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Abstract

A basic problem in science is to fit a model to observationgestilo errors. It is clear that
the more observations that are available the more accuilité e possible to calculate
the parameters in the model. This gives rise to the problelsadfing” an overdetermined
linear or nonlinear system of equations. When enough obtens are not available, it
gives rise to underdetermined systems. Overdetermingeregdogether with underdeter-
mined systems are calldelast squares problemst can be shown that the solution which
minimizes a weighted sum of the squares of the residual imapin a certain sense. These

solutions are calletbast squares solutions

Least squares problems are usually written in the form

b— Ax|, AeR™™ beR", (0.1)

min
reR™

where the nornj - || stands foR-norm. WhenA is large and sparse, it is advantageous to
apply iterative methods to the normal equatioti§ Az — b) = 0 or AATy — b = 0. Since
the condition number afi” A or AA” is the square of that of, whenA is ill-conditioned,

preconditioning for the iterative methods becomes necgssa

In this thesis, we consider constructing preconditionerssbme Krylov subspace it-



Abstract iv

erative methods to solve least squares problems more afficieNVe especially focused
on one kind of preconditioners, in which preconditioness thie approximate generalized
inverses of the coefficient matrices of the least squardsgmts. We proposed two differ-
ent approaches for how to construct the approximate gepeddahverses of the coefficient
matrices: one is based on tMinimal Residuaimethod with the steepest descend direc-
tion, and the other is based on t@aeville’s Methodwhich is an old method developed
for computing the generalized inverse based on the rankipdate. And for these two
preconditioners, we also discuss how to apply them to lepsires problems. Both theo-
retical issues and practical implementation issues al@upteconditioning are discussed
in this thesis. Our numerical tests showed that our methedsmned competitively rank
deficient ill-conditioned problems. As an example of proidefrom the real world, we
apply our preconditioners to the linear programming protdewhere many large-scale
sparse least squares problems with rank deficient coeffigiatrices arise. Our numerical
tests showed that our methods showed more robustness th&nthesky decomposition

method.
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Chapter 1

Introduction

This thesis focuses on solving the least squares problem,

min || Az — blls, A €R™", beR™, (1.1)

z€R™

where the rectangular matrix can be full rank or rank deficient. The development of the
basic modern numerical methods for solving linear leasasegiproblems took place in the
late sixties. The QR decomposition using Householder toamations was developed by
Golub and published im965 [18]. The implicit QR algorithm for computing the singular
value decomposition (SVD) was developed at about the sameelty Kahan, Golub, and
Wilkinson, and the final algorithm was publishedl1i$i70. These matrix decompositions
have since been developed and generalized to a high levepbisication. Great progress
has been made in the last two decades for generalized anfiedddast squares problems

and in direct and iterative methods for large sparse prahlem

For solving least squares problemin | Az — b||» where A is large and sparse, it-
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erative methods can be applied to the normal equatibfAr — b) = 0. An impor-
tant class of iterative methods is the Krylov subspace nusthwhich in stepk seeks
an approximationz, which minimizes a quadratic error functional in the Krylowbs
spacery, € 20 + G, (AT A, 5©)), s = AT(h — Az(®). The implementation can either
be based on a conjugate gradient algorithm or a Lanczos ss0oCE improve the con-
vergence of iterative methods they can be applied to thétjrigreconditioned problem
min, ||(AS™)y —b||2, whereSz = y. HereS is chosen so thatS~! has a more favorable
spectrum thaml. Note that ifS = R, the Cholesky factor afi” A, thenAS—! is orthogonal
and CGLS (CG applied to the normal equations) will convergerie iteration. Oftery' is
taken to be an incomplete Cholesky factordffA. i.e., ATA = STS — E, whereE is a

defect matrix of small norm.

However, in general matrid is not necessarily a full rank matrix, in which case, the
incomplete Cholesky factorization does not exist. More@wen whenA is full rank, say
full column rank, to compute the incomplete Cholesky decositpon, we need to form
AT A explicitly. Doing this costs a lot of computations and alemetimesA” A has a very

condition number because it is known thatd (AT A) = cond(A)2.

In order to avoid formingA” A explicitly and to deal with the general rank deficient
matrices, we focused on the Approximate Generalized levereconditioners, where the
preconditioners are the approximations to the generaiizesise ofA. This thesis consists

of the following five parts:

e A brief introduction to the theories of generalized invefGlapter 2).

e Theories and methods for solving and preconditioning leqsares problem (Chap-

ter 3).



Chapter 1: Introduction 3

e Constructing approximate generalized inverse precandtis by a steepest descent

approach (Chapters 4).

e Another approach to construct approximate generalizeersevbased on rank-one

update andi” A-orthogonalization (Chapter 5).

e Application to solving least squares problems arising m ltiterior Point methods

for linear programming problems.

The first two parts give preliminary knowledge. Since we od&spreconditioning for
rank deficient problems, we would like to have one chaptente g simple description to
the generalized inverse. Chapter 2 introduces the bagidad theories of generalized in-
verse. Chapter 3 introduces the basic direct methods anadivie methods for solving least
squares problems, and how and when preconditioning workke&st squares problems.
In the last part of Chapter 3, we introduce using GMRES toestéast squares problems.
This part is greatly based on Prof. Hayami’s paper [34]. Weflyrlist some theories so

that we can use them in the following chapters.

Chapter 4 and Chapter 5 form the main body of the thesis. Iiptehd, we used the
Minimal Residuaimethod to compute an approximate the generalized inverse dte
Minimal Residual method was developed for square matridés applied it to rectangu-
lar matrices for the first time by choosing the steepest déstieection as the correction
matrix, please also refer to [23]. In Chapter 5, we proposesthad based on the compu-
tation of the generalized inverse of rank-one updated nesyiplease also refer to [22, 24].
We also show that when matrix is nonsingular, our method can be reduces tolani-
orthogonalization process. For these two approaches, @sept numerical experiments to

show their efficiency of accelerating the convergence oKitydov subspace method.
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In each step of the Interior Point Method for solving lineangramming problems,
the approximate solution is improved along a certain coiwadlirection. The correction
direction vector is obtained by solving a least squareslpmbIn Chapter 6, we present

the applications of our preconditioners to the linear paogming problems.



Chapter 2

Generalized Inverse

In this thesis, we considered solving least squares prabtdrthe form
min ||Az — bl|2, A€eR™" zeR" beR™ (2.1)

Whenm > n and A is full column rank, the problem is called over-determinediem,
and whenmn < n and A is full row rank, the problem is called under-determinedabem.
In this thesis, we work with general matricdsi.e.,mm > n orm < n andA could be full

column rank, full row rank, or rank deficient.

Since we work with a general matrixin this thesis, before we address the main prob-
lems, in this chapter we summarize some facts about gernedaiinverses of a general
matrix. This is not only done for introducing the reader ithis subject, but also to em-
phasize common properties and differences between théareguerse for nonsingular
matrices and the generalized inverses for general rect@anguatrices. The full theories

and details for this topic can be found in the book by Campdedl Meyer [19], Ben-Israel
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and Greville [5] and Wang, Wei and Qiao [50].

It is well known that every nonsingular matrix € C™*" has a unique matrixX €
C™*™ satisfying

AX =1, XA=I (2.2)

wherel is the identity matrix of orden. This X is called the inverse aofl, and is denoted

by X = A~'. From equation 2.2, we can deduce some more equations,

AXA = A (2.3)
XAX = X (2.4)
(AX)* = AX (2.5)
(XA = XA (2.6)

AX = XA 2.7)
AL = A% for k> 0. (2.8)

Here M* denotes the conjugate transpose of makttix Equations (2.3) — (2.6) are known
as the Penrose conditions.

In the general case, wheré maybe singular or rectangular, we can generalize the
definition of the inverse of a nonsingular matrix to that ofesaegralized inverse. Define the
generalized invers& of A by requiringX to satisfy some equations of equations (2.3) —
(2.8). Choosing a different combination of equations fr@é3) — (2.8) leads to a different
definition of generalized inverse. The most popular gersdlinverse of4 is the Moore-
Penrose inverse, which requires the generalized invergesatisfy equation (2.3) — (2.6).

In this thesis, we mainly treat the Moore-Penrose inverse.
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DEFINITION 2.0.1 [14] Let A € C™ ™. Then the matrixX € C™*™ satisfying the
Penrose conditions (2.3) — (2.6) is called the Moore-Peaiioserse ofA (abbreviated as

the M-P inverse), and is denoted By= Af. And X exists and is unique.

For other definitions of generalized inverses and theiriagpbns, we refer to [50].

A nice algebraic property of the Moore-Penrose inverse a thcan be expressed

explicitly by using the Singular Value Decomposition (SV@)A.

THEOREM 2.0.1 [29] For matrix A € C™*™ with rankr, let the singular value decom-

position ofA be

A=U VT, (2.9)

whereU andV are unitary matrices, and., is ar by r diagonal matrix whose diagonal

elements are all positive. Then the Moore-Penrose invefrseis given by

UT. (2.10)

The nonsingular system of linear equations

Az =b (A€C™ beC (2.11)

has a unique solution

x=A"'b. (2.12)

In the general case,

Az=b (AeC™ beCm), (2.13)
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where A may be singular or rectangular. The system of equations roglgave a solution
or may have many solutions. Hence, for this general caserevai@rested in minimizing
the residual

min
reCn

Az — ||, . (2.14)

A vectorz* € C" which satisfies

Az — b3 (2.15)

||Az* — bl|; = min
zeCn

is called a least squares solution. Among all the least sgusolutions, the one with the
minimum norm||z|, is called minimum-norm least squares solution. The follapiheo-
rem shows the relation between the minimum-norm least sgusiution and the Moore-

Penrose inversd!.

THEOREM 2.0.2 Let A € C™*" andb € C™. ThenA'b is the minimum-norm least

squares solution of (2.14).

Consider another least squares problem
min |AT Az — ATb| . (2.16)
zeCn

It is obvious to see that the above least squares problermisistent andA’s is a least

squares solution. For any solutigrof (2.14), we have

y=Ab+ 2 ze N(A), (2.17)
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where N (A) stands for the null space df. Note that

| AT Ay — bl = | ATA(ATD) — AT, | (2.18)

Hence, every least squares solution of (2.14) is also a $epstres solution of (2.16). For

any solutions of (2.16), we have

s = (ATATATD +t, te N(ATA) (2.19)
— AtAATH 4+t (2.20)
= A'b+1t. (2.21)

where NV (ATA) is the null space ofifA. Note thatA'A is a projectiont has the form

t = (I — ATA)u, whereu € R", which implies thatdt = 0. By

JA(AT +1) =By = [[AAT— b (2.22)

= [[(T—AATD] (2.23)

we know that every least squares solution of problem (2. 48Js0 a least squares solu-
tion of problem (2.14). Moreover sincé’b is the minimum-norm least squares solution
to (2.14), it is also the minimum-norm least squares safutam(2.16). Hence problem

(2.14) and problem (2.16) have the same solutions, whicmmt#eat these two problems

are equivalent to each other, but the solution of probletg)2s more obvious.

However, usually we do not havé’, and computingA’ is almost as expensive as

solving the problem (2.14) itself. Instead, we should cdesfinding a matrix\/ € C**™



Chapter 2: Generalized Inverse 10

which is close tad', i.e., an approximation td', and solving the problem
m(%:n |MAx — Mb||a, (2.24)
zeCn

in the hope of obtaining a good enough approximate solutdhe original least squares
problem (2.14). Problem (2.14) and problem (2.24) are meayd equivalent to each other.

The details will be introduced in chapter 3.



Chapter 3

Methods for Solving Least Squares

Problems

3.1 Direct methods for solving least squares problems

The standard direct method for solving the least squardsgro

min ||Az — b2 (3.1)

z€R™

is to use the QR decompositio = QR whereQ € R™ ™ orthogonal matrix and
R € R™ ™ is an upper triangular matrix. Different methods can be tigedmpute the QR
decomposition of4, such that Householder transformation method, Givensfioamation

method, and the modified Gram-Schmidt method [14]. Thenotiginal least squares

11
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problem can be transformed into the following form

min ||b — Az|l, = min [|QTb — QT Ax||, (3.2)

Tz€ER™ rER™

= min ||Q"b — Rz (3.3)
reR™

When A has full column rankR is a nonsingular matrix, hence, to solve problem (2.14),

we only need to solve a linear system

Rz = Q% (3.4)

by back substitution. Whed is not full column rankyrank(A) = r < min{m,n}, the

upper triangular matrixt has the form

R= 7 (3.5)

whereR,; is anr x r nonsingular upper triangular matrix. PartitioningndQ?b confor-

mally, we obtain a linear system

Riyxy + Rigxe = (QTb)l- (3.6)

SinceR;; isr x r nonsingular matrix, we can simply let = 0, solve

Ryz, = (QTb)la (3-7)

. [ Z1 . .
then we obtain a least squares solution | . WhenA is large and sparse, techniques are

0
used to save memory and computation time [14].
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3.2 lIterative methods for solving least squares problems

It is well known that solving a least squares problem is egjent to solving its corre-

sponding normal equation.

THEOREM 3.2.1 [14] Denote the set of all solutions to the least squares [gwb

m]%n |Az — 0|2, A€R™"™ m>n, beR™ (3.8)
reR™
by

S = {z € R"|||Az — b|| = min}. (3.9)

Thenx € S if and only if the following orthogonality condition holds:
AT(b— Az) = 0. (3.10)

Equation(3.10) can be rewritten agl” Ax = ATb, which is called the normal equation.
Whenm < n, the minimum norm solution of the least squares problem is given by the

normal equation of the ford ATy = b, z = ATy.

In principle, any iterative method for symmetric positivefidite or symmetric posi-
tive semi-definite linear systems can be applied to the nbeaaations. Among the it-
erative methods to solve least squares problems, the Catejugradient Least Squares

(CGLS) [14, 35] method is most commonly used.
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ALGORITHM 3.2.1 CGLS(CGNR)

Let2(® be an initial approximation, set

PO = b — AgO) pO — 5O = ATRO) A [5O)2, (3.11)

fork =0,1,... whilev, > tol compute

1. ¢ = Ap®),
— Vi
2+ 0k = OSTR
3_ x(k+1) — l’(k) + akp(k)’
4. p 1) — ) _ g q(h),
5. s(k+1) — ATp(k+1)
6. Y1 = [[sEHV3,
_ e
7' /6]&3 - Vi ’
8.

p(k+1) — S(k""l) _|_ /ka(k)

Letrank(A) = r, ando; ando, be the largest and smallest singular valuelpfespec-

tively. Then the condition number with respecttmorm of A is defined as

01

ra(A) = [|All[|AMl2 = pt (3.12)
which implies that the condition number df A is
o
ro(ATA) = (0—1)2 = ro(A). (3.13)

CGLS is equivalent to applying CG to the normal equation irresponding to the least
squares problem. It is a well known fact that the convergericd@GLS method depends

on the spectrum ofi” A. Whenr,(A) is large,xo( AT A) is even larger, CGLS converges
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slowly. Bjorck, Elfving, and Strakos analyzed the lack tfslity of CGLS [15].

Paige and Saunders [43] developed the LSQR algorithm bas#tedanczos bidiago-
nalization algorithm. LSQR is mathematically equivalemQGLS but converges some-
what more quickly wherA is ill-conditioned. However, the achievable accuracy with

CGLS and LSQR seem to be the same.

When CGLS is used to solve the problem, a#ds ill-conditioned, preconditioning

becomes necessary. The normal equation can be precomrdittymmetrically as

P TATAP Yy =P TATh, Ply=uz. (3.14)

Performing CG on equation (3.14), we obtain the followingganditioned CGLS method

(PCGLS).

ALGORITHM 3.2.2 PCGLS

Let2® be an initial approximation, set

r©@ =p— Az® pO = 5O = p-TATO) ) = |52, (3.15)

fork=0,1,... while~, > tol compute

1. 0 — p=1pk),
2. ¢®) = Atb),
_ Yk
3. ax = g
4 x(k+1) = x(k) + akt(k)’
5. (1) — (k) _ g g8,
6. skt — P—T<ATT(k+1)>'
7. yper = ||s%HD2,
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8. ﬁk _ k41

9. plk+1) :S(RH) + Bp®).

People came up with a lot of different ways to construct thiscpnditionerP for
CGLS. An early idea for preconditioning the conjugate geatlimethod can be found
in [28]. A major breakthough took place around the s, with the introduction by
Meijerink and van der Vorst of the incomplete Cholesky-Cyate Gradient (ICCG) algo-
rithm [38]. Incomplete factorization methods were introdd for the first time by Buleev
in the then-Soviet Union in the late 1950s, and independéntVarga (see [17,37,40,48];
see also [41]). However, Meijerink and van der Vorst deseredit for recognizing the po-
tential of incomplete factorizations as preconditionensthe conjugate gradient method.
Since then, a number of improvements and extensions havenhede, including level-of-
fills and drop tolerance-based incomplete factorizatigegsgralizations to block matrices,

modified and stabilized variants.

Every incomplete factorization method is based on a ceféaiorization ofA or A” A
whenm > n (AA” whenm < n) and some techniques to control the fill-ins. For example
the incomplete Cholesky decomposition based4dni [38], incomplete QR decomposi-
tion based oM by using incomplete modified Gram-Schmidt method [36,4p &sing in-
complete Givens orthogonalization [2,44], and Robustmmglete factorization (RIF) [13],
which computes the incomplete Cholesky decompositiodofi without forming A7 A

explicitly.
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3.3 GMRES methods for least squares problems

CGLS and LSQR are efficient Krylov subspace methods [27] wkanstruct the or-
thogonal Krylov subspace basis by a short term recurrenoe. falowever, because of the
short term recurrence, whet is ill-conditioned, CGLS and LSQR easily lose orthogo-
nality due to rounding errors easily. Even with preconditig, the convergence behavior
may deteriorate for highly ill-conditioned problems duadonding errors. The General-
ized Minimal Residual (GMRES) method [47] is an efficient andust Krylov subspace

iterative method for solving systems of linear equations
Ar=b, AeR"" zeR" beR" (3.16)

where A is nonsingular and nonsymmetric. Let the initial solutionthe linear system
(3.16) bexy, and denote the initial residual = b — Axy. In the kth iteration, GMRES

looks for the "best” approximate, solution in the affine subspace
zo + Kip(A, 1), Ky = span{rg, Arg, ..., A" rg}. (3.17)
The "best” approximation is in the sense that we requijréo minimize the residual norm,

|6 — Az = min )||b—Ax||2. (3.18)

z€x0+Kk(A,ro

To find this "best” approximate solutiary, in zo + (A, o), GMRES performs a modi-
fied Gram-Schmidt process to construct a sequence of onlabgasis vectors,, . . ., vy,

wherev; is defined aﬁ. Hence for anyr € x¢ + K(A, ),  can be written in the
Toll2
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form
r=x0+[v1,..., 0]y, y€RF (3.19)
Note
[rlla = [Ib— Azl (3.20)
= ||b— A(zo + [v1,- -, v] ¥)||2 (3.21)
= ||b—Axg— Alvr, ..., vyl (3.22)
= fro—Alvr,..., v yllo- (3.23)

From the Modified Gram-Schmidt process, we obtain the Arrd#domposition

A[Ul7"'7vk] = [U17"'7vk] Hk—i—l,kv (324)

where Hy. .1 ;. is a product of the Modified Gram-Schmidt process, and (8 & 1) x k

upper Hessenberg matrix

hip hig -+ hig
ha 1 _
Hy j,
Hiy1p = o g = : (3.25)
[07 T 707 hk-i-l,k]
ok g
T
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DenoteV = [vy,...,v;], SO thatV is an x k orthogonal matrix. So that the Equation

(3.23) can be rewritten as

[rlla = llro — Afvr, ..., o] yll2 (3.26)
= |lro — VHey1x9ll2 (3.27)
= |[VTro — Heza|2- (3.28)
Remember that the first column Bfis v; = —|| TOH . Hence, it is orthogonal te, . . . , v;.
Toll2
Denote([1,0, .. .,O]T of orderk + 1 ase;, equation (3.28) can be transformed into the
following form,
7]l = Illrollzer — Hk+1,ky||2- (3.29)

Using the Givens rotations to zero out the elements in thel@ub-diagonal ofij 4 4,
we obtain a matrix whose firét rows is ak by £ upper triangular matrixz;, and the last

row is 0. Denote the product of all the Givens rotationg:asrhen we have

Ry,
[rlla = |[llroll2Ger — y (3.30)

0

2
g— Ry
_ = (3.31)
0
2

whereg is the vector whose elements are the firstlements of|ry||.Ge;. WhenA is a

nonsingular matrixR is nonsingular. Solving equation

Ryy =g, (3.32)
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we obtainy, and we can compute thieapproximation solutiony,.

However, the Krylov Subspace
Kr(A, ro) = span{rg, Arg, ..., A" 1} (3.33)

is only well defined wherH is a square matrix. Hence GMRES cannot be applied to the
least squares problems directly. To use GMRES to solve $epstres problems, we need
to find a preconditioner matri® € R™*™, so thatP A or AP is a square matrix, and then
to solve the problem

min [|[PAx — Pbl|, (3.34)

or

min [| APy — |2, (3.35)

in the hope that we can obtain the solution to the originaltlequares problem (2.14). This
idea was introduced in [49], and fully discussed in [34].c®ithe original problem (2.14)
may not be equivalent to the preconditioned problem (3.843@®5), conditions must be
imposed onP so that we can ensure that the solution we compute from (8:3@.35) is
also the solution to the original problem. In the following will summarize some theo-

retical results. For the details we refer to [34].

First we consider preconditioning the least squares prolfl214) from the right. In

this case, we want to solve the problem (3.35).

THEOREM 3.3.1 [34] min, ||b — Az||; = min, ||b — APz||, holds for allb € R™ if and

only if R(A) = R(AP).
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Hence, if the condition in the above theorem is satisfied, aveapply the GMRES method
on AP, which is a square matrix. WheAP is rank deficient, GMRES may break down
before it finds a solution. Hence, we also need the followireptem to ensure that after
preconditioning, the GMRES can find a solution to the prob{8r85) before break down

happens. We first state a result by Brown and Walker [16].

THEOREM 3.3.2 [16] Let A € R™"*", the GMRES method can give a solution to
min |b — Az||, without break down for arbitraryy € R™ andz, € R™ if and only if
TER™

R(A) = R(AT).

Based on this Brown and Walker ’s theorem, to make sure thaRE$does not break
down before finding a solution, we ne®{ AP) = R(PT AT). According to [34], we have

the following theorem.
THEOREM 3.3.3 [34]

o If R(AT) = R(P), thenR(A) = R(AP).

o If R(AT) = R(P), thenR(AP) = R(PTAT) < R(A) = R(PT).
To sum up,

THEOREM 3.34 [34] If R(AT) = R(P) holds, then the GMRES method determines a
least squares solution oﬁIiRn |b — Azl|, for all b € R™ andz € R™ without breakdown
zeR™

if and only if R(A) = R(PT).

For preconditioning problem (2.14) from the left, we havalagical results. We sum-

marize the results from [34] in the following.

THEOREM 3.3.5

b— Azl (3.36)

|b — Az*||s = min
TER?
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and
|Pb— PAz*|| = ;relg}l |Pb— PAzx|| (3.37)
are equivalent for alb € R™, if and only ifR(A) = R(PTPA).
THEOREM 3.3.6 [34]
o If R(A) = R(PT), thenR(A) = R(PTPA).

e Forall b € R™, PAx = Pbhas a solution, which attainm}%n ||b — Az||, if and only
TER™

if R(A) = R(P).
o If R(A) = R(PT), thenR(PA) = R(ATPT) <= R(AT) = R(P).

To sum up, the following theorem gives the conditions to gate that the original
least squares problem is equivalent to the right-precamditi problem, and that GMRES

method can determine a solution to the original problemiedfoeakdown happens.

THEOREM 3.3.7 [34] If R(A) = R(PT) holds, the GMRES method determines a least
squares solution Ofn]%{n ||b — Az||, for all b € R™ and all z, € R™ without breakdown if
zeR™

and only ifR(AT) = R(P).

Hence, no matter wether we precondition the original legqisages problem (2.14) from

the left or from the right,
R(A) = R(PT), R(AT) = R(P) (3.38)

is a sufficient condition that the preconditioned least segi@roblem is equivalent to the
original least squares problem and GMRES can solve the pd&ooned problem and de-
termine a least squares solution without breakdown. TheomditionerP for GMRES

should be carefully chosen, because of the two image spaxcktioms (3.38). Unlike the
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preconditioners for CGLS, which is essentially precoidiing the normal equations of the
least squares problem from the both sides, many precondisadesigned for CGLS can-
not be applied to the GMRES method. The most straightforwhaadce for the GMRES
method is to letP? = a AT, wherea is a nonzero scalar. The conditioR§A) = R(PT)
andR(AT) = R(P) are obviously satisfied. Whem = 1, using this preconditioner is
equivalent to solving the normal equations of the origiealt squares problem. For a full
rank matrixA (full column rank or full row rank), a generalization & = o A7 is to let
P = C AT for full column rank matrixA and P = ACT for full row rank matrixA, where

C'is a nonsingular matrix with appropriate size [34].



Chapter 4

Approximate Generalized Inverse

Preconditioning Methods

4.1 The approximate inverse preconditioning methods

In Chapter 3, we briefly introduced the incomplete factdrmapreconditioning meth-
ods. Notwithstanding their popularity, incomplete fazation preconditioning methods
have their own limitations: potential instabilities, diffilty of parallelization. These two
limitations motivated the development of other preconditng methods. During the past
two decades, a class of algebraic preconditioning teclesigalledsparse approximate in-

verses (SAINWeceived considerable interest.
The incomplete factorization preconditioning methodsethler it is the incomplete

Cholesky decomposition or the incomplete QR decomposiadirfocus on constructing

an approximation to the coefficient matrik itself, or an incomplete factorization of

24
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itself. In contrast, the SAINV approach focuses on consingcan approximation to the

inverse ofA, or an incomplete factorization of the inverseAf

Sparse Approximate Inverse preconditioners were firsbehitced in the early970s
by Benson [6, 7]. The methods were originally developed @viag large sparse linear
systems of the form,

Ax =b, (4.1)

whereA € R™" is a nonsingular matrix anfde R" is a right-hand-side vector. As is well
known, the rate of convergence of iterative methods foriegl{4.1) is strongly influenced
by the spectral properties of. It is therefore natural to transform the original system
into an equivalent system with more favorable spectral @riigs by using its approximate
inverse. There are different approaches to construct theapnate inverse of! [8, 46].
One popular way to accomplish this construction is to find &ima/ which minimizes
the following Frobenius norm

min[|[T— MA|[p or min|I—AM|r (4.2)

over alln x n matrices with a certain sparsity patte$in wherel is then x n identity
matrix. Hence M A and AM are approximations to an identity matrix, which impliesttha
M is an approximation to the inverse df This idea of constructing/ by minimizing the
Frobenius normiI — AM || was first proposed by Benson in his master thesis [6]. See also

Benson and Frederickson [7].

However, it is very difficult to choose a suitable sparsitytgran for M/. Hence, several

authors developed adaptive methods which start from a simfilal nonzero pattern and
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gradually refine it until| 7 — M A||r < € is achieved, whereis a threshold [11,21, 30, 33].
The most successful of these methods is the one proposediy &rd Huckle [33], which
is called SPAI. Unfortunately, the setup time for adaptii?&Bs often high [3,4,11]. Thus,
Chow and Saad developed tMinimal Residual (MR)20] method so that no nonzero
pattern needs to be prescribed in advance. For the left pd&ganing case, the algorithm

can be written in the following form.

ALGORITHM 4.1.1 MR Algorithm [46]

_ T __llAlE
1. SetM, = OéoA , O = ||ATAIﬁ%
2. Fork =1,2,...,until convergence, Do

3. ComputeR,_; =1— M;,_1A, andG_;
Computen;, = tracé R G A)/||Gr_1 A%

4
5. ComputeM,, := My_1 + a,.Gr_1
6. Apply numerical droppings ta/,
7

. End Do

In the above algorithmy, is chosen to minimizél/ — a AT A

ryandoy, k> 1 are
chosen to minimize

||I — (Mk—l + OéGk_l)AHF. (43)

One choice forGGy, is the residual matrix?, = I — M, A, and another popular choice is

Gy = (I — M, A)AT, which is the direction of steepest descent.

There is another way to minimize (4.2). Instead of minimgggiobally as a function
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of matrix M, it can be minimized column by column (or row by row), as falk

min ||[ — MA| min || — AM || ¢
) )
min ||e; — mAlla, i =1,...,n  min|le’ — Am'|s, i =1,...,m,

wheree; andm; are rows of the identity matrikand/, ¢! andm! are columns of the iden-
tity matrix I and M, respectively. The advantage of performing the minima@atolumn
by column or row by row is that it can be easily parallelizedr the left preconditioning,

the row-oriented algorithm [46] is as followings.

ALGORITHM 4.1.2

_ T . _ _llAlE
1. SetMQ = Oé()A , O = TATA[Z

2. Forj=1,....,nDo
Definem; = e; M

Fork=1,...,n, Do

<rjA,r;>

o =
J [Ir; All3

3

4

S. ri =e; —mjA
6

7 m; = m; + ayr;

8 Apply numerical dropping ten;
9. EndDo

10. End Do
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4.2 The approximate generalized inverse precondition-

ing with minimizing Frobenius norm approach

In this thesis, we consider applying Saad’s MR algorithmhtleast squares problems

min ||b — Azx||s (4.4)

z€R™

whereA € R™*", rank(A) = r < min{m,n}, b € R™, which to the authors’ knowledge,

is new. Thus, we aim to construct a preconditiofere R™*™ which minimizes
I = MA|p or [I—-AM|p, (4.5)

wherel is ann x n or m x m identity matrix, respectively. Since now matricdsand
M, are rectangular, we cannot choose the correction mayiasR, = I — M, A. Hence,
we letGy, = (I — M, A)AT. We will also give mathematical justifications for applyitig

method to least-squares problems.

4.2.1 Left Preconditioning

Consider solving the least squares problem (4.4) by traméfgy it into a left precon-
ditioned form,

m}%@n ||Mb— MAx||2, (4.6)
reR™

whereA € R™*", M € R™™, andb is a right-hand-side vectére R™.

For preconditioning, one important issue is whether thatswi of the preconditioned
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problem is the solution of the original problem. For squayasingular linear systems, the
condition for this equivalence is that the preconditionérshould be nonsingular. Since
we are dealing with rectangular problems, we need some otimelitions to ensure that the
preconditioned problem (4.6) is equivalent to the origieakt squares problem (4.4). By
Theorem 3.3.5 we know that in order that the preconditiormetllpm (4.6) is equivalent

to the original problem (4.4), the matri¥ of Algorithm 4.1.1 should satisfy the condition

R(A) = R(MTMA).

In order to analyze this condition, we rewrite Algorithm 4.%or left preconditioning

on the rectangular matri® as follows.

ALGORITHM 4.2.1

_ T . _ _llAl:
1. SetMQ = Oé()A , O = TATA[Z

2. Fork =1,2,...,until maximum step is reached, Do
3. ComputeR,_,=1— M 1A

4. ComputeG,_; = R, AT

5. Computeny, = ||G—1||F/[|Gr-1All%
6. ComputeM; .= My_1 + apGr_1

7. Apply numerical dropping td/,

8. End Do

In the above Algorithm 4.2.1)/, = ayA”, wherea, minimizes||I — a AT A||r over

all real scalarv. Hence, we have

M1 = M() + OélGo (47)
= Mo+ oy (I — MyA)AT (4.8)
= (ag +a; — aga; ATA)AT (4.9)

= p(ATA)AT, (4.10)
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wherep,(-) is a polynomial of degreg. Similarly, if we assuméf,_; = p,_,(ATA)AT,

then for M, we have

My = M1+ axGry (4.11)
= M1+ ap(l — M, A)AT (4.12)
= M_1(I — o AAT) + oy, AT (4.13)
= (pp_1(ATA)(I — g AT A) + ay) AT (4.14)
= p(ATA)AT. (4.15)

Combining all the above argument, we have the following.

THEOREM 4.2.1 If no numerical droppings are performegl/, in Algorithm 4.2.1 can be
expressed ad/, = p,(ATA)AT, wherep,(-) is a polynomial of degreg, p, is the scalar

«p defined in Algorithm 4.2.1.

By expressingV/; in the form M, = p.(AT A) AT, we can easily deduce the condition
for the equivalence between the preconditioned proble®) @nd the original problem

(4.4) as follows.

THEOREM 4.2.2 If no numerical droppings are performed, the preconditampeoblem
(4.6) is equivalent to the original problem (4.4) if and oifly.(c?) # 0 for all singular

valuess; > 0 of A.

PROOF By Theorem 3.3.5, we only need to proRé A) = R(M; M, A). Since

R(MIM,A) = R(Apr(AT A)p, (AT A)AT)

N

R(A),
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R(A) = R(M} M,A) is equivalent to
rank(A) = rank M} M A). (4.16)

Assume that the SVD ofl is A = UX VT, whereU is anm x m orthogonal matrix}/ is
ann x n orthogonal matrix, an& = diag{o1,...,0,,0,...,0}mxn, 0s > 0,0 =1,...,7.

Then,

= Uyp(xTo)xtsv?

= Udiag{apr(Uf), o afpi(az), 0,..., O}anVT.

T

Hence, (4.16) is equivalent g (c?) # 0foro; > 0, i =1,...,r. O

It is difficult to prove that(c?) # 0 fore > 0,7 = 1,...,r. However, we can assume
that it holds generically, i.e., the probability pf(c?) = 0 for any1 < i < r is zero. Also

in our numerical experiments, we never observgd?) = 0 to happen.

Besides the above equivalence theorem, we are also codoghather any breakdown
may occur when we solve the preconditioned problem (4.6)gukrylov subspace meth-

ods. Using Brown and Walker’s theorem and Theorem 3.3.2,ave the following.

THEOREM 4.2.3 For M, in Algorithm 4.2.1, M, A is symmetric, so that the GMRES
method determines a least-squares solution of the pretiondd problemn;zn | Myb — My Azx||o
TER™

without breakdown for arbitrary € R™ and initial guesse, € R".

PROOF The proof follows directly from Theorem 4.2.1 and Lemma.3.3Since
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M, = pp(ATA)AT, M, A is symmetric, which implied/ (M, A) = N ((M,A)T). O

From Theorem 4.2.2 and Theorem 4.2.6, the GMRES method casdukto solve the
preconditioned least squares problem (4.6) with the pritoner 1/, from Algorithm
4.2.1, to obtain a least squares solution to the originaltleguares problem (4.4) with-
out breakdown. Moreover, sindd, A is symmetric, the MINRES method [42], which is
equivalent to the GMRES method for symmetric matrices ams ghort recurrences, can

be used instead to save computation time and memory.

REMARK 1 In Theorem 4.2.1 we assume that there is no numerical drggperformed
so that we have Theorem 4.2.2 and Theorem 4.2.6. When theicalndeopping strategy
is used,M,, cannot be written in the polynomial forp(A” A) AT as we show in the fol-

lowing.

In Algorithm 4.2.1,M, = ayA”, wherea, minimizes||I — a« AT A|| over all real
scalarsa. WhenA is sparse, we do not need to do numerical droppingsiMgr Denote

the dropped part in the process of computitig as F;, Hence, we have

M, = My+ o (I — MyA)AT — By
= p(ATA)AT — E,
My, = M+ as(I — MA)AT — B,
= p(ATA)AT — By + an(I — pi(ATA)ATA — B, A)AT — E,
= p(ATA)AT + ay(I — p(ATA)ATA)AT — B — 0 B AAT — E,

= p2(ATA>AT - E1 - E2 - OéQElAAT
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wherep,(-) is a polynomial of degreg.

According to the above discussion, we cannot ensure thealgace and the break-
down free theorems when numerical droppings are used. Heyweawur numerical exper-
iments, when the dropping threshold is not too large, we didemcounter breakdown of

GMRES.

The row-oriented Algorithm 4.1.2 can also be modified to bpliad to rectangular

matrices.

ALGORITHM 4.2.2

[|All%

— T —

2. Forj=1,...,nDo

3. Definem; =¢e;M
For:=1,...,n; Do

r; =e; —m;A

el
i = T ATAT3

(67

m; =m; + a;g;

4
5
6. g; = ;AT
7
8
9

Apply numerical dropping ten;
10. End Do
11. End Do

However, it is difficult to show equivalence theorems fosttow-oriented method.

4.2.2 Right Preconditioning

So far we have discussed left preconditioning. For oveerd@ned problems, i.ed €

R™*™ m > n, left preconditioning is more favorable, since the sizehef preconditioned
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matrix M, A isn x n. However, if we are considering an under-determined prablee.
A € R™", m < n, right preconditioning is more suitable. Results analagmuthe left
preconditioning hold for the right preconditioning case.

When we precondition the original least squares proble#) {dom the right-hand-side,
we have,

min
yeR'nL

b— AMyll». (4.17)

We rewrite Algorithm 4.2.1 for right preconditioning asIfoks.

ALGORITHM 4.2.3

_ T . _ A%
1. SetM, = OéoA y O = TAAT|Z

2. Fork =1,2,..., until convergence, Do

3. ComputeR,_; =1— AM;_,
ComputeG,_, = ATR;,_;
Computeny, = ||Gr_1 |7/ | AGr-1|| %

4
5

6. ComputeM; := My_1 + ap.Gr_1
7. Apply numerical dropping td/,
8

. End Do

Similar to the left preconditioning cas&{;, from Algorithm 4.2.3 also has a polynomial

form.

THEOREM 4.2.4 M in Algorithm 4.2.3 can be expressed &6 = ATp,(AAT), where

pi(+) is a polynomial of degreg, p, is a scalara, defined in Algorithm 4.2.3.
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PROOF  According to Algorithm 4.2.3,

MO = CM()AT

ATpQ (AAT)

M1 = M() + OélG()
= OéoAT + OélAT(I — OéoAAT)

= AT(OéO + o — OéQOélAAT)

ATpl (ATA) .

Thus assum@/,_; can be expressed ag,_; = ATp,_1(AAT). Then,

M, = M1+ oG
= ATpk_l(AAT) + OékAT(I - AATpk_l(AAT))
= AT((I - ozkAAT)pk_l(AAT) + Oék)

ATp(AAT). O

Combining this Theorem 4.2.4 and Theorem 3.3.1, we get th@nimg equivalence

theorem for right preconditioning.

THEOREM 4.2.5 The preconditioned problem (4.17) is equivalent to theioggproblem

(4.4) if and only ifp,(0?) # 0 for all singular valuess; > 0 of A.
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PROOF By Lemma 3.3.1, we only need to prod A) = R(AMj;). Since

R(AMy) = R(AATp(AAT))

N

R(A),
R(A) = R(AM,) is equivalent to
rank(A) = rank( AMj,). (4.18)

Let the SVD ofA be A = UXVT, whereU is anm x m orthogonal matrix})/ is ann x n

orthogonal matrix, an& = diag{o1,...,0,,0,...,0}uxn, 0; >0, i =1,...,7. Then,

= UnxTp(2xhut

= Udlag{o‘%pk((jf% R ngk(o’?‘)v 07 cety O}meUT-

Now, it is easy to see that the equation (4.18) holds if ang ibmi, (c?) # 0 foro; > 0,i =

1,...,r.O

Again, we may expect thag, (c?) # 0 for o; > 0,4 = 1,...,r holds generically.

Combining Theorem 3.3.2 and Theorem 4.2.4, we also obtaneaktdown free theo-

rem for the right preconditioning case.

THEOREM 4.2.6 For M, in Algorithm 4.2.3, AM, is symmetric, so that the GMRES

method determines a least squares solution of the preadondi problemm7i€n |6 — AMz||2
xe m
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without breakdown for arbitrary € R™ and initial guess;, € R".

PROOF The proof follows directly from Theorem 4.2.4 and Lemma.3.3Since

M, = ATp,(AAT), AM,, is symmetric, which implied/(AM,) = N ((AM;)T). O

4.3 Numerical Examples

In this section, we show some examples to test our algorithencompare our precon-
ditioning method with well known methods, i.e. CGLS and tlegdnally scaled CGLS
method [14]. Tablet.1 provides some basic information about the test matriceghdn
table,m is the number of the rows; is the number of columnsynz is the total number
of nonzerosdensity is the density of the nonzeros in the matricesid is the condition
number of the matrices. The first matrix €50 was taken from the Matrix Market [26],
and the matrix spran@h and spran8S are random matrices generated by therdMB

command: sprandn.

Table 4.1: Test Matrices
Origin m n nnz | density | cond

illc1850 | Matrix Market | 1850 | 712 8636 0.007 103
sprandn8L| random Matrix| 10000| 1000 | 487816/ 0.0488 | 108
sprandn8S random Matrix| 2000 | 500 | 48788 | 0.0488 | 108

All computations were run on an IBM6D laptop computer, where the CPU2$ GHz

and the memory i$ GB, and the programming languagexMAB in Windowxp.

For the first matrix, we use a random right hand side vectoichvis generated by

MATLAB, and the problem is inconsistent. The initial guess wasssaf & 0. The conver-
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gence criterion we used for this problem is

|AT (b — Axy)||2 < 1078 ATD||,.

The time to computd AT (b — Ax;)|l» was neglected in all the iteration times. The nu-
merical results are given in Tak?e In Table2, no numerical dropping was performed, i.e.
no nonzero elements were neglected\ip. Hence,M; A is symmetric, and we can use
the MINRES method instead of the GMRES method to solve theomeatitioned problems

(4.6).

Table 4.2: Results for illc1850

Method k ITS Pre. T Its. T Tot. T

0| 700| 1.6e-2 4.25 4.27

Global Prék) 1| 661]| 9.40e-2 4.59 4.69
+ GMRES 2| 573 2.81le-1 3.86 4.14
3| 516 6.10e-1 3.50 411

4| 476 8.75e-1 3.04 3.92

5| 445 1.14 2.82 3.96

10| 354 2.44 1.94 4.38

01904 1.6e-2| 1.84e-1| 2.00e-1

Global Prék) 1| 1317] 9.40e-2| 9.40e-2| x1.88e-1
+ MINRES 21066 | 2.81e-1| 6.24e-2| 3.43e-1
3| 802 6.10e-1| 3.42e-2| 6.44e-1

4| 796 8.75e-1| 3.76e-2| 9.13e-1

5| 663 1.14| 3.12e-2 1.17

1| 658| 7.5e-1 4.54 5.29

Row-orientedk) | 2 | 553 1.35 3.65 5.00
+ GMRES 3| 485 2.03 3.15 5.17
4| 449 2.21 2.78 4.99

5| 418 2.29 2.44 4.73

10| 333 2.72 1.75 4.48

CGLS 2083 0.00| 3.26e-1| 3.26e-1
Diag-CGLS 2081| 5.31e-3| 3.66e-1| 3.72e-1

In Table4.2, we choose different in Algorithm 4.2.1 to precondition GMRES and

MINRES. In the table, ‘ITS’ is the number of iterations foethlgorithm to reach conver-
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gence, ‘Pre.T’ is the preconditioning time, ‘Its. T’ is thenation time, and ‘Tol. T’ is the to-

tal time, in seconds, respectively. The asterigkdicates the shortest total time in the table.
According to the table, we observe thatfascreases, the number of iterations decrease
significantly for both MINRES and GMRES. All the precondn&rs), can achieve better
iteration numbers than CGLS and diagonal scaled CGLS. THNREIS preconditioned by
Algorithm 4.2.1 withk = 1 was the fastest in computation time. Comparing MINRES and
GMRES, the GMRES required less number of iterations, buiténation time was longer
than MINRES. The reason is that GMRES is more robust agamstding error, but at
the cost of the more expensive Gram-Schmidt process. Cangptire global precondi-
tioner and the row-oriented preconditioner, the row-dedrpreconditioner required less
iterations. However, it requires more preconditioningdithan global preconditioners do.
Whenk = 0, the global preconditioner and row-oriented precondéragive the sama/,

thus we did not list the result &f = 0 for row-oriented preconditioner.

In Table3 , we gave results for an over-determined problem spréindmhich is larger,
much more ill-conditioned and denser. We chéss A[1, ..., 1] as the right hand side

vector, so that the problem is consistent. The convergentegion was chosen as

|6 — Azgll2 < 107%]|B||2.

Since this problem is larger than the first problem, the nizcakdropping strategy
was used, which implies thdt/;, A is not symmetric and the MINRES method cannot be

employed. For the global preconditioner we droppedthg elementini = (I—M A) AT
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when

|G (2, 7)] < Tgiobar [ Gl

holds. For the row-oriented preconditioner, we droppedittfeelement ing; = (e; —

m;A)AT when

19;(7)] < Trow—oriented ||9;][2

holds. The notations are the same as the ones used in Algo4ith.2 The numerical
results are given in Tablé.3. Compared to the global preconditioner, the row-oriented
preconditioner usually gives a densdy,. Thus, the preconditioning time is much longer
than that of the global preconditioner. In the table, wersgt. to 107, and 7oy —oriented

to 10~4, since they are nearly optimal and givé, with approximately the same density.

Table 4.3: Results for sprandn8L

Method k ITS Pre. T Its. T Tot. T

0 840 | 4.80e-1| 1.17e+1| x1.22e+1

Global Prek) 1 847 7.18| 1.19e+1| 1.91e+l
+ GMRES 2 857 | 1.53e+1| 1.23e+1| 2.75e+1
Talobal = 1075 3 865 | 2.36e+1| 1.25e+1| 3.6le+l
Row-orientedk) 1 890 | 2.83e+1| 1.34e+1| 4.17e+l
+ GMRES 2 882 | 4.09e+1| 1.42e+1| 5.51e+l
Trow—oriented = 1074 | 3 876 | 4.85e+1| 1.44e+1| 6.28e+1
CGLS 50000+ 0.00| 2.54e+2| 2.54e+2
Diag-CGLS 21548| 1.60e-2| 1.10e+2| 1.10e+2

Table4.3 shows that increasinig does not necessarily result in improved convergence
for the global method with droppings. On the other hand, fier tow-oriented precondi-
tioner the convergence improves fass increased. However, the numbers of iterations

are more than the global preconditioner. For this extreniklyonditioned matrix A,
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the convergence criterion is stricter thad” (b — Axy)||, < 1078 ATb||,. The criterion
|0 — Azy|l2 < 1079]|0]|2 is approximately equivalent AT (b — Azy)|l2 < 10712 ATb|o,
and the convergence behavior becomes somewhat irreguéar avkiery accurate solution

is required.

From Table4.2 to Table4.3, we observe that the proposed preconditioning is time-
consuming compared to the iteration time especially faydar Improvement in the itera-
tion time cannot compensate the expense for preconditjoiowever, when dealing with
multi-right-hand-side problems, the CPU time spent on@nedioning pays off. In Table
4, we solved a multiple right-hand-side problem. The coedfitimatrix A is the matrix
spran@S of Tablel. The right-hand-side vectors were givenAyimes a series of random

vectors which were also generated byiVMAB.

Table 4.4: Results for multiple right-hand-side problesprandasS)

num of subproblems k=0 k=1 k=2 k=6 k=7 diag-CGLS
1 1.453 2.798 3.734 6.704 7.357 *7.190e-1

25 4.014e+1| 2.946e+l| 2.725e+1| 2.312e+l| 2.174e+l *1.998e+1

50 7.969e+1| 5.670e+1| 5.232e+1| 4.057e+1l| *3.720e+1l| 3.98le+l

75 1.189e+2| 8.448e+l| 7.803e+l| 5.802e+l| *5.262e+1| 5.903e+1

100 1.583e+2| 1.128e+2| 1.020e+2| 7.460e+1| *6.738e+l 7.867e+1

In Table4.4, we give the total computation time in seconds for solvirgléast squares
problems with different number of right-hand-side vectbrsThe global left precondi-
tioning with the MINRES method was used. We can observe thah@a number of the
right-hand-side vectors increases, the preconditiorererine more and more competitive.
This is also shown in Figuré 1.

From Figure4.1, we see that ak increases, the preconditioning time becomes larger,

but the iteration time per problem decreases. Whdweeps increasing t®, the iteration
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Figure 4.1: Multiple Right-hand-side Problem
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time per problem starts to increase. Hence, there is an aptimhich minimizes the total

CPU time. For this problem, the optimals 7.

4.4 Conclusion

We applied the approximate inverse preconditioner to leqsares problem. Based on
the preconditioned/, from the MR algorithm, we gave equivalence theorems andkbrea
down free theorems for both the left preconditioning case the right preconditioning

case.

Numerical experiments showed that with the above preciomiiitg, the MINRES method
achieves a faster convergence for solving least squaréepns, although the precondi-

tioning is time-consuming. However, for multiple rightddaside problems, the CPU time
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spent on preconditioning pays off.



Chapter 5

Greville’s Methods for Preconditioning

Least Squares Problems

5.1 Greville’s method

In Chapter 4 we proposed using Minimal Residual method tstraat the approximate
generalized inverse ol and using it as a preconditioner. It has some obvious disadva

tages.

e The theorems for the equivalence between the original legsires problem and
the preconditioned problem could not be guaranteed whereriaah droppings are

performed.
¢ If no numerical droppings are performed, the preconditianstorage-demanding.

¢ If numerical droppings are performed, not only the equvedeis not guaranteed,

but also the preconditioned coefficient matrix is not symmogwhich implies that

44
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the GMRES method has to be applied to solve the preconddioather than the

MINRES method.

In this chapter we propose another preconditioning methotehst squares problems.
The method can not only construct an approximate MooredRerinverse ofd, but also
can give an incomplete factorization for the Moore-Peniioserse ofA. First we will

introduce what the Greville’s method is.

Given a rectangular matrid € R"™", rank(A) = r < min{m,n}. Assume the
Moore-Penrose inverse of is known, we are interested in how to compute the Moore-
Penrose inverse of

A+cd’, ceR™, deR", (5.1)

which is a rank-one update df. In [19], the following six logical possibilities are cousi

ered
1. c € R(A),d & R(AT) and1 + d* Afc arbitrary,
2. ce R(A),d g R(AT) andl + dT ATc = 0,
3. c € R(A), d arbitrary andl + d” Afc # 0,
4. c ¢ R(A),d € R(AT) andl + d” Afe = 0,
5. carbitrary,d € R(AT) and1 + d" Afc # 0,
6. c € R(A),d € R(AT) and1 + dT Afc = 0.

For each possibility, an expression for the Moore-Pennogerse of the rank one update of

A'is given by the following theorem.
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THEOREM 5.1.1 [19]For A € R™", ¢ € R™, d € R", letk = Afc, h = d' AT,

u=(I—AA"c,v=d"(I — ATA),ands = 1 + dT Afc. Notice that,

ceR(A) & u=0 (5.2)

de R(AT) & v=0. (5.3)

Then, the generalized inverseft cd” is given as follows.
1. Ifu# 0andv # 0, then(A + cd?)" = AT — ku — vTh + BoTul.
2. Ifu=0andv # 0,ands = 0, then(A + cd?)T = AT — kkTAT — vTh,

3. Ifu=0andg # 0, then(A + cd’) = AT + %ka:TAT - oﬁlplqip, wherep, =

I3, T T _ [vl3 .7
4. Ifu+#0,v=0andj3 =0, then(A + cd")t = AT — AThTh — ku'.

5. Ifv =0andgs # 0, then(A + cd")t = AT + %AThTuT — %pgqg, wherep, =

u 2
— (e atn” + 1), of = — (L2u” + 1), anda = B3l + |51
6. Ifu=0,v=0andg =0, then(A + cd")T = A" — kkT AT — AThTh + (kT AThT)kh.

To utilize the above theorem, we first writeinto a column summation form. Let
A= Z ael (5.4)
=1

whereq; is theith column ofA, ande; is an dimensional vector whose elements are all zero
except theth elementis one. Further define a sequence of matdgcesia,, ..., a;,0,...,0],

1=1,...,n, sothat4d; has the same size asdoes and the firstcolumns are the same as
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A’s, only the last: — ¢ columns are zero. Hence we have

Ai:Zakeg, 1=1,...,n, (5.5)
k=1
and if we denotedy, = 0,,,x,,, then

Ai = Ai—l + CI,ZET 'L = ]_, .o, n. (56)

7

Thuseveryd;,i = 1,...,nis arank-one update of;_;. Noticing thatAg = 0,,xm, We can
utilize Theorem 5.1.1 to compute the Moore-Penrose invefsé step by step and have

AT = Al in the end.

In Theorem 5.1.1, substitutingwith a; andd with ¢;, we can rewrite Equation 5.2 as
following,

a; € R(Ai) & u= (I — A Al_)a; #0. (5.7)

Equation (5.3) becomes
v=el(I—Al_[A_)a; #0, i=1,....n (5.8)
The s in Theorem 5.1.1 is nonzero for any= 1,2, ...n.
B=1+elAl ja;=1. (5.9)

Hence, we can use Casén Theorem 5.1.1 for columa; ¢ R(A;_1) and Casa in Theo-

rem 5.1.1 for columm,; € R(A;_1).
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Then from Theorem 5.1.1, denotiy, = 0,,,«., We obtain a method to compuﬂ;T

based om!_, as

14]L 1 €, — AT_lai I — Ai—lAl‘L_l a; f f a; R Ai—l
{ i1t i-104)(( Jai)' & R( )7 (5.10)

Al + o%.(ei — Al a)(Alja)TAL, i e € R(A)

wheres; = 1 + ||k;||3. This method was proposed by Greville in the 1960s [31].

Notice thatAZ-Aj is an orthogonal projection on ®(A;_1), hence,
a; € R(Ai) < (I— A Al a; = u; #0. (5.11)

To decide whethet; € R(A;_1), we only need to see if; is a zero vector or not.

5.2 Global Algorithm for General Matrices

In this section, we will construct our preconditioning algjom according to the Gre-
ville’s method of section 5.1. First of all, we notice thaettifferent part between case
a; ¢ R(A;_1) and case,; € R(A;_1) in Equation (5.10) lies in the second term. We first

make some denotations

ki o= Al a, (5.12)
up = a; — Ak = (] - Ai—lA;'r_l)aia (5.13)

o = 14| ki3 (5.14)
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If we definef; andv; as

{||Ui||§ if a; & R(Ai-1)

fi = : (5.15)
g; |f a; € R(A2_1>
w = { ( 1), (5.16)
(AT )Tk if a; € R(Ai—)
we can expresd! in a unified form for any matrices as
Al = Al 4 fi(e,- N (5.17)
and we have
"1
AT =N —(e; — k)l (5.18)
Z A
If we denote
K = [k,..., k) € RV (5.19)
= [v1,...,0,] € R, (5.20)
e 0
F = 19 . o] eR™, (5.21)
0 f

the above summation equation can be written into a matridybform, hence, we obtain

a matrix factorization ofAt as follows.

THEOREM 5.2.1 Let A € R™™ andrank(A) < min{m,n}. Using the above notations,
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the Moore-Penrose inverse dfhas the following factorization

Al = (I - K)F'vT, (5.22)

Here I is the identity matrix of orden, K is a strict upper triangular matrixF' is a diag-

onal matrix, whose diagonal elements are all positive.

If Ais full column rank, then

V = A( - K) (5.23)

Al = (I-K)F I -K)TA”, (5.24)

PROOF  DenoteA; = [aj, ..., a;], then since

ki = Al (5.25)
= [al,...,ai_l,O,...,O]Tai (526)
= [Ai_l,O, .o .,0:|TCLZ' (527)

AL
= a; (5.28)
0
ki,l
ki,i—l
- , (5.29)
0
0
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K = [ky,...,k,] is astrictly upper triangular matrix.

Sinceu; = 0 < a; € R(A;_1) and

ﬂmﬁifm€RMH)
g; if a; € R(Ai—l)

fi = (5.30)

Thusf;(: = 1,...,n), are always positive, which implies thatis a diagonal matrix with

positive diagonal elements.

If Ais a full rank matrix, we have

Vo= [u,...,uy (5.31)
= (I —A4A))ay, ..., (I—A,_ Al Da, (5.32)
= a1 — Aoky, ..., an — An_1ky)] (5.33)
= A—[Aok1, ..., Ap_1kn] (5.34)
= A—[Aiky, ..., Anky] (5.35)
= A(l - K). (5.36)

The second from the bottom equality follows from the fact thas a strictly upper trian-

gular matrix. Now, whem' is full rank, can be decomposed as follows,

Al=(I - K)F'VT = (I - K)F (I - K)TA". O (5.37)

REMARK 2 According to Theorem 5.2.1, whehis full column rank, in exact arithmetic
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the factorization ofA" in Theorem 5.2.1 can be rewritten as
Al = (I - K)F'(I - K)TAT. (5.38)
Hence, we obtain that,
(ATA) ' = (I - K)F (I - K)". (5.39)
And if we defindl — K)~T = L, the above equation equals
ATA=LFLT, (5.40)

which is a LDLY decomposition ofi” A.

Based on Greville’s method, we obtain a simple algorithm.oMg want to construct a
sparse approximation to the Moore-Penrose inversg tience, we perform some numer-
ical droppings in the middle of the algorithm to maintain fparsity of the preconditioner.
We call the following algorithm thé&lobal Greville Preconditioning algorithm, since it

forms or updates the whole matrix at a time rather than colbyneolumn.

ALGORITHM 5.2.1 Global Greville Preconditioning algorithm

1. setMy =0

2. fori=1:n
3. ki=M; 1q;
4 perform numerical droppings @)
5. w;=a; — A1k

6 if a; is recognized ag R(A;_1)

7

fi = luil3
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8. V; = U,
9. else

10.  fi=1+kl3
11. Vi = Mljllkl

12. endif
13, M;= My + (e — ki)v]
14. end for

15. GetM,, ~ A'.

REMARK 3 In Line 6, we use &; is recognized ag R(A;_1)” as an if condition. From
the previous discussion, we know that||, # 0 < a; ¢ R(A;_1). However, because of
the rounding error and the droppings we perforfi|> # 0 or ||u;|» being small is not
reliable enough to be used to judge< R(A;_1) or not. We will come back to this issue

in Subsection 5.6.1.

REMARK 4 In Algorithm 5.2.1, actually, we do not need to stéfev;, fi, i = 1,...,n,

because we form thMiT explicitly.

REMARK 5 In Algorithm 5.2.1, we need to perform numerical droppings:Q however,
doing this cannot control the sparsity i¥¥; directly. Wherk; is sparse, to updaté/;_,
we only need to update the rows which correspond to the noretements irk;. Hence,

the rank-one update will be cheaper.

we also need to updat&/; in every step, but actually we do not need to update the
whole matrix, since only the first— 1 rows of M/;_; could be nonzero. Hence, to compute
M;, we need to update the first- 1 rows of M,_;, and then add one new nonzero row to

be theith row of M.
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THEOREM 5.2.2 Let A € R™*™ andrank A) < min{m,n}. Use the notations in Algo-
rithm5.2.1 and let = [ky,...,k,], V = [v1,...,v,] and F = diag{ f1, ..., f»}, then the

matrix M,, constructed by Algorithm 5.2.1 has the following factotiza
M, = (- K)F VT (5.41)

Here I is the identity matrix of order, K is a strict upper triangular matrix,F’ is a
diagonal matrix, whose diagonal elements are all positive.

If Ais full column rank, then

V = A(l - K) (5.42)

M, = (I-K)F'I-K)TA" (5.43)

REMARK 6 Comparing Theorem 5.2.1 and the above theorem, we can seeltrand
the M,, from the Algorithm 5.2.1 have the same factorization. Thyg difference is that
M, ~ AT because of the numerical droppings. And this can be used as an approximate

generalized inverse preconditioner.

REMARK 7 We can also perform numerical droppingsi¢ after it is updated. In this
case the structure af/; will be ruined, which means that/,, could not be written into the

factorization form in the above theorem.

5.3 Vector-wise Algorithm for General Matrices

If we want to construct the matrik’, /' andV” without forming M; explicitly, we can
use a vector-wise version of Algorithm 5.2.1. In Algorithn23, the column vectors of

K are constructed one column at a step, then we computevector based ort;, and
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the computation of théth diagonal element of' is based on;. We can see that all the
definition of other vectors are based lbn Hence, it is possible to rewrite Algorithm 5.2.1

into a vector-wise form.

Sinceu; can be computed from;, — A;_1 k;, which does not refer td7;_; explicitly, to
vectorize Algorithm 5.2.1, we only need to forkpnandv; = M  k; when linear depen-

dence happens, without usiig;_, explicitly.

Consider the numerical droppings are not used. Since wadldenow that

Al = (I-K)F'vE,

i v
= (- [kl . kn})
f—l UT
= 1
= Z(ei kl) Uz'Tv
=1 fl
for any integep, it is easy to see that
& 1
AT = "(ei — ki)l (5.44)
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Therefore, whem; is in the range space of;_;, we have

o= (AL, (5.45)
i—1
1
— (Z(ep — kp)?va Vk; (5.46)
p=1 P
i—1 1
= Z —Up(ep — kp)Tki- (5.47)
p=1 fo
Also for k;
ki = Al (5.48)
i—1 1
= D (e kp)f—v,? aj (5.49)
p=1 p
i—2 1 1
= Z(ep - kp)—vgai + (ei—1 — /{?i_1)—UZ-T_16LZ- (5.50)
p=1 fp fi—l
1
= Aj—zai + (-1 — ki—l)ﬂvér_1ai- (5.51)

To make this more clear, from the last column/of the requirement relationship can

be shown as

k,, = AL_lan
/ AN
Al a, kno1= Al _an_4
/ AN / AN

AL_gan kn—2 = AL_gan—2 AL_gan—l kn—2 = AL_gan—2

In other words, we need to compute evefyy,, k =i+ 1,...,n. Denoted!a;, j > i as
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k; ;. In this sensek; = k;_; ;. In the algorithmg; ;, 7 > ¢ will be stored in thejth column
of K,if j =i+ 1, k;; = k;, and it will not be changed any more.jit> i + 1, k; ; will be

updated tdk;.; ; and still stored in the same position.

Based on the above discussion, and add the numerical dgppategy, we can write
the following algorithm. In the algorithm we omit the firstkmcript of£; ;, since all the
vectorsk; ;, « = 1,...,n are stored in thgth column of K, they are actually one vector in

different iterations.
ALGORITHM 5.3.1 Vector-wise Greville Preconditioning Algorithm

1. setK = 0,,xn
2. fori=1:n
3. u=a; — Ai—lki

4. ifa;isrecognized ag R(A; 1)

5 fi=llul3

6. v; = U

7. else

8 fi=lkiB+1

0. v = (Al )Tk = Z fivp(ep — k)" ks
10.  endif =t

11. forj=i+1,....n
12, kyj=ky+ (e — k)

13. perform numerical droppings d)
14. end for
15. end for

16. K:[k:l,...,kn],F:Diag{fl,...,fn},\/:[vl,...,vn.
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REMARK 8 For the full column rank case, we already showed that A(/— K). Hence,
we do not need to store matrixin this case. However, it does not mean that for the general
case, we need to store the whole mairixIn fact, we only need to store the vectordof
which correspond to the columasrecognized to be in the range spacef ;. Hence, if

the rank deficiency is small, the extra storage comparedddtith rank case is small.

5.4 Greville Preconditioning Method for Full Column Rank

Matrices

In this section, we especially take a look at the full colurank case. When is full

column rank, both Algorithm 5.3.1 can be simplified as fokow

ALGORITHM 5.4.1 Vector-wise Greville Preconditioning Algorithm for Fulbmn Rank

Matrices

1. setK = 0,

2. fori=1:n

3. w;=a; — A1k
fi = lluill3

4
5. forj=:¢+1,...,n
6
7

k’j = k‘j + uif:lj (6i — kz)

perform numerical droppings aty
8. endfor
9. end for

10. K = [ky, ..., k), F = Diag{f1, ..., fu}.
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In Algorithm 5.4.1,

u = a; — Ai1k;

= [ab...,ai,o,.--,o] 1

= Ai(ei - k‘z)

= A(e; — k).

If we denotee; — k; asz;, thenu, = Az,.

The Line 6 in the Algorithm 5.4.1, can also be rewritten as

T

u; a;
k. = k. L (. — k.
T BT e
UTCL'
ej—kj = ¢ —kj— ";i"J%(ei — k)
T
U; a;
! Do a3
Tq.
Denoted; = ||u||3, 0 = % andZ = [zy,. .., z,]). Then combining all the new notations,
)

we can rewrite the algorithm as follows.

ALGORITHM 5.4.2

1 setZ =1,
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fori=1:n
u; = Az

d; = (Uz’, Uz)

2

3

4

5. forj=i+1,....n
6 f = s)

7 2j =2 — 0z

8 perform numerical droppings oy).
9

end for
10. end for
11. Z = [z, ...,2,], D = Diag{dy, ..., d,}.

REMARK 9 Sincez; = e; — k;, in the beginning of this algorithm we have= I — K,
where! is an identity matrix of ordern. DenotingD = Diag{d, ..., d,}, when there is
no numerical droppings and in exact arithmetic, the factation of A" in Theorem 5.2.1
can be rewritten as

Al = ZD 17T AT (5.52)

When numerical droppings is performed, we can construct@ixa/ in the factorization
form

M =Z7ZD1ZTAT =~ AT (5.53)

In [13] Benzi and Tlma proposed a technique, robust incetegfactorization (RIF)
, for constructing robust preconditioners for the CGLS rodthpplied to the solution of
large and sparse least squares problems. The algorithmuteshan incompleté D L7
factorization of the normal equations matrix without theddo form the normal matrix
itself. The RIF idea was also introduced in [9,12], where Bamd Tuma applied a similar
idea to construct a preconditioner for CG method to solversgiric positive definite lin-

ear systems. Their ideas are based ar a-Orthogonalization wher is a nonsymmetric
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nonsingular matrix or A-Orthogonalization whéns a symmetric positive definite matrix.

We describe the A-Orthogonalization procedure as follovet.a? denote theth row
of A. Also, lete; denote théth unit basis vector. The basic A-orthogonalization praced
which orthogonalizes the unit basis vectors with resped¢héoinner product defined as

(z,y) 4 = y* Az, can be written as follows.
ALGORITHM 5.4.3 [9]

1. LetZO = €;, (1 SZSTZ)
2. Fori=1,2,...,n
3. Forj—ii+1,....n

4. pg.i_l) = a?2§i_1)
5. End For
6. Ifi=ngoto(11)
7. Forj=i+1,....n
8. )= - ()Y
9. End For
10. End For

11. Letz; = zi(i_l), pi = pgi_l) forl <i <n. RetunZ = [z,...,%,) andD =

Diag{p1,...,pn}-

The AT A-orthogonalization procedure is similar to the above atgor. The only dif-

ference lies in the Lind. In Algorithm 5.4.3, line4 can be rewritten into the following



Chapter 5: Greville’s Methods for Preconditioning

Least Squares Problems 62
inner product form

pg-i_l) = a;TFzJ(-i_l) (5.54)

= (Aey)T A" (5.55)

= efAlY (5.56)

= (en 2 )4l (5.57)

If we change the definition qﬁi_l) to the following, can easily obtaifi™ A-orthogonalization.

pi Y = el A (5.58)
(Aey)T Azl Y (5.59)
ef AT A (5.60)
(€i, Zj(-i_l))ATA- (5.61)

Now if we look back our Algorithm 5.4.2, the definition éfcan be rewritten as follows,

0 — “Z?ﬂ' (5.62)
AT (Ae.

= o (569

- o

Hence, in Algorithm 5.4.2, from Lingto Line9, it can be viewed as ah™ A-orthogonalization
procedure when the numerical droppings are not performdter/the droppings are per-

formed, it is an incompleta™ A-orthogonalization procedure.
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And also notice that, for the above A-orthogonalizatiorogaure or the\™ A-orthogonalization
procedure or our Algorithm 5.4.2, in thh step, all the vectors;, j =i+ 1,...,n are
updated, and the vectots, j = 1,...4 are not changed and also remain the same in the
following steps. This is called theght-looking process. For each of these algorithms,
according to [10], &eft-lookingvariant also exists, which is sometimes advantageous. The

left-looking version of Algorithm 5.4.2 can be written adléovs.
ALGORITHM 5.4.4 Vector-wise Greville Preconditioning Algorithm

. SetZ:Ian,U:al,fl = ||CL1H%
.Fori=2,....n
Forj=1,...,i—1

T
0 = a; u,

0

_Z>
;79

End for
perform numerical droppings on

U; = AZZ'

1
2
3
4
5. 2 = % —
6
7
8
9

fi = |luill3
10. End For
11. 7 = [zl,...,zn],F:Diag{fl,...,fn}.

From the above algorithm, it is easy to see that this algoritbincides a&ram—-Schmidt
processwith respect to the inner produgt, y) 44 = xAT Ay. We can change it to Blod-
ified Gram-Schmidprocess to obtain a more stable version of this\-orthogonalization

procedure.
ALGORITHM 5.4.5 Vector-wise Greville Preconditioning Algorithm

1. SetZ = Inxn)u: al)fl = ||CL1H%
2. Fori=2,...,n
3. Forj=1,...,i—1
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4, 0= (AZZ‘)TUJ'
5. i — R — f%zj
6. Endfor
7.  perform numerical droppings on
10. End For

11. 7 = [Zl, .. .,Zn], F= Diag{fl, .. 7fn}
And in the same way, we can also rewrite our Algorithm 5.3t ieft-looking version.
ALGORITHM 5.4.6 Vector-wise Greville Preconditioning Algorithm

1. setK = Oana V1 = aq, fl = ||C1,1||%
2. fori=2:n

3. forj=1:i—-1

0 = alv,
]{fi = k’z -+ f%(ej — k‘])
end for

perform numerical droppings ot
u=a; —Ai_1k;

© © N o 0 b

if a; is recognized ag R(A;_1)

10.  fi=uli3

11. v, = U

12. else

13 fi=[kB+1

14. Ui = (A;r—l)Tki = Z fivp(e:n — k) ks

15.  endif et

16. end for

17. K = [k1,... k), F =Diag{f1,.... fu}, V =1[v1,..., 0.
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5.5 Two Important Issues about Preconditioning the Least

Squares Problems

When we precondition a nonsingular linear system
Ar=b, AeR™™ bheR", (5.65)
instead of solving the linear system itself, we solve
MAz = Mb (5.66)

or

AMy =1b, x= My. (5.67)

As long as preconditiong? € R™*" is nonsingular, we can ensure we obtain the solution

to the original solution.

In the case of least squares problems this is not true, even thle coefficient matrix is
a full rank matrix. In this section, we will discuss to ensthrat we obtain the least squares
solution to the original problem 2.1 by solving the precadiadied problem, what conditions
should the preconditione¥/ satisfy. And after transforming the original problem to the
preconditioned problem we want to use some Krylov subspag@ads to solve it. We
will also discuss that when the Krylov subspace solver caergdene a solution to the

preconditioned problem before it breaks down.
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5.5.1 Equivalence Condition

Consider solving the least squares problem (2.1) by tramsfg it into the left precon-
ditioned form,

min || Mb— M Az, (5.68)
z€R™

whereA € R™*", M € R™™, andb is a right-hand-side vectére R™.

Since we are dealing with general rectangular matrices,egd some other conditions
to ensure that the preconditioned problem (5.68) is egemiab the original least squares
problem (2.1). These conditions have been introduced iptend. For the left precondi-

tioning, by Theorem 3.3.5, we ne@®{A) = R(MTMA).

If we perform Algorithm 5.2.1 or Algorithm 5.3.1 completegnd exactly, we will
finally have the exact Moore-Penrose inversedofie. M = Af. By the properties of
At [50], it is easy to know that Theoref? is satisfied. However, we need to performe
some numerical droppings to control the sparsity of the gmiditionerA/. Assume the
dropping threshold is, we drop the elements it} which are smaller than in Algorithm
5.2.1 or Algorithm 5.3.1. Because of the droppings, the nofmy may not be an accurate
way to detect ifa; € R(A;_1) ora; & R(A;_1). We will come back to how to detect the
linear dependence later. After droppings, we have

Al M=(1-K)F'VT (5.69)

Q

To analyze the equivalence between the original problefj2znd the preconditioned

problem (5.68), wheré/ is from any of our algorithms, we first consider the simplescas
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in which A is a full column rank matrix. After numerical droppings, wavie,

Af

Q

M= (-KF'U, (5.70)

whereU is

U= A(I - K). (5.71)

Notice thatK is a strictly upper triangular matrix and is a diagonal matrix with positive
elements. Hence, we can denote

M = CAT, (5.72)

whereC is an nonsingular matrix. According to the discussion il [34 = C A" satisfies

Theorem 3.3.5, hence, we have the following result.

THEOREM 5.5.1 If A € R™*", andA is full column rank, by Algorithm 5.2.1 or Algorithm
5.3.1 with numerical droppings, we can construct a precboder /. With this precondi-

tioner M, the preconditioned least squares problem and the origeesdt squares problem
are equivalent and GMRES can determine a least squares@oliat the preconditioned

problem before breakdown happens.

For the general case, we still have and F' nonsingular. However, the expression
for V is not straightforward. To simplify the problem, we need taka the following

assumptions.
ASSUMPTION 5.5.1
e There is no zero column iA.

e Our algorithm can detect all the linear independence caiyec
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The assumption of no zero columns is very general, sinceerktis a zero column in the
coefficient matrix4, we only need to omit the corresponding element in the vieiagctor

x. For the other assumption of detecting all the linear indépace, the most simple case
is that no matter! is full column rank or not we take it as a full column rank matiDoing

S0 may cause breakdown for the preconditioning algorithm.

The definition ofv; can be rewritten as follows.

CI,Z—AI{?ZGRAZ gRAZ'_ if aigRAZ—_
- (4) & R(Ai) (4i0) 579

(AT )Tk € R(Ai—1) = R(A) if a; € R(Aiy)
When Assumption 5.5.1 is satisfied , we have

span{vy, vg, ..., v;} = spanf{ay, as, ..., a;}. (5.74)
On the other hand, note the-th line of Algorithm 5.2.1

1 T
M; = M1 + —(e; — ki)vy (5.75)

f .

which implies that every row ob/; is a linear combination of the vectov;sf, 1 <k <j,
i.e.,

R(MT) = span{vy, ..., v;}. (5.76)
Based on the above discussions, we obtain the following&meo

THEOREM 55.2 Let A € R™*", m > n. If Assumption 5.5.1 holds, then we have the

following relationships, wheré/ is the approximate Moore-Penrose inverse constructed
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by Algorithm 5.2.1.

R(MT) =R(V) = R(A) (5.77)

REMARK 10 In Assumption 5.5.1, we assume that our algorithms can tlalidbe linear
independence in the columns 4f Hence, we allow such mistakes that a linearly depen-
dent column is recognized as a linearly independent coluAmextreme case is that we
recognize all the columns of as linearly independent, i.e., we takeas a full column

rank matrix. In this sense, our assumption can always beféedi.

Hence, we proved that for any mattike R™*", R(A) = R(M™). We have the following

theorem.

THEOREM 5.5.3 If Assumption 5.5.1 holds, then for alke R™, the preconditioned least
squares problem (5.68), wherd is constructed by Algorithm 5.2.1, is equivalent to the

original least squares problem (2.14).

PROOF  If Assumption 5.5.1 holds, we have

R(A) = R(MT). (5.78)

Then there exists a nonsingular maifixc R"*" such thatd = M7 (. Hence,

R(M*MA) = R(MTMM™C) (5.79)
= R(MT"MMT) (5.80)
= R(M*M) (5.81)
= R(MT) (5.82)

= R(A). (5.83)



Chapter 5: Greville’s Methods for Preconditioning
Least Squares Problems 70

In the above equalities we used the relationsRig/ M) = R(M).

By Theorem 3.3.5 we complete the proof. O

THEOREM 5.54 For all b € R™, M is constructed by Algorithm 5.2.1, if Assumption
5.5.1 holds andV/ is used as a left preconditioner, the least squares prob&i®3] is

equivalent to the original least squares problem (2.1).

5.5.2 Breakdown Free Condition

In this subsection we assume without losing generalityttiafirstr columns ofA are

linearly independent. Hence,

R(A) = span{ay, as, .. .,a,}, (5.84)

whererank(A) = r, anda;, (i = 1,2, ...,r) is theith column of A. The reason is that we
can incorporate a column pivoting in Algorithm 5.2.1 easilith Assumption 5.5.1, every
time when a linear dependence is detected, we can pivot thhentwcolumn to the end of
the matrix4, and after we have the least squares solution to the pivéoteade can permute

the solution to get the solution to the original problem.

Then we have,

a; E R(A,), i=r+1Lr+2....n (5.85)

In this case, after performing Algorithm 5.2.1 with numatidropping, matrixi” can be
written in the form

Vo= [ug, ugy ..oy Upy Up1, Upgay e ooy Up) (5.86)
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If we denote|uy, us, . . ., u,] asUl,, then
IT’XT
U, =A - K)I,, I, = (5.87)
0
From Theorem 5.5.2,
R(V) = R(A) (5.88)
R(V) = span{U,} (5.89)
—  span{v,41,Vr12,...,0,} C span{U,}. (5.90)
Therefore there existsrax (n — r) matrix H such that
[/Ur—i-l; Vp42, - - - ,Un] = UTH (591)
= A(I - K)I.H, (5.92)
H could be full rank or rank deficient. Then the whéfds given by
Vo= [ui,ug, ... Uy Ups1, Uy vy Up) (5.93)
= [U,,U,H] (5.94)
= UT’ [ITXT H:| (595)
ITX?"
= A(I - K) [[rw H} (5.96)
0
L H
= A(I - K) (5.97)
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Hence,
M = (I-K)F'WT (5.98)
T
L H
= I-K)F']|A(I - K) (5.99)
0 O
]TXT’ O
= (I-K)F! (I - K)TAT (5.100)
HT 0

From the above equation, we can also see the difference éetive full column rank case

and the rank deficient case lies in

]TXT’ 0
: (5.101)

HTXH—?" 0

which should be an identity matrix whetis full column rank.

If there is no numerical droppingy/ will be the Moore-Penrose inverse df in the

form of the following,

Al = (I - K)F™! (I — K)TAT, (5.102)

Comparing Equation (5.100) and Equation (5.102), it is dasgee thatR(M) =

R(AT). Note thatR (A") = R(AT), we can have the following theorem.

THEOREM 555 Let A € R™*", andrank A) = r. If Assumption 5.5.1 holds for Al-

gorithm 5.2.1. Then the following relationships hold, whéf denotes the approximate
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Moore-Penrose inverse constructed by Algorithm 5.2.1

R(M) = R(A") (5.103)

= R(AT). (5.104)

Based on Theorem 5.5.2 and Theorem 5.5.5, according to &me®13.7 we have the
following theorem which ensures that the GMRES method caeraene a solution to the

preconditioned problem/ Ax = Mb before breakdown happens for ang R™.

THEOREM 5.5.6 Let A € R™*", andrankA) = r. Assume that all the linear indepen-
dence is detected by Algorithm 5.2.1 and that the precaditi M/ is computed using
Algorithms 5.2.1. Then, for all € R™, preconditioned GMRES determines a least squares
solution of

IQ%QI}LHMAx—MbHQ (5.105)

before breakdown and this solution attah'rts]'kn |6 — Azx||2.
TER™

REMARK 11 Using the result from Theorem 5.5.5, there exists a nonsanguatrix 7,

such thatA = MTT. Hence,

R(MA) = R(MM'T) (5.106)
= R(MM™) (5.107)
= R(M). (5.108)

Hence, no matter if the original problem consistent, thecpraditioned problem (5.68) is

always a consistent problem.
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5.6 Implementation Consideration

5.6.1 Detect Linear Dependence

In Algorithm 5.2.1 and Algorithm 5.3.1, one important issséow to judge the con-
dition “if a, is recognized ag R(A;_1)". Simply speaking, we can set up a tolerance
in advance, and switch to “else” whélm,||. < 7. However, is this good enough to help
us detect the which column of is linearly independent and which is linearly dependent
when we perform numerical droppings? To address this isgedirst take a look at the

RIF preconditioning algorithm.

The RIF preconditioner was developed for full rank matriddswever, numerical ex-
periments showed it also works for rank deficient matricesr this phenomenon, our
similar Algorithm 5.4.1 can give a better insight into theFRireconditioning algorithm.
Since our Algorithm 5.4.1 and RIF are both based on AHe\-orthogonalization pro-
cedure. A breakdown of Algorithm 5.4.1 or RIF is actually @ditdown to theATA-
orthogonalization procedure. The only possibility for théA-orthogonalization proce-
dure to breakdown is when thgin the denominator becomes zero, which implies that

is a zero vector. From our algorithm, we know that

= a; — Ai_lAI_lai (5110)
= (I —A Al a,. (5.111)

It is clear thatu, is the projection of;; ontoR(A;_; ). Hence in exact arithmetig; = 0 if
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and only ifa; € R(A;_1). Our algorithm has an alternative whene R(A;_;) happens,
i.e. whenu = 0, our algorithm will turn into “else” case. However, this istralways

necessary because of the numerical droppings. With nuatérnappings, the; is actually,

w = a; —A;j_1k; (5.112)
= a; —A;i_1M,;_qq; (5.113)
~ a;— A Al (5.114)
£ 0. (5.115)

Hence, even though;, € R(A;_1), sinceu; will not be the exact projection aof; onto
R(A;_1)*, the RIF preconditioning algorithm will not necessarilgakdown when linear

dependence happens.

The RIF algorithm does not take the rank deficient columnsearly rank deficient
columns into consideration. Hence, if we can capture thie daficient columns, we might
be able to have a better preconditioner. Assumelthewe compute from any of our three

algorithms can be viewed as an approximatiortovith error matrix € R**™,
M= A"+ E. (5.116)

First note a theoretical result about the perturbation tdveeind of the generalize inverse.

THEOREM 5.6.1 [52] If rank(A + E) # rank(A), then

1
I(A+ E)f = AT, > 5L (5.117)
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By Theorem 5.6.1, if the rank af/ = A" + E from our algorithm is not equal to the

rank of AT, (or A, since they have the same rank), by the above theorem, we have

1

M= (ANl > (5.118)
1£]2
1

= |MT—All, > ——. (5.119)
1£]2

The above inequality says that, if we dendté = A + AA, then||AAll, > ”blﬂz.
Hence, when| E||, is small, which means/ is a good approximation tdf, // can be an
exact generalized inverse of another matrix which is famftd, and the smaller thgE||-
is, the furtherd/T from A is. In this sense, if the rank dff is not the same as that df, M/

may not be a good preconditioner.

Thus, it is important to maintain the rank of to be the same ofank(A). Hence,
when we perform our algorithm, we need to sparsify the prditmmer M, but at the same
time we also want to capture the rank deficient columns as rmappssible, and maintain
the rank of M. To achieve this, apparently, it is very import to decide hojudge when
the exact value; = ||(I — 4;_1A!_,)a;||, is close to zero or not based on the computed

Valueﬂ,- = ||([ — Ai_lMi_l)ang.

Taking a closer look ai;, we have

ﬁi = a; — Ai_lMi_lai (5120)
= a;— A1 (A |+ E)a (5.121)
= (CLZ' — Ai_lA;r_lCLi) — Ai_lElCLZ' (5122)

= U; — Ai_lElai. (5123)
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Whenai € R(Ai—l)a U; = a; — Ai_lA;-r_lCLi = 0. Then,

ﬁi = —Ai_lElCLi (5124)

@il < [ Aiallpll Erllpllasll2, (5.125)

If we requireFE; to be small, we can use a tolerangelf

[@ill2 < 7sllAial[pllaill2, (5.126)

we suppose we detect a columaywhich is in the range space df,_;. From now on, we

call 7, theswitching tolerance

5.6.2 Right-Preconditioning Case

So far we assumd € R™*", and discussed the left-preconditioning. Whern> n, it
is better to perform a left-preconditioning since the sizéhe preconditioned problem will

be smaller. Whem: < n, a right-preconditioned problem can be described as faljow

min ||b— ABy|». (5.127)
yeRnL

In this subsection we will show that all the results for lpfeconditioning can be extended

to the right-preconditioning case.

Whenm < n, Theorem 5.5.2 and Theorem 5.5.5 still hold, since in thefpobthese
two theorems we did not refer to the fact that> n. Then, note Theorem 3.3.1, it is easy

to obtain similar conclusions for right-preconditioning.

THEOREM 5.6.2 Let A € R™ ™. If Assumption 5.5.1 holds, then for ahye R™ we
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have min |b— Az, = min |b — AMyl|,, where M is a preconditioner constructed by
reR™ yeR™

Algorithm 5.2.1.

PROOF  From Theorem 5.5.5, we know thRt{(A/) = R(AT), which implies that there

exists a nonsingular matrix € R™*™ such that\/ = ATC. Hence,

R(AM) = R(AATO) (5.128)
= R(AAT) (5.129)
= R(A). (5.130)

Using Theorem 3.3.1 we complete the proof. O

THEOREM 5.6.3 Let A € R™ ™. If Assumption 5.5.1 holds, then GMRES determines a

solution to the right preconditioned problem

min
yeR'm

b— AMyl|s (5.131)

before breakdown happens.

PROOF  The proof is directly from Theorem 3.3.7. a

THEOREM 5.6.4 LetA € R™ ™, If Assumption 5.5.1 holds, then for alhng R™, GMRES

determines a least squares solution of
min ||b — AMyl||2 (5.132)
yeR™

before breakdown and this solution attahmﬁn |b — Az||2, whereM is computed by Algo-
TER™

rithm 5.2.1.
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We would like to remark that it is preferable to perform Algom 5.2.1 and Algorithm
5.3.1toA” rather thand whenm < n, based on the following three reasons. By doing so,
we construct)/, an approximate generalized inversedf. Then, we can us&/” as the

preconditioner to the original least squares problem.

1. In Algorithm 5.2.1 and Algorithm 5.3.1, the approximaengralized inverse is con-
structed row by row. Hence, we perform a loop which goes tipncall the columns
of A once. Whenn > n, this loop is relatively short. However, whem < n, this

loop could become very long, and the preconditioning wilhi@e time-consuming.

2. Anotherreasonis that, linear dependence will alwaypéam this case even though
matrix A is full row rank. If m << n, then when we perform the precondition algo-
rithm on A, a lot of linear dependence needs to be detected. This fdasitamore

difficult to capture the rank deficiency af, and may result in a bad preconditioner.

3. Even though our algorithms can detect the linear depaedaccurately, if we look
at the algorithms, for a certain columpof A, it is more expensive to deal with than

wheng; is independent of the previous columns.

5.7 Numerical Examples

In this section, we first use matrices from the Florida UrsitgrSparse Matrices Col-
lection to test our algorithms, where zero rows are omitted i& the original matrix is
under-determined we use its transpose. All computatioms wm on a Dell Precision 690,
where the CPU i8 GHz and the memory i$6 GB, and the programming language and
compiling environment was GNU C/C++ 3.4.3 in Redhat Linwetd&led information is

given in the following table.
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Table 5.1: Information on the matrix
Name m n | rank | density(%) cond
80bau3b | 11934 | 2262 | 2262 0.09 567.23
bnl2 4486 | 2324 | 2324 0.14 | 7.77 x 10°
capfri 482 271 ] 271 1.45 | 8.09 x 10°
d2q06¢ 5831 | 2171 | 2171 0.26 | 1.33 x 10°
fitlp 1677 | 627 | 627 0.94 | 6.85 x 103
fit2p 13525 | 3000 | 3000 0.12 | 4.69 x 103
maros 1966 | 846 | 846 0.61 | 1.95 x 10°
perold 1560 | 625 | 625 0.65 | 5.13 x 10°
pilot 4860 | 1441 | 1441 0.63 | 2.66 x 10°
pilot_we 2028 | 722 | 722 0.44 | 4.28 x 10°
scfxml 600 | 330 | 330 1.38 | 2.42 x 10*
scfxm2 1200 | 660 | 660 0.69 | 2.42 x 10*
scfxm3 1800 | 990 | 990 0.51 | 1.39 x 103
sharelb 253 | 117 | 117 3.98 | 1.05 x 10°
stocfor2 3045 | 2157 | 2157 0.14 | 2.84 x 10*
vtp_base 346 | 198 | 198 1.53 | 3.55 x 107
beaflw 500 | 492 | 460 21.71 | 1.52 x 10?
beause 505 | 492 | 459 17.93 | 6.74 x 10°
Maragal2 536 | 260 | 171 3.13 308.95
landmark | 71952 | 2673 | 2671 0.60 | 1.02 x 10®
Ip_cycle 3371 | 1890 | 1875 0.33 | 1.46 x 107
Pd.rhs 5804 | 4371 | 4368 0.02 | 3.36 x 108

In Table5.1, when the original matrix is under-determined, we usedatsdpose. Table
5.1 is divided into two parts. The matrices in the first half ark ¢éolumn rank matrices,
the matrices in the second half are the rank deficient matritke condition number ot

is given by‘”(A), wherer is the rank. We construct the preconditiodérand perform the
or(A)

BA-GMRES [34] which is given below.
ALGORITHM 5.7.1 BA- GMRES

1. Choosex
2. 7g = B(b— Axy)
3. v =7o/||7o2
4. fori=1,2,...,k
5. w; = BAy;
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6 foryj=1,2,...,i
7 hjﬂ' = (wi, Uj)
8. W; = wW; — hjﬂ"Uj
9. endfor

10. hi—i—l,i = ||w2||2

11, v = wi/hi-‘rl,i

12.  Findy; € R? which minimized{7;||s = ||||7oll2e; — Hiyl|2
13, z; =9+ [v1, ..., 0]y

14. r,=b— Az,

15. if||ATr]|, < ¢ stop

16. end for

17. zg = xy,

18. Go to2.

The BA-GMRES is a method that solving least squares probleithsGMRES by precon-

ditioning the original problem from the left with a suitalgesconditioners.

In the following example, the right hand side vectbese random vectors generated by

Matlab, so that all the least squares problems are incemsidh this section, we use
uill2 < 7ol|Aior || Pl ail]2, (5.133)

the criterion to judge if we need to switch to the “else” caséen the switching tolerance
is zero, it implies that we are constructing RIF-like predibioners. Our dropping rule is

to drop thei-th element of;, i.e., k;, when the following inequality holds.
kil llaill2 < 7a, (5.134)
wherery is the dropping tolerance. The stopping rule for GMRES is

JAT(b — Az) [, < 1075 - [ ATb,. (5.135)
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First we show how the switching toleranceworks. Take matrix Ipcycle for an exam-

ple, we know that the rank deficient columns are,

182 184 216 237 253
717 754 961 1221 1239 (5.136)

1260 1261 1278 1640 1859,

15 columns in all. As we know that the rank deficient columns aeumique, the above
columns we list are the columns which are linearly dependertheir previous columns.
In the following example, we can see that our preconditigralgorithm can detect most

of them precisely.

Table 5.2: Numerical Results

Td Ts deficiency detected ITS Pre. T Its. T Tot. T
l.e-6 1l.e-10 —1239,—1261,—1278 37 3.33 0.99 4.32
l.e-6 1l.e-7 detectall exactly 4 3.5 0.10 3.6
l.e-6 1l.e-5 detected col 324 7.45 12.14 19.59

In the above table, we fix the dropping tolernageio 10~° and test different switch-
ing tolerances. The column “deficiency detected” gives thearly dependent columns
detected by our algorithm. For exampté 239 means thd 239th column, which is a rank
deficient column is missed by our algorithm. Form the tablea® see, when, = 101,
our preconditioning algorithm detectéd rank deficient columns excep239, 1261, 1278
and did not detect wrong rank deficient columns. Wher= 107, our preconditioning
algorithm found exactlyi5 rank deficient columns, and all of them are correct. When
7, = 107, 92 columns are recognized as linearly dependent columnspo$lyi many lin-
early independent columns are recognized as linearly digpercolumns by mistake. For

other columns, “ITS” means iteration numbers, “Pre. T” neepreconditioning time, “Its.
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T” means iteration time, and “Tot. T” means total CPU timeorArthis table we can see,
when then rank deficiency is detected correctly, the comrerg can be accelerated. When

wrong rank deficiency is detected, the convergence can edldown.

Figure 5.1: Convergence Curve fortycle
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In Figure5.1, We can see that, when = 107! or , = 10~7, no wrong linearly
dependent columns are detected, hence, Assumption 5.&alis§ed. By Theorem 5.5.6,
the preconditioned problem is equivalent to the originabjm, and GMRES can solve a
solution to the preconditioned problem. In Figuié, the residual curves far, = 10719
and7, = 1077 decrease td0~'2, which shows that the solution to the preconditioned
problem is the solution to the original least squares problé/henr, = 10~?, too many
rank deficient columns are detected, Assumption 5.5.1 isatigfied, hence, the residual

curve forr, = 1075 only deceases tb0~'° level and maintains. This phenomenon shows
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that whenr, = 1075, the preconditioned problem is not equivalent to the oebjproblem.
To sum up, Figuré.1 illustrates that Assumption 5.5.1 is necessary to obtaiolatien

to the original problem, however, when the assumption issabisfied, a good enough

approximate solution may still be achieved.

Table 5.3: Numerical results of full rank matrices

matrix 74 | Detected| ITS | Pre. T| Its. T | Tot. T | GMRESNE D-CGLS

80bau3b 0.1 0 17 1.58 | 0.02 1.60 82,0.31 56, *0.09

bnl2 6.e —2 0 64 0.84 | 0.42 1.26 651, 16.64 657, *0.64

d2qg06¢ 0.002 0 32 3.63 | 0.76| 4.39 | 858,27.03 2743, *4.05
capri 0.01 0 17 0.02 | 0.01| *0.03 215,0.22 496, 0.06
fitlp 0.0001 0 7 0.92 | 0.03| 0.95 31, *0.02 5986, 2.54
fit2p le—5 0 5| 89.81 0.9 90.71 31, *0.08 | 100000+, 251.2
maros le—6 0 3 1.22 | 0.02| *1.24 448, 2.85 13714,6.71
perold 0.01 0 17 0.17 | 0.04| *0.21 400, 1.68 1058, 0.36
pilot 0.05 0 63 1.49 | 0.44| 1.93 385, 3.81 822,1.24
pilot_we 0.1 0 41 0.17 | 0.09| *0.26 429,2.24 736,0.38
scfxml 0.001 0 20 0.04 | 0.02| *0.06 184, 0.20 761,0.11
scfxm2 | 5.e—5 0 5 0.18 | 0.02| *0.20 283,0.89 1332,0.42
scfxm3 | 5.e—5 0 6 0.34 | 0.03| *0.37 346, 1.99 1583,0.72
stocfor2 | 5.e—5 0 25 830 | 0.66| 8.66 330, 3.69 2147,1.59
sharelb | 0.001 0 6 0.00 | 0.00| *0.00 117,0.04 547,0.03
vtp_base| 2.e — 6 0 5 0.03 | 0.00| *0.03 119, 0.05 3667,0.29

In Table5.3 we list our numerical results of full rank problems. We signpét, to
0.0 so that we did not detect any linearly dependent columnsnHiable5.3 we conclude
that our preconditioner performs competitively when neasiare ill-conditioned. In Table
5.4, we list the results of rank deficient problems. We compareRE# method with

our preconditioner to GMRES with RIF preconditoiner, whisHisted in column “RIF-

GMRES".
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Table 5.4: Numerical results of rank deficient matrices

matrix Td Ts Detected ITS Pre. T Its. T Tot. T RIF-GMRES GMRESNE D-CGLS
beaflw l.e-5 l.e-10 28 66 0.96 0.24 *1.20 T 450, 2.00 T

beause l.e-6 l.e-10 35 22 0.90 0.08 *0.98 T 447,1.92 T

landmark le-1 l.e-8 2 100 345 7.42 41.92 239, 38.43 (10.0) T 252,*8.77
Ip_cycle le4 l.e-6 17 43 2.24 0.84 *3.08 t 1020, 32.85 6799, 6.74
Maragal2 le4 l.e-3 38 36 0.11 0.04 *0.15 t 169, *0.15 11224,1.94
Pdrhs le4 l.e-8 3 4 0.93 0.00 0.93 t 780, 44.47 242,*0.29

T: GMRES did not converge in500 steps or D-CGLS did not convergein0000 steps.

From Table5.4 we see that our preconditioning algorithm detected soneatiy depen-
dent columns so that achieved faster convergence. On teelwdind, RIF preconditioning
algorithm broke down at the preconditioning stage or Ri€epnditioned GMERS con-

verges slowly.

From Table5.3 and 5.4 we conclude that, our preconditioner performs competitive

for ill-conditioned problem, and more robust with rank deint problems.



Chapter 6

Applications to Linear Programming

Problems

A linear programming problem involves the optimization direear function subject
to linear constraints on the variables. Although linearctions are simple functions, they
arise frequently in economics, production planning, nekspscheduling and other ap-
plications. The simplex method is the most widely used mefioo linear programming.
It was developed in th&940’s at the same time as linear programming models was intro-
duced. Due to its efficiency, the simplex method has no coitopetintil recent years. With

the development of interior-point methods, the simplexradthas had a serious challenge.

Interior-point methods are the most significant developrrelimear optimization since
the development of the simplex method. The methods have theodetical efficiency and
good practical performance. Interior-point methods regjto solve a least squares prob-
lem in each step. The closer the iteration solutions geteoofitimal solution, the more

ill-conditioned the least squares problems become. Dmmesthods are usually used to

86
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solve these least squares problems. In this thesis, we th@Veast squares problem by the

Krylov subspace methods with our preconditioner.

In this chapter, we first give an introduction to the basicsngfar programming and the
interior-point methods. For details, we refer to [32,54hdAwe also present some numer-

ical results to show that our preconditioners are also Blg@t@r this kind of problems.

6.1 Linear programming

There are many different ways to represent a linear progiagproblem. Sometimes
one form is more convenient than the other. The standardoevdgdcribe a linear program-

ming problem is

min CTx
sit. Ax=1b (6.1)

x>0

whereA is anm x n matrix calledconstraint matrix vectorse andc are bothn dimensional
vectors,b € R™. if z satisfies the constraintéx = b, z > 0, we call it a feasible point.
the set of all feasible points is the feasible set. All thedinprogramming problems can
be written as standard form. The fundamental propertiediokar programming problem

are
e avector of real variables, whose optimal values are founsibying the problem;
e alinear objective function;

¢ linear constraints, both inequalities and equalities.
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Associated with any linear program is another linear progcalled thedual, which

consists of the same data objects arranged in a differentTeeydual for (6.1) is

max I\
st. ATA+s=c (6.2)
s >0,

where is a vector inR™ ands is a vector inR™. We call components of the dual vari-

ables, whiles is the vector of dual slacks.

The linear programming problem (6.1) is called grenal, to distinguish it from prob-
lem (6.2). The two problems together are referred to aptheal-dual pair. Define the

primal-dualfeasible setF andstrictly feasible sef°,

F = {(x,\s)|Az = b, AT\ + 5 =¢, (x,5) > 0} (6.3)

Fo = {(z,\s)| Az =b, A"\ +s=rc, (x,5) >0} (6.4)

Elements inF are called feasible solutions, and the one&are called strictly feasible
solutions. Assuméz, ), 3) is a feasible solution, hencg, A ands satisfy the following

eqguations, and inequalities,

Az = b (6.5)
ATX+5 = ¢ (6.6)

>0, 5 > 0. (6.7)
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From the above relations, we can easily see that for anybieasnlution we have’z >

b\
Iz = (ATA+5)7z (6.8)
= MNAz+3'z (6.9)
= Mb+35'z (6.10)
> b (6.11)
We call
Tz - Nb=5"z (6.12)

theduality gap The idea of the primal-dual method is to find a sequence ictlgtfeasible
solutions(z, M\, 5x) € F° so that the duality gap decreases gradually. Once the gualit
gap reaches zero, then the solution would be optimal. Natewhen the duality gap is
zero when the strictly feasible solution(is, A, 5), thens”'z is zero too. Combing the fact
that a feasible solution is optimal to the primal probleniJé&nd the dual problem (6.2) if

and only if it satisfies the complementary slackness camukti

zjs; =0, j=1,...,n, (6.13)

we obtain the following conclusion.

LEMMA 6.1.1 The vector pair(z*, \*, s*) is the optimal solution to problem (6.2) and
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problem (6.1) if and only if it satisfies the following conaits,

ATA+s = ¢
Ax = b
(6.14)
T;S; = 0, 7::1,2,...,71
x>0, s > 0

The Lemma 6.1.1 can also be concluded from KKT condition$, [bdnce, here we call
the above conditionkKKT Conditions

The idea of the primal-dual method is to move through a sexpiehstrictly feasible
primal and dual solutions that go closer and closer to zepecifically, at each iteration

we attempt to find vectors(u), A(u), s(u) satisfying, for some: > 0,

ATh+5 = ¢
Ax = b
(6.15)
;S = u 1=12,...,n

x>0, s > 0.

The difference from KKT conditions is the third equationsteadr;s; =0, i = 1,2, ..., n,

we havex;s; = u, i = 1,2,...,n, wherey is a positive number and is reduced step by
step until convergence is achieved. We choede be a sequence of positive number so
that we can guarantee that> 0 ands > 0, i.e.{z, A, s) is a strictly feasible solution. In
this case, the duality gap is

zls = npu. (6.16)

Hence, when we reduce to zero gradually, we also reduce the duality gap, when the

duality gap is small enough, we say we find an optimal solutiithin some tolerance. Let
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X = diag(x), S = diag(s), and vector = [1,1,..., 1] be an dimensional vector, the

third equation can be simplified as

XSe = pe. (6.17)

From the above discussion, it is easy to see that in the puwional algorithm, we need to

solve equations

AT +s = ¢
Ax =
(6.18)
XSe = pe
x>0, s > 0

in every step. And solving these equations is the main cateoprimal-dual algorithm.

Note that the third in Equations (6.18) is nonlinear. We usatén’s Method to solve
it. Assume we have a solutigm, \, s) satisfying Equations (6.18), and then we reduce
to i1 < p, we need to find a new solutid: + Az, A + A\, s + As) which satisfies the

Equations (6.18) withi. Hence, we want to solve

ATOAN+ AN + (s +As) = ¢
Az + Az = b

@+ Az) (6.19)
(X +AX)(S+AS)e = [e

(r+Ax) >0, (s+As) > 0,
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which is equivalent to
ATAN + As = 0
AAx = 0
(6.20)
(X +AX)(S+AS)e = jie
Axr >0, As>0,
whereAX = diag(Az), AS = diag(s). The third equationX + AX)(S + AS)e = fie

can be written as

XAs+ SAx + AXASe = fie — X Se. (6.21)

When Az and As are smalll AX ASe is much smaller, for this reason, we can omit this
second order term. To sum up, to obtain the new solytion Az, A + A\, s + As), we

need to solve the following linear system,

0 AT I| |Ax 0
A 0 0 AN = 0 : (6.22)
S 0 X| |As —X Se + jie

Once the above linear system is solved, we setAz, A+ A\, s+As) as the new solution

and reduce: to look for the next solution.

However, in practical the new solution may fail to satisfg tonditionst + Az > 0,

s + As. To ensure every solution is a strictly feasible solutior,ahoose a scalar and
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set the new solution as

z(a,pu) = =+ alAzx (6.23)
Ma,p) = A+ AN (6.24)
s(a, ) = s+ als, (6.25)

wherea is chosen to ensure thata, 1) > 0 ands(«, 1) > 0. In summary, we can obtain

the following algorithm.
ALGORITHM 6.1.1 Primal-Dual Framework [54]
1. Given(llfo, )\0, SO) e Fe.

2. fork =1,... until convergence

3. solve ) o ) ) )
0 AT Axk 0
A 0 0| |AX| = 0 : (6.26)
Sk 0 Xk Ask —XkSke—i—Uk,uke

wherec* € [0, 1] andp* = (2F)Ts*/n.

4. set(zFHL MNHL kL) o (2F AF sR) 4 o (A%, ANF) AsF), whereq,, is chosen so

that (21, skH1) > 0. phtt = (sFT1) Tkt
5. end for

In Algorithm 6.1.1, we assume that we have a strictly feassiollution in the beginning.
However, in practice, this is not very common. If we have aisoh (z, A, s), wherez > 0
ands > 0, but one of

Ar=b and ATA+s=c (6.27)
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or both are not satisfied, Algorithm 6.1.1 is not suitablethis case, we want to find a new

solution satisfying

ATOAN+ AN + (s +As) = ¢
Az + Ax) = b (6.28)
(X +AX)(S+AS)e = [e

(r+Ax) >0, (s+As) > 0.

Move AT\ + s and Az to the right hand side of the equations, and omit te&YAASe, we

obtain an equivalent linear system

ATAN 4+ As = D
AAz = Tp
(6.29)
XAs+ SAx = jie — XSe

(x+Az) >0, (s+As) > 0,

whererp = ¢ — AT\ is the residual of the dual problem angd = b — Az is the residual
of the primal problem. To sum up, for the case that an feasitligtion is not available, we

have the following algorithm.
ALGORITHM 6.1.2 Primal-Dual Framework [54]
1. Given(xo, )\0, SO).

2. fork =1, ... until convergence

3. solve ) o ) ) ;
0 AT I AP D
A 0 0| [AN] = p ) (6.30)
Sk 0 XF| | Ask —XFkSke + oF ke

wheres® € [0, 1] andp* = (2%)Ts*/n.
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4. set(zFH MNHL kL) o (2F MF sR) 4 (Az®, ANF) AsF), whereq,, is chosen so

that (xk-i-l’ Sk’-‘rl) > 0. ,uk-i-l — (Sk-i-l)Txk’-‘rl'

5. end for

6.2 Application of the Greville’s method to linear pro-

gramming problems

6.2.1 When a feasible initial solution is available

In this section, we introduce how to apply our preconditisrte linear programming.
First we consider the case that we have a strictly feasili@lisolution. In every step of

Algorithm 6.1.1, we solve

A 0 0| |AN]| = 0 , (6.31)
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wherec* € [0,1] andp* = (2%)7s* /n. Since in the algorithm we ensufe®, \*, s*) is a

strictly feasible solutions—! and X ~! exist. Denote5~/2X'/2 by D.

XAs+ SAz = o"ufe — X Se (6.32)
STIXAs+ Az = ofpfS7le — ST1X Se (6.33)
AD?’As+ AAx = o*pFAS~te — AD?Se (6.34)

AD?’As = o"pFASTle — AD%Se (6.35)
AD*(=ATANY) = oFuFAS™ e — AD?Se (6.36)
AD?*ATANY = AD*Se — o*iFAD*X e (6.37)
(AD)(AD)TAN = ADD(S — o"piF X )e. (6.38)

If we can solveA\* from Equation (6.38), we can compute the other two vectors and

As* as follows,

Ast = —ATAN (6.39)

Azt = —X(SF)TIAs" — XPe + oM ut(SF) e, (6.40)

For Equation (6.38), if we define

C = (AD)T (6.41)

f = D(S—oc"uFX e, (6.42)

Equation (6.38) can be written as a normal equation form

CTCAN = OT f. (6.43)
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Note that the above normal equation is equivalent to the s&psres problem

min  |[[CAN* = f|, (6.44)

AXkER™

hence, we can apply our preconditions from Chapter 5 to tbealeast squares problem.

6.2.2 When a feasible initial solution is not available

In the Subsection 6.2.1 we introduced how to apply precanbts to the interior-point
method when a feasible initial solution is available. Hoerthere are many case that a
feasible initial solution is not available. In this cas@nfrthe discussion of Section 6.1, we

need to solve

0 AT T Az* r
A 0 0| [AN] = rh (6.45)
Sk 0 Xk Ask —Xk5k6+0'k,uk6

in every step of Algorithm 6.1.2. In the algorithm we keep and s* positive so that

D = S~1/2X1/2 is well defined.

XFAs 4+ Sk Ax = ple— XFSPe (6.46)
(SHYTXF As + Az = oFpF(SF)te — (SF)TEXFSPe (6.47)
A(D"?As + AAx = o*pFA(S*)'e — AD?S*e (6.48)

A(DM?As 41k = o*uFA(S*) e — A(DF)2S*e (6.49)
A(DM2(rh — ATAN) -k = oFpkAS™ e — A(DF)2Ske (6.50)

(ADM)(ADMTANt = ¢k 4 AD*D*(r% + S*e — o*p*(X*)71e).(6.51)
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After solve AN* from Equation (6.51), we can compute the other two vectars and A s*

as follows,

Ast = 7k — ATAN (6.52)
D

AzF = —XF(SMTIASY — XFe + oFpF(SF) e (6.53)

For Equation (6.51), if we define

C = (AD")T (6.54)

fo= (DM((S*) = o uH(X*F) e, (6.55)

Equation (6.38) can be written as a normal equation form

CTOAN =1k + T ¢, (6.56)

Hence, the above equation is not in a normal equation formausecofr%, is generally
nonzero, which means that we cannot apply our preconditsaieectly to the correspond-

ing least squares problem.

We can overcome this difficulty by reformulating the lineaogramming problem in a
special way. The following method is described in [39]. ddasa linear programming
problem in the standard form, its primal is (6.1), whetds anm x n matrix, and its

dual is (6.2). We introduce another linear programming [eakby augmenting this linear
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programming problem. We first define some new quantities.

largest absolute value of the determinant
L = Jlog +11]

of any square submatrix of A

+[log(1 + max le;)] + [log(1 + max b:|)] + [log(m +n)]  (6.57)

a = 2 (6.58)
g = 2% (6.59)
mo= m+1 (6.60)
o= 42 (6.61)
Ky = aB(n+1)—pcle (6.62)
K, = af, (6.63)

whereL is called the size of problem (6.1),.. | is defined as, for a scalar € R

[w] = min{z € Z|z > w}. (6.64)

From the definition of., it is easy to see thdt > 4. Then the augmented problem can be

stated as follows,

min cl'e + K.
s.t.  Ax+ (b— fAe)x; =b
(6.65)
(ae —c)Tox+azz =K,

x>0, x3,2>0, x>0,
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wherezx;_; andz; are scalars. The dual of the problem (6.65) is then givenlasife.

max VI + K\
st. Aly+(ae—c)\n+s =c
alg + Si1 =0 (6.66)
(b— BA) A +s: =K,

$s>0, 83120, s3>0,

where);, s-_; ands; are scalars. Define € R*, A € R™, 5§ € R, b € R™, ¢ € R" and

A € R™*" gs follows, We define

T -
- A
T = |zs | A= (6.67)
A
Ty -
- c
- b
b = : =10 (6.68)
Ky
L K,
. A 0 b—[Ae
A = (6.69)
(e — )T « 0

With these notations, we can reform the linear programmimdplem to obtain the aug-

mented problem. The primal problem (6.1) is rewritten as

st. Ai=b (6.70)
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The dual problem (6.2) is rewritten as

(6.71)

For this augmented linear programming problem, a feasiligtion always exists. Con-

sider the pointzy, Ao, 5o) which is defined as follows.

'-IZ'O = [ﬁ)ﬁa"'a/gvl]TeRﬁ

S50 = |oa,...,0,af" e R

It is easy to verify the pointi,, Ao, 3,) satisfies

N
[en)
AV
S

Vol
o
v
=

X = [0,0,...,0,—-1]" e R™

(6.72)
(6.73)

(6.74)

(6.75)
(6.76)
(6.77)

(6.78)

which implies that 7, o, 5p) is a feasible solution to the augmented linear programming

problem. Then, we can use Algorithm 6.1.1 to solve the augeaeimear programming

problem.

SinceL is uncomputable, we have to estimate the sizé atcording to the problems.

If we use iterative methods solve the least squares probiesing in each interior point
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method step, the size of thecan have big influence on the convergence of the iterative
methods we use. Consider the sizelof From the definition ofL we can see that >

3+ [log(m + n)]. If we takeL as5,

a = 2% =2%=(2')? ~ 1000? = 10° (6.79)

g = 22L ~=1000. (6.80)

« andg can be much larger when a largers taken.

6.3 Numerical Examples

Our test matrices are provided by Prof. Takashi Tsuchiyathese matrices can also
be found in [25]. All computations were run on a Dell Preams&90, where the CPU 3
GHz and the memory i GB, and the programming language and compiling environment

was GNU C/C++ 3.4.3 in Redhat Linux.

In the following tables, we use Interior Point Method to sothe augmented linear
programming problems. We use different methods to solvedhst squares problems

arising in the Interior Point Method. In the tables,

e DCGLS stands for solving the least squares problems by CGlsdiagonal scal-
ing.

e DGMRESNE stands for solving the least squares problem byguSMRES with

diagonal scaling to solve the corresponding normal egustio

e GreGMRES stands for solving the least squares problems ing GMRES with
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Greville’s method as preconditioning algorithm.

e Cholesky stands for solving the least squares problem byifay the normal equa-
tion explicitly and using the Cholesky decomposition witle approximate minimal

degree ordering [1].

In the Cholesky approach, at tih step of the interior-point method, to solpe\®

from

AD}ATANY = ADISWe — ok F ADF(X W)~ le, (6.81)
k k k

the Cholesky decomposition afD? A” has to be computed, where

A 0 b—pAe

N
I

(6.82)
(ae — )T « 0

D2 = 571X, = diag{(3\")~1, ..., (31 diag{#", ..., #'F}. To perform the Cholesky
decomposition AD?A” has to be formed explicitly. However, even thoudlis a sparse

matrix, AD? A" can be dense. Consider matrbin column form,

A=y, ag, ..., a4, (6.83)
then,
AD?AT = |4y, d, ..., 45 D3[ay, ag, . . ., dn)" (6.84)
" agal w0
ZW' (6.85)

=1 7

AD? AT is a linear combination of a sequence of rank-one matridesnd of these rank-
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one matrices is dense, i.e. if one column/ois dense, the whole matrik D2A” is dense.
When[lD,%[lT is dense, it is expensive to compute its Cholesky decomiposifo over-
come this problem, we used the Sherman-Morrison formulaabwith the dense columns

in A, details are introduced in [54]. Assume there is only onesdemlumni,;.

no~oapa(k) x ST x(K)
AP AT _ a;Q; T; ;a5 Ty
AD; A" = E "0 + SO (6.86)
i=1,i#j i J

In this case, the first term is sparse, and the second termnsedeThen, we perform

minimal degree ordering algorithm and sparse Choleskyrdposition to the first term to

obtain
N P
i=1,i#j i

whereP,, is a permutation matrix which comes from reordering ald¢pons. Then, Equation

(6.82) becomes

0
+ %)A)\(k — A(F — op(3W) ). (6.88)
J

(P.LL"PF

Cm

To obtainAA®) we first computeA\*) = (P,LLT PT)~1 A(z® — ou(S*))~1e) which can
be solved by two triangular substitutions. Whef is obtained, we can use the Sherman-
Morrison formula to computa®) easily. The Sherman-Morrison formula can be written
as follows,

G lab"’G—!

T\—1 _ ~—1 _
(@ +ab") =G = T (6.89)

whereG € R™" is nonsingular, and, b € R". Hence, according to the Sherman-Morrison
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formula
~ (k) T

~ a a X ~ ~
A& — PkLLTPk 0 )J ) A(i(k) _ U,U(S(k))_le)

J

(P, LLT PT)-1% ‘?(f’ (PkLLTPT) n ~

= | (RLLTRT) - J AE®D — opu(SM)te)
1+ aT(PkLLTPT) J)

~<
Sj

1a;afE ¢
. (P,LLT P! ( J AF)
= \® _ 55

1+ a? (P LLTPF)~1

In the above equationsP, LLT P')~'a; can be computed by two triangular substitutions.
For DCGLS, DGMRESNE and GreGMRES approaches, we set theitenation stop-
ping criterion to be,

|AT7||y < 1078)| ATb|), (6.90)
where A is the coefficient of the least squares problem, &islthe corresponding right
hand side vector, and thes the residual vector. We stop the Interior Point Method mvhe

#Msh <1076 i=1,2,...,n. (6.91)
In the followings tables, in each cell, for DCGLS and DGMRHESWe list the follow-
ing information,
e Number of outer iteration,
e Average inner iteration per outer iteration,
e Total cpu time.

For GreGMRES, we record
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Number of outer iteration,

Average inner iteration per outer iteration,

Total cpu time,

Dropping tolerance.

Switching tolerance.

For Cholesky, we record
e Number of outer iteration,
e Total cpu time.

From Equation (6.57), is difficult to compute. Hence, here we simply édb be a integer
betweenl and 10 for different problems. The parametet in the Interior Point method
Algorithm 6.1.1 is setto be.5. For the GreGMRES method, the switching tolerance is usu-
ally reduced by half after each Interior Point method stegahee when the solution tends
to the true solution, the least squares problem may become amal more ill-conditioned
and tend to be nearly rank deficient, hence, smaller swigctuilerance makes sure that no
wrong linearly dependent columns are detected. We set tk@mabiteration for DCGLS

to be50, 000, and the maximal iteration of DGMRESNE and GreGMRES(80. In the
tables “X” means the optimal value of the objective function of theeéin programming
problem is not achieved by the computed solutigri.fieans that the inner iterative meth-

ods did not converge within the maximal iteration, or a boeakn happens.
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Table 6.1: Numerical Results, augmented approach

Matrices Size L DCGLS DGMRESNE GreGMRES Cholesky

names mXxn out, in, cpu out, in, cpu out, in, cpu, ¢4 7s) out, cpu

25fva7 821x 1876 3 52, 1914, 55.92 42, 280, 50.85 51,2,79.08 (1.e-6, 1.e-5) 50, 19.44
adlittle 56x138 4 33,98,0.12 34,49,1.64 33,14,1.1(1.e-2, 1.e-6 33,0.02

afiro 27x51 3 27,27,0.01 27,27,1.14 27,4,0.88 (1.e-2,1.e-6) 27,0.00

agg 488x615 9 61, 408, 5.27X| 60, 148, 25.07X 62,19, 13.64 (1.e-6, 1.e-6) 49, 4.03X
agg2 516x 758 7 54, 226, 3.36 53,117,17.81 53, 2,13.85 (1.e-6, 1.e-6 53, 6.06
agg3 516x 758 7 L =8, 59, 218, 3.57 52,128, 20.14 55, 2,14.25 (1.e-6, 1.e-6 55,6.34
bandm 305x472 3 35, 634, 3.48 35, 206, 17.82 34,2,4.6 (1.e-6,1.e-6 34,0.71
beaconfd 173x295 4 33,73,0.36 34,58, 2.39 32,13,2.21 (1.e-6, 1.e-3 33,0.32
blend 74x114 | 2 27,210,0.21 26,74,1.51 26,3,0.98 (1.e-3,1.e-4 26, 0.03
bnl1 643x1586 4 54,1262, 25.75X| 47, 343, 129.89X 58, 6,42.87 (1.e-6, 1.e-6) 48, 2.21X
bnl2 2324x4486 | 3 66, 2493, 182.15 64, 466, 1145.98 60, 6, 1134.94 (1.e-6, 1.e-6) 60, 40.94
brandy 220303 | 3 36, 1315, 5.66 36, 174, 9.62 36,7,2.48 (1.e-6, 1.e-5 35,0.31
capri 418x643 4 47, 3669, 31.19X 41, 241, 34.26X 45,5,11.71 (1.e-6, 1.e-4 39,1.03

d6cube 415x6184 3 65, 710, 68.11X 70, 243, 85.24X 61,12, 66.61(1.e-6, 1.e-6) 61, 12.02
degen2 444x 757 4 37, 1240, 10.9X 37,241, 38.66X | 42, 146, 45.14(1.e-1.e-6, 1.e-2) 4t

degen3 1503x2604 | 3 43,5471, 243.54X| 39, 400, 399.47X 40, 246, 999.8(1.e-6, 1.e-3) 39, 222.43
fffff800 524x1028 | 6 | 61,6833,138.97X| 66,366, 160.22X 74,12,46.96 (1.e-6, 1.e-6] 74, 16.43
fitld 1050x 2075 4 47,109, 3.68 47,52, 7.58X 48, 5, 129.29(1.e-4, 1.e-6 49, 4.36
fitlp 1026x 2076 4 45, 654, 17.75X 45,137, 47.82 43,13, 138.56 (1.e-4, 1.e-6) 45, 40.6
gfrd-pnc 874x1418 7 55, 3335, 62.33X | 53,291, 168.88X| 58, 30, 125.81 (1.e-6, 1.e-6) 43,2.57
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Table 6.2: Numerical Results, augmented approach

Matrices Size | L DCGLS DGMRESNE GreGMRES | Cholesky
names mXxn out, in, cpu out, in, cpu out, in, cpu g4, Ts) out, cpu
growl5 900x1245 | 9 61, 340, 8.48 60, 202, 107.14 62, 2,118.89 (1.e-6, 1.e-6) 62,19.85
grow22 13201826 | 9 65, 754, 29.23| 65, 261, 272.76 68, 6, 425.38(1.e-6, 1.e-6) 66, 60.57
grow? 420x581 | 9 57,168, 1.9 60, 137,22.8 57,2,15.39 (1.e-6, 1.e-6) 57, 2.69
israel 174x316 7 51, 633, 3.74X 57,152, 10.95X 59, 3,3.69 (1.e-6, 1.e-6) 59, 1.27
kb2 52x77 | 5 38,212, 0.22 36, 47, 1.83X 38,1,1.35(1l.e-4,1.e-6) 38,0.02
lotfi 153x 366 5 46, 357, 1.48X 42,108, 4.82 42,25,2.87 (1.e-4,1.e-3) 41,0.16
pilotnov 1519x2990 | 5 53,1925, 85.21| 63,673, 1514.82] 62, 103, 889.93 (1.e-5, 1.e-§) 61, 50.6
qap8 912x1632 | 1 26, 1676, 19.61 25,108, 14.81 25,129, 200 (1.e-6, 1.e-1 1t

recipe 186x299 | 3 31, 349, 0.87 32,144, 5.66 27,4,1.42 (1.e-6, 1.e-6 27,0.1
sc105 105x163 | 4 35,118, 0.19 35,81, 2.53 34,2,1.34 (1.e-4,1.e-6) 34,0.05
sc205 205x317 | 4 34, 240, 0.68 34,142,6.78 31,3,1.76 (1.e-4,1.e-6) 31,0.14
sc50a 50x78 | 3 28, 55, 0.04 28, 46,1.43 28,9,1.02(1.e-1,1.e-6) 28,0.01
sc50b 50x78 3 27,49, 0.03 26,43,1.32 26,9,0.95(1.e-1,1.e-6) 26,0.01
scagr25 471x671 6 50, 938, 8.67 50, 252, 58.92 50, 3,9.46 (1.e-5, 1.e-6) 50, 1.16
scagr7 129x 185 5 40, 193, 0.42 40, 102, 3.81 40, 2,1.61 (1.e-5, 1.e-6) 40, 0.08
scfxml 330600 | 4 46, 1891, 15.34 45, 289, 42.81 42,3,5.62 (1.e-6, 1.e-6) 42,0.84
scfxm2 660x1200 | 4 46, 3882, 62.65| 46, 510, 259.88 46, 5, 33.85 (1.e-6, 1.e-6 44, 3.3
scfxm3 990x1800 | 4 | 47,6298, 155.63 44,676,678.86 46,7,108.23 (1.e-6, 1.e-6) 44,7.18
scorpion 388%x466 | 4 40, 297, 1.68X| 47, 225, 37.39X 38,62, 13.28 (1.e-6, 1.e-3 1t

scrs8 490x1275 | 2 39, 773, 8.03 39, 310, 60.72 39, 6,12.27 (1.e-6, 1.e-6| 38,0.9
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Table 6.3: Numerical Results, augmented approach
Matrices Size | L DCGLS DGMRESNE GreGMRES | Cholesky
names mXmn out, in, cpu out, in, cpu out, in, cpu fy, Ts) out, cpu
scsdl 77x760 | 2 28,49,0.21 28,44,1.62 24,5,1.03 (1.e-3, 1.e-6) 24,0.08
scsd6 147x1350 | 1 25, 81, 0.52 26,76, 2.43 24,6,1.47 (1.e-3,1.e-6) 24,0.25
scsd8 397x2750 | 2 29,172,2.64 29,153, 13.24 29,2,6.84 (1.e-6,1.e-6) 29,1.86
sctapl 300x660 | 2 40, 357, 2.19 40, 179, 15.53 36, 6,3.16 (1.e-4, 1.e-6) 36, 0.36
sctap2 10902500 | 1 35, 465, 7.29 36, 261, 97.13 33,2,72.31(1.e-6, 1.e-6) 33,3.46
sctap3 1480x3340 | 1 38, 394, 11.37 38, 235, 124.91 35,2,130.33 (1.e-5, 1.e-6) 35,6.74
sharelb 117x253 | 7 57,787, 3.34X 54,111, 5.41X 58, 2,252 (1.e-6, 1.e-6) 58, 0.16
share2b 96x162 | 3 34,625,1.13 32,91, 2.45 32,2,1.31(1.e-5, 1.e-6) 32,0.08
shell 903x2144 | 7 68, 1100, 33.39 63,242,11.45| 80,43,171.78 (1.e-6, 1.e-6) 59, 3.83
ship04l 402x2166 | 3 45,647,11.98 44,153, 17.62 42,40, 14.65 (1.e-6, 1.e-6) 31, 0.62
shipO4s 912x1506 | 5 42,414,5.37X 49,79, 7.36X 49,31, 11.45(1.e-6, 1.e-6) 46,0.74
ship08| 778x4363 | 3 47,934, 35.86X| 53,233, 88.07X| 54, 105, 155.02 (1.e-6, 1.e-§) 52, 3.37
ship08s 778x2467 | 5 42,834,18.32X| 53,113, 23.21X 51, 78, 86.58 (1.e-6, 1.e-6) 50, 2.44
ship12l 1151x5533 | 3 61,941, 60.92| 62,314,307.46X| 72,63,410.77 (1.e-6,1.e-6) 66, 8.12
shipl2s 1151x2869 | 4 | L=3, 56,697, 25.16 56, 260, 162.5 53,57, 195.65(1.e-6, 1.e-6) 55,5.05
standata 479x1394 | 4 55, 360, 5.58X 53, 191, 33.64X 50, 6, 19.64 (1.e-6, 1.e-6) 47, 1.05
standmps| 587x1394 | 4 61, 435, 8.25 64, 257, 85.29X 65, 7,43.45 (1.e-6, 1.e-6) 61, 2.03
stocforl 117x165 | 4 35,197,0.34 34,109, 3.27 34,5,1.41 (1.e-5, 1.e-6) 34,0.06
stocfor2 2157x3045 | 4 47,3249, 124.6 45, 469, 761.03| 44,53, 1122.03 (1.e-6, 1.e-8) 44, 36.22
truss 1000x 8806 | 4 50, 2390, 191.69X 43, 432, 415.38 48, 10, 179.36 (1.e-5) 49,49.18
tuff 362x659 | 3 38,791, 6.77 39, 290, 39.68 38,4,6.88 (1.e-6, 1.e-8) 37,0.89
vtp.base 281x430 | 5 48,1131, 6.1X 48, 189, 17.94X 50, 30, 6.99 (1.e-6, 1.e-8) 46, 0.48
woodlp 244 x2595 | 4 51, 198, 18.63 36, 83, 10.64X 57,1,28.15(1.e-8,1.e-10) 51,5.61
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6.4 Conclusion

From the above the numerical results, we find out:

e The Cholesky approach is the fastest method to solve tharlpregramming prob-

lems. However, for some problems, the Cholesky decompoditioke down.

e Comparing to the Cholesky approach, using iterative methodsolve the least
squares problems in the interior-point method steps isliysalmw. One reason
is that when the augmented approach is used, the last colfimip 4", which is
the coefficient matrix of the least squares problem inftieinterior-point method
step, is dense. This dense column makes the operationgimyd);, A” much more

expensive.

e Among these three iterative methods we used, CGLS with di@gealing is usually
the fastest, and GMRES solving the diagonal scaled normsdtemn approach is
usually the slowest. There are also many cases in which GMRESour Greville

preconditioner is the fasted.

e CGLS with diagonal scaling approach and GMRES solving thgalhal scaled nor-
mal equation approach sometimes can not obtain the optohalan. At this point,

GMRES with the Greville preconditioner is more reliable.

¢ Although the GMRES with the Greville preconditioner appioas the slowest in
many cases, it can obtain the optimal solution when the Gkglapproach breaks
down or could not obtain the optimal solution. The reasohés@holesky approach
becomes less stable when the Cholesky decomposition istagether with the

Sherman-Morrison. If the Sherman-Morrison is not usedn ttiee Cholesky de-
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composition is performed on a almost dense matrix, whichushhnmore expensive

than using GMRES with the Greville preconditioner.



Chapter 7

Conclusion

In this thesis, we studied preconditioning techniquesdast squares problems and es-
pecially the rank deficient problems. We focused on constr@@pproximate generalized
inverse of the coefficient matrices of the problems and usihgt we constructed to pre-
condition the Krylov subspaces methods. In our methods,ameconstruct rank deficient
preconditioners for rank deficient problems, which is a néeaito preconditioning. We
also proved the equivalence between the preconditionddearoand the original problem

which gives theoretical justification to our preconditiegimethods.

In this thesis, two different approaches are considered.

e One is based on the Minimal Residual method which was deedléqgr computing
the approximate inverse of a nonsingular matrix. We adafitesdmethod so that
we can compute the approximate generalized inverse of angalar matrix. We
also did theoretical analysis to show that the precondéisiconstructed by our al-
gorithm are suitable to be used to precondition least sgyablems. To make the

minimal residual method work with rectangular matrices,hage to use the steep-

112
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est descent direction to update the preconditioner matfixso that||/ — M, Al r
reduces. The steepest descent direction makes the mirgsidlial method more ex-
pensive. Hence, without numerical droppings the precamditg will become very
expensive in computations and storage. However, our thiearanalysis do not hold

when numerical droppings are performed.

e The other approach was based on an old algorithm: the "Ge&vMethod”. The
Greville’s method was used to compute the Moore-Penrosesewof any matrix, the
main idea is based on the rank-one update. We reformed tositim and showed
the inexplicit A” A-orthogonalization process in the algorithm and its relativith
the RIF algorithm. This approach can give rank deficient gme@ioners for rank
deficient matrices. And our theoretical results justifytttiee preconditioned prob-
lems is equivalent to the original problem and can be solyeitié GMRES method
under Assumption 5.5.1 even with numerical droppings. Qumerical examples
showed that our preconditioners may perform better thaaratkethods when the
coefficient matrix of the linear system is rank deficient dirdanditioned. We also
showed that for rank deficient matrices, detecting certaiount of rank deficiencies
can bring advantage to the convergence. However, we caonbobtthe sparsity of
the preconditioner directly. Since in the preconditionér= ZF~'VT, we can only
control the sparsity of matri¥. If we perform numerical droppings on the vectors
of V, this factorization will not hold. The computational costdlso related with
how many rank deficient columns we detect in the preconditgalgorithm, since
it takes more computations to deal with the rank deficiencythis preconditioning
algorithm we have two parameters 7,. 74 is a threshold for numerical droppings,
7, IS a threshold for detecting the linear dependence. Thecehafir, is not very

clear. In our experiments, we usually setto be10-¢. A small 7, is safer in the
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sense to keep the equivalence between the original probieinthe preconditioned

problem.

As an application from the real world, we applied our pregboders to the linear pro-
gramming problems in which sparse, ill-conditioned and stames rank deficient matrices
arise. To solve the linear programming problems, we usegmgonditioner to precon-
dition the least squares problems abstracted from theioneoint method in each step.
Numerical results showed that using our preconditionées leéast squares problems can
be solved more efficiently compared to using diagonal sc@aliRES to solve the normal
equations, but it is slower than using diagonal scaled C@Ls®lve the least squares prob-
lems for many problems. All of these three iterative methergsslower than the Cholesky
approach. Numerical results also shows that GMRES with iBepreconditioner ap-
proach is more stable compared to the rest methods. Even thbeBholesky approach
does not work, GMRES with our preconditioner approach st compute an optimal

solution.

There are still a lot of issues to consider in the future. Fathlof our preconditioning
algorithms, preconditioning time is very heavy. A prepisiag to the coefficient matrices
or a more delicate dropping strategy is necessary. For teei@&'s method approach,
detecting the linear dependencies relies on how to cho@sparameter, which is still

open. In the end, we hope our work can bring some new ideasstpréaconditioning field.
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