on several trans-Pacific traces captured during
August 2004. A great deal of anomalous network activity concerning the Sasser
worm was reported during this time. Analysis of each data set leads to similar
conclusions, so we only present the results for one traffic trace (2004/08/01). We
tuned all methods until they report approximately the same number of alarms.
The alarms are reported differently by these methods, so we checked whether
an alarm reported by one method had also been detected by the others, and
vice-versa.

Results

The gamma-based method was executed with the values of 0.8 for the alpha
parameter and 500 for the threshold and it reported 1083 alarms. K-means
was computed with 100 clusters and it reported 917 alarms. Our method was
run with a time interval of 10 s, w = 1.6 and it reported 1063 alarms. For a
15-minutes trace with a mean throughput of 20.77Mbps, 6 591 957 packets, and
614 324 different IP addresses (57 862 source addresses), the execution time
of our method was about 3.5 minutes on a standard desktop PC (Core2Duo
2.6 GHz, 2 GB of RAM). Table 4.1 shows these alarms classified by using the
heuristics of Table 3.2.

We checked if the alarms reported by our algorithm had also been reported
by the gamma-based method. We inspected all alarms not reported by ei-
ther method and noticed that the 574 (854− 280) alarms labeled as ATTACK
were true-positive alarms related to worms (Sasser and Blaster) or scan activity
(mainly on NetBIOS). Our method detected twice as much anomalous traffic
for this class of anomaly than the statistical one did. Several of these anomalies
could not be detected with the gamma-based method because of the small num-
ber of packets involved (< 500 packets). However, the 24 (130 − 106) and 27
(79−52) alarms labeled as SPECIAL and UNKNOWN reported by our method
but not by the gamma-based one were heavy traffic between two hosts using
HTTP, HTTPS, or peer-to-peer protocols. Although the traffic in most of these
cases seemed to be harmless elephants, their packet payloads would have to be
checked to conclude if they were indeed false-positives alarms.

The gamma-based method reported 1083 alarms; 579 (1083− 438) of these
were not detected by our method. Of these 579 alarms, 375 were labeled as
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Table 4.1: Alarms reported by the Hough-transform-based (HT), gamma-based
(G), and K-means-based (KM) methods.

HT G KM HT&G HT&KM G&KM
Attack 854 323 306 280 75 50
Special 130 517 488 106 23 75
Unknown 79 243 123 52 49 26

Total 1063 1083 917 438 147 151

SPECIAL, and 161 were classified as UNKNOWN. We deduced from a manual
inspection that most of them were heavy traffic with uncommon properties using
http or peer-to-peer protocols; we were not able to determine if they were false-
positive alarms without payload. However, our method missed 43 (323 − 280)
events reported by the gamma-based method and labeled as ATTACK ; 21 of
them represents worms (mainly Sasser) and 11 stand for PING flooding.

The K-means-based method identified 917 alarms; 770 (917− 147) of these
were not detected by our method. 439 of these 770 were labeled as SPECIAL,
and 100 were classified as UNKNOWN. Manual inspection has shown that they
were mainly harmless traffic with uncommon properties. Only 75 alarms labeled
as ATTACK were reported by both the K-means-based and our method. The
231 (306−75) alarms labeled as ATTACK only reported by the K-means-based
method are mainly flows with a high percentage of TCP flags set to SYN, FIN
or RST. Although these events are mainly true-positive alarms missed by our
method, we had difficulty in determining the threat posed by 116 of them where
the number of packets send by a suspicious host is really low (≤ 10).

In order to validate the sufficiency of the heuristics of Table 3.2, we inspected
the 445 (79 + 243 + 123) alarms labeled as UNKNOWN reported by the three
methods. 411 are considered as peer-to-peer traffic because using both higher
ports. The rest of them are usual traffic, RSYNC (10), NNTP (6), POP3 (5),
RTP (4), etc.

Discussion

The proposed method has reported a large number of alarms labeled as AT-
TACK not detected by other methods, indicating that our method has a high
probability of reporting true-positive alarms compare to others. However, our
method still missed 249 (231+43−25(double counted)) ATTACK alarms (false-
negative) because it does not take TCP flag into account and due to the absence
of port number in ICMP protocol. Considering the 116 suspicious ATTACK
alarms reported by K-means (i.e., host sending less than 10 packets), the detec-
tion ratio (true-positive rate) of our method is about 77 ∼ 87%.

Many alarms labeled as UNKNOWN and SPECIAL have been reported by
the gamma-based and K-means-based methods. Although these alarms could be
true positives misclassified by the heuristics, our manual inspection revealed that
they were false-positives alarms. Also, our method reported only 209 (130+79)
false-positive alarms over the 56759 benign source IP (reported by none of the
three detection methods as ATTACK). These observations show the low false-
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positive rate (0.3%) of the proposed method.
Furthermore, we have manually observed 426 source addresses related to the

Sasser activity, 84 (19%) have been identified by the K-means-based method,
156 (36%) by the method based on gamma modeling, and 321 (75%) by our
method.

We deduced from Table 4.1 that even though our method and the gamma-
based one are quite different, they had almost 50% of their results in common.
Our method detected two times more traffic related to worms and scan activity
than the gamma-based method did. This category of anomaly is characterized
by small flows and its reflects the fundamental weakness of statistical meth-
ods. By analyzing TCP flags, the K-means-based method could detect several
anomalous traffics not reported by other methods. However, this method is de-
signed to identify outliers and since the Sasser activity has been dominating an-
alyzed traffic, it failed in detecting such traffic and reported many false-positive
alarms. Also, the K-means-based method does not scale to backbone traffic
because of its computation time. The three methods have distinct weaknesses
and advantages; hence, they would be a good combination.

4.5 Summary

We illustrated the characteristic shapes of anomalous traffic in time and space
and presented an approach to anomaly detection based on pattern recognition.
Since the proposed approach employs a pattern of anomalous traffic it identi-
fies anomalies although they dominates the traffic or they stand for mice flows,
thereby, the proposed method overcomes the shortcomings of current statistical-
based detectors. Furthermore, this method takes advantage of a graphical rep-
resentation to reduce the dimensions of network traffic and provide intuitive
output. Only header information is required; no inspection of the packet pay-
load and no prior information about the traffic or port numbers are needed.
We conducted a detailed evaluation of our method by analyzing the principal
parameters and by validating it on actual Internet traffic. The analysis of traffic
from a trans-Pacific link revealed that our method can identify various anomalies
(e.g., worms and network/port scans), and mice anomalous flows.

The comparison of our method with a gamma-based method and a K-means-
based method indicates that the three approaches identified distinct classes of
anomalies. Therefore, their use in combination would have a synergistic effect.

Despite its benefits the proposed method has two drawbacks preventing prac-
tical usages: first, maintaining the parameter set optimally tuned requires con-
stant adjustments of the parameters according to the traffic throughput (espe-
cially the time interval). Second, the proposed anomaly detector is designed
to analyze only packet headers whereas, in practice, Internet traffic is usually
monitored in the form of flows. The following Chapter addresses these draw-
backs and proposes an adaptive anomaly detection method that is automatically
maintaining the parameter set optimally tuned.
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Chapter 5

Automated Tuning of the
Hough-based Anomaly
Detector

5.1 Introduction

Detecting anomalies in the Internet traffic has been mainly addressed as a sta-
tistical problem. Although intensive studies have been carried out in this field,
the proposed anomaly detectors still have a common drawback [60, 32] that pre-
vent their use in real environments; selecting the optimal parameter set. This
drawback is mainly due to the difficulty of understanding the relations between
the Internet traffic and the statistical tool underlying the anomaly detectors.

Only a few works have investigated this drawback currently discrediting
anomaly detectors. A careful study of the detectors based on principal compo-
nent analysis (PCA) was carried out by Ringberg et al. [60], and they identified
four main challenges including the sensitivity to analyzed traffic and parame-
ter tuning. In addition, an attempt to automatically tune a method based on
gamma modeling and sketches was conducted by Himura et al. [32]. They de-
signed a learning process for predicting the optimal parameters regarding the
best parameters for past data. However, this method suffers from a high error
rate as unexpected events do appear.

In Chapter 4 we proposed a pattern recognition based anomaly detector.
The main idea of this detection method is to monitor the traffic in 2D pictures
where anomalies appear as “lines”, which are easily identifiable using a pattern
recognition technique called the Hough transform [17]. This method overcomes
several shortcomings of current statistical-based anomaly detectors, however,
similarly to the statistical-based detectors it requires constant attention from
network operators to be optimally used. Indeed, the optimal values of the
parameters fluctuate along with the traffic throughput variations and require
continuous adjustments making it unpractical for real usage (Section 4.3.3).

In order to provide a detector that is easily tunable and robust to traffic vari-
ations, this chapter follows a similar approach to the one presented in Chapter
4, however, the design of the 2D pictures monitoring the traffic is fundamen-
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Table 5.1: Different kinds of common anomalies and their particular traffic
feature distributions.

Anomaly Traffic feature distribution

Port scan Traffic distributed in destination
port space and concentrated on single
destination host.

Network scan, Traffic distributed in destination
Worm, Exploit address space and concentrated on

limited number of destination ports.
DDoS, Netbot, Traffic distributed in source address
Flash crowd space and concentrated on limited

number of destination addresses.

tally different and allows to better highlight anomalies. This new design also
ease the use of the proposed detector in practice as it enables it to analyze
flow reports (contrarily to the detection method proposed in Chapter 4 that
analyzes only packet traces). Moreover, the main contribution of this work is
to obtain a complete understanding of the proposed method parameter set and
provide a mechanism that automatically tunes it based on the traffic variations.
The advantages of this adaptive method are demonstrated by comparing its re-
sults to those obtained using fixed parameter tunings and those of three other
anomaly detectors using four years of real Internet traffic. The results highlight
the superiority of the proposed method in terms of the true positive and false
positive rates, emphasizing that automatically adjusting the parameter set in
regards to the traffic fluctuations is crucial for continuously performing an accu-
rate level of detection. Inspecting the false negative rate of the proposed method
allows us to describe the particular class of anomaly that is inherently missed
by the proposed detector. Thus, the shortcomings of the proposed detector are
well-defined and complementary detectors are suggested.

5.2 Abnormal distribution of traffic features

Recent works have identified anomalous traffic as alterations in the distributions
of the traffic features [45, 23, 13, 72, 16]. For example, Table 5.1 lists several
kinds of anomalies commonly identified in Internet traffic. Each kind of anomaly
inherently affects the distribution of two traffic features. Similarly, in this chap-
ter an anomaly refers to a set of flows altering the distribution of at least one of
the four following traffic features: the source IP address, destination IP address,
source port, and destination port. However, the proposed approach for observ-
ing these alterations in the traffic feature distributions is substantially different
from that in other works. Previously, anomalies have been mainly detected by
identifying the outliers in the aggregated traffic using different formalisms —
e.g., signals [45], histograms [16, 13], or matrices [68] — whereas, the proposed
method identifies particular patterns in pictures. The analyzed pictures are
two-dimensional scatter plots, where each axis represents a traffic feature, each
plot stands for traffic flows, and the particular traffic feature distributions of
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Figure 5.1: Example of two pictures highlighting anomalous traffic as lines.

the anomalies are easily identifiable as lines.
Figure 5.1 shows two examples of the pictures analyzed by the proposed

method. Figure 5.1a displays traffic with regard to its destination port and
destination address. This graphical representation of the traffic makes it easy
to discriminate the port scan, network scan, worm, and exploit from the benign
traffic as they appear as lines in the picture (Fig. 5.1a). Figure 5.1b, however,
displays the traffic in regard to its destination and source addresses, and permits
other kinds of anomaly to be observed. For instance, distributed denial of
service (DDoS), flash crowd and botnet activities appear as horizontal lines in
this scatter plot.

The three main advantages of this approach over the previous works are [60]:
(1) the anomalous flows are inherently pinpointed in the scatter plots, whereas
the identification of the anomalous flows detected in a signal requires additional
extraction mechanisms [13, 66]. (2) The proposed approach is able to monitor
the pattern of a large-scale anomaly whereas the methods detecting anomalous
traffic as outliers fail if a majority of the traffic is contaminated by anomalies
(e.g., outbreak of virus). (3) In regard to the traffic features monitored by the
pictures and the direction of the identified line, one can easily deduce the kind
of observed anomaly.

5.3 Anomaly detection method

The anomaly detection method proposed here consists of five main steps:

1. The traffic of the current time interval is mapped onto five different pic-
tures.

2. The Hough transform is computed on each picture to uncover the plot
distributions.

3. Abnormal plot distributions are detected in the Hough spaces.

4. Traffic information corresponding to the anomalous plots are retrieved and
reported.

5. The time interval is shifted and step 1 is repeated.
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5.3.1 Pictures computation

The proposed approach takes advantage of several kinds of pictures to monitor
the different aspects of the traffic and highlight the different kinds of anomalies.
The analyzed pictures are 2-D scatter plots designed from four traffic features:
{source IP address, destination IP address, source port, destination port}. For
the remainder of this chapter the term traffic features will refer to only these
four traffic features. The five picture categories correspond to all the possible
pairs of traffic features containing IP address. Namely, the x and y axis of the
picture, respectively, correspond to the following pairs of features:

• Source IP address, destination IP address

• Source IP address, source port

• Source IP address, destination port

• Destination IP address, source port

• Destination IP address, destination port

A flow in the analyzed pictures is represented by a plot that is located
using the two following mechanisms. (1) The port space is shrunk to the size
of the pictures: Let assume a 1000-pixel picture (ySize = 1000) that has a
y axis standing for the source port, then a http flow, i.e., SrcPort = 80, is
plotted at y = ⌊SrcPort ∗ ySize/216⌋ = ⌊80 ∗ 1000/65535⌋ = 1, and each
pixel of the picture represents approximately ⌊65535/1000⌋ = 65 distinct port
numbers. (2) The IP address space is at first hashed by ignoring the first h
bits of the addresses and then shrunk to the size of the picture. For example,
supposing h = 16 and a 1000 pixel wide picture (xSize = 1000) with an x axis
as the source IP, then a flow from the source IP 192.168.10.10 is plotted at x =
⌊(SrcIP mod 232−h) ∗ xSize/232−h⌋ = ⌊(192.168.10.10 mod 216) ∗ 1000/216⌋ =
⌊(0.0.10.10) ∗ 1000/216⌋ = 39. Notice that we only deals with square pictures,
meaning that the xSize = ySize.

5.3.2 Hough transform

A well-known image processing technique called the Hough transform [17, 27]
helps us in extracting the relevant information from computed pictures. The
Hough transform is commonly used to detect the parametric structures (e.g.,
line, circle, or ellipse) in pictures and has the advantage of being robust to noise
and able to detect incomplete shapes.

The basic usage of the Hough transform allows for the identification of lines
in a picture. It consists of a voting procedure, where each plot of the picture
votes for the lines it belongs to. Formally, each plot in the picture p = (xp, yp)
votes for all the θ and ρ that satisfy ρ = xp · cos(θ)+yp ·sin(θ) (line equation in
polar coordinates). All the votes are stored in a two-dimensional array, called
the Hough space, in which one dimension stands for θ and one for ρ.

In order to find the local maxima in the Hough space, thus the prominent
lines in the picture, a robust peak detection based on the standard deviation σ
of the Hough space is implemented. Therefore, all flows corresponding to the
elements of the Hough space that are higher than 3σ are reported as anomalous.
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5.3.3 Complexity

The computational complexity of the proposed method is mainly one of the
Hough transforms that is linear to the number of plots in picture. In a worst
case scenario, each plot represents a single flow so the number of plots in the
pictures is equal to the total number of flows N . Let f = 5 be the number of
picture categories, t the traffic duration divided by the time interval, and ni,j,k

the number of plots in the picture k of category i at the time interval j. The
cost of the proposed algorithm in the worst case is linear to N :

f∑
i=1

t∑
j=1

O(ni,j) =
5∑

i=1

O(N) = O(N)

In our experiments, the proposed method takes about one minute to analyze
a 15-minute traffic trace from the MAWI archive.

5.4 Data and processing

This chapter particularly focuses on two data sets from the MAWI archive (see
Section 3.1 for more details on MAWI); (1) the first week of August 2004 was
particularly affected by the Sasser worm [12, 23] and provides valuable support
for illustrating the benefits of the proposed method. (2) All the traffic recorded
from 2003 to 2006 allowed us to evaluate the global performance of the proposed
method by comparing its results to the ones of other anomaly detectors.

Due to the lack of ground truth data for backbone traffic, the evaluation
of the proposed detector relies on heuristics that is fundamentally independent
from the principle of the proposed method (Table 3.2). Indeed, these heuristics
is based on well-known port numbers and abnormal usages of TCP flags [12, 23],
whereas the proposed method uses only the port numbers as indexes and does
not rely on the application information related to them nor the TCP flags.
Heuristics classifies traffic into two categories, attack and special, and helps in
quantifying the effectiveness of the detection method.

An anomaly detector is expected to report more traffic classified as attacks
than those labeled special. Thus, the accuracy of a detector is defined as the
ratio of the alarms classified as attacks by the heuristics listed in Table 3.2.

5.5 Parameter tuning and drawbacks

5.5.1 Experimental parameter tuning

The following experiments aim at finding the optimal parameter tuning of the
proposed method using one week of traffic affected by the Sasser worm (Section
5.4). Furthermore, these experiments uncover the correlation between the two
main parameters, i.e., the size of picture and the time interval, and show that
the performances of the proposed method are not affected by any variance in
the h value as long as the number of possible indexes is higher than the picture
size, 232−h > xSize.

Figure 5.2 depicts the average accuracy of the detection method using nu-
merous parameter values. It highlights that the proposed method is able to
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Figure 5.2: Accuracy of proposed method using four different picture sizes.

achieve an accuracy that is higher than 0.9 for any time interval > 4s and a
suitable picture size. Furthermore, Fig. 5.2 indicates that the optimal picture
size is proportional to the size of the time interval. For instance, if the time
interval is less than 8s the best performance is obtained with a picture size set
to 1024, whereas the time interval ranges (9, 16) are suitable for a picture size
equal to 2048, and so forth. Intuitively, a larger time interval involves a greater
number of plots in the pictures; thus, to avoid meaningless saturated pictures,
the optimal size of a picture increases along with the size of the time interval.

Although the specific values given here are suitable for the analyzed traffic,
different values might be more effective for traffic having different properties.
Obviously, traffic with the same properties but a higher throughput displays
more plots in the pictures, and thus in this case, smaller time intervals are
required to maintain an acceptable number of plots in the pictures.

5.5.2 Evaluation of optimal parameter

The time interval is the parameter that controls the amount of traffic displayed
in the pictures. Thus, as the proposed method inherently translates the traffic
flows to the plots in the pictures, the time interval allows us to select the quantity
of plots appearing in the pictures. The challenge in setting the time interval
is the trade-off between displaying enough plots to have relevant pictures and
limiting the surrounding noise representing the legitimate traffic and hiding
anomalies.

The sensitivity of the implemented Hough transform to the number of plots
in the pictures is analyzed using synthetic pictures that have a random line and
various amounts of uniformly distributed noise. The algorithm was performed
100 times on different pictures with the same level of noise. If the 100 tests
are successful then the noise is increased and the algorithm is again performed.
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Figure 5.3: Evaluation of maximum acceptable number of plots to perform the
Hough transform. The plot density is the maximum acceptable number of plots
over the picture area.

The highest noise level for which all 100 executions of the algorithm succeed
defines the maximum acceptable number of plots in a picture. This experiment
was conducted using six different picture sizes, as indicated in Fig. 5.3(a).
As expected, the maximum acceptable number of plots in the pictures increases
with the picture size. Figure 5.3(a) shows that the maximum acceptable number
of plots for picture sizes of 1024, 2048, 4096, and 8192 are respectively 33000,
95000, 275000, and 781000. Figure 5.3(b) shows that this increase is not linear
to the area of the picture and the common upper bound for all the considered
picture sizes is approximately 1% of the picture area.

5.5.3 Dispersion of plots in pictures

The previous section provided an insight on how to select the suitable time in-
terval for a particular picture, but the proposed method analyzes five different
pictures at the same time. A crucial task is to understand the divergence be-
tween the different kinds of pictures. Since the five picture categories monitor
distinct feature spaces, plots corresponding to the same traffic are differently
dispersed in all the pictures. Therefore, the traffic is usually depicted by us-
ing a different number of plots for two pictures from different categories. For
example, Fig. 5.4(a) shows the number of plots for the five kinds of pictures
for several time interval sizes. This figure highlights that the number of plots
appearing in each picture category increases at different rates. A slow increase
in the number of plots means that many flows share the same instance in the
monitored feature spaces, whereas a rapid growth highlights the flows spread-
ing into the observed feature spaces. The rate of increase of the plots for each
picture category is strongly related to the throughput and the dispersion of the
traffic in the feature space.

Since anomalies alter the traffic feature distribution, they also significantly
affect the increase in the number of plots. Figure 5.4(b) is a typical example
where the increase in plots for certain picture categories is rapidly increasing
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Figure 5.4: Plot growth for different picture categories (xSize = 8192).

due to anomalous traffic. Indeed, the traffic analyzed in Fig. 5.4(b) contains an
outbreak of the Sasser worm highlighting a considerable increase in the number
of plots for two picture categories monitoring the destination address. This
observation is in accord with the behavior of the Sasser worm manually observed
in the traffic trace, that is, the worm tries to infect numerous remote hosts to
spread throughout the network.

Despite their differences, the two traffic analyzed in Fig. 5.4 are taken from
the same traffic trace (Fig. 5.4(b) representing the first three minutes of the
traffic trace, whereas Fig. 5.4(a) is the traffic recorded three minutes later),
illustrating two drawbacks of the proposed method. (1) For the same traffic, the
number of plots in all the picture categories is significantly different. Thus, the
suitable time interval for a picture from a certain category does not necessarily
suit the pictures from the other categories. (2) The increase in plots for a certain
picture category sharply varies especially when anomalous traffic appears. Thus,
the suitable time interval for a single picture category fluctuates over time.

5.6 Adaptive time interval

Here, an improved version of the anomaly detection method is proposed to
overcome the drawback identified in the previous section. This new version
assigns different time intervals to all the picture categories and adapts these
time intervals to the traffic variation. Therefore, the value of the time intervals
is no longer a fixed value taken as an input, but it is automatically computed
by taking into account the throughput and the traffic distribution in the traffic
feature spaces.

The proposed improvement consists of controlling the amount of monitored
traffic based on the quantity of plots in the picture instead of the time interval.
The Hough transform is performed only if a certain number of plots p are dis-
played in the picture (regardless of the time interval corresponding to the traffic
mapped into the picture), and other pictures keep monitoring the traffic until
they display a sufficient number of plots, p. Therefore, all the pictures stand
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Figure 5.5: Evolution of time interval corresponding to pictures computed dur-
ing 15 minutes of traffic.

for different time intervals and the Hough transform is performed at different
instants of time for each picture. The first two steps of the algorithm proposed
in Section 5.3 are replaced by: (1) Map traffic to pictures until a picture dis-
plays p plots. (2) Compute the Hough transform for pictures with p plots. In
addition, the time interval parameter is replaced by p, which is the number of
plots required to perform the Hough transform. The value of p is directly de-
duced from the picture size to assure the success of the Hough transform. The
upper bound for p is 1% of the picture area (Section 5.5.2), and the lower values
help in quickly reporting the anomalies since the Hough transform is performed
earlier. However, too small p values result in irrelevant pictures as the sample
traffic displayed in pictures is insignificant. In the following experiments, p is
arbitrarily set to 0.5% of the picture area, p = 0.05 ·xSize2. Hereafter, this new
version of the detection method is referred to as the adaptive method.

5.6.1 Performance improvement

The benefit of the adaptive method is evaluated by using one week of traffic
(Section 5.4). For clarity reasons and because all the traffic traces reach a
similar conclusion, the following focuses only on the first day of the analyzed
traffic.

Robustness to traffic variation

Figure 5.5 displays the time intervals corresponding to all the pictures computed
during the analysis of the 15 minutes of traffic. The first four minutes of this
traffic are significantly affected by the Sasser worm resulting in a higher through-
put and an increase in the number of destination addresses. Nevertheless, the
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method successfully handled the traffic variation, that is, the time intervals rep-
resented by the pictures monitoring the destination address remain from 1 to
5 seconds during the Sasser outbreak (Fig. 5.5). However, the same quantities
range from 14 to 25 seconds during the last four minutes of traffic, where the
traffic is much less polluted by the Sasser worm. This example illustrates the
benefit of the adaptive method since selecting a fixed value for the time interval
of the basic method is challenging.

Accuracy gain

The only parameter of the adaptive method is the picture size, and by setting it
to three different values, namely 1024, 2048, and 4096, the same high accuracy
score is observed, 0.99, 0.98, and 0.99, respectively. However, the number of
reported alarms decreases as the picture size increases, which is 373, 173, and
117 events respectively. Thus, for the following experiments the picture size is
set to 1024 in order to report as much anomalous traffic as possible.

The comparison between the two versions of the method emphasizes the
better false positive and true positive rates of the adaptive method. Namely, it
identifies 369 source addresses infected by Sasser (i.e. 86% of the Sasser traffic
manually identified). However, the basic method, with identical parameters but
a fixed time interval of 10 seconds, identifies only 258 source addresses related to
Sasser (i.e. 60% of the Sasser traffic manually identified). The basic version of
the method is able to identify the same amount of Sasser traffic only if the time
interval is set to one second, however, in this case 229 http traffics were also
reported and a manual inspection revealed that they are benign traffic regarded
as false positive alarms.

5.7 Evaluation

The adaptive detection method is evaluated by analyzing four years of MAWI
traffic (i.e. 2003, 2004, 2005, and 2006) and comparing its results to the outputs
of three other anomaly detectors based on different theoretical backgrounds.

5.7.1 Compared detectors

For performance comparison we select three detection methods that are, simi-
larly to the proposed method, analyzing only packet header and aim at finding
nonspecific classes of anomaly. These three compared detectors are (1) the
well-known PCA-based detector [45] (in this work the implementation of this
detector relies on sketches to analyze traffic taken from a single link [37]), (2)
the detection method based on multi-scale gamma modeling and sketches [16],
and (3) the detector based on the Kullback-Leibler (KL) divergence and associ-
ation rule mining [13] (see Section 3.3 for more details on these three detectors).
The picture size parameter of the adaptive method is set to 1024, whereas, the
parameters of the three other methods are set with fixed and arbitrary values
that are globally suitable for the analyzed MAWI traffic.

The four detectors aim at finding any kinds of traffic anomaly by inspecting
only IP header. However, they aggregate traffic using different formalisms, i.e.,
the proposed method monitor the traffic using pictures whereas the PCA-based
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Figure 5.6: PDF of accuracy of four detectors for four years of MAWI traffic.

one analyzes time series and the gamma and KL detectors take advantage of
histograms.

5.7.2 Reported anomalies

This section inspects the anomalies that are reported by the proposed adaptive
detection method in order to evaluate its true and false positive ratio. Due to
the lack of ground truth data (i.e., backbone traffic with annotated anomalies)
the performance of the proposed method is evaluated using two methodologies;
(1) A coarse-grained evaluation with prominent anomalies manually identified
in the traffic. (2) A fine-grained comparison of the accuracy using three other
detection methods and inspection of the traffic reported by the detectors and
labeled as attack by the heuristics of Table 3.2.

Prominent anomalies We manually inspected several characteristics of the
analyzed traffic to identify the prominent anomalies that have to be reported by
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(a) MAWI traffic in terms of packet

(b) MAWI traffic in terms of byte

(c) Traffic reported by the adaptive Hough-based detector

Figure 5.7: Application breakdown of the analyzed traffic and the results of the
proposed method.
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the detection method. Figure 5.7 displays two characteristics of the analyzed
traffic, namely the percentage per application of transmitted packets and bytes.
The application corresponding to each traffic is recovered using the CoralReef
port-based classifier [2].

We identified five main events that have significantly affected the charac-
teristics of the MAWI traffic from 2003 to 2006 (Fig. 5.7(a) and Fig. 5.7(b)).
Four events are identified by inspecting the percentage of transmitted packets
per application; from August 2003 to January 2004 we observed a substantial
number of ICMP flows constituting a long-lasting ping flood. The spreading of
the Blaster worm is also observed from August 2003 in the MAWI traffic. An-
other worm called Sasser is observed from June 2004 to June 2005 in the form
of three peaks representing three outbreaks of different variants of the worm.
After the update of the link in July 2007, an important traffic against DNS
servers is observed. This traffic is particularly intense in the middle of Novem-
ber 2006 (e.g., the DNS traffic measured on the 2006/11/11 stands for 83% of
all packets recorded this day). Regarding the percentage of transmitted bytes
per application another event is observed from August 2003, it corresponds to
the outbreak of a email-based worm, called Sobig.

The traffic transmitted by the three worms manually identified in the ana-
lyzed traffic (i.e., the Sobig, Blaster and Sasser worms) are successfully reported
by the proposed adaptive method (Fig. 5.7(c)). Since these worms spread in the
network by contacting a substantial number of peers the corresponding traffic
highlights an abnormal dispersion in the destination IP address space that is
easily identified by the proposed method. The adaptive method also effectively
identifies the DNS flood appeared at the end of 2006 (Fig. 5.7(c)). This traffic is
characterized by numerous hosts initiating several connections to a few servers.
Thereby, the proposed method successfully detect this anomalous traffic because
of its concentration in the destination IP address space and its distribution in
the source IP address space.

Although the properties of the traffic have significantly varied over the four
years (particularly after the link update), the proposed adaptive method ef-
ficiently detected anomalous traffic without any parameter adjustment from
network operators.

Accuracy and attacks breakdown Based on the heuristics of Table 3.2,
the proposed adaptive method is evaluated by accuracy comparison with the
three other detection methods.

Figure 5.6 shows the accuracy achieved by the four detectors for each year
of analyzed traffic. The average accuracy of the proposed method is higher
than the one of the three other detectors during the four years of MAWI traffic.
Among the three other detection methods the KL-based one is the best detector
in terms of accuracy, moreover, it occasionally outperforms the proposed method
(Fig. 5.6(b) and Fig. 5.6(c)).

The circumstances in which the KL-based detector remarkably outperforms
the other detectors were thoroughly inspected and this highlighted the fact that
this detector reports a high ratio of attacks but out of only a small number
of alarms. Consequently, the KL-based detector achieves a high attack ratio
along with a high false negative rate (i.e. missed anomalies). Figure 5.8 shows
the quantity of attacks reported by each detector classified with the labels from
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Figure 5.8: Breakdown of alarms reported by four detectors and classified as
attacks during four years of MAWI traffic.

Table 3.2 (RPC is omitted as only 11 alarms of this kind were identified in the
four years of traffic) and emphasizes the large amount of anomalies missed by
the KL-based one.

The PCA and Gamma-based detectors, however, report the same quantity
of attacks as the proposed method along with numerous alarms classified as
special (Fig. 5.6). Although the proposed method is more sensitive to Sasser and
attacks towards NetBIOS services, the Gamma-based method detected slightly
more unusual ping traffic (66 alarms) and traffic labeled as flood (337 alarms)
for the four years of analyzed traffic. Nevertheless, the PCA and Gamma-
based detectors were considerably worse than the adaptive method in terms of
accuracy, and this drawback is due to the quantity of traffic classified as special
that was reported by these two detectors (i.e. high false positive rate).

The advantage of the adaptive method is to consistently adapt its time in-
terval over the four years of analyzed traffic, and therefore, it constantly detects
a large quantity of anomalous traffic while the number of reported benign traffic
is low.

5.7.3 Missed anomalies

In order to highlight the limits of the proposed method this section inspects
its false negative ratio, namely the proportion of anomalies that are missed by
the proposed detection method. Nevertheless, due to the lack of ground truth
data identifying the missed anomalies is a challenging task. The two following
methodologies help us to pinpoint anomalous traffic that is not reported by the
proposed detector; (1) A coarse-grained evaluation with prominent anomalies
manually identified in the traffic. (2) A fine-grained inspection of anomalous
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Figure 5.9: Breakdown of alarms reported by the Gamma-based, KL-based and
PCA-based but not by the proposed detector during four years of MAWI traffic.

traffic reported by the three compared detection method (i.e., Gamma-based,
KL-based and PCA-based) but not by the proposed adaptive method.

Prominent anomalies The manual inspection of the analyzed traffic re-
vealed five prominent anomalies of which one is partially missed by the pro-
posed adaptive method, that is the ping flood emerged in 2003 (Fig. 5.7(a) and
5.7(c)). This significant ping flood is characterized by numerous point to point
high-rate flows (hereafter refered as alpha flows) using the ICMP protocol that
are difficulty detectable by the proposed method for several reasons. First, since
ICMP traffic have no port information it is only monitored in one of the five pic-
ture categories. Second, this traffic mainly consists of a set of long-lasting point
to point flows without common source or destination, thus, preventing it to be
shown as a line in analyzed pictures. Finally, the typical characteristic high-
lighting this anomalous traffic is the substantial number of transmitted packets
whereas this feature is not monitored by the proposed detection method.

Attacks detected by other detectors We investigate the results of the
three compared detection methods (i.e., Gamma-based, KL-based and PCA-
based) to uncover the false negative rate and shortcomings of the proposed
adaptive detection method. Since there is a low probability for a benign traffic
to be reported as anomalous by the three compared detection methods, we
consider a traffic as false negative if it is reported by all the detection methods
but not the proposed one and it is categorized as attack by the heuristics of
Table 3.2.

As shown in Figure 5.9, 80% of the anomalous traffic missed by the proposed
detection method is labeled as ping or flood by the heuristics. This traffic
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is mainly composed of alpha flows containing numerous Ping or SYN packets
and representing one-to-one connections (contrarily to the successfully reported
traffic from worms or DDoS attacks standing for one-to-many or many-to-one
connections). These one-to-one connections appear in the analyzed pictures as
single points and are difficult to identify using the proposed detection method.
Furthermore, another characteristic of these flows is that they account for a
large fraction of the total number of packets or bytes, however, these two traffic
features are not monitored by the proposed detection method.

Since the proposed detection method is focusing on the distribution of the
traffic features but not the volume of the traffic this method is insensitive to
alpha flows. Also the proposed adaptive parameter tuning cannot overcome
this shortcoming as it is inherent to the theoretical background of the proposed
detection method. The class of anomaly misdetected by the proposed detector is
however easily identifiable with a rate-based detection method that is monitoring
the traffic volume. Therefore combining the proposed detection method and a
rate-based detector would permit to detect a wider range of anomalies.

5.8 Discussion

In addition to propose an adaptive detector, this chapter reveals general con-
siderations that have to be taken into account in the domain of network traffic
anomaly detection.

The results presented in this chapter emphasizes the need of maintaining
anomaly detectors parameter set optimally tuned. Indeed, Section 5.5.3 demon-
strates that the performance of the anomaly detection method using fixed pa-
rameters is deteriorated when the characteristics of the traffic fluctuates (e.g.,
variations of traffic volume). Moreover, since anomalous traffic significantly al-
ters the characteristics of the traffic anomaly detectors underperform especially
during substantial anomaly outbreak. Consequently, adjusting the parameter
set in regard to the fluctuations of the traffic is required to maintain the effec-
tiveness of the detection method. These adjustments are enabled by investigat-
ing the relations between the theory underlying the detection method and the
characteristics of network traffic.

The evaluation of the proposed adaptive detection method validates the
efficiency of the adaptive mechanism to optimally set the parameters of the
detector. Although this adaptive mechanism ensures the anomaly detector to
perform optimally we observed that a certain class of anomaly is still misdetected
by the proposed detector. This shortcoming is inherent to the design of the
detection method thus independent from its parameter set tuning. In general,
each anomaly detection method is expected to have weaknesses in detecting
certain classes of anomaly, however maintaining its parameter set optimally
tuned ensures that the detector is efficiently detecting the classes of anomaly it
is designed for.

Section 5.7.3 highlights the shortcomings of the proposed detector and de-
scribes the class of anomaly undetectable by this anomaly detection method.
This identification of the detection method shortcomings is a crucial task that
allows us to understand the limits of this detector and ease the selection of
a complementary detection method that would overcome the identified short-
comings. Consequently our results support the benefits of combining anomaly
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detectors [67, 20, 8].

5.9 Summary

This chapter proposed a new anomaly detection method that takes advantage of
image processing techniques to identify the flows with abnormal traffic feature
distributions. Crucial challenges rarely addressed in the appropriate literature
were uncovered by investigating the major drawbacks of this method; the sensi-
tivity of anomaly detectors to traffic variations and the role of the time scale in
anomaly detection. Addressing these two issues resulted in a significant improve-
ment for the proposed detection method that overcomes any adverse conditions
as it analyzes traffic within a time interval that is automatically adapted to the
traffic throughput and the distribution of traffic features.

The evaluation of this adaptive method using real Internet traffic highlighted
its ability to maintain a high detection rate while the traffic was significantly
altered by anomalies. Therefore, these experiments indicated that the adaptive
time interval enabled 26% more worm traffic to be detected, and decreased the
false positive rate. The proposed adaptive detection method is also validated
by comparing it with three other detection methods and using four years of real
backbone traffic. The results highlighted that the proposed adaptive method al-
lows for the detection of almost all the anomalies reported by the other detectors
while it achieves the lowest false positive rate. We identified a class of anomaly
that is disregarded by the proposed detection method and discussed the benefit
of complementary detection methods to overcome these shortcomings.

While developing this anomaly detector one of the main difficulties we faced
was to rigorously evaluate it. Because of the lack of ground truth data we vali-
dated the effectiveness of the proposed detector by comparing it with three other
detectors. Although this methodology is commonly accepted by the research
community, it involves numerous manual inspections of the traffic (based on
heuristics and past experiences) that are error prone. Systematically and thor-
oughly evaluating an anomaly detector is indeed challenging, but, it is also the
key task to identify and address detectors drawbacks and shortcomings. There-
fore, the following chapter proposes a new methodology to help researchers to
rigorously evaluate their anomaly detectors.
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Chapter 6

Benchmarking and
Combining Anomaly
Detectors

6.1 Introduction

Because of the lack of ground truth data, the previous Chapter evaluated the
proposed adaptive detector by comparing its accuracy to the one of four detec-
tors and inspecting the breakdown of the traffic reported by these four detectors.
In particular, the traffic commonly reported by the three compared detector was
investigated to emphasize the shortcomings of the proposed detector (false neg-
ative rate), and the traffic exclusively reported by the proposed detector was
investigated to highlight its benefits (true positive rate) or drawbacks (false pos-
itive rate). This investigations are essential to diagnose the drawbacks of the
proposed detector and report useful feedback, however, they lack rigor as they
are manual tasks that are time consuming and error prone.

Rigorously evaluating anomaly detectors is a challenging task that is com-
monly faced by researchers, thereby, distinct evaluation methodologies using
traffic with real or simulated anomalies appear in the literature. With real
anomalies, researchers evaluate anomaly detectors by manually checking the re-
ported alarms [13, 16, 45, 48], or by comparing them to those reported by other
anomaly detectors [22, 44, 45, 48]. Sometimes researchers construct ground
truth data by manually inspecting the analyzed traffic [9]. However, these eval-
uations are hardly comparable, trustworthy, or reproducible, as they require
significant human intervention and as traffic traces are usually inaccessible due
to privacy issues. Also, a common shortcoming of these evaluation methodolo-
gies is the omission of the false negative rate of the detector, in spite of the fact
that this metric is the good indicator of the number of missed anomalies and of
the sensitivity of the detector to different kinds of anomalies.

Simulating anomalies is also a common way to evaluate an anomaly detector
[44, 55, 62, 64]. In this case, the parameters of anomalies are tunable (e.g., in
intensity and time duration), helping researchers to measure the sensitivity of
their detectors to particular kinds of anomalies. However, simulating traffic
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as diverse as it is on the Internet is notoriously difficult [19], especially for
anomalous traffic. Consequently, the evaluation of a detector with simulated
anomalies is restricted to certain kinds of anomaly, and thus, is insufficient for
measuring the detector performance [59].

Goal

Ideally, an anomaly detector has to be evaluated using ground truth data con-
taining real and nonspecific traffic where there is a wide range of anomalies.
This ground truth data should be publicly available to allow all researchers to
access the same data set and compare their results. Furthermore, the data set
should follow the evolution of the Internet traffic to include traffic from emerg-
ing applications and anomalies. Currently, there is no such crucial data with
ground truth; providing such data is our objective.

The goal is to find and label anomalies in the traffic from the MAWI archive
[14], and to make it available to researchers so that they can refer to it while
evaluating their own anomaly detection methods. The main advantages of the
MAWI archive are that it is updated daily and it currently contains more than
nine years of real publicly available Internet traffic data. However, manually la-
beling anomalies in such a large data set is certainly impractical, and therefore,
the challenge we face is to accurately find anomalies in an automated and un-
supervised manner. The numerous anomaly detectors that have recently been
proposed in literature are the main support that will help us to reach the goal.
Therefore, we are selecting diverse anomaly detectors and combining their re-
sults to accurately find anomalies in the MAWI archive. The synergy between
detectors with different theoretical backgrounds allows a more accurate level of
detection to be achieved. However, a key issue in combining such diverse detec-
tors is that they report different granularities of the traffic that are difficult to
rigorously compare.

Contributions

The contribution of the present chapter is twofold. Firstly, we establish a reliable
methodology, which is based on graph and community mining, that compares
and combines the results from any anomaly detectors, even though they op-
erate at different traffic granularities. The proposed method outperforms the
combined detectors, and enables us to precisely find twice as many anomalies
as the most accurate detector from the experiments. Secondly, results are made
available in the form of labeled data set, providing a benchmark for anomaly
detection methods. The database currently stands for more than nine years
of traffic and it is growing along with the MAWI archive. Furthermore, this
approach permits the enhancement of the database over time by integrating
the results from emerging anomaly detectors. Thus, the proposed database is
constantly updated with new traffic and anomaly detectors, and it is a valuable
tool to assist researchers designing anomaly detectors.

Proposed method

The method consists of four main steps, executed for each traffic trace:

1. Several anomaly detectors analyze the traffic and report alarms.
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2. The similarities between the reported alarms are uncovered using a sim-
ilarity estimator that groups similar alarms into communities.

3. Each community is investigated and classified by the combiner. Namely,
the combiner decides if the community has to be reported as anomalous,
or ignored, depending on the overall outputs of the detectors.

4. The anomalies are characterized using association rule mining on the com-
biner results so as to label anomalies in the analyzed data set.

Steps 2 and 3 are detailed in Section 6.2, and evaluated in Section 6.4. For
that, the data set and anomaly detectors that are used are depicted in Section
6.3. Step 4 is described in Section 6.5. The results are further discussed in
Section 6.6 and we conclude in Section 6.7.

6.2 Methodology

6.2.1 Similarity estimator

Since the benefit of combining detectors relies on the diversity among the de-
tectors ensemble, we combine various anomaly detectors based on different the-
oretical backgrounds. Nevertheless, these different anomaly detectors are in-
herently reporting traffic at different granularities (e.g., flow, host, or packet)
that are difficult to systematically compare. A detector might reports alarms at
the host level, for example A1 for IPX , and another detector reports alarms
at the flow level, for example B1 and B2 for < IPX , 80, IPY , 1234 > and
< IPX , 80, IPZ , 2345 >. In that case, A1 includes B1 and B2; however, telling
that the three alarms are the same is hard because B1 and B2 are obviously
reporting distinct traffic. Therefore, a rigorous method precisely measuring the
similarities between alarms is required.

The similarity estimator presented in this section is an extension of a pre-
vious work [21]. Its role is to uncover the relations between the outputs of any
kinds of anomaly detector. First, it reads the alarms reported by the detectors
and the original traffic, and it extracts the traffic described by each alarm. Sec-
ond, it constructs a graph that highlights the alarm similarities based on the
traffic they have in common. Finally, similar alarms are identified by finding
communities (i.e., dense connected components) in the graph.

Traffic extractor

The traffic extractor (called oracle in [21]) retrieves the traffic described by
each alarm. Let an alarm be a set of traffic features that designates a particular
traffic identified by a detector. The traffic extractor records the association
between the alarm and this traffic. In [21], traffic associated with given alarms
is always a set of packets, whereas the current work evaluates the benefits of
associated traffic at different granularities: either packet, or flow (unidirectional
or bidirectional). Figure 6.1 depicts the main differences in using flows and
packets. The three alarms in Fig. 6.1 report three sets of packets from the same
flow. By using packet as the traffic granularity, we observe that Alarm2 and
Alarm3 have traffic in common but no packet is shared with Alarm1. Whereas
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Alarm1 Alarm2

Alarm3Packet Flow

Figure 6.1: A flow composed of packets corresponding to three different alarms.
Alarm2 and Alarm3 have common packets, whereas Alarm1 consists of a dis-
tinct set of packets.

using flow, the three alarms are reporting the same traffic and thus will have
similatities.

Graph generator

The graph generator uses the traffic retrieved by the traffic extractor to build an
undirected graph called similarity graph, highlighting the similarities among all
the alarms reported by the detectors. In this graph, a node stands for an alarm,
and there is an edge between two nodes if their associated traffic intersects. In
addition, an edge is weighted with a similarity measure that quantifies the
traffic intersection of the two alarms it connects. Therefore, the similarity
measure enables to discriminate edges connecting dissimilar alarms having an
irrelevant number of packets or flows in common. We selected three similarity
measures for the experiments: the Jaccard index, the Simpson index and a
constant function. Since the Simpson index outperformed the two other metrics
only this measure is discussed here. The Simpson index is defined as

S(E1, E2) = |E1 ∩ E2|/min(|E1|, |E2|)

where Ei is the traffic associated with alarm i. This metric ranges [0,1], where
0 means that the two traffic do not intersect, and that the two alarms are fully
dissimilar; 1 means that they are identical or that one is included in the other.

Community mining

The similarity graph describes the alarm similarities, however alarms that are
identical are not yet determined. Identical alarms are characterized in the graph
as being a set of strongly connected nodes: this is called a community. Identify-
ing the communities in a graph is a problem that has been extensively studied
in the past [25]. Although numerous community mining algorithms have been
proposed, the interest here focuses on those designed for sparse graph since the
generated graphs have disconnected nodes (e.g., a false positive alarm reported
by one detector). In the experiments, we selected a method based on the modu-
larity: the Louvain algorithm [11]. This algorithm has the advantage of locally
identifying the communities, thus allowing us to identify groups of a few alarms.
Furthermore, this algorithm performs a fast and accurate analysis of the graph
[25].
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6.2.2 Combiner

The similarity estimator clusters similar alarms into communities: each commu-
nity represents a set of distinct alarms (i.e., nodes) reported by various detec-
tors. The role of the proposed combiner is to decide whether each community
corresponds to an anomalous traffic or not. For that, the combiner classifies
the communities into two categories, accepted and rejected, respectively stand-
ing for the communities reported as anomalous or those ignored. The class of
a community is determined by a combination strategy, adapted from machine
learning or pattern classifiers [43].

Background: combining detectors

A combination strategy is generally categorized as a detector selection or an
output fusion. On the one hand, detector selection consists of selecting the
detector that is the most suitable for classifying an element (i.e., a community
in our case) and makes the same decisions as the single selected detector. Since
each element is analyzed by only one detector, this approach is usually a good
candidate for performing a quick analysis. However, selecting an appropriate
detector is in practice challenging. In particular, the sensitivity of detectors
in the context of network anomaly detection is misunderstood and prevents
us from applying such techniques. On the other hand, output fusion makes
no assumption on the detectors as it inspects the results of all the detectors.
The output of a detector is assimilated to a vote for a certain class, and the
combination strategy refers to a voting procedure.

In order to emphasize the advantages of combining detectors with output
fusion let us review perhaps the oldest and best-known strategy, the majority
vote. It is a basic, but still powerful way, where the final decision is the simple
majority of the detectors outputs (i.e., more than 50 percent of the outputs).
The probability of making the correct decision with the majority vote depends
on the probability of each detector for providing the correct output, that is:

Pmaj(L) =
L∑

m=⌊L/2⌋+1

(
L

m

)
pm(1− p)L−m

where L is the number of detectors and p is their accuracy. The result, also
known as the Condorcet Jury Theorem, is as follows;

• if p > 0.5, then Pmaj(L) is monotonically increasing in L and Pmaj(L)→ 1
as L→∞.

• If p < 0.5, then Pmaj(L) is monotonically decreasing in L and Pmaj(L)→
0 as L→∞.

• If p = 0.5, then Pmaj(L) = 0.5 for any L.

This theorem highlights the benefit of combining reasonable detectors (i.e., with
an accuracy p > 0.5) over the use of a single detector.

Application to traffic anomaly detection

Each anomaly detector outputs a binary value telling if a traffic is anomalous or
not. Namely, for each community in the similarity graph, a detector votes for
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A0

A1 B0 B2

B1

Figure 6.2: Example of community cex composed of five alarms. Assuming
that the input of the similarity estimator, Xi, consists of the output of three
detectors X = A,B,C with three different parameter sets i = 0, 1, 2, then the
confidence scores are: φA(cex) = 0.66, φB(cex) = 1.0 and φC(cex) = 0.0.

it being anomalous if at least one of its alarms is in the community. Although
this is sufficient to compute a majority vote, this binary value is too coarse for
a precise combination. Also, the votes of the detectors may significantly vary,
depending on the tuning of their parameters.

To prevent these difficulties we propose to score the confidence of each vote of
the detectors. Hereafter we refer to a certain detector with a specific parameter
set as a configuration. Running a detector with several parameter sets and
measuring the variability of its output quantifies its parameter sensitivity. The
outputs of all configurations are merged through the similarity estimator, and
the variability in the outputs is computed by inspecting each community. The
confidence score φ of a detector d for a community c is defined as:

φd(c) = ϕd(c)/Td

where Td is the total number of configurations with the detector d and ϕd(c) is
the number of these configurations that reports at least one alarm belonging to
the community c. The confidence score is a continuous value that ranges [0,1],
0 representing that a given detector ignores the community whereas 1 means
that all configurations of the detector identify the community. For example,
Fig. 6.2 is a community cex composed of fives alarms. Assuming that the input
of the similarity estimator, Xi, consists of the output of nine configurations
corresponding to three detectorsX = A,B,C with three different parameter sets
i = 0, 1, 2, then the confidence scores for this community are: φA(cex) = 0.66,
φB(cex) = 1.0 and φC(cex) = 0.0.

Combination strategies

Average, Minimum, & Maximum Let us now present three different com-
bination strategies that aggregate the confidence scores relative to a given com-
munity c in a value µ(c), and classify a community c as accepted (i.e., labeled
anomalous) only if µ(c) > 0.5.

Aggregating the confidences score of a community by average allows us to
rely equally on the votes of all the detectors. Formally, for a community c and
using L detectors, the average is: µ(c) = 1

L

∑L
i=1 φi(c). In the example shown

in Fig. 6.2 the average of all the confidence scores equals 5/9, and thus, this
combination strategy would classify the community cex as accepted.

Another strategy consists in selecting the minimum confidence score. This
pessimistic decision classify a community as accepted only if all the detectors
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support this decision. Consequently, the ratio of false positive is substantially
reduced at the cost of an increase in the ratio of true negative. Formally, the
decision made for the community c depends on its minimum confidence score:
µ(c) = mini{φi(c)}. In the example shown in Fig. 6.2, the minimum of all the
confidence scores is 0, and thus, this combination strategy would classify the
community cex as rejected.

On the contrary, a third strategy is to select the maximum confidence score.
This optimistic decision classify a community as accepted only if at least one
detector supports this decision. Consequently, the ratio of true positive is sub-
stantially increased, but so is the ratio of false positive. Formally, the de-
cision made for the community c depends on its maximum confidence score:
µ(c) = maxi{φi(c)}. In the example shown in Fig. 6.2, the maximum of all
confidence scores is 1, and thus, this combination strategy would classify the
community cex as accepted.

Correspondence analysis: SCANN Correspondence analysis [10] is a mul-
tivariate statistical technique for analyzing multiway tables. It represents a data
set in a lower-dimensional space based on its singular value decomposition. Al-
though its role is similar to the principal component analysis one, correspon-
dence analysis is designed for categorical data.

Using correspondence analysis, Merz [54] proposes an unsupervised combi-
nation strategy called SCANN that is used here as an alternative combination
strategy. This method stores all the decisions of the detectors in a table, such
that each entry is a vector representing the votes of all detectors for a certain
community. Then, using correspondence analysis, this table is reduced such that
the entries are smaller vectors containing only the main features characterizing
the detectors votes. The benefit is that the reduced table contains only the
significant votes. For instance, an irrelevant detector is one constantly making
the same vote; in the first table built by SCANN, such a detector’s votes are
constant values, hence they will be ignored in the reduced table because they
do not help for discriminating between the communities.

The reduced table contains the characteristics of each community in a low-
dimensional space. Onto this low-dimensional space, SCANN projects two ref-
erence points which are two representative communities unanimously reported
by the detectors as accepted, or as rejected. The class of each community is
then determined according to which representative community the closest in the
low-dimensional space.

Note that, since correspondence analysis is designed for categorical data,
SCANN is unable to deal with the confidence scores previously defined. In order
to take advantage of different configurations, the implementation of SCANN
that is used consider directly the binary outputs of different configurations as
its input.

6.3 Data set and anomaly detectors

6.3.1 Data set

The traffic we are labeling is from the MAWI archive samplepoints B and F
(see Section 3.1 for more details on MAWI). In the experiments, the similarity
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estimator is evaluated with the traffic traces from the first week of every month
from 2001 to 2009, whereas the combiner is evaluated using all the traffic traces
from 2001 to 2009.

6.3.2 Anomaly detectors

Four unsupervised anomaly detectors, based on distinct statistical-analysis tech-
niques, are employed for this experiments; one is the Hough-based adaptive de-
tector proposed in Chapter 5, and the three other are the PCA-based detector,
the gamma-based detector and the KL based detector presented in Section 3.3.

As these detectors report traffic at different granularities, the proposed sim-
ilarity estimator is necessary to compare their results. The confidence score for
each detector is obtained by tuning them with three different parameter sets
corresponding to optimal, sensitive or conservative setting. Hence, for experi-
ment, the input for the proposed method consists in the 12 outputs of all the
configurations (4 detectors using 3 parameter tunings). The main ideas of the
four detectors are as follows.

6.4 Evaluation

6.4.1 Similarity estimator

In this section the proposed similarity estimator is evaluated using the alarms
reported by the twelve configurations. In particular, the sensitivity of the simi-
larity estimator to the traffic granularity is discussed.

Metrics for evaluation

The following tools enable a comparison of the results given by different config-
urations of the similarity estimator, and a validation of its efficiency.

Size of communities The size of a community is the number of nodes that
belong to that community, that is the number of similar alarms clustered in
the community. We distinguish a specific class of community, called the single
communities, that is the size 1 communities (communities with a single alarm).
An alarm falls into a single community if the similarity estimator fails to find
other alarms related to it. Consequently, we expect a good similarity estimator
to minimize the number of single communities.

Obviously, the number of single communities is not a sufficient scale to eval-
uate the similarity estimator, as it reports a value 0 when all the alarms are
connected regardless of their similarities. Consequently, we also score the rele-
vance of the communities using association rule mining.

Traffic summary with association rules One key task for validating the
efficiency of the proposed similarity estimator is to inspect the traffic corre-
sponding to each community. The goal of this inspection is to assess that each
community is a group of related alarms standing for the traffic with common
features; this is a similar goal to the dominant state analysis presented in [72],
or the association rule mining of [13].
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Figure 6.3: Characteristics of communities reported by the similarity estimator
with different traffic granularities.
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The traffic related to each community is profiled here using an association
rule mining algorithm that finds sets of features, which are called rules, describ-
ing the prominent trends in a given list of properties. We choose the Apriori [7]
algorithm as it is a well-known algorithm for achieving association rule mining.
The Apriori algorithm efficiently counts the candidate rules in a breadth-first
search manner. It finds all the rules that describe more than s elements of the
data, where s is the only parameter of this algorithm. We slightly modify the
Apriori algorithm to express s in a percentage rather than a fixed number of
elements. For instance, the modified version of Apriori computed with s = 20%
outputs each rule that describes at least 20% of the data.

In the experiments, the modified version of Apriori is arbitrarily tuned with
s = 20%, and it analyzes the packets or flows corresponding to each commu-
nity. Thereby, the resulting rules describe the main characteristics of the traffic
corresponding to a community in the form of 4-tuples — source IP address,
source port number, destination IP address, destination port number. For ex-
ample, a community corresponding to the traffic from a HTTP server IPA to
two hosts, IPB and IPC, is depicted by the rules < IPA, 80, IPB, ∗ > and
< IPA, 80, IPC, ∗ >, where ∗ means that no specific destination port was iden-
tified.

The relevance of a community as a set of alarms is quantified by two efficiency
metrics based on its rules:

• The rule degree of a community is the average number of items in
its rules. For example, if a community has the two following rules, <
IPA, ∗, IPB, ∗ > and < IPA, 80, IPC, 12345 >, then its rule degree is
(2 + 4)/2 = 3. The rule degree ranges [0, 4], and values close to 4 mean
that the rules are specific, and thus, correspond to a particular kind of
traffic, whereas values close to 0 mean that the mining rule algorithm
failed to characterize specificities of the traffic.

• The rule support of a community is the percentage of data covered by all
the rules of this community. For instance, if the two previous rules cover,
respectively, 50% and 25% of the traffic captured by the community, and
because the rules are disjoint, then the rule support is 50 + 25 = 75%.

Traffic inspection The heuristics of Table 3.2 help to characterize traffic
corresponding to communities. These heuristics are designed from previous
works [12, 22] and the manual inspection of the MAWI traffic. They assign three
general labels to the traffic, “Attack”, “Special”, or “Unknown”, highlighting
the type of traffic corresponding to a community. Furthermore, they inspect only
the TCP flag, ICMP code, and port number related information, and allow us
to conduct a fair evaluation as they are independent of the mechanisms of the
chosen detectors.

Results

The similarity estimator is evaluated using three distinct traffic granularities
(packet, unidirectional flow, and bidirectional flow) by looking at the size of the
communities and by inspecting the traffic corresponding to it.
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Size of communities The results highlight the benefit of flows to uncover
similar alarms as Fig. 6.3(a) depicts a substantial decrease in the number of
single communities using unidirectional or bidirectional flows. In addition, we
observed a significant increase in the size of the communities when using bidi-
rectional flows (Fig. 6.3(b)). These observations emphasize the ability of the
similarity estimator to relate more alarms using flows.

Traffic summary Let us check the consistency of the communities, that is
whether all the alarms of the same community are actually related. Community
consistency is analyzed using the rules that are assigned to each community by
the modified Apriori algorithm. Figure 6.3(c) shows that the best rule support
is achieved by using unidirectional flow, and the results obtained when using
bidirectional flows are slightly inferior. By using unidirectional flows more than
50% of the communities have the rule support equal to 100%. However, the
results are different regarding the rule degree (Fig.6.3(d)); the most accurate
rules are obtained using packets whereas the least accurate are from bidirectional
flows. We observe about 18% of the communities found using bidirectional flows
are described with rules having only one traffic feature.

To understand which communities are suffering from coarse rules, thus con-
taining dissimilar alarms, we investigated the relation between the size of com-
munities and the rules efficiency. Figure 6.4 is the rule support, rule degree, and
community size obtained when using unidirectional flows. We observe that the
largest communities tend to have a rule degree equal to 1 and a rule support
equal to 100%. A manual inspection of these communities reveals that they have
coarse rules reporting a single traffic feature, usually a well known port such as
80 or 53 (Fig. 6.5). However 90% of the communities, namely with less than 20
nodes (Fig. 6.3(b)), have a rule degree higher than 2 and a rule support higher
than 75% (Fig. 6.4). Similar observations are made using bidirectional flows,
whereas using packets the rule degree is higher than 2.5 and the rule support
above 70%. Therefore, the consistency of the communities identified the the
similarity detector is satisfactory for the three traffic granularities. Selecting a
traffic granularity is a trade off between the size of the communities and their
consistency.

Traffic inspection Figure 6.5 depicts the intersections of the detectors out-
puts and the type of corresponding traffic. The main results are: (1) The
intersection of the four detectors is significantly small in comparison to the to-
tal number of identified communities, therefore, the four detectors are sensitive
to distinct traffic; (2) The number of single communities containing one alarm
only from the PCA-based detector is significantly high, while only a few single
communities are reported by the KL-based detector. Furthermore, 6% of the
single communities identified by the PCA-based detector are labeled “Attack”
whereas this ratio is significantly higher for other detectors: 33% for Hough,
22% for Gamma and 56% for KL. We also observe that the PCA-based detector
represents 58% of the non-single communities identified by one detector. Thus,
the output of the PCA-based is separated from others and its detection ratio is
low in terms of the heuristics of Table 3.2. Regarding the communities identi-
fied by more than one detector, their attack ratio increases in tandem with the
number of detectors identifying them.
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The communities identified by several detectors certainly highlight anoma-
lous traffic that have to be reported by the combiner. Nevertheless, the com-
munities reported by a single detector have to be thoroughly investigated as
they perhaps stand for anomalous traffic, particularly for those reported by the
Hough, Gamma and KL-based detector.

6.4.2 Combiner

Attack ratio

In this work, measuring the accuracy of the four combination strategies is a
contradictory task due to the lack of ground truth data. We bypass this issue
by inspecting the results of the combiner with the heuristics of Table 3.2.

The heuristics label the communities reported by the similarity estimator
into three groups: “Attack”, “Special”, and “Unknown”. Since a relevant com-
bination strategy is presumed to report the largest proportion of the commu-
nities labeled “Attack”, we define the attack ratio as the amount of commu-
nities labeled “Attack” divided by the total number of identified communities.
The combination strategies are expected to also report numerous communities
labeled “Special” or “Unknown”, thus low attack ratio, as the proposed heuris-
tics might label incorrectly several kinds of anomalies. Nevertheless, the attack
ratio is a reliable indicator that helps us to identify the best combination strat-
egy, that is the one accepting the highest ratio of communities labeled “Attack”
(Fig. 6.6(a) and 6.7(a)) and rejecting the lowest ratio of communities labeled
“Attack” (Fig. 6.6(b) and 6.7(b)).

Comparison of combining strategies

This section evaluates the ability of the four combination strategies to label
communities. The analyzed communities are produced by the similarity esti-
mator with the alarms reported by the four detectors on nine years of MAWI
traffic and using unidirectional flow as traffic granularity. These communities
are classified by the combination strategies into two classes (i.e., accepted and
rejected) and the attack ratio of both classes are computed for each day of the
analyzed traffic. Probability density functions (Fig. 6.6) and time-series of the
attack ratio (Fig. 6.7) are displayed.

Regarding accepted communities, the best combination strategy is SCANN
as it features the largest probability for highest attack ratio (Fig. 6.6(a)). Nev-
ertheless, the best combination strategy regarding rejected communities is the
maximum strategy because it has the largest probability for lowest attack ratio
(Fig. 6.6(a)). Since the prominent variance between the attack ratio probability
of the accepted communities and the one of the rejected communities highlights
the best combination strategy, the experiments support SCANN as the best
strategy for discriminating the communities representing anomalous traffic.

The probability density functions of the four anomaly detectors attack ratio
emphasizes that all detectors, except the KL-based one, have an average attack
ratio that is inferior to SCANN (Fig. 6.6(c)). Although the KL-based detector
attack ratio is close to that of SCANN, the thorough investigation of the SCANN
output in Section 6.4.2 asserts that SCANN detected twice more traffic than
the KL-based detector.
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Figure 6.7: Attack ratio of four combining strategies for nine years of MAWI
traffic.
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Table 6.1: Four measures quantifying benefits and losses when using SCANN.

SCANN
Accepted Rejected

Label
Attack gainacc costrej
Special, Unknown costacc gainrej

The time evolution of the attack ratio for each combination strategy is de-
picted in Figures 6.7(a) and 6.7(b). Although the SCANN algorithm is not con-
stantly outperforming the other combination strategies, it never has the worst
attack ratio. The low attack ratio of both the accepted and rejected communi-
ties from 2007 is due to the simple heuristics listed in Table 3.2 that mislabeled
the numerous elephant flows from peer-to-peer traffic and other anomalies using
random ports. Still, between 2007 and 2010, the efficiency of SCANN is notice-
able as its attack ratio for accepted communities was 2 to 3 times higher than
the one for rejected communities.

However, the increase in the attack ratio for rejected communities from 2003
to 2005 (Fig. 6.7(b)) highlights the particular traffic that is missed by the com-
bination strategies. The release of the Blaster worm in August 2003 followed by
the release of the Sasser worm in May 2004 were two of the main events reported
during this time period [12]. These two worms have substantially affected the
main characteristics of the traffic and the four detectors were differently affected
by this variance in traffic. The detectors reported numerous alarms that were
not related to those of the other detectors, and consequently, the combiner failed
in distinguishing several anomalous traffic. Nevertheless, this shortcoming of the
combiner is inherently diminished by the combination of more detectors thus
increasing the intersection of their outputs. Furthermore, we observed that se-
lecting a single detector to analyze this traffic was also challenging, as the attack
ratio of each detector critically fluctuated during this time period.

Inspecting the SCANN output

We evaluate the benefits and the losses of using SCANN based on the four
quantities depicted in Table 6.1. For rejected communities the gainrej is the
amount of communities that are labeled “Special” or “Unknown”, whereas the
costrej is those labeled “Attack”. Symmetrically, for the accepted communities,
the gainacc is the amount of communities that are labeled “Attack”, whereas
the costacc is those labeled “Special” or “Unknown”.

Rejected communities Figure 6.8 shows the breakout of communities clas-
sified by the SCANN algorithm. The two left-hand side plots are the commu-
nities rejected by SCANN where the alarms reported by the Hough- and the
Gamma-based detectors are highlighted. The gainrej for the Gamma-based de-
tector (Fig. 6.8(a)) is substantial and stands for more than half of the overall
gainrej for all the detectors. Nevertheless, the high true positive rate of the
Gamma-based detector is emphasized by its costrej , which represents most of
the communities labeled “Attack” and rejected by SCANN. The gainrej of the
Hough-based detector was slightly higher than its costrej exhibiting the low false
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Figure 6.8: Communities classified by SCANN as rejected with the alarms from
the Hough (a) and the Gamma-based (b) detectors highlighted, and the commu-
nities accepted by SCANN with the alarms from the KL-based detector high-
lighted (c).
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positive rate of this detector. In addition, Figure 6.8(b) depicts the high sensi-
tivity of this detector to worm spreading (i.e., Blaster during 2003 and Sasser
during 2004). The results for the PCA and KL-based detectors are omitted, as
the former one has a significant gainrej that is close to the overall gainrej , and
the latter one has no costrej and an negligible gainrej . The experiments also
exhibited the contamination of the normal subspace of the PCA-based detector
[62] by the first release of the Sasser worm, and thus, a considerable gainrej for
this detector at this time period.

The PCA-based detector reported a significant number of alarms that were
mostly unrelated to the alarms of other detectors (Fig. 6.5), particularly after
the MAWI link update at the end of 2006 (overall gainrej in Fig 6.8(a)). Since
SCANN rejected most of the communities reported only by the PCA-based
detector, the number of communities rejected by SCANN was notably higher
than those of the accepted one (Fig. 6.8(b) and 6.8(c)). Figures 6.8(b) and 6.8(c)
suggest that the overall costrej was higher than the overall gainacc. However,
we emphasize that the communities accepted by SCANN are more significant,
in terms of the number of alarms and the amount of corresponding traffic, than
the rejected ones.

Accepted communities A manual inspection of the SCANN output reveals
that several accepted communities contain only alarms from a single detec-
tor. Therefore, for the nine years of analyzed traffic, 8 accepted communi-
ties were identified by only the PCA-based detector, 325 accepted communities
were identified by only the Gamma-based detector, 2467 accepted communities
were identified by only the Hough-based detector, and 352 accepted commu-
nities were identified by only the KL-based detector. Meaning that 82% of
the communities reported exclusively by the KL-based detector are accepted by
SCANN. This highlights the advantage of SCANN over the average combination
strategy. Whereas the average combination strategy inherently rejects all the
communities reported by a single detector, SCANN performs a finer analysis
that emphasizes the output from accurate detectors and allows for the accep-
tance of small communities identified exclusively by these detectors. Indeed, the
SCANN algorithm factorizes the detectors decisions by disregarding the unnec-
essary ones, thus, SCANN ignores the output of the detectors that are making
irrelevant decisions and emphasizes the other results. For example, in the exper-
iments the PCA-based detector output was mainly separated from the outputs
of the other detectors (the single communities in Fig. 6.5). Consequently,
SCANN frequently disregarded the PCA-based detector and accepted only 8 of
the numerous communities exclusively identified by this detector. Conversely,
the Hough-based detector reports more relevant alarms as many are related to
those from other detectors, and thus, SCANN selects 2467 communities reported
by only this detector.

In the experiments the best detector was the KL-based one (Fig. 6.6(c)).
Almost all the alarms from this detector were related to another alarm (Fig. 6.5)
and are accepted by SCANN. However, about 50% of the communities accepted
by SCANN and labeled “Attack” are not identified by the KL-based detector
(Fig. 6.8(c) and 6.9). These communities are mainly reported by the three
other detectors and they highlight the high false negative rate (i.e., anomalies
missed) of the KL-based detector (Fig. 6.9).
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SCANN low dimensional space Combining the four detectors with SCANN
allows us to improve the results of the most accurate detector and to ignore the
false alarms reported by all the detectors. However, Fig. 6.7(b) suggests that
it misclassified several communities. As described in Section 6.2.2, the SCANN
algorithm maps the communities in a reduced space and classifies them based
on their distances to two reference points. Let dacc and drej be the distance
from a community to the reference point standing for, respectively, accepted
and rejected communities, then the relative distance of the community is de-
fined as (drej/dacc) − 1. This metric ranges [0,∞), where 0 means that the
community is on the threshold whereas higher values highlight the communities
that are distant to it. The inspection of the rejected communities exhibits that
the relative distance of those labeled “Attack” is lower than the one of those
labeled “Special” or “Unknown” (Fig. 6.10).

We varied the discriminating threshold of SCANN during the experiments
to investigate possible improvements. Tuning the threshold to accept more
communities tends to increase the fluctuations of the attack ratio of SCANN. For
example, accepting all the communities within a relative distance of 0.5 achieved
an attack ratio of 0.7 during the Sasser outbreak, but sometimes deteriorated
the attack ratio, therefore, no global improvement was observed.

6.5 MAWI labeling

Step 4 of the proposed method consists in labeling the analyzed traffic, here
the MAWI archive. In agreement with the previous evaluation, the traffic is
labeled using the SCANN combination strategy, and the similarity estimator
was executed using unidirectional flow. Since several communities contained a
significant number of alarms, we retrieved the common traffic features corre-
sponding to all the alarms from the same community with the association rule
mining algorithm presented in Section 6.4.1, and assigned labels to the traffic
described by the community rules.
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Using the SCANN output we define a simple traffic taxonomy with four
different labels: Anomalous, Suspicious, Notice, and Benign.

• The traffic accepted by SCANN is labeled Anomalous, meaning that these
traffic are abnormal and should be identified by any efficient anomaly
detector.

• The traffic rejected by SCANN and having a relative distance lower or
equal to 0.5 is labeled Suspicious. Most of these traffic are probably
anomalous but are not clearly identified.

• The traffic also rejected by SCANN but having a relative distance greater
than 0.5 is labeled Notice. Although these traffic are not anomalous and
should not be identified by any anomaly detector, we do not label them as
benign in order to trace all the alarms reported by the combined detectors.

• The other traffic is labeled Benign because none of the anomaly detectors
identified it.

This labeling of the MAWI traffic is publicly available in the form of a
database named MAWILab [3]. This database assists researchers in measuring
the detection rate of their anomaly detector. The results of the emerging detec-
tors can be accurately compared to the labels of MAWILab by using a similarity
estimator like the one presented in this work.

6.6 Discussion

In addition to its accurate detection, the proposed method has several advan-
tages that are presented in this section.

The graph-based similarity estimator proposed in Section 6.2.1 is a valuable
support for systematically benchmarking a detector against other detectors that
report traffic at a different granularity. Indeed, by clustering diverse detectors
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alarms into communities, it allows the automated inspection of numerous de-
tectors outputs in a rigorous manner.

Also, the community rules obtained from the rule mining algorithm consist
of concise descriptions of the traffic identified by the numerous alarms being
merged into the communities. Therefore, an anomalous traffic reported by nu-
merous similar alarms is annotated with a single label. Thus, the number of
labels assigned to the MAWI archive is significantly inferior to the number of
alarms reported by the four detectors, and the labels are intelligible to humans.

Following the expansion of the MAWI archive, MAWILab is updated daily to
track the latest trends in Internet traffic and upcoming anomalies. Furthermore,
we will also take into account the results from emerging anomaly detectors, to
improve the quality and variety of the labels over time. Indeed, by including
new results from upcoming detectors the overlaps of the detectors outputs are
emphasized and the accuracy of SCANN is improved. Therefore, MAWILab is
constantly enhanced and represents a reference data set over time. In order to
ease the evolution of MAWILab, we are planning to establish a collaborative
system allowing researchers to easily contribute by submitting their anomaly
detector or results.

We emphasize that the proposed implementation has the advantage of han-
dling manual annotations or annotations from traffic classifiers [15]. Indeed, the
similarity estimator is able to deal with any traffic annotations [21] containing
at least two timestamps and one traffic feature. This significant ability of the
approach allows us to label traffic with an exhaustive taxonomy. For instance,
by adding in the method input the annotations from a traffic classifier, the
similarity estimator aggregates similar alarms and corresponding annotations
in the same community. Afterwards, the combiner classifies the communities by
ignoring the annotations, but the accepted communities are still reported with
the extra information provided by the annotation.

The goal of this work is to find and label traffic anomalies off-line, so we
assume no constraint is placed on the execution time of the approach. Never-
theless, the experiments revealed that the current implementation requires only
a few minutes to combine alarms with a 15-minute traffic trace, thus enabling
for real time analysis. However, the study of concurrently running anomaly
detectors in real time is left for future work.

6.7 Summary

We proposed a methodology that find network traffic anomalies in the MAWI
archive by comparing and combining the results from four anomaly detectors.
The approach consists of two main ingredients; first, a graph-based similarity
estimator systematically uncovers the relations between the alarms reported by
the detectors, second, a combiner classifies the similar alarms using a combi-
nation strategy. We evaluated the effectiveness of both using different traffic
aggregations and combination strategies. The experiments emphasized the ben-
efit of combining detectors with SCANN, a strategy based on dimensionality
reduction, as it ignored irrelevant alarms and detected twice more anomalous
traffic than the more accurate combined detector.

The established methodology allows us to accurately detect anomalies in
the MAWI archive and precisely assign concise labels. The results are updated
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daily using the MAWI archive and are publicly available [3] to assist researchers
in benchmarking their detectors. We encourage researchers to contribute to
the proposed system by submitting to us their results or detectors, so we can
maintain a reliable labeling of the MAWI archive.
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Discussion

This dissertation aims at increasing the reliability of anomaly detectors by ad-
dressing different problems that raise in distinct scopes of the anomaly detec-
tion domain. Thereby, we propose a practical anomaly detector that outper-
forms current detectors, and, we introduce a new methodology to systematically
benchmark any anomaly detectors.

This chapter summaries the contributions, shortcomings, unexpected find-
ings and consequences of the proposed approaches.

7.1 Pattern-recognition-based anomaly detector

In order to provide network operators with a practical and reliable anomaly
detector, we follow a simple approach that consists in monitoring the traffic
with intuitive pictures and identifying the anomalous traffic through specific
patterns. Thereby, the proposed detection method relies on image processing
and pattern recognition techniques which is a novelty in anomaly detection.

Similarly to anomaly detectors that are looking for outliers, the proposed
anomaly detector is able to identify unknown anomalies emerging in the network,
however, the key idea underlying this method is fundamentally different from
the previous detection methods. Indeed, the design of the proposed method is
initiated by previous observations that enabled to profile a general pattern of
the anomalous traffic, therefore, by identifying this pattern this detector reports
traffic that is guaranteed to highlight the anomalous characteristics inherent to
the pattern (contrarily to the outlier-based detector that reports traffic that is
distinct from the majority of the analyzed data). This fundamental difference
allows the proposed detector to reports reliable alarms, and, this improvement
against previous anomaly detectors is supported by our experiments (Section
4.4). Contrarily to the outlier-based detectors the proposed approach does not
assume the benign to be the majority, thereby, it maintains decent detection
performance when anomalous traffic is dominant during important anomalies
outbreaks. Our experiments also shown that the proposed detector is able to
report mice flows that are contributing in distributed large scale attacks.

The proposed detector relies on a pattern standing for traffic that is ab-
normally dispersed in certain traffic feature spaces. Although this pattern en-
compass most of the current anomalous traffic (e.g. DDoS, worms, scan), the
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proposed anomaly detector is inherently restricted to these classes of anomaly.
For example, our experiments pinpointed the shortcoming of the proposed de-
tector that is the misdetection of alpha flows (i.e., elephant point to point flows).
Generally anomaly detectors are expected to have shortcomings in identifying
certain classes of anomaly and this knowledge is essential for network operators
to predict the limit of their detection systems. Furthermore, this identification
of the detector main weakness also permits to take advantages of complementary
detectors. For example the proposed detector is insensitive to alpha flows that
are easily detected by rate-based anomaly detectors, thus, in practice the com-
bination of the proposed pattern-recognition-based detector and a rate-based
anomaly detector overcomes this shortcoming.

7.2 Parameter tuning

The other challenge we address to ensure the reliability of the proposed anomaly
detector is to maintain its parameter set optimally tuned. Thereby, we analyze
the fluctuations of the optimal parameter set over time and uncover its relations
with the fluctuations of the traffic. This analysis enables us to automatically
select the optimal parameter set according to the characteristics of the traffic.
The resulting reliability increase is supported by our experiments using four
years of MAWI traffic (Section 5.7).

This work provides substantial insights into the relations between the detec-
tor performance, its parameter set, and the characteristics of the traffic. Usually
the parameters of an anomaly detectors are selected according to the charac-
teristics of the analyzed link (e.g., average bandwidth) and adjusted only if the
properties of the link significantly change. Nevertheless, similarly to the previ-
ous work of Himura et al. [32] our analysis highlights the importance of tuning
parameters at fine-grained time scale. Indeed, our experiments reveal that cer-
tain values of the optimal parameter set are varying by one order of magnitude
while analyzing only 15 minutes of traffic significantly altered by anomalies.
Constantly selecting the parameter set according to traffic variations is a la-
borious task that cannot be defer to network operators, thus, each anomaly
detector requires automated mechanisms to rapidly adjust its parameter set in
regard to traffic fluctuations.

Furthermore, our experiments illustrate that the optimal parameter set is
particularly varying during the outbreak of significant anomalies, consequently,
a detector using a fixed parameter set is expected to fail in reporting anomalous
traffic especially during the outbreak of dominant anomalies. Similar observa-
tions have been reported in the literature, in particular outlier-based anomaly
detectors that misreport traffic when a significant anomaly contaminate the ma-
jority of the traffic [60, 62]. The solution we propose to this problem is practical
for network operators as it automatically adjusts the parameter set according
to the characteristics of the analyzed traffic (contrarily to the previous works
that require past or training data [62, 32]).
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7.3 Benchmarking anomaly detectors

While developing the proposed pattern-based-anomaly detector we faced diffi-
culties in evaluating its effectiveness because of the lack of ground truth data.
These difficulties are commonly faced in the domain of anomaly detection and
they prevent researchers to rigorously demonstrate the reliability of their detec-
tors and provide accurate feedback necessary for improving emerging detectors.
This dissertation addresses certain challenges faced in evaluating anomaly detec-
tors especially the difficulties of comparing several anomaly detectors outputs.

We propose a benchmarking methodology based on graph theory that com-
pares the alarms of several anomaly detectors based on different theoretical
backgrounds and reporting traffic at different granularities. Using graph allows
us to uncover the similarities and differences of the alarms reported by sev-
eral detectors in a systematic manner. The effectiveness of this benchmarking
methodology is validated by our experiments using four independent anomaly
detectors and 10 years of backbone traffic.

This approach is a novelty in anomaly detection enabling rigorous compar-
ison of detectors results that is not possible using only the traditional perfor-
mance metrics (e.g., true positive or false positive rate). In the literature detec-
tors are usually compared by inspecting their ROC curves, however, ROC curves
omit crucial information that is required to provide substantial feedback on the
evaluated detector. For example comparing the ROC curves of two detectors
permits to select the one with the best accuracy, but, it does not help to answer
at the following basic questions: does the best detector missed anomalies found
by the other one? Are all anomalies reported by both detectors? Addressing
these questions is possible by manually inspecting the reported alarms, never-
theless, the proposed methodology enables a systematic and rigorous approach
to this process.

The proposed methodology has also the advantage of reporting groups of
similar alarms that uncover characteristics of the underlying anomalous events.
For example, Figure 7.1 illustrates a group of similar alarms reported by two
anomaly detectors using real Internet traffic. The two detectors are; the pro-
posed pattern-recognition-based detector reporting traffic at the packet level,
and the gamma-based detector reporting either source or destination IP ad-
dresses. The group consists of 29 alarms; 27 are from the gamma-based detec-
tor (i.e., red rectangles) and 2 from the other detector (i.e., green ellipses). All
these alarms are reporting abnormal DNS traffic, however, the alarms on the
right and left hand side of Fig.7.1 (both labeled 200.24.119.113) report a DNS
server under heavy traffic whereas the rest of the alarms report clients solicit-
ing this service. By grouping all these alarms together our method permits to
report the flooded server and the blamed clients at the same time. Whereas, by
analyzing individually alarms raised by clients, one may misunderstand the dis-
tributed characteristic of this network activity — similar to DDoS, flash crowd,
or botnet activity — and misinterpret each alarm.

Unexpectedly we notice that the proposed benchmark method is also useful
in inspecting the output of a single anomaly detector. In the example of Figure
7.1, the proposed method merges 27 alarms from the gamma-based detector,
therefore, it reports the 27 alarms at once and assists network operators to find
the root cause of this anomalous traffic.

Due to its flexible design the proposed method is also able to handle an-
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Figure 7.1: DNS traffic reported by 29 alarms from two anomaly detectors.
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notations from the traffic classifiers (i.e., identification method recovering the
applications corresponding to the traffic). Therefore, the proposed method al-
lows to aggregate similar alarms with the corresponding traffic annotations, and,
provides detailed information of the traffic reported by the anomaly detectors.

Relations between anomaly detectors and kinds of anomaly

Using the proposed benchmarking methodology, four diverse detectors and 10
years of backbone traffic, this dissertation highlights detectors differences that
are rarely reported in the literature. Indeed, the results presented in Section
6.4.1 show that each detector is reporting a significant number of unique alarms
standing for traffic not reported by other detectors. Thereby, we deduce that
the detectors are reporting distinct kinds of anomalous traffic. This statement
corroborates our previous observations with the proposed pattern-based detec-
tor; the proposed pattern-based anomaly detector is able to detect a specific
kind of anomaly that is represented by small flows and missed by the compared
detectors, and, the proposed detector misses anomalous alpha flows that are
reported by the compared detectors. Our results (Section 6.4.1) also highlight
the singularities of the three compared detectors; the PCA and gamma based
detectors identify specific kinds of anomaly not identified by the other detectors,
whereas, the KL-based detector reports mainly anomalies commonly detected
by all the detectors. Since the four analyzed anomaly detectors detect different
kinds of anomaly, we emphasize that network operators need to consider these
differences while selecting anomaly detectors.

Because each detector detects (or misses) specific kinds of anomaly combin-
ing them is a promising approach that requires more attention from researchers.
This dissertation illustrates the advantages of combining anomaly detectors by
studying an unsupervised combination strategy that is indeed outperforming all
combined detectors and reporting a variety of anomalies.

Combining anomaly detectors

The benefits of the proposed benchmarking methodology are demonstrated by
applying it to combine diverse anomaly detectors. Thereby, using an unsu-
pervised combination strategy and four anomaly detectors we implemented a
reliable detection method that is identifying two times more anomalies than the
best detector. The main contribution of this application is to combine anomaly
detectors that are fundamentally different and take advantage of their synergis-
tic effect.

The results of this combination of anomaly detectors using the MAWI archive
are provided to the research community in order to evaluate emerging anomaly
detectors. Therefore, researchers can use it as ground truth data to evaluate
their detector which can be afterward integrated in the proposed combination
strategy, thus, improving the provided results.

Despite the flurry of anomaly detectors proposed in the last decade, the
combination of detectors have been rarely studied in the domain of anomaly
detection. Nevertheless, the advantages of combining anomaly detectors to pro-
vide reliable detection tools to network operators are significant, thus, combining
anomaly detectors deserves more attention in the future. Our main contribu-
tion in this broad topic is to propose a benchmark methodology that enables to
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combine any kinds of anomaly detectors, however, the substantial tasks of se-
lecting an optimal detector ensemble and a sophisticated combination strategy
are beyond the scope of this dissertation and left for future works.
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Conclusion

8.1 Concluding remarks

The constant emergence of anomalous traffic in Internet is a serious problem
that holds the attention of many researchers. Thereby, during the last decade
numerous anomaly detection methods have been proposed to assist network op-
erators in detecting and diagnosing traffic anomalies. Several of these proposals
are particularly interesting as they have the ability to prevent the outbreak of
new and unknown anomalies by applying statistical analysis of the traffic.

Nevertheless, these anomaly detectors have several common drawbacks that
discredit their reliability in practice. In this dissertation we addressed these
drawbacks and proposed two solutions operating a two different scopes. First,
we designed, implemented, and evaluated an anomaly detector that overcomes
several drawbacks of current detectors, second, we proposed a methodology to
benchmark anomaly detectors and took advantage of it to emphasize the benefits
of combining several anomaly detectors.

8.1.1 Pattern-recognition detector

We proposed a new approach to detect traffic anomalies using image processing
and pattern recognition. This detection method was evaluated by analyzing 6
years of real Internet traffic and by comparing its results with those of two other
anomaly detectors. This evaluation highlighted the strengths of the proposed
detector that are its intuitive mechanisms and its good detection performance.

The proposed anomaly detector identifies anomalies by taking advantages of
a pattern recognition technique and a pattern featuring common characteristics
of anomalous traffic. Thereby, the proposed approach is fundamentally different
from the two typical approaches found in the literature, namely the ones based
on signature matching and the ones based on outlier detection. The proposed
detector is indeed located between these two approaches as it is explicitly looking
for malicious traffic (contrarily to outlier-based methods that are looking for
traffic with singularities) and has the ability of detecting unknown anomalies
(contrarily to signature-based methods).
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Parameter tuning

In practice one of the main challenge with Internet traffic anomaly detectors
is to select the optimal parameter set. Consequently, we inspected the relation
between the parameter set of the pattern recognition technique employed by the
proposed anomaly detector and the characteristics of the analyzed traffic. This
analysis highlighted the significant performance deterioration caused by traffic
fluctuations and the need of adjusting detectors parameters according to the
variances of the traffic. Consequently, we designed an adaptive anomaly detector
that automatically tunes its parameter set according to the traffic fluctuations.
The effectiveness of this adaptive anomaly detector was validated by comparing
its results to those of three other anomaly detectors using four years of Internet
traffic.

According to these experiments we expect that most of the anomaly detec-
tors requires parameter adjustments in regard to the traffic fluctuations, and
we emphasize the need for researchers to address this issue while developing
anomaly detectors.

8.1.2 Benchmarking anomaly detectors

Rigorous evaluation of the anomaly detectors is a crucial task towards enhancing
the quality of current and emerging detectors. Consequently, in this dissertation
we addressed two common challenges that penalize researchers to efficiently eval-
uate anomaly detectors; (1) rigorously comparing the results of several detectors
based on different theoretical backgrounds. (2) Providing common ground truth
data (i.e. traffic traces with labeled anomalies).

Benchmark methodology

We proposed a methodology to relate alarms reported by several detectors al-
though they are expressed in different ways and represent distinct granularities
of the traffic. Our approach relies on the abstraction level of graph theory,
thereby, graphs are generated from alarms and the original traffic to uncover
the similarities of alarms. An algorithm finding community structure permits
to distinguish coherent sets of nodes in the graph standing for sets of similar
alarms. An evaluation using 10 years of traffic highlighted the effectiveness of
this method to cluster similar alarms reported by different anomaly detectors.

By rigorously comparing the results of several anomaly detectors this graph-
based methodology enables to systematically inspect the differences between
different anomaly detectors. Unexpectedly, the proposed method also has bene-
fits when it is used with only one detector; it aggregates similar alarms reported
by a single detector, thereby, it clarifies the output of the detector and helps in
accurately describing anomalous traffic.

Detector combination

Due to its benefits, the proposed benchmark methodology enabled us to com-
pare and combine the results from diverse anomaly detectors. Thereby, using
the proposed method and an unsupervised combination strategy we developed
a method combining four anomaly detectors. The synergy between anomaly
detectors permitted to detect twice more anomalies than the most accurate
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detector, and to reject the numerous false positive alarms reported by the de-
tectors. Furthermore, using this combination of detectors we automatically
located a variety of anomalies in a data base containing 10 years of traffic, and,
we provided our results in the form of a common ground truth data that assists
researchers in evaluating their detectors.

8.2 Futures perspectives

Combination strategies are appealing as they theoretically permit a performance
increase over the combined methods. While, they have received a lot of attention
in the field of data mining, the attempts to apply these techniques to anomaly
detection are rare. Therefore, the combination of anomaly detectors deserves
more attention in the future, especially, the three following topics.

Sensitivity of anomaly detectors

A key task to effectively combine several anomaly detectors is to understand
the strengths and weaknesses of each detector. Consequently, investigating the
sensitivity of several detectors to distinct traffic is an important task that needs
particular attention. The objective is to systematically identify for each detector
the traffic characteristics that tend to raise true or false positive alarms. Also,
a formal description of anomaly detectors sensitivity is required to make a good
use of it in an automated manner.

Anomaly detectors ensemble

One can easily understand that combining detectors that output identical results
is hopeless. In fact the assets of combining anomaly detectors is originated
by the diversity of the detectors. Therefore, selecting diverse detectors that
would have a synergistic effect is also a crucial task. Past studies in the data
mining community have proposed diversity measures to build effective ensemble,
however, these measures has been validated only on specific cases and applying
them to anomaly detection is challenging.

Combination strategy

Combining multiple detectors consists in classifying the traffic based on the set
of decisions reported by the combined detectors and knowledge on the detec-
tors. Numerous combination strategies have been proposed in the field of data
mining and they require different knowledge on the combined methods. For ex-
ample, combination strategies based on Bayes theory may rely on the accuracy
of each method whereas unsupervised combination strategies do not requires
such knowledge. Consequently, the insights of the task on the anomaly detec-
tors sensitivity (described above) are essential to determine knowledge on the
detectors and select an effective combination strategy.
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Appendix A

Visualizing Internet Traffic
and Characterizing
Anomalies

A.1 Introduction

The Internet has become a common medium for communication and informa-
tion exchange providing many attractive services for ordinary users. A victim
of its own success, Internet traffic is still growing at a fast rate and contains an
increasing amount of anomalies such as misconfigurations, failures, and attacks.
These improper uses of network resources consume bandwidth and adversely
affect the performances of networks. Thus, these anomalies penalize legitimate
applications from using an optimal amount of network resources. Since the
core of the Internet is particularly deteriorated by anomalous traffic, quick and
accurate detection of anomalies in the backbone traffic has been a hot topic
(e.g., [9, 45, 16, 23]). However, due to the lack of ground truth data for back-
bone traffic, evaluating an anomaly detector is quite challenging and tricky [30].
Therefore, researchers must validate their results from their anomaly detectors
by manually investigating the dump files or flow records. This is a baffling prob-
lem as it is laborious to identify a few thousand harmful packets from millions
of innocuous ones.

Nevertheless, visualizing network traffic is a valuable tool for in investigating
dump files. The main advantage of graphical representations is to highlight
the significant features of the traffic, thus the main properties of the traffic
are understood at a mere glance. Moreover, several degrees of information
are retrieved by monitoring the various representations that depict different
aggregations of the traffic. For example, a time series is useful for analyzing
the time evolution of a single feature for a huge amount of flows. Whereas, a
graphlet [39] depicts several features of only a few flows.

In this article, we propose a tool to visualize, explore, and understand net-
work traffic at any temporal and spatial (address and port) scale. Our main
contribution is to provide a tool that assists researchers, or network operators, in
understanding and validating alarms reported by their anomaly detectors. The
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proposed tool provides six basic features to help researchers inspect network
traffic and evaluate anomaly detectors:

• Network traffic is displayed at different resolutions, and the user is able
to zoom in/out along the time axis or address/port space.

• The tool provides different types of scatter plots (corresponding to IP ad-
dresses, or port numbers) and time series (e.g., throughput and average
packet size). Since these graphical representations are intuitive views, the
tool simultaneously displays two views and provide an exhaustive descrip-
tion of the traffic.

• Understanding backbone traffic involves inspecting various sub-traffics,
and therefore, the tool allows to easily move along the network traffic in
time and space (i.e. address and port number space).

• The tool retrieves all the details concerning the monitored traffic in the
form of accurate graphlet and textual data.

• Anomalies identified by anomaly detectors are displayed by this tool, and
thus, researchers and network operators are able to easily validate the
veracity of the detected anomalies.

• The current implementation runs on different platforms on a daily basis,
it uses no intermediate database, and it directly reads dump files (pcap
form [4]).

We evaluated the tool on several kinds of traffic; darknet traffic reveals
shapes highlighting anomalous traffic, and similar patterns are also observed in
the backbone traffic. Furthermore, we demonstrate the help provided by the
tool in identifying recent and sophisticated attacks such as the Conficker worm.
We also conduct a manual inspection of anomalous traffic reported by anomaly
detector, and list several typical patterns highlighting anomalies (in accordance
with those reported in [23]).

A.2 Related work

Various visualization tools assist researchers and network operators in monitor-
ing network traffic. For example, Fischer et al. [18] and Goodall et al. [28]
presented two interesting tools focusing on anomaly detection. The former [18]
monitors traffic related to local hosts based on a TreeMap visualization. It is
used to check alarms reported by IDS, and to identify large-scale attacks aim-
ing at local hosts. The latter, TNV [28], highlights the connections between
the hosts sorted within a matrix. The traffic between local and remote hosts is
clearly displayed, and all the information about the packets is accessible. How-
ever, these two tools only display a limited number of hosts (e.g., about 100 hosts
for TNV on a 1280x1024 display), and their home-centric view is not suitable
for backbone traffic where the terms local and remote hosts are meaningless.

InetVis [71] is a visualization tool used to monitor the network traffic in
three-dimensional scatter plots. Traffic is mapped into a cube [47] highlighting
the specific patterns for particular anomalies. Although InetVis is adequate
enough for monitoring small or extracted traffic (e.g., using IDS [36]), figures
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generated from heavy traffic (e.g. backbone traffic) are difficult to read and omit
a lot of information. Moreover, textual information concerning plotted points
cannot be obtained using this tool, whereas, information like port numbers, IP
addresses, or TCP flags are usually required to validate anomalies. NVisionIP
[46] is another visualization tool that cannot retrieve packet headers — essential
to conduct thorough inspections of network traffic — although it is able to
display traffic from large networks at several levels of aggregation, and provides
detailed statistics on any hosts.

Similar to our work, IDGraphs [58] only displays two-dimensional views
based on time. IDGraphs maps an original TCP-flag-based feature (SYN-
SYN/ACK values of complete flows) on the vertical axis and emphasizes several
patterns for different kind of attacks. However, due to routing policies, the back-
bone traffic is usually asymmetric and contains numerous incomplete flows, and
therefore, the proposed feature based on the TCP flag is irrelevant for analyzing
backbone traffic.

A.3 Design and Features

Our main goal is to provide an interactive tool, to intuitively understand back-
bone traffic at different temporal or spatial resolutions, and to validate alarms
reported by anomaly detectors. Manually validating results obtained from
anomaly detectors is a challenging task because of the multi-dimensionality of
network traffic and the large amount of data. Thus, we designed the proposed
tool to include the following requirements: the tool has to focus on the signifi-
cant traffic features to show a network traffic behavior and highlight anomalies
in a way that is intelligible to users. It should enable the identification of diverse
anomalies by exploring traffic at different scales and in various graphical repre-
sentations, and permits a particular subset of the whole traffic to be analyzed by
filtering the entire set of traffic. A precise understanding of the monitored traf-
fic has to be gained by displaying the original header information and accurate
graphs from selected plots. Since this tool is interactive, it has to display figures
sufficiently fast, and provide them on different platforms. Script languages or
interpreted languages have to be avoided for performance reasons. As the tool
has to be quickly operational on several files, it needs to read data directly from
the dump files and should not use an intermediate database.

A.3.1 Graphical representations

An asset of the proposed tool is its ability to display a large amount of data and
highlight unusual behaviors in two-dimensional views that are easily readable.
Obviously, three-dimensional views would provide additional information com-
pared to those that are two-dimensional (hereafter respectively called 3-D and
2-D views). However, to observe such 3-D views we have to project them down
onto a 2-D visual aid (e.g., a screen or paper). Two main issues are raised by
this dimensionality reduction, namely disorientation and occlusion [52]. Disori-
entation means that the position of the plotted data is not clear and the values
corresponding to the plots are difficult to retrieve. Occlusion occurs when plots
hide one another, so information is omitted from view. These two problems are
well-known in the field of computer vision, and a common solution is to display
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Figure A.1: Hard-to-read three-dimensional view and two projections helping
to identify values.

several 2-D projections instead of a single 3-D view.

Figure A.1 shows an example of a 3-D scatter plot representing network
traffic. The three dimensions correspond to the timestamp, source port, and
destination port. The main advantage of this representation is to present two
traffic features and the time in a single view. Nevertheless, the exact position of
each point is difficult to determine and confusing. Also, we need to rotate the
cube to verify that plots are not hidden in this particular view. The occlusion
issue is even more important when more data are displayed. However, by pro-
jecting data onto the faces of a cube surrounding traffic, we obtain an accurate
2-D view of the traffic. For example, the two scatter plots on the right-hand
side of Fig. A.1 represent the same traffic; the top one is drawn in the function
of the source port and time, while the one at the bottom visualizes the traffic
with regard to the destination port and time. These sub-figures are more readily
understood than the 3-D representation and allow us to accurately identify the
ports numbers corresponding to the plots.

The same type of 2-D scatter plot monitors traffic in the proposed tool,
displaying understandable views of the traffic even though we have taken five
dimensions into consideration (source port, destination port, source address,
destination address, and time). In particular, the network traffic is represented
in a five-dimensional space and projected onto several 2-D planes, where the
horizontal axis always represents the time, but the vertical axis represents the
different traffic features. The following constitutes a list of all the possible ways
to represent network traffic using the tool; the first four scatter plots use a color
convention where a plotted point is green when it stands for a few packets and
becomes progressively redder as the number of packets it represents increases.
On the other hand, the next three plots are a time series with their own color
convention. Another graphical representation is discussed in Section A.3.3 for
a small data set.
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Destination IP address space This representation exposes anomalies through
their targets. It highlights anomalies that aim at many hosts, or anomalies gen-
erating a lot of traffic to a single host/sub-network. The resulting scatter plots
have vertical or oblique “lines” (consecutively aligned dots) for anomalies, such
as remote exploit attacks, and horizontal “lines” for the targets of DoS attacks,
or heavy hitters.

Destination port number This representation emphasizes services targeted
in the observed traffic. Obviously, busy services and port scans are highlighted
and respectively occur as horizontal and oblique “lines”.

Source IP address space This representation highlights the origins of the
traffic. Anomalies generating heavy traffic from a single host appear as a hor-
izontal line in the resulting scatter plots. Also, this representation emphasizes
various traffics initialized at the same time as DDoS, botnet, or flash crowd.

Source port number This representation reveals the port used by the hosts
to communicate. Anomalies based on flooding create as many connections as
possible using an increasing source port number. This is translated here as
vertical or oblique “lines”. This graphical representation is helpful for exposing
various kinds of DoSs and remote exploit attacks.

Number of packets Here, the displayed figures are the time series of the
number of packets transmitted for each protocol. A red time series is derived
for TCP packets, a blue one for UDP, a green one for ICMP, and a black one
for other protocols. This representation highlights the misuse of a protocol. For
example, a flood generates a considerable number of packets using a particular
protocol, easily identifiable as a significant variation in the time series.

Number of bytes Several anomalies cause abnormal variations in the num-
ber of bytes. These processes that consume bandwidth are highlighted in this
representation as significant variations in the time series.

Average packet size As described by Bardford et al. [9], the average packet
size can be taken into consideration to detect anomalies. This reveals the abuse
of a particular application, as applications usually use the same packet size for
all communications they carry out. This representation is a time series of the
average packet size, where anomalies are emphasized by abnormal variations.

A.3.2 Tool overview

Figure A.2 is an overview of our tool, which is composed of three panels, a small
one (W0) with a menu bar and an overview of the traffic, and two larger ones
(W1 and W2) displaying the traffic in detail. Since our tool displays only 2-D
graphical representation based on a single traffic feature, the two detailed panels
(W1 and W2 in Fig. A.2) allow the monitoring of two traffic features simulta-
neously. Users choose which representation has to be displayed in each panel
(available representations are listed in Section A.3.1). Thus, our tool avoids
the confusion caused by irrelevant information and focuses on the anomalies as
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Figure A.2: Tool overview.

they are generally revealed through unusual uses of one or two traffic features
[45]. For example, a network scan can easily be identified by analyzing only the
destination address and destination port.

Sections A.3.3 and A.3.3 explain several operations for navigating in W1.
Depending on these operations, W2 is automatically updated, providing more
information about the traffic displayed in W1 as W2 displays only the packets
shown in the W1 view. For example, W1 in Fig. A.2 displays a scatter plot
of the destination addresses, whereas W2 displays a scatter plot of the source
ports. When W1 is zoomed to select a particular sub-network, W2 only presents
packets for this sub-network. In W0, the blue rectangle (labeled “Navigation”
in Fig. A.2) helps us to figure out where the detailed view is located in the
entire traffic. W0 also provides a packet header that corresponds to certain
points selected by the user.

A.3.3 Other features

Multi-scale

Anomalies appear at different temporal and spatial scales. Namely, they can last
for short or long periods (from an order of seconds to several hours), and they
can aim at a single or multiple targets, on one or several ports. The proposed
tool allows to zoom in/out independently on each axis. The length of time and
feature space (e.g. address space) can be adjusted at any time. This is easily
achieved with the mouse wheel, or corresponding buttons. Thus, when long and
short-term anomalies are observed, their time duration and their impact in the
feature space can easily be estimated.
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Easy navigation

Inspecting network traffic and thoroughly investigating anomalous traffic re-
quires movement along the traffic trace and a focus on a particular region. The
proposed tool lets users conveniently navigate through the analyzed traffic. Only
a click on a particular point is required to center the view on that zone.

Packet information

Characterizing anomalies is a complicated task, as some of them are only iden-
tifiable by inspecting the flags of the packet header. A combination of graphical
and textual information is essential for identifying anomalies. Our tool helps
users in their investigations by providing useful information about all the plot-
ted pixels. A right click on a point in a figure brings up a zoomed view of the
clicked zone, and a particular point can be selected to check the corresponding
packets headers, and thus we can learn more about the displayed traffic. The
tool also represents the selected data as a graphlet that is similar to those pre-
sented in BLINC [39]. These graphlets (or parallel coordinates [35]) allow us
to simultaneously visualize more than two dimensions, and intuitively highlight
communication patterns. The tool takes advantage of this graphical representa-
tion to display only small data sets pointed at by the user (graphlets representing
large data sets are too confusing).

Input

The tool has to quickly display figures from several input files. Although it
would be easier to access data, copying files into an intermediate database is
too costly for analyzing daily backbone traffic. Instead of using a database,
the tool reads directly from the dump files, like those produced by tcpdump.
Also, the tool is able to directly read from compressed files (commonly used to
save disk space). Moreover, several files can be given as inputs, and hence, the
resulting figures are drawn as all the corresponding files are merged.

Anomaly description

Reports from anomaly detectors are passed on to the tool in the form of admd
files1, which is a XML schema allowing the annotation of traffic in an easy
and flexible way. Thus, anomalies reported by anomaly detectors are quickly
identified and inspected as they are displayed in black in all the scatter plots.

Portability

Our tool is designed for users utilizing different platforms. We avoided script
and interpreted languages for performance purposes, and implemented this ap-
plication in C++ using only portable libraries to make it available to most users
(e.g. views are displayed with the CImg library [1]). Thus, the tool can cur-
rently be compiled and executed on different platforms: Unix (Linux and BSD),
MacOS, and Windows.

1Meta-data format and associated tools for the analysis of pcap data:
http://admd.sourceforge.net
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Table A.1: Gain in performance due to mechanism for seeking in pcap files.
User CPU time System CPU time Time elapsed
(clock ticks) (clock ticks) (minutes:secs)

With “seek structure” 6.00 0.64 00:23.28
Without “seek structure” 10.25 1.43 00:58.42

Option

The tool is customizable through the command line interface to better fit the
needs of the users. One important option from among the many options available
permits to filter displayed traffic, thus, the tool monitors only certain sub-traffic
from the entire traffic trace. Filters have the same syntax as pcap’s filters
(the same as those used in tcpdump) and are based on any field of the packet
header. They allow specific sub-traffic to be accurately selected. For example,
this option helps investigations into anomalous traffic by displaying only traffic
from a suspicious host on certain ports, or by only selecting SYN packets to
highlight the probing processes and SYN flood.

Snapshot

Saving pictures of traces previously observed is essential for visually comparing
or illustrating traffic behaviors. Users can save a snapshot of a particular figure
at any time. The tool can also be used to generate a batch of visualizations
from a set of files with the command line interface. For example, visualizations
of daily figures from a year of traces can be generated and stored using only one
command line2.

A.4 Results

A.4.1 Performance

The comfort of navigation and inspection of traffic with our tool is strongly re-
lated to its performance and reactivity to one’s actions. Since the tool directly
reads pcap files, some performance issues are addressed. The main problem is
that libpcap does not offer the possibility to directly access a subset of packets
corresponding to a given time interval. In practice, the whole traffic trace has
to be scanned consuming substantial resources for large traffic traces. There-
fore, we consider a dump file to be several parts of the same duration where
the first packets of these time slices are called “key packets”. Our implementa-
tion consists of a data structure that retains information on the “key packets”,
such as their timestamps and their offsets in the trace file. This data structure
helps us to directly access a “key packet” regarding its timestamp. Thus, “key
packets” are used as indexes in order to quickly go through the traffic trace.
For example, to read a packet at a particular time, t0, the data structure helps
us to jump to the “key packet” preceding t0, thereby avoiding having to read
numerous unwanted packets prior to this “key packet”. Table A.1 lists the gains
in performance we obtained with this improvement. The numbers in this table

2An example resulting from this feature is the website MAWIviz illustrating all traffic
traces of the MAWI archive [14]: http://www.fukuda-lab.org/˜romain/MAWIviz/
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Figure A.3: Scatter plots representing darknet data.

represent the average results from five executions of the same scenario. The sce-
nario consisted of five consecutive zooms in the time space on an uncompressed
trace of about 800 MB. The measurements were done on a Linux system with
the time command, using a computer with 2 GB of RAM and an Intel Core 2
Duo CPU operating at 2.6 GHz. This improvement makes for a comfortable
multi-scale navigation through large traffic traces.

A.4.2 Darknet data

Figure A.3 shows an example of the scatter plots generated from darknet traces
taken from a /18 sub-network. As described by Pang et al. [57], darknet (or
background radiation) is a type of nonproductive traffic sent to unused address
spaces. Darknet data are usually analyzed to characterize anomalies and useful
for demonstrating the efficiency of our tool. The vertical axis in the first panel
of Fig. A.3 stands for the destination addresses, whereas this axis represents
the source port numbers in the second panel.
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The vertical “lines” in the first panel represent the exploited attacks or any
processes using network scans (e.g., (e)). The horizontal “lines” stand for the
hosts or sub-networks under heavy attack. They could be the targets of any
flood attacks or misconfigurations (e.g., (d) and (f) in the figure).

Other kinds of anomalies are observed in the second panel, and more infor-
mation about those found in the previous scatter plot are available. Here the
vertical “lines” or oblique “lines” represent any procedure using an increasing
number of source ports. This is the case in most operating systems when a
process opens as many connections as possible. The horizontal “lines” in this
panel indicates the constant and heavy traffic from a single port, emphasizing
floods, misconfigurations, or heavy-hitters. We can see two sets of consecutive
vertical “lines” ((a) and (b) in Fig. A.3) appearing at the same time as sudden
heavy noise in the first panel. These two behaviors are interpreted as a process
trying to access many of the computers of a sub-network within a short time
duration (e.g. exploit or worm) as possible. Checking the headers information
revealed that all these packets are directed to port 445. Windows has vulnera-
bilities in its protocols using this port and several worms have spread through
these vulnerabilities. The vertical “line” (e) depicts the same behavior, but
within a shorter time frame. Indeed, the packet header information emphasizes
an exploit on ssh. We also analyzed the oblique curves (see (c) an (d) in Fig.
A.3) and detected attacks aimed at services sensitive to attacks. These attacks
are not linear because of the variations in time processing or network delays
(due to another activity (d) has some jumps in its source port numbers). The
ports concerned are 80 for (c) and 161 for (d). These services are the targets
of well-known attacks driving DoS or buffer overflows. (d) aims at a small sub-
network (see (d) in the first panel), whereas (c) is aimed at a single target easily
identifiable by zooming in on (f).

A.4.3 Network traffic from trans-Pacific link

As an example of anomalies surrounded by legitimate traffic, we analyzed a
traffic trace from the MAWI archive [14], which is a set of traffic traces that has
been collected by the WIDE Project from 1999. This archive provides large-
scale traces taken from trans-Pacific links. The traffic traces are in pcap form
without any payload data with both addresses anonymized. Also, the time
duration of each trace is fifteen minutes.

Figure A.4 depicts views from ten consecutive files of the MAWI database.
The total size of these ten files is about 7.6 GB, for a time of 2.5 h and more than
22 million packets. The vertical axis in the first panel stands for source ports.
We can easily see that traffic is heavier than in the example presented in previous
section. However, we can still distinguish several red “lines” highlighting some
intensive uses of network resources. In the following, we focus on the right part
of this figure. Consequently, the next scatter plot results from zooming in on
the time axis.

The second panel has also been drawn in regard to source ports. Header
information helps us to understand plotted pixels; the two oblique “lines” cross-
ing the figure (see (a) in Fig. A.4) represent a SYN flood. This is an attack
from a single host to several targets, the attacker floods targets on port 443
(usually used for HTTP over SSL). This method is well known and results in
buffer overflows in the Private Communications Transport (PCT) protocol im-
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Figure A.4: Samplepoint-F from MAWI Working Group Traffic Archive,
2007/01/09.
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plementation in the Microsoft SSL library. The other oblique “lines” represent
the same kinds of attacks against other services and from different hosts. In
particular, (b) stands for a DDoS attack against a few HTTP servers. The
horizontal red “lines” are anomalies consuming bandwidth as in DoS attacks,
misconfiguration or heavy-hitters from peer-to-peer networks.

The last panel in Fig. A.4 shows the same traffic but in regard to the
destination ports. Similar “lines” to those found in the previous panel (b)
appear. They stand for the server’s reactions to the DDoS attacks previously
observed. Also, two kinds of “lines” repeated several times (see (c) and (d)) are
highlighted. Both of these are DoS attacks of ACK packets from two distinct
hosts against different targets.

A.4.4 Manual inspection

Inspecting a specific anomaly

The tool helps in inspecting a particular sub-traffic by filtering the entire data
before plotting it. The given filters are similar to those in tcpdump allowing
for a powerful data extraction. Using filters, the tool is also useful for creat-
ing the visualizations of reported anomalies providing additional information in
anomaly detector reports.

For example, an anomaly detector [23] reported anomalous traffic on port
515. As this is not a typical target for attacks, we investigated the traffic
related to this port. We monitored only the traffic for port 515 (Fig. A.5)
with the filtering option of our tool. The upper panel of Fig. A.5 depicts two
different traffic behaviors; the left-hand side of the scatter plot shows many
short communications dispersed over numerous destination hosts, whereas, the
right-hand side of the scatter plot displays longer communications concentrated
on a few hosts. This can be interpreted as an attacker probing sub-networks to
identify hosts with specific security holes, and a few connections are established
to compromise detected victims. The bottom part of Fig. A.5 represents the
average packet size corresponding to the traffic displayed in the scatter plot.
This time series also exhibits two different phases; it clearly indicates that the
size of the packets during the first half of the analyzed traffic is abnormally
constant while the second half is more typically fluctuating. The average size of
packets in the first phase is particularly small due to the lack of packet payload
used during the probing process. However, the following communications have
packet payloads that considerably increase the average packet size.

The traffic behavior can intuitively be understood from Fig. A.5, but actual
information is still needed to confirm this. The tool supplies header information
that corresponds to the displayed plots. Textual header information and a
corresponding graphlet are obtained by pointing to a particular plot in the
graph.

We retrieved information from several of the plots in Fig. A.5 to clearly
comprehend the displayed traffic. Figure A.6 shows a graphlet corresponding
to the header information from various plots selected from the first half of the
analyzed traffic. The structure of the graphlet is more interesting than the exact
values of the IP addresses or port numbers. It clearly indicates that one host
using many ports probes numerous hosts on the same port. The textual data
reveals that all packets had a SYN flag set, and confirms that the plotted traffic
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Figure A.5: Exploit on port 515. Top: destination address vs. time. Bottom:
average packet size vs. time (MAWI archive, 2001/04/14).
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Figure A.6: Header information corresponding to several pixels representing
traffic from MAWI archive (2004/10/14).

corresponds to a probing process.

Inspecting outputs from anomaly detectors

The proposed tool provides valuable assistance to understand and evaluate
anomaly detection methods by displaying their results at any temporal and
spatial scales in various views. Indeed, by passing the anomaly detector results
and original traffic to the tool, it monitors the reported anomalies and helps
in rapidly validating them. Thus, researchers designing anomaly detectors are
able to validate at a glance the traffic reported by their anomaly detectors and
thoroughly inspect anomalies by retrieving anomalous packet header informa-
tion.

Two examples of anomalies reported by two distinct anomaly detectors are
depicted in Figure A.7, where the anomalous traffics are displayed in black. The
two anomaly detectors analyzed a MAWI traffic trace in which the first quarter
of the traffic is strongly altered by the spreading of the Sasser worm (see the
main peak in Fig. A.7(c)). The upper scatter plot (see Fig. A.7(a)) depicts
337 anomalies reported by an anomaly detector based on image processing [23].
This view exhibits the inability of this anomaly detector (with the specified
parameter set) to detect all Sasser activities during the main outbreak of the
worm. This case emphasizes the valuable support provided by the tool as this
fact could not be deduced by only inspecting the textual results outputted by
the anomaly detector.

The middle scatter plot depicts 332 anomalies obtained with another anomaly
detector based on multi-scale gamma modeling [16]. A quick visual compari-
son of the two views (Fig. A.7(a) and Fig. A.7(b)) indicates that these two
anomaly detectors identified many distinct traffics — particularly during the
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(a) Anomalies reported by anomaly detector based on Hough transform.

(b) Anomalies reported by anomaly detector based on gamma modeling.

(c) Number of packets of analyzed traffic trace.

Figure A.7: Highlighting anomalies reported by anomaly detectors in a traffic
trace from MAWI archive (2004/08/01) altered by Sasser worm.

105



Appendix A. Visualizing Internet Traffic and Characterizing Anomalies

peak identified in the first quarter of the trace — although they reported a
similar amount of anomalies. This comparison is quickly derived from the two
views provided by the tool, whereas, similar conclusions are usually deduced
from a time-consuming manual analysis of the two anomaly detectors outputs.

A.4.5 Temporal-Spatial patterns in anomalous traffic

During our experiments we observed particular patterns that stood for certain
kinds of anomalies. These patterns exhibit some important properties of the
anomalies such as its range of targets and sources, its operational speed, and
its time duration. It also provides certain information on the mechanisms used
by the anomalies, particularly the uses of the source ports.

Coarse view

At large scales certain anomalies are easily identified as sudden changes in the
main traffic behavior or in the usage of a particular protocol. For example,
Figure A.8 displays three months of darknet traffic recorded while the first
two versions of the Conficker worm were released. This figure shows that first,
a sharp increase in the number of source IP addresses and number of pack-
ets clearly signaling the start of the worm spread (labeled Conficker.A in Fig.
A.8). Second, another growth of these quantities depicts the release of the sec-
ond version of the worm and its aggressive behavior in terms of the network
resources consumption (labeled Conficker.B in Fig. A.8). The scatter plot of
the destination port (see middle scatter plot of Fig. A.8) reveals that the first
version of the worm is communicating with the other hosts using random port
numbers ranging over (1024, 5120). These types of communications disappear
after the second release is unveiled, highlighting that different mechanisms are
implemented in this new version.

Fine view

On smaller scales, we observe other kinds of patterns exhibiting anomalies
through their abnormal uses of the traffic features. We emphasize that these
patterns are in accordance with those identified by an anomaly detector based
on pattern recognition [23]. For example, Figure A.9 is composed of different
anomalies observed on the same day (2004/10/14). The vertical axis represents
the destination addresses for scatter plots at the top of the figure and source
ports for those at the bottom. Three different anomalies are emphasized in this
figure.

The two representations ((A) and (B)) on the left-hand side of Fig. A.9 stand
for an exploit against a Windows service operating on port 445. These were
obtained by displaying only the traffic related to a specific IP address, X. The
upper representation (A) shows long vertical lines meaning that X contacted
numerous hosts within three short periods of time. The header information
revealed that all the packets corresponding to these connections were directed
to port 445 with the TCP SYN flag set. The representation of the source port
(B) indicates that the traffic was initiated from a limited pool of high number
ports (< 1024). This traffic is clearly malicious and corresponds to a probing
process looking quickly for victims.
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Figure A.8: Three months (2008/12, 2009/01-02) of darknet traffic related to
port 445 during Conficker outbreak.
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Figure A.9: Different patterns observed in same traffic trace (MAWI archive,
2004/10/14). Top: destination IP vs. time, Bottom: source port vs. time.

The two scatter plots labeled (C) and (D) in Fig. A.9 stand for network
traffics from a single host lasting for the entire traffic trace. The upper scatter
plot displays long oblique lines, meaning that this traffic also correspond to a
probing process. However, the inclination of the lines indicates a slower process
than the one previously discussed. Moreover, the lower scatter plot (labeled
(D)) shows a horizontal line representing only a couple of source ports.

The two representations, (E) and (F), on the right-hand side of Fig. A.9
correspond to a spreading of the Sasser worm. Traffic from different hosts
are displayed in these figures. The vertical structures in the upper scatter plot
represent the probing procedure done by the worm, and we noticed that different
spreading are observed. The scatter plot representing the source ports (labeled
(F)) indicates that this implementation of the Sasser worm generates traffic
with only low source ports numbers that are linearly increasing. The shape and
height of the observed “lines” provides a signature for this variant of the worm
that can be easily identified in other traffic traces.

A.5 Summary

We outlined the need for understanding the network traffic behavior and evaluat-
ing anomaly detectors. To achieve these purposes, we designed and implemented
a tool graphically representing the network traffic on any temporal and spatial
scales. The main contribution of this tool is to display global and detailed views
of the network traffic focusing on anomalies. Interesting traffic behaviors are un-
covered by interactively exploring the traffic traces, and detailed information is
also provided to enable data to be thoroughly investigated. Traffic from specific
hosts or services is extracted by using a filtering mechanism. Thus, particular
types of sub-traffics are displayed without surrounding noise and can easily be
investigated. Furthermore, anomalies reported by anomaly detectors are high-
lighted in full view and their validation can then be facilitated. The tool runs
on different platforms and is freely downloadable3. We verified the usefulness

3The tool is available at http://www.fukuda-lab.org/˜romain/mulot
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of our tool by evaluating it on several traffic traces; darknet traces highlight-
ing several patterns for different anomalies, and traces taken from a backbone
link where anomalies surrounded by heavy noise were still identifiable. Obser-
vation of recent threats, such as the Conficker worm, can also be carried out.
We conducted manual inspections of the alarms reported by an anomaly de-
tector and visually compared the outputs of two distinct approaches. Also, we
listed several patterns standing for distinct anomalies and noticed that they are
consistent with those found in [23].
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