
Approximate Generalized Inverse Preconditioning
Methods for Least Squares Problems

Xiaoke Cui

DOCTOR OF

PHILOSOPHY

Department of Informatics

School of Multidisciplinary Sciences

The Graduate University for Advanced Studies (Sokendai)

2009

September 2009

c©2009 - Xiaoke Cui

All rights reserved.

Thesis advisor Author

Ken Hayami Xiaoke Cui

Approximate Generalized Inverse Preconditioning Methods
for Least Squares Problems

Abstract

A basic problem in science is to fit a model to observations subject to errors. It is clear that

the more observations that are available the more accurate will it be possible to calculate

the parameters in the model. This gives rise to the problem of”solving” an overdetermined

linear or nonlinear system of equations. When enough observations are not available, it

gives rise to underdetermined systems. Overdetermined systems together with underdeter-

mined systems are calledleast squares problems. It can be shown that the solution which

minimizes a weighted sum of the squares of the residual is optimal in a certain sense. These

solutions are calledleast squares solutions.

Least squares problems are usually written in the form

min
x∈Rn
‖b− Ax‖2, A ∈ R

m×n, b ∈ R
n, (0.1)

where the norm‖ · ‖2 stands for2-norm. WhenA is large and sparse, it is advantageous to

apply iterative methods to the normal equationsAT (Ax− b) = 0 or AAT y − b = 0. Since

the condition number ofAT A or AAT is the square of that ofA, whenA is ill-conditioned,

preconditioning for the iterative methods becomes necessary.

In this thesis, we consider constructing preconditioners for some Krylov subspace it-

iii

Abstract iv

erative methods to solve least squares problems more efficiently. We especially focused

on one kind of preconditioners, in which preconditioners are the approximate generalized

inverses of the coefficient matrices of the least squares problems. We proposed two differ-

ent approaches for how to construct the approximate generalized inverses of the coefficient

matrices: one is based on theMinimal Residualmethod with the steepest descend direc-

tion, and the other is based on theGreville’s Methodwhich is an old method developed

for computing the generalized inverse based on the rank-oneupdate. And for these two

preconditioners, we also discuss how to apply them to least squares problems. Both theo-

retical issues and practical implementation issues about the preconditioning are discussed

in this thesis. Our numerical tests showed that our methods performed competitively rank

deficient ill-conditioned problems. As an example of problems from the real world, we

apply our preconditioners to the linear programming problems, where many large-scale

sparse least squares problems with rank deficient coefficient matrices arise. Our numerical

tests showed that our methods showed more robustness than the Cholesky decomposition

method.

Contents

Title Page . i
Abstract . iii
Table of Contents . v
Acknowledgments . vii
Dedication . x

1 Introduction 1

2 Generalized Inverse 5

3 Methods for Solving Least Squares
Problems 11
3.1 Direct methods for solving least squares problems 11
3.2 Iterative methods for solving least squares problems 13
3.3 GMRES methods for least squares problems 17

4 Approximate Generalized Inverse
Preconditioning Methods 24
4.1 The approximate inverse preconditioning methods 24
4.2 The approximate generalized inverse preconditioning with minimizing Frobe-

nius norm approach . 28
4.2.1 Left Preconditioning . 28
4.2.2 Right Preconditioning . 33

4.3 Numerical Examples . 37
4.4 Conclusion . 42

5 Greville’s Methods for Preconditioning
Least Squares Problems 44
5.1 Greville’s method . 44
5.2 Global Algorithm for General Matrices 48
5.3 Vector-wise Algorithm for General Matrices 54
5.4 Greville Preconditioning Method for Full Column Rank Matrices 58
5.5 Two Important Issues about Preconditioning the Least Squares Problems . . 65

5.5.1 Equivalence Condition . 66

v

Contents vi

5.5.2 Breakdown Free Condition . 70
5.6 Implementation Consideration 74

5.6.1 Detect Linear Dependence . 74
5.6.2 Right-Preconditioning Case .77

5.7 Numerical Examples . 79

6 Applications to Linear Programming
Problems 86
6.1 Linear programming . 87
6.2 Application of the Greville’s method to linear programming problems . . . 95

6.2.1 When a feasible initial solution is available 95
6.2.2 When a feasible initial solution is not available 97

6.3 Numerical Examples . 102
6.4 Conclusion . 110

7 Conclusion 112

Bibliography 115

Acknowledgments

Completing this doctoral work is one of the most wonderful experiences to me. It is not

only about writing a paper and presenting it, but also about learning, discussing, coding,

and accepting suggestions to improve. While I was writing this thesis, I felt I was going

over what knowledge I have learnt, what researches I have done, the good things and bad

things happened to me in the past three years, and especiallythe people who showed up

into my life. Without them, I would not be sitting here writing my thesis.

First I would like to thank my supervisor Professor Ken Hayami, or in Japanese, Hayami

Sensei. He is the nicest advisor I could ever ask for. Since the first day I met him, I have

been learning from him. I am always excited by his good ideas and the discussions between

us. Hayami Sensei has an extremely wide range of knowledge, from theoretical fields to

practical fields. Every time I had difficulties, he always inspired me with his good ideas,

taught me the new knowledge that I need to solve my problems, and refer me to good pa-

pers and books. Hayami Sensei is good at asking questions. Healways comes up with

a lot of good questions in our seminars. Thanks to his questions, I have been stimulated

and have improved a lot. I also want to thank Hayami Sensei forhis generosity, because

throughout my three years, I was supported by the MEXT scholarship that Hayami Sensei

applied for me.

I also want to say thank you to Professor Yimin Wei. ProfessorWei is my supervisor

during my undergraduate and master course in Fudan University. He is a great advisor, a

very interesting man, and a close friend to me as well. It was Professor Wei who helped

me to make the decision to go for a doctoral degree. Without him, I would not have the

opportunity to come to Japan to continue my study.

vii

Acknowledgments viii

Our research group has always been very small. Dr. Jun-Feng Yin was a post-doc of

Professor Hayami. He really helped me a lot when the first timeI came to Japan. He

showed me around, helped me to make new friends, took me to conferences, and a lot and

a lot.... I cannot even remember how many times he helped me out. He is also a brilliant

man, open-minded, full of good ideas, and willing to share. Ialso learnt a lot of coding

skills from him. Mr. Keiichi Morikuni is another Ph. D student in our group. He just came

one year ago. He is an intelligent and hard working guy. Thanks for teaching me Japanese.

On the foreign front, I must thank Professor Michael Eiermann and Professor Miroslav

Tůma for inviting me to visit and the fascinating discussions and suggestions.

There are many others who have been helping me throughout these three years. Thank

Ms. Miyuki Kobayashi and Ms. Yasuko Umebayashi, from International Affairs and Ed-

ucation Support Team, for taking good care of we foreign students. And our group’s sec-

retary Ms. Suzuki is surely the kindest person; she did a lot of document work for me.

I would also like to thank the internship students who were inour group. Although they

came and left pretty quickly, we had a lot of fun together.

My fascination with the mathematical world is undoubtedly due to the influence of my

father, Zhenghua. He teaches mathematics himself and he is the one who encouraged me

to choose the Mathematical department when I was in the university. Thank all my family

members, my father Zhenghua, my mother Shuzhen and my sisterXiaoguang, who are

always being there for me, supporting every decision I made.Although I am far from you

all, I am missing you everyday.

Acknowledgments ix

Also my gratitude is devoted to Professor Shini’chi Satoh, Professor Takeaki Uno, Pro-

fessor Takashi Tsuchiya and Professor Masaaki Sugihara, who are my committee members

during the whole thesis evaluation process. Especially Professor Takashi Tsuchiya, he

taught me a lot and passed me his test examples.

Dedicated to my father Zhenghua,

my mother Shuzhen,

and my sister Xiaoguang.

x

Chapter 1

Introduction

This thesis focuses on solving the least squares problem,

min
x∈Rn
‖Ax− b‖2, A ∈ R

m×n, b ∈ R
m, (1.1)

where the rectangular matrixA can be full rank or rank deficient. The development of the

basic modern numerical methods for solving linear least squares problems took place in the

late sixties. The QR decomposition using Householder transformations was developed by

Golub and published in1965 [18]. The implicit QR algorithm for computing the singular

value decomposition (SVD) was developed at about the same time by Kahan, Golub, and

Wilkinson, and the final algorithm was published in1970. These matrix decompositions

have since been developed and generalized to a high level of sophistication. Great progress

has been made in the last two decades for generalized and modified least squares problems

and in direct and iterative methods for large sparse problems.

For solving least squares problemmin
x
‖Ax− b‖2 whereA is large and sparse, it-

1

Chapter 1: Introduction 2

erative methods can be applied to the normal equationAT (Ax − b) = 0. An impor-

tant class of iterative methods is the Krylov subspace methods, which in stepk seeks

an approximationxk which minimizes a quadratic error functional in the Krylov sub-

spacexk ∈ x(0) + Kk(A
T A, s(0)), s(0) = AT (b − Ax(0)). The implementation can either

be based on a conjugate gradient algorithm or a Lanczos process. To improve the con-

vergence of iterative methods they can be applied to the (right) preconditioned problem

miny ‖(AS−1)y− b‖2, whereSx = y. HereS is chosen so thatAS−1 has a more favorable

spectrum thanA. Note that ifS = R, the Cholesky factor ofAT A, thenAS−1 is orthogonal

and CGLS (CG applied to the normal equations) will converge in one iteration. OftenS is

taken to be an incomplete Cholesky factor ofAT A. i.e.,AT A = S̃T S̃ − E, whereE is a

defect matrix of small norm.

However, in general matrixA is not necessarily a full rank matrix, in which case, the

incomplete Cholesky factorization does not exist. Moreover even whenA is full rank, say

full column rank, to compute the incomplete Cholesky decomposition, we need to form

AT A explicitly. Doing this costs a lot of computations and also sometimesAT A has a very

condition number because it is known thatcond(AT A) = cond(A)2.

In order to avoid formingAT A explicitly and to deal with the general rank deficient

matrices, we focused on the Approximate Generalized Inverse Preconditioners, where the

preconditioners are the approximations to the generalizedinverse ofA. This thesis consists

of the following five parts:

• A brief introduction to the theories of generalized inverse(Chapter 2).

• Theories and methods for solving and preconditioning leastsquares problem (Chap-

ter 3).

Chapter 1: Introduction 3

• Constructing approximate generalized inverse preconditioners by a steepest descent

approach (Chapters 4).

• Another approach to construct approximate generalized inverse based on rank-one

update andAT A-orthogonalization (Chapter 5).

• Application to solving least squares problems arising in the Interior Point methods

for linear programming problems.

The first two parts give preliminary knowledge. Since we consider preconditioning for

rank deficient problems, we would like to have one chapter to give a simple description to

the generalized inverse. Chapter 2 introduces the basic facts and theories of generalized in-

verse. Chapter 3 introduces the basic direct methods and iterative methods for solving least

squares problems, and how and when preconditioning works for least squares problems.

In the last part of Chapter 3, we introduce using GMRES to solve least squares problems.

This part is greatly based on Prof. Hayami’s paper [34]. We briefly list some theories so

that we can use them in the following chapters.

Chapter 4 and Chapter 5 form the main body of the thesis. In Chapter 4, we used the

Minimal Residualmethod to compute an approximate the generalized inverse ofA. The

Minimal Residual method was developed for square matrices.We applied it to rectangu-

lar matrices for the first time by choosing the steepest descent direction as the correction

matrix, please also refer to [23]. In Chapter 5, we propose a method based on the compu-

tation of the generalized inverse of rank-one updated matrices, please also refer to [22,24].

We also show that when matrixA is nonsingular, our method can be reduces to anAT A-

orthogonalization process. For these two approaches, we present numerical experiments to

show their efficiency of accelerating the convergence of theKrylov subspace method.

Chapter 1: Introduction 4

In each step of the Interior Point Method for solving linear programming problems,

the approximate solution is improved along a certain correction direction. The correction

direction vector is obtained by solving a least squares problem. In Chapter 6, we present

the applications of our preconditioners to the linear programming problems.

Chapter 2

Generalized Inverse

In this thesis, we considered solving least squares problems of the form

min
x
‖Ax− b‖2, A ∈ R

m×n, x ∈ R
n, b ∈ R

m. (2.1)

Whenm > n andA is full column rank, the problem is called over-determined problem,

and whenm < n andA is full row rank, the problem is called under-determined problem.

In this thesis, we work with general matricesA, i.e.,m ≥ n or m < n andA could be full

column rank, full row rank, or rank deficient.

Since we work with a general matrixA in this thesis, before we address the main prob-

lems, in this chapter we summarize some facts about generalized inverses of a general

matrix. This is not only done for introducing the reader intothis subject, but also to em-

phasize common properties and differences between the regular inverse for nonsingular

matrices and the generalized inverses for general rectangular matrices. The full theories

and details for this topic can be found in the book by Campbelland Meyer [19], Ben-Israel

5

Chapter 2: Generalized Inverse 6

and Greville [5] and Wang, Wei and Qiao [50].

It is well known that every nonsingular matrixA ∈ Cn×n has a unique matrixX ∈

Cn×n satisfying

AX = I, XA = I (2.2)

whereI is the identity matrix of ordern. ThisX is called the inverse ofA, and is denoted

by X = A−1. From equation 2.2, we can deduce some more equations,

AXA = A (2.3)

XAX = X (2.4)

(AX)∗ = AX (2.5)

(XA)∗ = XA (2.6)

AX = XA (2.7)

Ak+1X = Ak for k ≥ 0. (2.8)

HereM∗ denotes the conjugate transpose of matrixM . Equations (2.3) – (2.6) are known

as the Penrose conditions.

In the general case, whereA maybe singular or rectangular, we can generalize the

definition of the inverse of a nonsingular matrix to that of a generalized inverse. Define the

generalized inverseX of A by requiringX to satisfy some equations of equations (2.3) –

(2.8). Choosing a different combination of equations from (2.3) – (2.8) leads to a different

definition of generalized inverse. The most popular generalized inverse ofA is the Moore-

Penrose inverse, which requires the generalized inverseX to satisfy equation (2.3) – (2.6).

In this thesis, we mainly treat the Moore-Penrose inverse.

Chapter 2: Generalized Inverse 7

DEFINITION 2.0.1 [14] Let A ∈ Cm×n. Then the matrixX ∈ Cn×m satisfying the

Penrose conditions (2.3) – (2.6) is called the Moore-Penrose inverse ofA (abbreviated as

the M-P inverse), and is denoted byX = A†. AndX exists and is unique.

For other definitions of generalized inverses and their applications, we refer to [50].

A nice algebraic property of the Moore-Penrose inverse is that it can be expressed

explicitly by using the Singular Value Decomposition (SVD)of A.

THEOREM 2.0.1 [29] For matrix A ∈ C
m×n with rankr, let the singular value decom-

position ofA be

A = U







Σr 0

0 0






V T , (2.9)

whereU andV are unitary matrices, andΣr is a r by r diagonal matrix whose diagonal

elements are all positive. Then the Moore-Penrose inverse of A is given by

A† = V







Σ−1
r 0

0 0






UT . (2.10)

The nonsingular system of linear equations

Ax = b (A ∈ C
n×n, b ∈ C

n) (2.11)

has a unique solution

x = A−1b. (2.12)

In the general case,

Ax = b (A ∈ C
m×n, b ∈ C

m) , (2.13)

Chapter 2: Generalized Inverse 8

whereA may be singular or rectangular. The system of equations may not have a solution

or may have many solutions. Hence, for this general case, we are interested in minimizing

the residual

min
x∈Cn
‖Ax− b‖2 . (2.14)

A vectorx∗ ∈ Cn which satisfies

‖Ax∗ − b‖2 = min
x∈Cn
‖Ax− b‖2 (2.15)

is called a least squares solution. Among all the least squares solutions, the one with the

minimum norm‖x‖2 is called minimum-norm least squares solution. The following theo-

rem shows the relation between the minimum-norm least squares solution and the Moore-

Penrose inverseA†.

THEOREM 2.0.2 Let A ∈ Cm×n and b ∈ Cm. ThenA†b is the minimum-norm least

squares solution of (2.14).

Consider another least squares problem

min
x∈Cn
‖A†Ax− A†b‖2 . (2.16)

It is obvious to see that the above least squares problem is consistent andA†b is a least

squares solution. For any solutiony of (2.14), we have

y = A†b + z, z ∈ N (A), (2.17)

Chapter 2: Generalized Inverse 9

whereN (A) stands for the null space ofA. Note that

‖A†Ay − A†b‖2 = ‖A†A(A†b)− A†b‖2 . (2.18)

Hence, every least squares solution of (2.14) is also a leastsquares solution of (2.16). For

any solutions of (2.16), we have

s = (A†A)†A†b + t, t ∈ N (A†A) (2.19)

= A†AA†b + t (2.20)

= A†b + t. (2.21)

whereN (A†A) is the null space ofA†A. Note thatA†A is a projection,t has the form

t = (I−A†A)u, whereu ∈ Rn, which implies thatAt = 0. By

‖A(A†b + t)− b‖2 = ‖AA†b− b‖2 (2.22)

= ‖(I−AA†)b‖2 (2.23)

we know that every least squares solution of problem (2.16) is also a least squares solu-

tion of problem (2.14). Moreover sinceA†b is the minimum-norm least squares solution

to (2.14), it is also the minimum-norm least squares solution to (2.16). Hence problem

(2.14) and problem (2.16) have the same solutions, which means that these two problems

are equivalent to each other, but the solution of problem (2.16) is more obvious.

However, usually we do not haveA†, and computingA† is almost as expensive as

solving the problem (2.14) itself. Instead, we should consider finding a matrixM ∈ Cn×m

Chapter 2: Generalized Inverse 10

which is close toA†, i.e., an approximation toA†, and solving the problem

min
x∈Cn
‖MAx−Mb‖2, (2.24)

in the hope of obtaining a good enough approximate solution to the original least squares

problem (2.14). Problem (2.14) and problem (2.24) are not always equivalent to each other.

The details will be introduced in chapter 3.

Chapter 3

Methods for Solving Least Squares

Problems

3.1 Direct methods for solving least squares problems

The standard direct method for solving the least squares problem

min
x∈Rn
‖Ax− b‖2 (3.1)

is to use the QR decomposition:A = QR whereQ ∈ Rm×m orthogonal matrix and

R ∈ R
m×n is an upper triangular matrix. Different methods can be usedto compute the QR

decomposition ofA, such that Householder transformation method, Givens transformation

method, and the modified Gram-Schmidt method [14]. Then, theoriginal least squares

11

Chapter 3: Methods for Solving Least Squares
Problems 12

problem can be transformed into the following form

min
x∈Rn
‖b− Ax‖2 = min

x∈Rn
‖QT b−QT Ax‖2 (3.2)

= min
x∈Rn
‖QT b− Rx‖2. (3.3)

WhenA has full column rank,R is a nonsingular matrix, hence, to solve problem (2.14),

we only need to solve a linear system

Rx = QT b (3.4)

by back substitution. WhenA is not full column rank,rank(A) = r < min{m, n}, the

upper triangular matrixR has the form

R =







R11 R12

0 0






, (3.5)

whereR11 is anr × r nonsingular upper triangular matrix. Partitioningx andQT b confor-

mally, we obtain a linear system

R11x1 + R12x2 = (QT b)1. (3.6)

SinceR11 is r × r nonsingular matrix, we can simply letx2 = 0, solve

R11x1 = (QT b)1, (3.7)

then we obtain a least squares solution







x1

0






. WhenA is large and sparse, techniques are

used to save memory and computation time [14].

Chapter 3: Methods for Solving Least Squares
Problems 13

3.2 Iterative methods for solving least squares problems

It is well known that solving a least squares problem is equivalent to solving its corre-

sponding normal equation.

THEOREM 3.2.1 [14] Denote the set of all solutions to the least squares problem

min
x∈Rn
‖Ax− b‖2, A ∈ R

m×n, m ≥ n, b ∈ R
m (3.8)

by

S = {x ∈ R
n|‖Ax− b‖2 = min}. (3.9)

Thenx ∈ S if and only if the following orthogonality condition holds:

AT (b− Ax) = 0. (3.10)

Equation(3.10) can be rewritten asAT Ax = AT b, which is called the normal equation.

Whenm < n, the minimum norm solutionx of the least squares problem is given by the

normal equation of the formAAT y = b, x = AT y.

In principle, any iterative method for symmetric positive definite or symmetric posi-

tive semi-definite linear systems can be applied to the normal equations. Among the it-

erative methods to solve least squares problems, the Conjugate Gradient Least Squares

(CGLS) [14,35] method is most commonly used.

Chapter 3: Methods for Solving Least Squares
Problems 14

ALGORITHM 3.2.1 CGLS(CGNR)

Letx(0) be an initial approximation, set

r(0) = b−Ax(0), p(0) = s(0) = AT r(0), γ0 = ‖s(0)‖22, (3.11)

for k = 0, 1, . . . whileγk > tol compute

1. q(k) = Ap(k),

2. αk = γk

‖q(k)‖2
2
,

3. x(k+1) = x(k) + αkp
(k),

4. r(k+1) = r(k) − αkq
(k),

5. s(k+1) = AT r(k+1),

6. γk+1 = ‖s(k+1)‖22,

7. βk =
γk+1

γk
,

8. p(k+1) = s(k+1) + βkp
(k).

Let rank(A) = r, andσ1 andσr be the largest and smallest singular value ofA, respec-

tively. Then the condition number with respect to2-norm ofA is defined as

κ2(A) = ‖A‖2‖A
†‖2 =

σ1

σr
, (3.12)

which implies that the condition number ofAT A is

κ2(A
T A) = (

σ1

σr
)2 = κ2(A). (3.13)

CGLS is equivalent to applying CG to the normal equation in corresponding to the least

squares problem. It is a well known fact that the convergenceof CGLS method depends

on the spectrum ofAT A. Whenκ2(A) is large,κ2(A
T A) is even larger, CGLS converges

Chapter 3: Methods for Solving Least Squares
Problems 15

slowly. Björck, Elfving, and Strakos analyzed the lack of stability of CGLS [15].

Paige and Saunders [43] developed the LSQR algorithm based on the lanczos bidiago-

nalization algorithm. LSQR is mathematically equivalent to CGLS but converges some-

what more quickly whenA is ill-conditioned. However, the achievable accuracy with

CGLS and LSQR seem to be the same.

When CGLS is used to solve the problem, andA is ill-conditioned, preconditioning

becomes necessary. The normal equation can be preconditioned symmetrically as

P−TAT AP−1y = P−TAT b, P−1y = x. (3.14)

Performing CG on equation (3.14), we obtain the following preconditioned CGLS method

(PCGLS).

ALGORITHM 3.2.2 PCGLS

Letx(0) be an initial approximation, set

r(0) = b−Ax(0), p(0) = s(0) = P−T (AT r(0)), γ0 = ‖s(0)‖22, (3.15)

for k = 0, 1, . . . whileγk > tol compute

1. t(k) = P−1p(k),

2. q(k) = At(k),

3. αk = γk

‖q(k)‖2
2
,

4. x(k+1) = x(k) + αkt
(k),

5. r(k+1) = r(k) − αkq
(k),

6. s(k+1) = P−T (AT r(k+1)),

7. γk+1 = ‖s(k+1)‖22,

Chapter 3: Methods for Solving Least Squares
Problems 16

8. βk = γk+1

γk
,

9. p(k+1) = s(k+1) + βkp
(k).

People came up with a lot of different ways to construct this preconditionerP for

CGLS. An early idea for preconditioning the conjugate gradient method can be found

in [28]. A major breakthough took place around the mid-1970s, with the introduction by

Meijerink and van der Vorst of the incomplete Cholesky-Conjugate Gradient (ICCG) algo-

rithm [38]. Incomplete factorization methods were introduced for the first time by Buleev

in the then-Soviet Union in the late 1950s, and independently by Varga (see [17,37,40,48];

see also [41]). However, Meijerink and van der Vorst deservecredit for recognizing the po-

tential of incomplete factorizations as preconditioners for the conjugate gradient method.

Since then, a number of improvements and extensions have been made, including level-of-

fills and drop tolerance-based incomplete factorizations,generalizations to block matrices,

modified and stabilized variants.

Every incomplete factorization method is based on a certainfactorization ofA or AT A

whenm ≥ n (AAT whenm ≤ n) and some techniques to control the fill-ins. For example

the incomplete Cholesky decomposition based onAT A [38], incomplete QR decomposi-

tion based onA by using incomplete modified Gram-Schmidt method [36,45,51], using in-

complete Givens orthogonalization [2,44], and Robust incomplete factorization (RIF) [13],

which computes the incomplete Cholesky decomposition ofAT A without formingAT A

explicitly.

Chapter 3: Methods for Solving Least Squares
Problems 17

3.3 GMRES methods for least squares problems

CGLS and LSQR are efficient Krylov subspace methods [27] which construct the or-

thogonal Krylov subspace basis by a short term recurrence form. However, because of the

short term recurrence, whenA is ill-conditioned, CGLS and LSQR easily lose orthogo-

nality due to rounding errors easily. Even with preconditioning, the convergence behavior

may deteriorate for highly ill-conditioned problems due torounding errors. The General-

ized Minimal Residual (GMRES) method [47] is an efficient androbust Krylov subspace

iterative method for solving systems of linear equations

Ax = b, A ∈ R
n×n, x ∈ R

n, b ∈ R
n, (3.16)

whereA is nonsingular and nonsymmetric. Let the initial solution to the linear system

(3.16) bex0, and denote the initial residualr0 = b − Ax0. In thekth iteration, GMRES

looks for the ”best” approximatexk solution in the affine subspace

x0 +Kk(A, r0), Kk = span{r0, Ar0, . . . , A
k−1r0}. (3.17)

The ”best” approximation is in the sense that we requirexk to minimize the residual norm,

‖b− Axk‖2 = min
x∈x0+Kk(A,r0)

‖b−Ax‖2. (3.18)

To find this ”best” approximate solutionxk in x0 + Kk(A, r0), GMRES performs a modi-

fied Gram-Schmidt process to construct a sequence of orthogonal basis vectorsv1, . . . , vk,

wherev1 is defined as
r0

‖r0‖2
. Hence for anyx ∈ x0 + Kk(A, r0), x can be written in the

Chapter 3: Methods for Solving Least Squares
Problems 18

form

x = x0 + [v1, . . . , vk] y, y ∈ R
k. (3.19)

Note

‖r‖2 = ‖b− Ax‖2 (3.20)

= ‖b− A(x0 + [v1, . . . , vk] y)‖2 (3.21)

= ‖b− Ax0 −A [v1, . . . , vk] y‖2 (3.22)

= ‖r0 −A [v1, . . . , vk] y‖2. (3.23)

From the Modified Gram-Schmidt process, we obtain the Arnoldi decomposition

A [v1, . . . , vk] = [v1, . . . , vk]Hk+1,k, (3.24)

whereHk+1,k is a product of the Modified Gram-Schmidt process, and is a(k + 1) × k

upper Hessenberg matrix

Hk+1,k =





























h1,1 h1,2 · · · h1,k

h2,1
.

...

. hk−1,k

. . . hk,k

0 · · · · · · hk+1,k





























=







H̄k,k

[0, · · · , 0, hk+1,k]






. (3.25)

Chapter 3: Methods for Solving Least Squares
Problems 19

DenoteV = [v1, . . . , vk], so thatV is a n × k orthogonal matrix. So that the Equation

(3.23) can be rewritten as

‖r‖2 = ‖r0 −A [v1, . . . , vk] y‖2 (3.26)

= ‖r0 − V Hk+1,ky‖2 (3.27)

= ‖V T r0 −Hk+1,ky‖2. (3.28)

Remember that the first column ofV is v1 =
r0

‖r0‖2
. Hence, it is orthogonal tov2, . . . , vk.

Denote[1, 0, . . . , 0]T of order k + 1 as e1, equation (3.28) can be transformed into the

following form,

‖r‖2 = ‖‖r0‖2e1 −Hk+1,ky‖2 . (3.29)

Using the Givens rotations to zero out the elements in the lower sub-diagonal ofHk+1,k,

we obtain a matrix whose firstk rows is ak by k upper triangular matrixRk, and the last

row is0. Denote the product of all the Givens rotations asG. Then we have

‖r‖2 =

∥

∥

∥

∥

∥

∥

∥

‖r0‖2Ge1 −







Rk

0






y

∥

∥

∥

∥

∥

∥

∥

2

(3.30)

=

∥

∥

∥

∥

∥

∥

∥







g − Rky

0







∥

∥

∥

∥

∥

∥

∥

2

, (3.31)

whereg is the vector whose elements are the firstk elements of‖r0‖2Ge1. WhenA is a

nonsingular matrix,R is nonsingular. Solving equation

Rky = g, (3.32)

Chapter 3: Methods for Solving Least Squares
Problems 20

we obtainy, and we can compute thek-approximation solutionxk.

However, the Krylov Subspace

Kk(A, r0) = span{r0, Ar0, . . . , A
k−1r0} (3.33)

is only well defined whenA is a square matrix. Hence GMRES cannot be applied to the

least squares problems directly. To use GMRES to solve leastsquares problems, we need

to find a preconditioner matrixP ∈ Rn×m, so thatPA or AP is a square matrix, and then

to solve the problem

min
x
‖PAx− Pb‖2 (3.34)

or

min
y
‖APy − b‖2, (3.35)

in the hope that we can obtain the solution to the original least squares problem (2.14). This

idea was introduced in [49], and fully discussed in [34]. Since the original problem (2.14)

may not be equivalent to the preconditioned problem (3.34) or (3.35), conditions must be

imposed onP so that we can ensure that the solution we compute from (3.34)or (3.35) is

also the solution to the original problem. In the following we will summarize some theo-

retical results. For the details we refer to [34].

First we consider preconditioning the least squares problem (2.14) from the right. In

this case, we want to solve the problem (3.35).

THEOREM 3.3.1 [34] minx ‖b − Ax‖2 = minz ‖b − APx‖2 holds for allb ∈ Rn if and

only ifR(A) = R(AP).

Chapter 3: Methods for Solving Least Squares
Problems 21

Hence, if the condition in the above theorem is satisfied, we can apply the GMRES method

on AP , which is a square matrix. WhenAP is rank deficient, GMRES may break down

before it finds a solution. Hence, we also need the following theorem to ensure that after

preconditioning, the GMRES can find a solution to the problem(3.35) before break down

happens. We first state a result by Brown and Walker [16].

THEOREM 3.3.2 [16] Let A ∈ Rn×n, the GMRES method can give a solution to

min
x∈Rn
‖b− Ax‖2 without break down for arbitraryb ∈ Rn and x0 ∈ Rn if and only if

R(A) = R(AT).

Based on this Brown and Walker ’s theorem, to make sure that GMRES does not break

down before finding a solution, we needR(AP) = R(P TAT). According to [34], we have

the following theorem.

THEOREM 3.3.3 [34]

• If R(AT) = R(P), thenR(A) = R(AP).

• If R(AT) = R(P), thenR(AP) = R(P T AT)⇐⇒R(A) = R(P T).

To sum up,

THEOREM 3.3.4 [34] If R(AT) = R(P) holds, then the GMRES method determines a

least squares solution ofmin
x∈Rn
‖b− Ax‖2 for all b ∈ Rm andx0 ∈ Rn without breakdown

if and only ifR(A) = R(P T).

For preconditioning problem (2.14) from the left, we have analogical results. We sum-

marize the results from [34] in the following.

THEOREM 3.3.5

‖b− Ax∗‖2 = min
x∈Rn
‖b−Ax‖2 (3.36)

Chapter 3: Methods for Solving Least Squares
Problems 22

and

‖Pb− PAx∗‖2 = min
x∈Rn
‖Pb− PAx‖2 (3.37)

are equivalent for allb ∈ R
m, if and only ifR(A) = R(P T PA).

THEOREM 3.3.6 [34]

• If R(A) = R(P T), thenR(A) = R(P T PA).

• For all b ∈ Rm, PAx = Pb has a solution, which attainsmin
x∈Rn
‖b− Ax‖2 if and only

if R(A) = R(P).

• If R(A) = R(P T), thenR(PA) = R(AT P T)⇐⇒R(AT) = R(P).

To sum up, the following theorem gives the conditions to guarantee that the original

least squares problem is equivalent to the right-preconditioned problem, and that GMRES

method can determine a solution to the original problem before breakdown happens.

THEOREM 3.3.7 [34] If R(A) = R(P T) holds, the GMRES method determines a least

squares solution ofmin
x∈Rn
‖b−Ax‖2 for all b ∈ Rm and all x0 ∈ Rn without breakdown if

and only ifR(AT) = R(P).

Hence, no matter wether we precondition the original least squares problem (2.14) from

the left or from the right,

R(A) = R(P T), R(AT) = R(P) (3.38)

is a sufficient condition that the preconditioned least squares problem is equivalent to the

original least squares problem and GMRES can solve the preconditioned problem and de-

termine a least squares solution without breakdown. The preconditionerP for GMRES

should be carefully chosen, because of the two image space conditions (3.38). Unlike the

Chapter 3: Methods for Solving Least Squares
Problems 23

preconditioners for CGLS, which is essentially preconditioning the normal equations of the

least squares problem from the both sides, many preconditioners designed for CGLS can-

not be applied to the GMRES method. The most straightforwardchoice for the GMRES

method is to letP = αAT , whereα is a nonzero scalar. The conditionsR(A) = R(P T)

andR(AT) = R(P) are obviously satisfied. Whenα = 1, using this preconditioner is

equivalent to solving the normal equations of the original least squares problem. For a full

rank matrixA (full column rank or full row rank), a generalization toP = αAT is to let

P = CAT for full column rank matrixA andP = ACT for full row rank matrixA, where

C is a nonsingular matrix with appropriate size [34].

Chapter 4

Approximate Generalized Inverse

Preconditioning Methods

4.1 The approximate inverse preconditioning methods

In Chapter 3, we briefly introduced the incomplete factorization preconditioning meth-

ods. Notwithstanding their popularity, incomplete factorization preconditioning methods

have their own limitations: potential instabilities, difficulty of parallelization. These two

limitations motivated the development of other preconditioning methods. During the past

two decades, a class of algebraic preconditioning techniques calledsparse approximate in-

verses (SAINV)received considerable interest.

The incomplete factorization preconditioning methods, whether it is the incomplete

Cholesky decomposition or the incomplete QR decomposition, all focus on constructing

an approximation to the coefficient matrixA itself, or an incomplete factorization ofA

24

Chapter 4: Approximate Generalized Inverse
Preconditioning Methods 25

itself. In contrast, the SAINV approach focuses on constructing an approximation to the

inverse ofA, or an incomplete factorization of the inverse ofA.

Sparse Approximate Inverse preconditioners were first introduced in the early1970s

by Benson [6, 7]. The methods were originally developed for solving large sparse linear

systems of the form,

Ax = b, (4.1)

whereA ∈ Rn×n is a nonsingular matrix andb ∈ Rn is a right-hand-side vector. As is well

known, the rate of convergence of iterative methods for solving (4.1) is strongly influenced

by the spectral properties ofA. It is therefore natural to transform the original system

into an equivalent system with more favorable spectral properties by using its approximate

inverse. There are different approaches to construct the approximate inverse ofA [8, 46].

One popular way to accomplish this construction is to find a matrix M which minimizes

the following Frobenius norm

min
M∈S
‖I−MA‖F or min

M∈S
‖I−AM‖F (4.2)

over all n × n matrices with a certain sparsity patternS, whereI is then × n identity

matrix. Hence,MA andAM are approximations to an identity matrix, which implies that

M is an approximation to the inverse ofA. This idea of constructingM by minimizing the

Frobenius norm‖I−AM‖F was first proposed by Benson in his master thesis [6]. See also

Benson and Frederickson [7].

However, it is very difficult to choose a suitable sparsity pattern forM . Hence, several

authors developed adaptive methods which start from a simple initial nonzero pattern and

Chapter 4: Approximate Generalized Inverse
Preconditioning Methods 26

gradually refine it until‖I −MA‖F < ǫ is achieved, whereǫ is a threshold [11,21,30,33].

The most successful of these methods is the one proposed by Grote and Huckle [33], which

is called SPAI. Unfortunately, the setup time for adaptive SPAI is often high [3,4,11]. Thus,

Chow and Saad developed theMinimal Residual (MR)[20] method so that no nonzero

pattern needs to be prescribed in advance. For the left preconditioning case, the algorithm

can be written in the following form.

ALGORITHM 4.1.1 MR Algorithm [46]

1. SetM0 = α0A
T , α0 =

‖A‖2
F

‖AT A‖2
F

2. Fork = 1, 2, . . . , until convergence, Do

3. ComputeRk−1 = I −Mk−1A, andGk−1

4. Computeαk = trace(RT
k−1Gk−1A)/‖Gk−1A‖2F

5. ComputeMk := Mk−1 + αkGk−1

6. Apply numerical droppings toMk

7. End Do

In the above algorithm,α0 is chosen to minimize‖I − αATA‖F , andαk, k ≥ 1 are

chosen to minimize

‖I − (Mk−1 + αGk−1)A‖F . (4.3)

One choice forGk is the residual matrixRk = I −MkA, and another popular choice is

Gk = (I −MkA)AT , which is the direction of steepest descent.

There is another way to minimize (4.2). Instead of minimizing globally as a function

Chapter 4: Approximate Generalized Inverse
Preconditioning Methods 27

of matrixM , it can be minimized column by column (or row by row), as follows

min ‖I−MA‖F min ‖I− AM‖F

m m

min ‖ei −miA‖2, i = 1, . . . , n min ‖ei − Ami‖2, i = 1, . . . , m,

whereei andmi are rows of the identity matrixI andM , ei andmi are columns of the iden-

tity matrix I andM , respectively. The advantage of performing the minimization column

by column or row by row is that it can be easily parallelized. For the left preconditioning,

the row-oriented algorithm [46] is as followings.

ALGORITHM 4.1.2

1. SetM0 = α0A
T , α0 =

‖A‖2
F

‖AT A‖2
F

2. For j = 1, . . . , n Do

3. Definemj = ejM

4. Fork = 1, . . . , nk Do

5. rj = ej −mjA

6. αj =
<rjA,rj>

‖rjA‖2
2

7. mj = mj + αjrj

8. Apply numerical dropping tomj

9. End Do

10. End Do

Chapter 4: Approximate Generalized Inverse
Preconditioning Methods 28

4.2 The approximate generalized inverse precondition-

ing with minimizing Frobenius norm approach

In this thesis, we consider applying Saad’s MR algorithm to the least squares problems

min
x∈Rn
‖b− Ax‖2 (4.4)

whereA ∈ Rm×n, rank(A) = r ≤ min{m, n}, b ∈ Rm, which to the authors’ knowledge,

is new. Thus, we aim to construct a preconditionerM ∈ Rn×m which minimizes

‖I −MA‖F or ‖I − AM‖F , (4.5)

whereI is ann × n or m × m identity matrix, respectively. Since now matricesA and

Mk are rectangular, we cannot choose the correction matrixGk asRk = I −MkA. Hence,

we letGk = (I −MkA)AT . We will also give mathematical justifications for applyingthe

method to least-squares problems.

4.2.1 Left Preconditioning

Consider solving the least squares problem (4.4) by transforming it into a left precon-

ditioned form,

min
x∈Rn
‖Mb−MAx‖2, (4.6)

whereA ∈ Rm×n, M ∈ Rn×m, andb is a right-hand-side vectorb ∈ Rm.

For preconditioning, one important issue is whether the solution of the preconditioned

Chapter 4: Approximate Generalized Inverse
Preconditioning Methods 29

problem is the solution of the original problem. For square nonsingular linear systems, the

condition for this equivalence is that the preconditionerM should be nonsingular. Since

we are dealing with rectangular problems, we need some otherconditions to ensure that the

preconditioned problem (4.6) is equivalent to the originalleast squares problem (4.4). By

Theorem 3.3.5 we know that in order that the preconditioned problem (4.6) is equivalent

to the original problem (4.4), the matrixM of Algorithm 4.1.1 should satisfy the condition

R(A) = R(MT MA).

In order to analyze this condition, we rewrite Algorithm 4.1.1 for left preconditioning

on the rectangular matrixA as follows.

ALGORITHM 4.2.1

1. SetM0 = α0A
T , α0 =

‖A‖2
F

‖AT A‖2
F

2. Fork = 1, 2, . . . , until maximum step is reached, Do

3. ComputeRk−1 = I −Mk−1A

4. ComputeGk−1 = Rk−1A
T

5. Computeαk = ‖Gk−1‖2F /‖Gk−1A‖2F

6. ComputeMk := Mk−1 + αkGk−1

7. Apply numerical dropping toMk

8. End Do

In the above Algorithm 4.2.1,M0 = α0A
T , whereα0 minimizes‖I − αAT A‖F over

all real scalarα. Hence, we have

M1 = M0 + α1G0 (4.7)

= M0 + α1(I −M0A)AT (4.8)

= (α0 + α1 − α0α1A
T A)AT (4.9)

= p1(A
T A)AT , (4.10)

Chapter 4: Approximate Generalized Inverse
Preconditioning Methods 30

wherepk(·) is a polynomial of degreek. Similarly, if we assumeMk−1 = pk−1(A
T A)AT ,

then forMk, we have

Mk = Mk−1 + αkGk−1 (4.11)

= Mk−1 + αk(I −Mk−1A)AT (4.12)

= Mk−1(I − αkAAT) + αkA
T (4.13)

= (pk−1(A
T A)(I − αkA

T A) + αk)A
T (4.14)

≡ pk(A
T A)AT . (4.15)

Combining all the above argument, we have the following.

THEOREM 4.2.1 If no numerical droppings are performed,Mk in Algorithm 4.2.1 can be

expressed asMk = pk(A
T A)AT , wherepk(·) is a polynomial of degreek, p0 is the scalar

α0 defined in Algorithm 4.2.1.

By expressingMk in the formMk = pk(A
T A)AT , we can easily deduce the condition

for the equivalence between the preconditioned problem (4.6) and the original problem

(4.4) as follows.

THEOREM 4.2.2 If no numerical droppings are performed, the preconditioned problem

(4.6) is equivalent to the original problem (4.4) if and onlyif pk(σ
2
i) 6= 0 for all singular

valuesσi > 0 of A.

PROOF. By Theorem 3.3.5, we only need to proveR(A) = R(MT
k MkA). Since

R(MT
k MkA) = R(Apk(A

T A)pk(A
T A)AT)

⊆ R(A),

Chapter 4: Approximate Generalized Inverse
Preconditioning Methods 31

R(A) = R(MT
k MkA) is equivalent to

rank(A) = rank(MT
k MkA). (4.16)

Assume that the SVD ofA is A = UΣV T , whereU is anm ×m orthogonal matrix,V is

ann× n orthogonal matrix, andΣ = diag{σ1, . . . , σr, 0, . . . , 0}m×n, σi > 0, i = 1, . . . , r.

Then,

MT
k MkA = Apk(A

T A)pk(A
T A)AT A

= UΣp2
k(Σ

T Σ)ΣT ΣV T

= Udiag{σ3
1p

2
k(σ

2
1), . . . , σ

3
rp

2
k(σ

2
r), 0, . . . , 0}m×nV

T .

Hence, (4.16) is equivalent topk(σ
2
i) 6= 0 for σi > 0, i = 1, . . . , r. 2

It is difficult to prove thatpk(σ
2
i) 6= 0 for σ > 0, i = 1, . . . , r. However, we can assume

that it holds generically, i.e., the probability ofpk(σ
2
i) = 0 for any1 ≤ i ≤ r is zero. Also

in our numerical experiments, we never observedpk(σ
2
i) = 0 to happen.

Besides the above equivalence theorem, we are also concerned whether any breakdown

may occur when we solve the preconditioned problem (4.6) using Krylov subspace meth-

ods. Using Brown and Walker’s theorem and Theorem 3.3.2, we have the following.

THEOREM 4.2.3 For Mk in Algorithm 4.2.1,MkA is symmetric, so that the GMRES

method determines a least-squares solution of the preconditioned problemmin
x∈Rn

‖Mkb−MkAx‖2

without breakdown for arbitraryb ∈ Rm and initial guessx0 ∈ Rn.

PROOF. The proof follows directly from Theorem 4.2.1 and Lemma 3.3.2. Since

Chapter 4: Approximate Generalized Inverse
Preconditioning Methods 32

Mk = pk(A
T A)AT , MkA is symmetric, which impliesN (MkA) = N ((MkA)T). 2

From Theorem 4.2.2 and Theorem 4.2.6, the GMRES method can beused to solve the

preconditioned least squares problem (4.6) with the preconditioner Mk from Algorithm

4.2.1, to obtain a least squares solution to the original least squares problem (4.4) with-

out breakdown. Moreover, sinceMkA is symmetric, the MINRES method [42], which is

equivalent to the GMRES method for symmetric matrices and uses short recurrences, can

be used instead to save computation time and memory.

REMARK 1 In Theorem 4.2.1 we assume that there is no numerical droppings performed

so that we have Theorem 4.2.2 and Theorem 4.2.6. When the numerical dropping strategy

is used,Mk cannot be written in the polynomial formpk(A
T A)AT as we show in the fol-

lowing.

In Algorithm 4.2.1,M0 = α0A
T , whereα0 minimizes‖I − αAT A‖F over all real

scalarsα. WhenA is sparse, we do not need to do numerical droppings forM0. Denote

the dropped part in the process of computingMi asEi, Hence, we have

M1 = M0 + α1(I −M0A)AT − E1

= p1(A
T A)AT −E1

M2 = M1 + α2(I −M1A)AT − E2

= p1(A
T A)AT −E1 + α2(I − p1(A

T A)AT A− E1A)AT − E2

= p1(A
T A)AT + α2(I − p1(A

T A)AT A)AT − E1 − α2E1AAT −E2

= p2(A
T A)AT −E1 − E2 − α2E1AAT

...

Chapter 4: Approximate Generalized Inverse
Preconditioning Methods 33

wherepk(·) is a polynomial of degreek.

According to the above discussion, we cannot ensure the equivalence and the break-

down free theorems when numerical droppings are used. However, in our numerical exper-

iments, when the dropping threshold is not too large, we did not encounter breakdown of

GMRES.

The row-oriented Algorithm 4.1.2 can also be modified to be applied to rectangular

matrices.

ALGORITHM 4.2.2

1. SetM0 = α0A
T , α0 =

‖A‖2
F

‖AT A‖2
F

2. For j = 1, . . . , n Do

3. Definemj = ejM

4. For i = 1, . . . , ni Do

5. rj = ej −mjA

6. gj = rjA
T

7. αj =
‖gj‖

2
2

‖rjAT A‖2
2

8. mj = mj + αjgj

9. Apply numerical dropping tomj

10. End Do

11. End Do

However, it is difficult to show equivalence theorems for this row-oriented method.

4.2.2 Right Preconditioning

So far we have discussed left preconditioning. For over-determined problems, i.e.A ∈

Rm×n, m > n, left preconditioning is more favorable, since the size of the preconditioned

Chapter 4: Approximate Generalized Inverse
Preconditioning Methods 34

matrix MkA is n × n. However, if we are considering an under-determined problem, i.e.

A ∈ Rm×n, m < n, right preconditioning is more suitable. Results analogous to the left

preconditioning hold for the right preconditioning case.

When we precondition the original least squares problem (4.4) from the right-hand-side,

we have,

min
y∈Rm

‖b− AMy‖2. (4.17)

We rewrite Algorithm 4.2.1 for right preconditioning as follows.

ALGORITHM 4.2.3

1. SetM0 = α0A
T , α0 =

‖A‖2
F

‖AAT ‖2
F

2. Fork = 1, 2, . . . , until convergence, Do

3. ComputeRk−1 = I − AMk−1

4. ComputeGk−1 = AT Rk−1

5. Computeαk = ‖Gk−1‖2F /‖AGk−1‖2F

6. ComputeMk := Mk−1 + αkGk−1

7. Apply numerical dropping toMk

8. End Do

Similar to the left preconditioning case,Mk from Algorithm 4.2.3 also has a polynomial

form.

THEOREM 4.2.4 Mk in Algorithm 4.2.3 can be expressed asMk = AT pk(AAT), where

pk(·) is a polynomial of degreek, p0 is a scalarα0 defined in Algorithm 4.2.3.

Chapter 4: Approximate Generalized Inverse
Preconditioning Methods 35

PROOF. According to Algorithm 4.2.3,

M0 = α0A
T

≡ AT p0(AAT)

M1 = M0 + α1G0

= α0A
T + α1A

T (I − α0AAT)

= AT (α0 + α1 − α0α1AAT)

≡ AT p1(A
T A).

Thus assumeMk−1 can be expressed asMk−1 = AT pk−1(AAT). Then,

Mk = Mk−1 + αkGk−1

= AT pk−1(AAT) + αkA
T (I − AAT pk−1(AAT))

= AT ((I − αkAAT)pk−1(AAT) + αk)

≡ AT pk(AAT). 2

Combining this Theorem 4.2.4 and Theorem 3.3.1, we get the following equivalence

theorem for right preconditioning.

THEOREM 4.2.5 The preconditioned problem (4.17) is equivalent to the original problem

(4.4) if and only ifpk(σ
2
i) 6= 0 for all singular valuesσi > 0 of A.

Chapter 4: Approximate Generalized Inverse
Preconditioning Methods 36

PROOF. By Lemma 3.3.1, we only need to proveR(A) = R(AMk). Since

R(AMk) = R(AAT pk(AAT))

⊆ R(A),

R(A) = R(AMk) is equivalent to

rank(A) = rank(AMk). (4.18)

Let the SVD ofA beA = UΣV T , whereU is anm×m orthogonal matrix,V is ann× n

orthogonal matrix, andΣ = diag{σ1, . . . , σr, 0, . . . , 0}m×n, σi > 0, i = 1, . . . , r. Then,

AMk = AAT pk(AAT)

= UΣΣT pk(ΣΣT)UT

= Udiag{σ2
1pk(σ

2
1), . . . , σ

2
rpk(σ

2
r), 0, . . . , 0}m×mUT .

Now, it is easy to see that the equation (4.18) holds if and only if pk(σ
2
i) 6= 0 for σi > 0, i =

1, . . . , r. 2

Again, we may expect thatpk(σ
2
i) 6= 0 for σi > 0, i = 1, . . . , r holds generically.

Combining Theorem 3.3.2 and Theorem 4.2.4, we also obtain a breakdown free theo-

rem for the right preconditioning case.

THEOREM 4.2.6 For Mk in Algorithm 4.2.3,AMk is symmetric, so that the GMRES

method determines a least squares solution of the preconditioned problemmin
x∈Rm

‖b− AMkx‖2

Chapter 4: Approximate Generalized Inverse
Preconditioning Methods 37

without breakdown for arbitraryb ∈ Rm and initial guessx0 ∈ Rn.

PROOF. The proof follows directly from Theorem 4.2.4 and Lemma 3.3.2. Since

Mk = AT pk(AAT), AMk is symmetric, which impliesN (AMk) = N ((AMk)
T). 2

4.3 Numerical Examples

In this section, we show some examples to test our algorithm.We compare our precon-

ditioning method with well known methods, i.e. CGLS and the diagonally scaled CGLS

method [14]. Table4.1 provides some basic information about the test matrices. Inthe

table,m is the number of the rows,n is the number of columns,nnz is the total number

of nonzeros,density is the density of the nonzeros in the matrices,cond is the condition

number of the matrices. The first matrix illc1850 was taken from the Matrix Market [26],

and the matrix sprandn8L and sprand8S are random matrices generated by the MATLAB

command: sprandn.

Table 4.1: Test Matrices
Origin m n nnz density cond

illc1850 Matrix Market 1850 712 8636 0.007 103

sprandn8L random Matrix 10000 1000 487816 0.0488 108

sprandn8S random Matrix 2000 500 48788 0.0488 108

All computations were run on an IBM T60 laptop computer, where the CPU is2.0 GHz

and the memory is1 GB, and the programming language MATLAB in Windowxp.

For the first matrix, we use a random right hand side vector, which is generated by

MATLAB , and the problem is inconsistent. The initial guess was set to x0 = 0. The conver-

Chapter 4: Approximate Generalized Inverse
Preconditioning Methods 38

gence criterion we used for this problem is

‖AT (b− Axk)‖2 < 10−8‖AT b‖2.

The time to compute‖AT (b − Axk)‖2 was neglected in all the iteration times. The nu-

merical results are given in Table2. In Table2, no numerical dropping was performed, i.e.

no nonzero elements were neglected inMk. Hence,MkA is symmetric, and we can use

the MINRES method instead of the GMRES method to solve the preconditioned problems

(4.6).

Table 4.2: Results for illc1850
Method k ITS Pre. T Its. T Tot. T

0 700 1.6e-2 4.25 4.27
Global Pre(k) 1 661 9.40e-2 4.59 4.69
+ GMRES 2 573 2.81e-1 3.86 4.14

3 516 6.10e-1 3.50 4.11
4 476 8.75e-1 3.04 3.92
5 445 1.14 2.82 3.96

10 354 2.44 1.94 4.38
0 1904 1.6e-2 1.84e-1 2.00e-1

Global Pre(k) 1 1317 9.40e-2 9.40e-2 ∗1.88e-1
+ MINRES 2 1066 2.81e-1 6.24e-2 3.43e-1

3 802 6.10e-1 3.42e-2 6.44e-1
4 796 8.75e-1 3.76e-2 9.13e-1
5 663 1.14 3.12e-2 1.17
1 658 7.5e-1 4.54 5.29

Row-oriented(k) 2 553 1.35 3.65 5.00
+ GMRES 3 485 2.03 3.15 5.17

4 449 2.21 2.78 4.99
5 418 2.29 2.44 4.73

10 333 2.72 1.75 4.48
CGLS 2083 0.00 3.26e-1 3.26e-1
Diag-CGLS 2081 5.31e-3 3.66e-1 3.72e-1

In Table4.2, we choose differentk in Algorithm 4.2.1 to precondition GMRES and

MINRES. In the table, ‘ITS’ is the number of iterations for the algorithm to reach conver-

Chapter 4: Approximate Generalized Inverse
Preconditioning Methods 39

gence, ‘Pre.T’ is the preconditioning time, ‘Its.T’ is the iteration time, and ‘Tol.T’ is the to-

tal time, in seconds, respectively. The asterisk∗ indicates the shortest total time in the table.

According to the table, we observe that ask increases, the number of iterations decrease

significantly for both MINRES and GMRES. All the preconditionersMk can achieve better

iteration numbers than CGLS and diagonal scaled CGLS. The MINRES preconditioned by

Algorithm 4.2.1 withk = 1 was the fastest in computation time. Comparing MINRES and

GMRES, the GMRES required less number of iterations, but theiteration time was longer

than MINRES. The reason is that GMRES is more robust against rounding error, but at

the cost of the more expensive Gram-Schmidt process. Comparing the global precondi-

tioner and the row-oriented preconditioner, the row-oriented preconditioner required less

iterations. However, it requires more preconditioning time than global preconditioners do.

Whenk = 0, the global preconditioner and row-oriented preconditioner give the sameM0,

thus we did not list the result ofk = 0 for row-oriented preconditioner.

In Table3 , we gave results for an over-determined problem sprandn8L, which is larger,

much more ill-conditioned and denser. We choseb asA[1, . . . , 1]T as the right hand side

vector, so that the problem is consistent. The convergence criterion was chosen as

‖b− Axk‖2 < 10−6‖b‖2.

Since this problem is larger than the first problem, the numerical dropping strategy

was used, which implies thatMkA is not symmetric and the MINRES method cannot be

employed. For the global preconditioner we dropped the(i, j) element inG = (I−MA)AT

Chapter 4: Approximate Generalized Inverse
Preconditioning Methods 40

when

|G(i, j)| < τglobal‖G‖1

holds. For the row-oriented preconditioner, we dropped thei th element ingj = (ej −

mjA)AT when

|gj(i)| < τrow−oriented‖gj‖2

holds. The notations are the same as the ones used in Algorithm 4.2.2 The numerical

results are given in Table4.3. Compared to the global preconditioner, the row-oriented

preconditioner usually gives a denserMk. Thus, the preconditioning time is much longer

than that of the global preconditioner. In the table, we setτglobal to 10−5, andτrow−oriented

to 10−4, since they are nearly optimal and giveMk with approximately the same density.

Table 4.3: Results for sprandn8L
Method k ITS Pre. T Its. T Tot. T

0 840 4.80e-1 1.17e+1 ∗1.22e+1
Global Pre(k) 1 847 7.18 1.19e+1 1.91e+1
+ GMRES 2 857 1.53e+1 1.23e+1 2.75e+1
τglobal = 10−5 3 865 2.36e+1 1.25e+1 3.61e+1
Row-oriented(k) 1 890 2.83e+1 1.34e+1 4.17e+1
+ GMRES 2 882 4.09e+1 1.42e+1 5.51e+1
τrow−oriented = 10−4 3 876 4.85e+1 1.44e+1 6.28e+1
CGLS 50000+ 0.00 2.54e+2 2.54e+2
Diag-CGLS 21548 1.60e-2 1.10e+2 1.10e+2

Table4.3 shows that increasingk does not necessarily result in improved convergence

for the global method with droppings. On the other hand, for the row-oriented precondi-

tioner the convergence improves ask is increased. However, the numbers of iterations

are more than the global preconditioner. For this extremelyill-conditioned matrixA,

Chapter 4: Approximate Generalized Inverse
Preconditioning Methods 41

the convergence criterion is stricter than‖AT (b − Axk)‖2 < 10−8‖AT b‖2. The criterion

‖b− Axk‖2 < 10−6‖b‖2 is approximately equivalent to‖AT (b− Axk)‖2 < 10−12‖AT b‖2,

and the convergence behavior becomes somewhat irregular when a very accurate solution

is required.

From Table4.2 to Table4.3, we observe that the proposed preconditioning is time-

consuming compared to the iteration time especially for largek. Improvement in the itera-

tion time cannot compensate the expense for preconditioning. However, when dealing with

multi-right-hand-side problems, the CPU time spent on preconditioning pays off. In Table

4, we solved a multiple right-hand-side problem. The coefficient matrixA is the matrix

sprand8S of Table1. The right-hand-side vectors were given byA times a series of random

vectors which were also generated by MATLAB .

Table 4.4: Results for multiple right-hand-side problem, (sprandn8S)
num of subproblems k=0 k=1 k=2 k=6 k=7 diag-CGLS

1 1.453 2.798 3.734 6.704 7.357 *7.190e-1

25 4.014e+1 2.946e+1 2.725e+1 2.312e+1 2.174e+1 *1.998e+1

50 7.969e+1 5.670e+1 5.232e+1 4.057e+1 *3.720e+1 3.981e+1

75 1.189e+2 8.448e+1 7.803e+1 5.802e+1 *5.262e+1 5.903e+1

100 1.583e+2 1.128e+2 1.020e+2 7.460e+1 *6.738e+1 7.867e+1

In Table4.4, we give the total computation time in seconds for solving the least squares

problems with different number of right-hand-side vectorsb. The global left precondi-

tioning with the MINRES method was used. We can observe that as the number of the

right-hand-side vectors increases, the preconditioners become more and more competitive.

This is also shown in Figure4.1.

From Figure4.1, we see that ask increases, the preconditioning time becomes larger,

but the iteration time per problem decreases. Whenk keeps increasing to8, the iteration

Chapter 4: Approximate Generalized Inverse
Preconditioning Methods 42

Figure 4.1: Multiple Right-hand-side Problem

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

Number of Right−handside Vectors

T
ot

al
 ti

m
e

(
in

 s
ec

on
ds

)

CPU time versus number of right−hand−side vectors

Diag−CGLS
k=1
k=7
k=8

time per problem starts to increase. Hence, there is an optimal k which minimizes the total

CPU time. For this problem, the optimalk is 7.

4.4 Conclusion

We applied the approximate inverse preconditioner to leastsquares problem. Based on

the preconditionerMk from the MR algorithm, we gave equivalence theorems and break-

down free theorems for both the left preconditioning case and the right preconditioning

case.

Numerical experiments showed that with the above preconditioning, the MINRES method

achieves a faster convergence for solving least squares problems, although the precondi-

tioning is time-consuming. However, for multiple right-hand-side problems, the CPU time

Chapter 4: Approximate Generalized Inverse
Preconditioning Methods 43

spent on preconditioning pays off.

Chapter 5

Greville’s Methods for Preconditioning

Least Squares Problems

5.1 Greville’s method

In Chapter 4 we proposed using Minimal Residual method to construct the approximate

generalized inverse ofA and using it as a preconditioner. It has some obvious disadvan-

tages.

• The theorems for the equivalence between the original leastsquares problem and

the preconditioned problem could not be guaranteed when numerical droppings are

performed.

• If no numerical droppings are performed, the preconditioner is storage-demanding.

• If numerical droppings are performed, not only the equivalence is not guaranteed,

but also the preconditioned coefficient matrix is not symmetric, which implies that

44

Chapter 5: Greville’s Methods for Preconditioning
Least Squares Problems 45

the GMRES method has to be applied to solve the preconditioned rather than the

MINRES method.

In this chapter we propose another preconditioning method for least squares problems.

The method can not only construct an approximate Moore-Penrose inverse ofA, but also

can give an incomplete factorization for the Moore-Penroseinverse ofA. First we will

introduce what the Greville’s method is.

Given a rectangular matrixA ∈ Rm×n, rank(A) = r ≤ min{m, n}. Assume the

Moore-Penrose inverse ofA is known, we are interested in how to compute the Moore-

Penrose inverse of

A + cdT , c ∈ R
m, d ∈ R

n, (5.1)

which is a rank-one update ofA. In [19], the following six logical possibilities are consid-

ered

1. c 6∈ R(A), d 6∈ R(AT) and1 + dT A†c arbitrary,

2. c ∈ R(A), d 6∈ R(AT) and1 + dT A†c = 0,

3. c ∈ R(A), d arbitrary and1 + dT A†c 6= 0,

4. c 6∈ R(A), d ∈ R(AT) and1 + dT A†c = 0,

5. c arbitrary,d ∈ R(AT) and1 + dTA†c 6= 0,

6. c ∈ R(A), d ∈ R(AT) and1 + dT A†c = 0.

For each possibility, an expression for the Moore-Penrose inverse of the rank one update of

A is given by the following theorem.

Chapter 5: Greville’s Methods for Preconditioning
Least Squares Problems 46

THEOREM 5.1.1 [19] For A ∈ Rm×n, c ∈ Rm, d ∈ Rn, let k = A†c, h = dTA†,

u = (I −AA†)c, v = dT (I − A†A), andβ = 1 + dTA†c. Notice that,

c ∈ R(A) ⇔ u = 0 (5.2)

d ∈ R(AT) ⇔ v = 0. (5.3)

Then, the generalized inverse ofA + cdT is given as follows.

1. If u 6= 0 andv 6= 0, then(A + cdT)† = A† − ku† − v†h + βv†u†.

2. If u = 0 andv 6= 0, andβ = 0, then(A + cdT)† = A† − kk†A† − v†h.

3. If u = 0 and β 6= 0, then(A + cdT)† = A† + 1
β̄
vT kT A† − β̄

σ1
p1q

T
1 , wherep1 =

−
(

‖k‖2
2

β̄
vT + k

)

, qT
1 = −

(

‖v‖2
2

β̄
kT A† + h

)

.

4. If u 6= 0, v = 0 andβ = 0, then(A + cdT)† = A† − A†h†h− ku†.

5. If v = 0 and β 6= 0, then(A + cdT)† = A† + 1
β̄
A†hT uT − β̄

σ2
p2q

T
2 , wherep2 =

−
(

‖u‖2

β̄
A†hT + k

)

, qT
2 = −

(

‖h‖2
2

β̄
uT + h

)

, andσ2 = ‖h‖22‖u‖
2
2 + |β|2.

6. If u = 0, v = 0 andβ = 0, then(A + cdT)† = A† − kk†A† − A†h†h + (k†A†h†)kh.

To utilize the above theorem, we first writeA into a column summation form. Let

A =

n
∑

i=1

aie
T
i , (5.4)

whereai is theith column ofA, andei is an dimensional vector whose elements are all zero

except theith element is one. Further define a sequence of matricesAi = [a1, . . . , ai, 0, . . . , 0],

i = 1, . . . , n, so thatAi has the same size asA does and the firsti columns are the same as

Chapter 5: Greville’s Methods for Preconditioning
Least Squares Problems 47

A’s, only the lastn− i columns are zero. Hence we have

Ai =
i
∑

k=1

ake
T
k , i = 1, . . . , n, (5.5)

and if we denoteA0 = 0m×n, then

Ai = Ai−1 + aie
T
i , i = 1, . . . , n. (5.6)

Thus everyAi, i = 1, . . . , n is a rank-one update ofAi−1. Noticing thatA†
0 = 0n×m, we can

utilize Theorem 5.1.1 to compute the Moore-Penrose inverseof A step by step and have

A† = A†
n in the end.

In Theorem 5.1.1, substitutingc with ai andd with ei, we can rewrite Equation 5.2 as

following,

ai 6∈ R(Ai−1)⇔ u = (I − Ai−1A
†
i−1)ai 6= 0. (5.7)

Equation (5.3) becomes

v = eT
i (I −A†

i−1Ai−1)ai 6= 0, i = 1, . . . , n (5.8)

Theβ in Theorem 5.1.1 is nonzero for anyi = 1, 2, . . . n.

β = 1 + eT
i A†

i−1ai = 1. (5.9)

Hence, we can use Case1 in Theorem 5.1.1 for columnai 6∈ R(Ai−1) and Case3 in Theo-

rem 5.1.1 for columnai ∈ R(Ai−1).

Chapter 5: Greville’s Methods for Preconditioning
Least Squares Problems 48

Then from Theorem 5.1.1, denotingA0 = 0m×n, we obtain a method to computeA†
i

based onA†
i−1 as

A†
i =

{A†
i−1 + (ei − A†

i−1ai)((I −Ai−1A
†
i−1)ai)

† if ai 6∈ R(Ai−1)

A†
i−1 + 1

σi
(ei − A†

i−1ai)(A
†
i−1ai)

T A†
i−1 if ai ∈ R(Ai−1)

, (5.10)

whereσi = 1 + ‖ki‖22. This method was proposed by Greville in the 1960s [31].

Notice thatAiA
†
i is an orthogonal projection on toR(Ai−1), hence,

ai 6∈ R(Ai−1) ⇔ (I −Ai−1A
†
i−1)ai = ui 6= 0. (5.11)

To decide whetherai ∈ R(Ai−1), we only need to see ifui is a zero vector or not.

5.2 Global Algorithm for General Matrices

In this section, we will construct our preconditioning algorithm according to the Gre-

ville’s method of section 5.1. First of all, we notice that the different part between case

ai 6∈ R(Ai−1) and caseai ∈ R(Ai−1) in Equation (5.10) lies in the second term. We first

make some denotations

ki = A†
i−1ai, (5.12)

ui = ai −Ai−1ki = (I −Ai−1A
†
i−1)ai, (5.13)

σi = 1 + ‖ki‖
2
2. (5.14)

Chapter 5: Greville’s Methods for Preconditioning
Least Squares Problems 49

If we definefi andvi as

fi =
{‖ui‖22 if ai 6∈ R(Ai−1)

σi if ai ∈ R(Ai−1)

, (5.15)

vi =
{ ui if ai 6∈ R(Ai−1)

(A†
i−1)

T ki if ai ∈ R(Ai−1)

, (5.16)

we can expressA†
i in a unified form for any matrices as

A†
i = A†

i−1 +
1

fi
(ei − ki)v

T
i , i = 1, . . . , n, (5.17)

and we have

A† =

n
∑

i=1

1

fi
(ei − ki)v

T
i . (5.18)

If we denote

K = [k1, . . . , kn] ∈ R
n×n, (5.19)

V = [v1, . . . , vn] ∈ R
m×n, (5.20)

F =















f1 · · · 0

0
. . . 0

0 · · · fn















∈ R
n×n, (5.21)

the above summation equation can be written into a matrix product form, hence, we obtain

a matrix factorization ofA† as follows.

THEOREM 5.2.1 Let A ∈ Rm×n and rank(A) ≤ min{m, n}. Using the above notations,

Chapter 5: Greville’s Methods for Preconditioning
Least Squares Problems 50

the Moore-Penrose inverse ofA has the following factorization

A† = (I −K)F−1V T . (5.22)

HereI is the identity matrix of ordern, K is a strict upper triangular matrix,F is a diag-

onal matrix, whose diagonal elements are all positive.

If A is full column rank, then

V = A(I −K) (5.23)

A† = (I −K)F−1(I −K)T AT . (5.24)

PROOF. DenoteĀi = [a1, . . . , ai], then since

ki = A†
i−1ai (5.25)

= [a1, . . . , ai−1, 0, . . . , 0]†ai (5.26)

=
[

Āi−1, 0, . . . , 0
]†

ai (5.27)

=







Ā†
i−1

0






ai (5.28)

=





































ki,1

...

ki,i−1

0

...

0





































, (5.29)

Chapter 5: Greville’s Methods for Preconditioning
Least Squares Problems 51

K = [k1, . . . , kn] is a strictly upper triangular matrix.

Sinceui = 0⇔ ai ∈ R(Ai−1) and

fi =
{‖ui‖22 if ai 6∈ R(Ai−1)

σi if ai ∈ R(Ai−1)

. (5.30)

Thusfi(i = 1, . . . , n), are always positive, which implies thatF is a diagonal matrix with

positive diagonal elements.

If A is a full rank matrix, we have

V = [u1, . . . , un] (5.31)

=
[

(I −A0A
†
0)a1, . . . , (I −An−1A

†
n−1)an

]

(5.32)

= [a1 −A0k1, . . . , an − An−1kn] (5.33)

= A− [A0k1, . . . , An−1kn] (5.34)

= A− [A1k1, . . . , Ankn] (5.35)

= A(I −K). (5.36)

The second from the bottom equality follows from the fact that K is a strictly upper trian-

gular matrix. Now, whenA† is full rank, can be decomposed as follows,

A† = (I −K)F−1V T = (I −K)F−1(I −K)T AT . 2 (5.37)

REMARK 2 According to Theorem 5.2.1, whenA is full column rank, in exact arithmetic

Chapter 5: Greville’s Methods for Preconditioning
Least Squares Problems 52

the factorization ofA† in Theorem 5.2.1 can be rewritten as

A† = (I −K)F−1(I −K)T AT . (5.38)

Hence, we obtain that,

(AT A)−1 = (I −K)F−1(I −K)T . (5.39)

And if we define(I −K)−T = L, the above equation equals

AT A = LFLT , (5.40)

which is a LDLT decomposition ofAT A.

Based on Greville’s method, we obtain a simple algorithm. Weonly want to construct a

sparse approximation to the Moore-Penrose inverse ofA, hence, we perform some numer-

ical droppings in the middle of the algorithm to maintain thesparsity of the preconditioner.

We call the following algorithm theGlobal Greville Preconditioning algorithm, since it

forms or updates the whole matrix at a time rather than columnby column.

ALGORITHM 5.2.1 Global Greville Preconditioning algorithm

1. setM0 = 0

2. for i = 1 : n

3. ki = Mi−1ai

4. perform numerical droppings onki

5. ui = ai − Ai−1ki

6. if ai is recognized as6∈ R(Ai−1)

7. fi = ‖ui‖22

Chapter 5: Greville’s Methods for Preconditioning
Least Squares Problems 53

8. vi = ui

9. else

10. fi = 1 + ‖ki‖22

11. vi = MT
i−1ki

12. end if

13. Mi = Mi−1 + 1
fi

(ei − ki)v
T
i

14. end for

15. GetMn ≈ A†.

REMARK 3 In Line 6, we use ”ai is recognized as6∈ R(Ai−1)” as an if condition. From

the previous discussion, we know that‖ui‖2 6= 0 ⇔ ai 6∈ R(Ai−1). However, because of

the rounding error and the droppings we perform,‖ui‖2 6= 0 or ‖ui‖2 being small is not

reliable enough to be used to judgeai ∈ R(Ai−1) or not. We will come back to this issue

in Subsection 5.6.1.

REMARK 4 In Algorithm 5.2.1, actually, we do not need to storeki, vi, fi, i = 1, . . . , n,

because we form theM †
i explicitly.

REMARK 5 In Algorithm 5.2.1, we need to perform numerical droppings on ki, however,

doing this cannot control the sparsity inMi directly. Whenki is sparse, to updateMi−1,

we only need to update the rows which correspond to the nonzero elements inki. Hence,

the rank-one update will be cheaper.

we also need to updateMi in every step, but actually we do not need to update the

whole matrix, since only the firsti− 1 rows ofMi−1 could be nonzero. Hence, to compute

Mi, we need to update the firsti − 1 rows ofMi−1, and then add one new nonzero row to

be theith row ofMi.

Chapter 5: Greville’s Methods for Preconditioning
Least Squares Problems 54

THEOREM 5.2.2 Let A ∈ Rm×n and rank(A) ≤ min{m, n}. Use the notations in Algo-

rithm 5.2.1 and letK = [k1, . . . , kn], V = [v1, . . . , vn] andF = diag{f1, . . . , fn}, then the

matrixMn constructed by Algorithm 5.2.1 has the following factorization

Mn = (I −K)F−1V T . (5.41)

Here I is the identity matrix of ordern, K is a strict upper triangular matrix,F is a

diagonal matrix, whose diagonal elements are all positive.

If A is full column rank, then

V = A(I −K) (5.42)

Mn = (I −K)F−1(I −K)T AT . (5.43)

REMARK 6 Comparing Theorem 5.2.1 and the above theorem, we can see that A† and

theMn from the Algorithm 5.2.1 have the same factorization. The only difference is that

Mn ≈ A† because of the numerical droppings. And thisMn can be used as an approximate

generalized inverse preconditioner.

REMARK 7 We can also perform numerical droppings toMi after it is updated. In this

case the structure ofMi will be ruined, which means thatMn could not be written into the

factorization form in the above theorem.

5.3 Vector-wise Algorithm for General Matrices

If we want to construct the matrixK, F andV without formingMi explicitly, we can

use a vector-wise version of Algorithm 5.2.1. In Algorithm 5.2.1, the column vectors of

K are constructed one column at a step, then we compute avi vector based onki, and

Chapter 5: Greville’s Methods for Preconditioning
Least Squares Problems 55

the computation of theith diagonal element ofF is based onvi. We can see that all the

definition of other vectors are based onki. Hence, it is possible to rewrite Algorithm 5.2.1

into a vector-wise form.

Sinceui can be computed fromai−Ai−1ki, which does not refer toMi−1 explicitly, to

vectorize Algorithm 5.2.1, we only need to formki andvi = MT
i−1ki when linear depen-

dence happens, without usingMi−1 explicitly.

Consider the numerical droppings are not used. Since we already know that

A† = (I −K)F−1V T .

= (I −

[

k1 . . . kn

]

)















f−1
1

. . .

f−1
n





























vT
1

...

vT
n















=

n
∑

i=1

(ei − ki)
1

fi
vT

i ,

for any integerp, it is easy to see that

A†
p =

p
∑

i=1

(ei − ki)
1

fi
vT

i . (5.44)

Chapter 5: Greville’s Methods for Preconditioning
Least Squares Problems 56

Therefore, whenai is in the range space ofAi−1, we have

vi = (A†
i−1)

T ki (5.45)

= (

i−1
∑

p=1

(ep − kp)
1

fp
vT

p)T ki (5.46)

=

i−1
∑

p=1

1

fp
vp(ep − kp)

T ki. (5.47)

Also for ki

ki = A†
i−1ai (5.48)

=
i−1
∑

p=1

(ep − kp)
1

fp

vT
p ai (5.49)

=
i−2
∑

p=1

(ep − kp)
1

fp

vT
p ai + (ei−1 − ki−1)

1

fi−1

vT
i−1ai (5.50)

= A†
i−2ai + (ei−1 − ki−1)

1

fi−1
vT

i−1ai. (5.51)

To make this more clear, from the last column ofK, the requirement relationship can

be shown as

kn = A†
n−1an

ր տ

A†
n−2an kn−1 = A†

n−2an−1

ր տ ր տ

A†
n−3an kn−2 = A†

n−3an−2 A†
n−3an−1 kn−2 = A†

n−3an−2

.

In other words, we need to compute everyA†
iak, k = i + 1, . . . , n. DenoteA†

iaj , j > i as

Chapter 5: Greville’s Methods for Preconditioning
Least Squares Problems 57

ki,j. In this sense,ki = ki−1,i. In the algorithm,ki,j, j > i will be stored in thejth column

of K, if j = i + 1, ki,j = kj, and it will not be changed any more. Ifj > i + 1, ki,j will be

updated toki+1,j and still stored in the same position.

Based on the above discussion, and add the numerical dropping strategy, we can write

the following algorithm. In the algorithm we omit the first subscript ofki,j, since all the

vectorski,j, i = 1, . . . , n are stored in thejth column ofK, they are actually one vector in

different iterations.

ALGORITHM 5.3.1 Vector-wise Greville Preconditioning Algorithm

1. setK = 0n×n

2. for i = 1 : n

3. u = ai −Ai−1ki

4. if ai is recognized as6∈ R(Ai−1)

5. fi = ‖u‖22

6. vi = u

7. else

8. fi = ‖ki‖22 + 1

9. vi = (A†
i−1)

T ki =

i−1
∑

p=1

1

fp
vp(ep − kp)

T ki

10. end if

11. forj = i + 1, . . . , n

12. kj = kj +
vT

i aj

fi
(ei − ki)

13. perform numerical droppings onkj

14. end for

15. end for

16. K = [k1, . . . , kn], F = Diag {f1, . . . , fn}, V = [v1, . . . , vn].

Chapter 5: Greville’s Methods for Preconditioning
Least Squares Problems 58

REMARK 8 For the full column rank case, we already showed thatV = A(I−K). Hence,

we do not need to store matrixV in this case. However, it does not mean that for the general

case, we need to store the whole matrixV . In fact, we only need to store the vectors ofV

which correspond to the columnsai recognized to be in the range space ofAi−1. Hence, if

the rank deficiency is small, the extra storage compared to the full rank case is small.

5.4 Greville Preconditioning Method for Full Column Rank

Matrices

In this section, we especially take a look at the full column rank case. WhenA is full

column rank, both Algorithm 5.3.1 can be simplified as follows.

ALGORITHM 5.4.1 Vector-wise Greville Preconditioning Algorithm for Full Column Rank

Matrices

1. setK = 0n×n

2. for i = 1 : n

3. ui = ai − Ai−1ki

4. fi = ‖ui‖22

5. for j = i + 1, . . . , n

6. kj = kj +
uT

i aj

fi
(ei − ki)

7. perform numerical droppings onkj

8. end for

9. end for

10. K = [k1, . . . , kn], F = Diag{f1, . . . , fn}.

Chapter 5: Greville’s Methods for Preconditioning
Least Squares Problems 59

In Algorithm 5.4.1,

u = ai − Ai−1ki

= [a1, . . . , ai, 0, . . . , 0]











































−ki,1

...

−ki,i−1

1

0

...

0











































= Ai(ei − ki)

= A(ei − ki).

If we denoteei − ki aszi, thenui = Azi.

The Line 6 in the Algorithm 5.4.1, can also be rewritten as

kj = kj +
uT

i aj

‖ui‖22
(ei − ki)

ej − kj = ej − kj −
uT

i aj

‖ui‖22
(ei − ki)

zj = zj −
uT

i aj

‖ui‖22
zi.

Denotedi = ‖ui‖22, θ =
uT

i aj

di
andZ = [z1, . . . , zn]. Then combining all the new notations,

we can rewrite the algorithm as follows.

ALGORITHM 5.4.2

1. setZ = In×n

Chapter 5: Greville’s Methods for Preconditioning
Least Squares Problems 60

2. for i = 1 : n

3. ui = Aizi

4. di = (ui, ui)

5. for j = i + 1, . . . , n

6. θ =
(ui,aj)

di

7. zj = zj − θzi

8. perform numerical droppings onzj .

9. end for

10. end for

11. Z = [z1, . . . , zn], D = Diag{d1, . . . , dn}.

REMARK 9 Sincezi = ei − ki, in the beginning of this algorithm we haveZ = I − K,

whereI is an identity matrix of ordern. DenotingD = Diag{d1, . . . , dn}, when there is

no numerical droppings and in exact arithmetic, the factorization ofA† in Theorem 5.2.1

can be rewritten as

A† = ZD−1ZT AT (5.52)

When numerical droppings is performed, we can construct a matrix M in the factorization

form

M = ZD−1ZT AT ≈ A†. (5.53)

In [13] Benzi and Tůma proposed a technique, robust incomplete factorization (RIF)

, for constructing robust preconditioners for the CGLS method applied to the solution of

large and sparse least squares problems. The algorithm computes an incompleteLDLT

factorization of the normal equations matrix without the need to form the normal matrix

itself. The RIF idea was also introduced in [9,12], where Benzi and Tůma applied a similar

idea to construct a preconditioner for CG method to solve symmetric positive definite lin-

ear systems. Their ideas are based on aAT A-Orthogonalization whenA is a nonsymmetric

Chapter 5: Greville’s Methods for Preconditioning
Least Squares Problems 61

nonsingular matrix or A-Orthogonalization whenA is a symmetric positive definite matrix.

We describe the A-Orthogonalization procedure as follows.Let aT
i denote theith row

of A. Also, letei denote theith unit basis vector. The basic A-orthogonalization procedure,

which orthogonalizes the unit basis vectors with respect tothe inner product defined as

(x, y)A = yT Ax, can be written as follows.

ALGORITHM 5.4.3 [9]

1. Letz0 = ei, (1 ≤ i ≤ n)

2. For i = 1, 2, . . . , n

3. For j = i, i + 1, . . . , n

4. p
(i−1)
j = aT

i z
(i−1)
j

5. End For

6. If i = n go to(11)

7. For j = i + 1, . . . , n

8. z
(i)
j = z

(i−1)
j − (

p
(i−1)
j

p
(i−1)
i

)z
(i−1)
i

9. End For

10. End For

11. Letzi = z
(i−1)
i , pi = p

(i−1)
i for 1 ≤ i ≤ n. ReturnZ = [z1, . . . , zn] and D =

Diag{p1, . . . , pn}.

TheATA-orthogonalization procedure is similar to the above algorithm. The only dif-

ference lies in the Line4. In Algorithm 5.4.3, line4 can be rewritten into the following

Chapter 5: Greville’s Methods for Preconditioning
Least Squares Problems 62

inner product form

p
(i−1)
j = aT

i z
(i−1)
j (5.54)

= (Aei)
T z

(i−)1
j (5.55)

= eT
i Az

(i−1)
j (5.56)

= (ei, z
(i−1)
j)A. (5.57)

If we change the definition ofp(i−1)
j to the following, can easily obtainATA-orthogonalization.

p
(i−1)
j = aT

i Az
(i−1)
j (5.58)

= (Aei)
T Az

(i−1)
j (5.59)

= eT
i AT Az

(i−1)
j (5.60)

= (ei, z
(i−1)
j)AT A. (5.61)

Now if we look back our Algorithm 5.4.2, the definition ofθ can be rewritten as follows,

θ =
uT

i aj

di
(5.62)

=
(Azi)

T (Aej)

(Azi)T (Azi)
(5.63)

=
(ej , zi)AT A

(zi, zi)AT A

. (5.64)

Hence, in Algorithm 5.4.2, from Line5 to Line9, it can be viewed as anATA-orthogonalization

procedure when the numerical droppings are not performed. When the droppings are per-

formed, it is an incompleteATA-orthogonalization procedure.

Chapter 5: Greville’s Methods for Preconditioning
Least Squares Problems 63

And also notice that, for the above A-orthogonalization procedure or theATA-orthogonalization

procedure or our Algorithm 5.4.2, in theith step, all the vectorszj , j = i + 1, . . . , n are

updated, and the vectorszj , j = 1, . . . i are not changed and also remain the same in the

following steps. This is called theright-looking process. For each of these algorithms,

according to [10], aleft-lookingvariant also exists, which is sometimes advantageous. The

left-looking version of Algorithm 5.4.2 can be written as follows.

ALGORITHM 5.4.4 Vector-wise Greville Preconditioning Algorithm

1. SetZ = In×n, u = a1, f1 = ‖a1‖22

2. For i = 2, . . . , n

3. For j = 1, . . . , i− 1

4. θ = aT
i uj

5. zi = zi −
θ
fj

zj

6. End for

7. perform numerical droppings onzi

8. ui = Azi

9. fi = ‖ui‖22

10. End For

11. Z = [z1, . . . , zn], F = Diag {f1, . . . , fn}.

From the above algorithm, it is easy to see that this algorithm coincides aGram–Schmidt

processwith respect to the inner product(x, y)AT A = xAT Ay. We can change it to aMod-

ified Gram-Schmidtprocess to obtain a more stable version of thisATA-orthogonalization

procedure.

ALGORITHM 5.4.5 Vector-wise Greville Preconditioning Algorithm

1. SetZ = In×n, u = a1, f1 = ‖a1‖22

2. For i = 2, . . . , n

3. For j = 1, . . . , i− 1

Chapter 5: Greville’s Methods for Preconditioning
Least Squares Problems 64

4. θ = (Azi)
T uj

5. zi = zi −
θ
fj

zj

6. End for

7. perform numerical droppings onzi

8. ui = Azi

9. fi = ‖ui‖22

10. End For

11. Z = [z1, . . . , zn], F = Diag {f1, . . . , fn}.

And in the same way, we can also rewrite our Algorithm 5.3.1 into left-looking version.

ALGORITHM 5.4.6 Vector-wise Greville Preconditioning Algorithm

1. setK = 0n×n, v1 = a1, f1 = ‖a1‖22

2. for i = 2 : n

3. for j = 1 : i− 1

4. θ = aT
i vj

5. ki = ki + θ
fj

(ej − kj)

6. end for

7. perform numerical droppings onki

8. u = ai −Ai−1ki

9. if ai is recognized as6∈ R(Ai−1)

10. fi = ‖u‖22

11. vi = u

12. else

13. fi = ‖ki‖22 + 1

14. vi = (A†
i−1)

T ki =

i−1
∑

p=1

1

fp
vp(ep − kp)

T ki

15. end if

16. end for

17. K = [k1, . . . , kn], F = Diag {f1, . . . , fn}, V = [v1, . . . , vn].

Chapter 5: Greville’s Methods for Preconditioning
Least Squares Problems 65

5.5 Two Important Issues about Preconditioning the Least

Squares Problems

When we precondition a nonsingular linear system

Ax = b, A ∈ R
n×n, b ∈ R

n, (5.65)

instead of solving the linear system itself, we solve

MAx = Mb (5.66)

or

AMy = b, x = My. (5.67)

As long as preconditionerP ∈ Rn×n is nonsingular, we can ensure we obtain the solution

to the original solution.

In the case of least squares problems this is not true, even when the coefficient matrix is

a full rank matrix. In this section, we will discuss to ensurethat we obtain the least squares

solution to the original problem 2.1 by solving the preconditioned problem, what conditions

should the preconditionerM satisfy. And after transforming the original problem to the

preconditioned problem we want to use some Krylov subspace methods to solve it. We

will also discuss that when the Krylov subspace solver can determine a solution to the

preconditioned problem before it breaks down.

Chapter 5: Greville’s Methods for Preconditioning
Least Squares Problems 66

5.5.1 Equivalence Condition

Consider solving the least squares problem (2.1) by transforming it into the left precon-

ditioned form,

min
x∈Rn
‖Mb−MAx‖2, (5.68)

whereA ∈ Rm×n, M ∈ Rn×m, andb is a right-hand-side vectorb ∈ Rm.

Since we are dealing with general rectangular matrices, we need some other conditions

to ensure that the preconditioned problem (5.68) is equivalent to the original least squares

problem (2.1). These conditions have been introduced in Chapter 3. For the left precondi-

tioning, by Theorem 3.3.5, we needR(A) = R(MT MA).

If we perform Algorithm 5.2.1 or Algorithm 5.3.1 completelyand exactly, we will

finally have the exact Moore-Penrose inverse ofA, i.e. M = A†. By the properties of

A† [50], it is easy to know that Theorem?? is satisfied. However, we need to performe

some numerical droppings to control the sparsity of the preconditionerM . Assume the

dropping threshold isτ , we drop the elements inki which are smaller thanτ in Algorithm

5.2.1 or Algorithm 5.3.1. Because of the droppings, the normof ui may not be an accurate

way to detect ifai ∈ R(Ai−1) or ai 6∈ R(Ai−1). We will come back to how to detect the

linear dependence later. After droppings, we have

A† ≈ M = (I −K)F−1V T . (5.69)

To analyze the equivalence between the original problem (2.14) and the preconditioned

problem (5.68), whereM is from any of our algorithms, we first consider the simple case,

Chapter 5: Greville’s Methods for Preconditioning
Least Squares Problems 67

in whichA is a full column rank matrix. After numerical droppings, we have,

A† ≈ M = (I −K)F−1UT , (5.70)

whereU is

U = A(I −K). (5.71)

Notice thatK is a strictly upper triangular matrix andF is a diagonal matrix with positive

elements. Hence, we can denote

M = CAT , (5.72)

whereC is an nonsingular matrix. According to the discussion in [34], M = CAT satisfies

Theorem 3.3.5, hence, we have the following result.

THEOREM 5.5.1 If A ∈ Rm×n, andA is full column rank, by Algorithm 5.2.1 or Algorithm

5.3.1 with numerical droppings, we can construct a preconditionerM . With this precondi-

tionerM , the preconditioned least squares problem and the originalleast squares problem

are equivalent and GMRES can determine a least squares solution to the preconditioned

problem before breakdown happens.

For the general case, we still haveK and F nonsingular. However, the expression

for V is not straightforward. To simplify the problem, we need to make the following

assumptions.

ASSUMPTION 5.5.1

• There is no zero column inA.

• Our algorithm can detect all the linear independence correctly.

Chapter 5: Greville’s Methods for Preconditioning
Least Squares Problems 68

The assumption of no zero columns is very general, since if there is a zero column in the

coefficient matrixA, we only need to omit the corresponding element in the variable vector

x. For the other assumption of detecting all the linear independence, the most simple case

is that no matterA is full column rank or not we take it as a full column rank matrix. Doing

so may cause breakdown for the preconditioning algorithm.

The definition ofvi can be rewritten as follows.

vi =
{ ai − Aki ∈ R(Ai) 6∈ R(Ai−1) if ai 6∈ R(Ai−1)

(A†
i−1)

T ki ∈ R(Ai−1) = R(Ai) if ai ∈ R(Ai−1)

(5.73)

When Assumption 5.5.1 is satisfied , we have

span{v1, v2, . . . , vi} = span{a1, a2, . . . , ai}. (5.74)

On the other hand, note the12-th line of Algorithm 5.2.1

Mi = Mi−1 +
1

fi
(ei − ki)v

T
i , (5.75)

which implies that every row ofMi is a linear combination of the vectorsvT
k , 1 ≤ k ≤ i,

i.e.,

R(MT
i) = span{v1, . . . , vi}. (5.76)

Based on the above discussions, we obtain the following theorem.

THEOREM 5.5.2 Let A ∈ Rm×n, m ≥ n. If Assumption 5.5.1 holds, then we have the

following relationships, whereM is the approximate Moore-Penrose inverse constructed

Chapter 5: Greville’s Methods for Preconditioning
Least Squares Problems 69

by Algorithm 5.2.1.

R(MT) = R(V) = R(A) (5.77)

REMARK 10 In Assumption 5.5.1, we assume that our algorithms can detect all the linear

independence in the columns ofA. Hence, we allow such mistakes that a linearly depen-

dent column is recognized as a linearly independent column.An extreme case is that we

recognize all the columns ofA as linearly independent, i.e., we takeA as a full column

rank matrix. In this sense, our assumption can always be satisfied.

Hence, we proved that for any matrixA ∈ Rm×n,R(A) = R(MT). We have the following

theorem.

THEOREM 5.5.3 If Assumption 5.5.1 holds, then for allb ∈ Rm, the preconditioned least

squares problem (5.68), whereM is constructed by Algorithm 5.2.1, is equivalent to the

original least squares problem (2.14).

PROOF. If Assumption 5.5.1 holds, we have

R(A) = R(MT). (5.78)

Then there exists a nonsingular matrixC ∈ Rn×n such thatA = MT C. Hence,

R(MT MA) = R(MT MMT C) (5.79)

= R(MT MMT) (5.80)

= R(MT M) (5.81)

= R(MT) (5.82)

= R(A). (5.83)

Chapter 5: Greville’s Methods for Preconditioning
Least Squares Problems 70

In the above equalities we used the relationshipR(MMT) = R(M).

By Theorem 3.3.5 we complete the proof. 2

THEOREM 5.5.4 For all b ∈ Rm, M is constructed by Algorithm 5.2.1, if Assumption

5.5.1 holds andM is used as a left preconditioner, the least squares problem (5.68) is

equivalent to the original least squares problem (2.1).

5.5.2 Breakdown Free Condition

In this subsection we assume without losing generality thatthe firstr columns ofA are

linearly independent. Hence,

R(A) = span{a1, a2, . . . , ar}, (5.84)

whererank(A) = r, andai, (i = 1, 2, . . . , r) is theith column ofA. The reason is that we

can incorporate a column pivoting in Algorithm 5.2.1 easily. With Assumption 5.5.1, every

time when a linear dependence is detected, we can pivot the current column to the end of

the matrixA, and after we have the least squares solution to the pivotedA, we can permute

the solution to get the solution to the original problem.

Then we have,

ai ∈ R(Ar), i = r + 1, r + 2, . . . , n. (5.85)

In this case, after performing Algorithm 5.2.1 with numerical dropping, matrixV can be

written in the form

V = [u1, u2, . . . , ur, vr+1, vr+2, . . . , vn] . (5.86)

Chapter 5: Greville’s Methods for Preconditioning
Least Squares Problems 71

If we denote[u1, u2, . . . , ur] asUr, then

Ur = A(I −K)Ir, Ir =







Ir×r

0






. (5.87)

From Theorem 5.5.2,

R(V) = R(A) (5.88)

R(V) = span{Ur} (5.89)

=⇒ span{vr+1, vr+2, . . . , vn} ⊆ span{Ur}. (5.90)

Therefore there exists ar × (n− r) matrixH such that

[vr+1, vr+2, . . . , vn] = UrH (5.91)

= A(I −K)IrH, (5.92)

H could be full rank or rank deficient. Then the wholeV is given by

V = [u1, u2, . . . , ur, vr+1, vr+2, . . . , vn] (5.93)

= [Ur, UrH] (5.94)

= Ur

[

Ir×r H

]

(5.95)

= A(I −K)







Ir×r

0







[

Ir×r H

]

(5.96)

= A(I −K)







Ir×r H

0 0






. (5.97)

Chapter 5: Greville’s Methods for Preconditioning
Least Squares Problems 72

Hence,

M = (I −K)F−1V T (5.98)

= (I −K)F−1






A(I −K)







Ir×r H

0 0













T

(5.99)

= (I −K)F−1







Ir×r 0

HT 0






(I −K)T AT . (5.100)

From the above equation, we can also see the difference between the full column rank case

and the rank deficient case lies in







Ir×r 0

Hr×n−r 0






, (5.101)

which should be an identity matrix whenA is full column rank.

If there is no numerical dropping,M will be the Moore-Penrose inverse ofA in the

form of the following,

A† = (I − K̃)F̃−1







Ir×r 0

H̃T 0






(I − K̃)T AT . (5.102)

Comparing Equation (5.100) and Equation (5.102), it is easyto see thatR(M) =

R(A†). Note thatR(A†) = R(AT), we can have the following theorem.

THEOREM 5.5.5 Let A ∈ Rm×n, and rank(A) = r. If Assumption 5.5.1 holds for Al-

gorithm 5.2.1. Then the following relationships hold, where M denotes the approximate

Chapter 5: Greville’s Methods for Preconditioning
Least Squares Problems 73

Moore-Penrose inverse constructed by Algorithm 5.2.1

R(M) = R(A†) (5.103)

= R(AT). (5.104)

Based on Theorem 5.5.2 and Theorem 5.5.5, according to Theorem 3.3.7 we have the

following theorem which ensures that the GMRES method can determine a solution to the

preconditioned problemMAx = Mb before breakdown happens for anyb ∈ Rm.

THEOREM 5.5.6 Let A ∈ Rm×n, andrank(A) = r. Assume that all the linear indepen-

dence is detected by Algorithm 5.2.1 and that the preconditioner M is computed using

Algorithms 5.2.1. Then, for allb ∈ Rm, preconditioned GMRES determines a least squares

solution of

min
x∈Rn
‖MAx−Mb‖2 (5.105)

before breakdown and this solution attainsmin
x∈Rn
‖b−Ax‖2.

REMARK 11 Using the result from Theorem 5.5.5, there exists a nonsingular matrix T ,

such thatA = MT T . Hence,

R(MA) = R(MMT T) (5.106)

= R(MMT) (5.107)

= R(M). (5.108)

Hence, no matter if the original problem consistent, the preconditioned problem (5.68) is

always a consistent problem.

Chapter 5: Greville’s Methods for Preconditioning
Least Squares Problems 74

5.6 Implementation Consideration

5.6.1 Detect Linear Dependence

In Algorithm 5.2.1 and Algorithm 5.3.1, one important issueis how to judge the con-

dition “if ai is recognized as6∈ R(Ai−1)”. Simply speaking, we can set up a toleranceτ

in advance, and switch to “else” when‖ui‖2 < τ . However, is this good enough to help

us detect the which column ofA is linearly independent and which is linearly dependent

when we perform numerical droppings? To address this issue,we first take a look at the

RIF preconditioning algorithm.

The RIF preconditioner was developed for full rank matrices. However, numerical ex-

periments showed it also works for rank deficient matrices. For this phenomenon, our

similar Algorithm 5.4.1 can give a better insight into the RIF preconditioning algorithm.

Since our Algorithm 5.4.1 and RIF are both based on theATA-orthogonalization pro-

cedure. A breakdown of Algorithm 5.4.1 or RIF is actually a breakdown to theATA-

orthogonalization procedure. The only possibility for theATA-orthogonalization proce-

dure to breakdown is when thefi in the denominator becomes zero, which implies thatui

is a zero vector. From our algorithm, we know that

ui = ai − Ai−1ki (5.109)

= ai − Ai−1A
†
i−1ai (5.110)

= (I −Ai−1A
†
i−1)ai. (5.111)

It is clear thatui is the projection ofai ontoR(Ai−1)
⊥. Hence in exact arithmeticui = 0 if

Chapter 5: Greville’s Methods for Preconditioning
Least Squares Problems 75

and only ifai ∈ R(Ai−1). Our algorithm has an alternative whenai ∈ R(Ai−1) happens,

i.e. whenu = 0, our algorithm will turn into “else” case. However, this is not always

necessary because of the numerical droppings. With numerical droppings, theui is actually,

ui = ai −Ai−1ki (5.112)

= ai −Ai−1Mi−1ai (5.113)

≈ ai −Ai−1A
†
i−1ai (5.114)

6= 0. (5.115)

Hence, even thoughai ∈ R(Ai−1), sinceui will not be the exact projection ofai onto

R(Ai−1)
⊥, the RIF preconditioning algorithm will not necessarily breakdown when linear

dependence happens.

The RIF algorithm does not take the rank deficient columns or nearly rank deficient

columns into consideration. Hence, if we can capture the rank deficient columns, we might

be able to have a better preconditioner. Assume theM we compute from any of our three

algorithms can be viewed as an approximation toA† with error matrixE ∈ Rn×m,

M = A† + E. (5.116)

First note a theoretical result about the perturbation lower bound of the generalize inverse.

THEOREM 5.6.1 [52] If rank(A + E) 6= rank(A), then

‖(A + E)† − A†‖2 ≥
1

‖E‖2
. (5.117)

Chapter 5: Greville’s Methods for Preconditioning
Least Squares Problems 76

By Theorem 5.6.1, if the rank ofM = A† + E from our algorithm is not equal to the

rank ofA†, (or A, since they have the same rank), by the above theorem, we have,

‖M † − (A†)†‖2 ≥
1

‖E‖2
(5.118)

⇒ ‖M † −A‖2 ≥
1

‖E‖2
. (5.119)

The above inequality says that, if we denoteM † = A + ∆A, then‖∆A‖2 ≥
1

‖E‖2
.

Hence, when‖E‖2 is small, which meansM is a good approximation toA†, M can be an

exact generalized inverse of another matrix which is far from A, and the smaller the‖E‖2

is, the furtherM † from A is. In this sense, if the rank ofM is not the same as that ofA, M

may not be a good preconditioner.

Thus, it is important to maintain the rank ofM to be the same ofrank(A). Hence,

when we perform our algorithm, we need to sparsify the preconditionerM , but at the same

time we also want to capture the rank deficient columns as manyas possible, and maintain

the rank ofM . To achieve this, apparently, it is very import to decide howto judge when

the exact valueui = ‖(I − Ai−1A
†
i−1)ai‖2 is close to zero or not based on the computed

valueũi = ‖(I −Ai−1Mi−1)ai‖2.

Taking a closer look at̃ui, we have

ũi = ai −Ai−1Mi−1ai (5.120)

= ai −Ai−1(A
†
i−1 + E1)ai (5.121)

= (ai − Ai−1A
†
i−1ai)− Ai−1E1ai (5.122)

= ui −Ai−1E1ai. (5.123)

Chapter 5: Greville’s Methods for Preconditioning
Least Squares Problems 77

Whenai ∈ R(Ai−1), ui = ai − Ai−1A
†
i−1ai = 0. Then,

ũi = −Ai−1E1ai (5.124)

‖ũi‖2 ≤ ‖Ai−1‖F‖E1‖F‖ai‖2, (5.125)

If we requireE1 to be small, we can use a toleranceτs. If

‖ũi‖2 ≤ τs‖Ai−1‖F‖ai‖2, (5.126)

we suppose we detect a columnai which is in the range space ofAi−1. From now on, we

call τs theswitching tolerance.

5.6.2 Right-Preconditioning Case

So far we assumeA ∈ Rm×n, and discussed the left-preconditioning. Whenm ≥ n, it

is better to perform a left-preconditioning since the size of the preconditioned problem will

be smaller. Whenm ≤ n, a right-preconditioned problem can be described as follows,

min
y∈Rm

‖b−ABy‖2. (5.127)

In this subsection we will show that all the results for left-preconditioning can be extended

to the right-preconditioning case.

Whenm ≤ n, Theorem 5.5.2 and Theorem 5.5.5 still hold, since in the proof of these

two theorems we did not refer to the fact thatm ≥ n. Then, note Theorem 3.3.1, it is easy

to obtain similar conclusions for right-preconditioning.

THEOREM 5.6.2 Let A ∈ Rm×n. If Assumption 5.5.1 holds, then for anyb ∈ Rm we

Chapter 5: Greville’s Methods for Preconditioning
Least Squares Problems 78

havemin
x∈Rn
‖b−Ax‖2 = min

y∈Rm
‖b− AMy‖2, whereM is a preconditioner constructed by

Algorithm 5.2.1.

PROOF. From Theorem 5.5.5, we know thatR(M) = R(AT), which implies that there

exists a nonsingular matrixC ∈ Rm×m such thatM = AT C. Hence,

R(AM) = R(AAT C) (5.128)

= R(AAT) (5.129)

= R(A). (5.130)

Using Theorem 3.3.1 we complete the proof. 2

THEOREM 5.6.3 Let A ∈ Rm×n. If Assumption 5.5.1 holds, then GMRES determines a

solution to the right preconditioned problem

min
y∈Rm

‖b−AMy‖2 (5.131)

before breakdown happens.

PROOF. The proof is directly from Theorem 3.3.7. 2

THEOREM 5.6.4 LetA ∈ Rm×n. If Assumption 5.5.1 holds, then for anyb ∈ Rm, GMRES

determines a least squares solution of

min
y∈Rm

‖b−AMy‖2 (5.132)

before breakdown and this solution attainsmin
x∈Rn
‖b−Ax‖2, whereM is computed by Algo-

rithm 5.2.1.

Chapter 5: Greville’s Methods for Preconditioning
Least Squares Problems 79

We would like to remark that it is preferable to perform Algorithm 5.2.1 and Algorithm

5.3.1 toAT rather thanA whenm < n, based on the following three reasons. By doing so,

we constructM̂ , an approximate generalized inverse ofAT . Then, we can usêMT as the

preconditioner to the original least squares problem.

1. In Algorithm 5.2.1 and Algorithm 5.3.1, the approximate generalized inverse is con-

structed row by row. Hence, we perform a loop which goes through all the columns

of A once. Whenm ≥ n, this loop is relatively short. However, whenm < n, this

loop could become very long, and the preconditioning will bemore time-consuming.

2. Another reason is that, linear dependence will always happen in this case even though

matrixA is full row rank. If m << n, then when we perform the precondition algo-

rithm onA, a lot of linear dependence needs to be detected. This fact makes it more

difficult to capture the rank deficiency ofA, and may result in a bad preconditioner.

3. Even though our algorithms can detect the linear dependence accurately, if we look

at the algorithms, for a certain columnai of A, it is more expensive to deal with than

whenai is independent of the previous columns.

5.7 Numerical Examples

In this section, we first use matrices from the Florida University Sparse Matrices Col-

lection to test our algorithms, where zero rows are omitted and if the original matrix is

under-determined we use its transpose. All computations were run on a Dell Precision 690,

where the CPU is3 GHz and the memory is16 GB, and the programming language and

compiling environment was GNU C/C++ 3.4.3 in Redhat Linux. Detailed information is

given in the following table.

Chapter 5: Greville’s Methods for Preconditioning
Least Squares Problems 80

Table 5.1: Information on the matrix
Name m n rank density(%) cond
80bau3b 11934 2262 2262 0.09 567.23
bnl2 4486 2324 2324 0.14 7.77× 103

capri 482 271 271 1.45 8.09× 103

d2q06c 5831 2171 2171 0.26 1.33× 105

fit1p 1677 627 627 0.94 6.85× 103

fit2p 13525 3000 3000 0.12 4.69× 103

maros 1966 846 846 0.61 1.95× 106

perold 1560 625 625 0.65 5.13× 105

pilot 4860 1441 1441 0.63 2.66× 103

pilot we 2928 722 722 0.44 4.28× 105

scfxm1 600 330 330 1.38 2.42× 104

scfxm2 1200 660 660 0.69 2.42× 104

scfxm3 1800 990 990 0.51 1.39× 103

share1b 253 117 117 3.98 1.05× 105

stocfor2 3045 2157 2157 0.14 2.84× 104

vtp base 346 198 198 1.53 3.55× 107

beaflw 500 492 460 21.71 1.52× 109

beause 505 492 459 17.93 6.74× 108

Maragal2 536 260 171 3.13 308.95
landmark 71952 2673 2671 0.60 1.02× 108

lp cycle 3371 1890 1875 0.33 1.46× 107

Pd rhs 5804 4371 4368 0.02 3.36× 108

In Table5.1, when the original matrix is under-determined, we used its transpose. Table

5.1 is divided into two parts. The matrices in the first half are full column rank matrices,

the matrices in the second half are the rank deficient matrices. The condition number ofA

is given byσ1(A)
σr(A)

, wherer is the rank. We construct the preconditionerM and perform the

BA-GMRES [34] which is given below.

ALGORITHM 5.7.1 BA- GMRES

1. Choosex0

2. r̃0 = B(b− Ax0)

3. v1 = r̃0/‖r̃0‖2

4. for i = 1, 2, . . . , k

5. wi = BAvi

Chapter 5: Greville’s Methods for Preconditioning
Least Squares Problems 81

6. for j = 1, 2, . . . , i

7. hj,i = (wi, vj)

8. wi = wi − hj,ivj

9. end for

10. hi+1,i = ‖wi‖2

11. vi+1 = wi/hi+1,i

12. Findyi ∈ Ri which minimizes‖r̃i‖2 = ‖‖r̃0‖2ei − H̄iy‖2

13. xi = x0 + [v1, . . . , vi]yi

14. ri = b− Axi

15. if ‖AT ri‖2 < ε stop

16. end for

17. x0 = xk

18. Go to2.

The BA-GMRES is a method that solving least squares problemswith GMRES by precon-

ditioning the original problem from the left with a suitablepreconditionerB.

In the following example, the right hand side vectorsb are random vectors generated by

Matlab, so that all the least squares problems are inconsistent. In this section, we use

‖ui‖2 ≤ τs‖Ai−1‖F‖ai‖2, (5.133)

the criterion to judge if we need to switch to the “else” case.When the switching tolerance

is zero, it implies that we are constructing RIF-like preconditioners. Our dropping rule is

to drop thei-th element ofkj, i.e.,kj,i when the following inequality holds.

|kj,i|‖ai‖2 < τd, (5.134)

whereτd is the dropping tolerance. The stopping rule for GMRES is

‖AT (b−Ax)‖2 ≤ 10−8 · ‖AT b‖2. (5.135)

Chapter 5: Greville’s Methods for Preconditioning
Least Squares Problems 82

First we show how the switching toleranceτs works. Take matrix lpcycle for an exam-

ple, we know that the rank deficient columns are,

182 184 216 237 253

717 754 961 1221 1239

1260 1261 1278 1640 1859,

(5.136)

15 columns in all. As we know that the rank deficient columns are not unique, the above

columns we list are the columns which are linearly dependenton their previous columns.

In the following example, we can see that our preconditioning algorithm can detect most

of them precisely.

Table 5.2: Numerical Results

τd τs deficiency detected ITS Pre. T Its. T Tot. T

1.e-6 1.e-10 −1239,−1261,−1278 37 3.33 0.99 4.32
1.e-6 1.e-7 detect all exactly 4 3.5 0.10 3.6
1.e-6 1.e-5 detected92 col 324 7.45 12.14 19.59

In the above table, we fix the dropping tolernaceτd to 10−6 and test different switch-

ing tolerances. The column “deficiency detected” gives the linearly dependent columns

detected by our algorithm. For example−1239 means the1239th column, which is a rank

deficient column is missed by our algorithm. Form the table wecan see, whenτs = 10−10,

our preconditioning algorithm detected12 rank deficient columns except1239, 1261, 1278

and did not detect wrong rank deficient columns. Whenτs = 10−7, our preconditioning

algorithm found exactly15 rank deficient columns, and all of them are correct. When

τs = 10−5, 92 columns are recognized as linearly dependent columns, obviously many lin-

early independent columns are recognized as linearly dependent columns by mistake. For

other columns, “ITS” means iteration numbers, “Pre. T” means preconditioning time, “Its.

Chapter 5: Greville’s Methods for Preconditioning
Least Squares Problems 83

T” means iteration time, and “Tot. T” means total CPU time. From this table we can see,

when then rank deficiency is detected correctly, the convergence can be accelerated. When

wrong rank deficiency is detected, the convergence can be slowed down.

Figure 5.1: Convergence Curve for lpcycle

0 500 1000 1500
−14

−12

−10

−8

−6

−4

−2

0

Residual Curve of lp_cycle, τ
d
 = 10 −6

iteration numbers

lo
g

1
0
||A

T
r|

|
2
/|
|A

T
b

||
2

GMRESNE

τ
s
=10−5

τ
s
 = 10−7

τ
s
=10−10

In Figure5.1, We can see that, whenτs = 10−10 or τs = 10−7, no wrong linearly

dependent columns are detected, hence, Assumption 5.5.1 issatisfied. By Theorem 5.5.6,

the preconditioned problem is equivalent to the original problem, and GMRES can solve a

solution to the preconditioned problem. In Figure5.1, the residual curves forτs = 10−10

and τs = 10−7 decrease to10−12, which shows that the solution to the preconditioned

problem is the solution to the original least squares problem. Whenτs = 10−5, too many

rank deficient columns are detected, Assumption 5.5.1 is notsatisfied, hence, the residual

curve forτs = 10−5 only deceases to10−10 level and maintains. This phenomenon shows

Chapter 5: Greville’s Methods for Preconditioning
Least Squares Problems 84

that whenτs = 10−5, the preconditioned problem is not equivalent to the original problem.

To sum up, Figure5.1 illustrates that Assumption 5.5.1 is necessary to obtain a solution

to the original problem, however, when the assumption is notsatisfied, a good enough

approximate solution may still be achieved.

Table 5.3: Numerical results of full rank matrices

matrix τd Detected ITS Pre. T Its. T Tot. T GMRESNE D-CGLS

80bau3b 0.1 0 17 1.58 0.02 1.60 82, 0.31 56, *0.09

bnl2 6.e− 2 0 64 0.84 0.42 1.26 651, 16.64 657, *0.64

d2q06c 0.002 0 32 3.63 0.76 4.39 858, 27.03 2743, *4.05

capri 0.01 0 17 0.02 0.01 *0.03 215, 0.22 496, 0.06

fit1p 0.0001 0 7 0.92 0.03 0.95 31, *0.02 5986, 2.54

fit2p 1.e− 5 0 5 89.81 0.9 90.71 31, *0.08 100000+, 251.2

maros 1.e− 6 0 3 1.22 0.02 *1.24 448, 2.85 13714, 6.71

perold 0.01 0 17 0.17 0.04 *0.21 400, 1.68 1058, 0.36

pilot 0.05 0 63 1.49 0.44 1.93 385, 3.81 822, 1.24

pilot we 0.1 0 41 0.17 0.09 *0.26 429, 2.24 736, 0.38

scfxm1 0.001 0 20 0.04 0.02 *0.06 184, 0.20 761, 0.11

scfxm2 5.e− 5 0 5 0.18 0.02 *0.20 283, 0.89 1332, 0.42

scfxm3 5.e− 5 0 6 0.34 0.03 *0.37 346, 1.99 1583, 0.72

stocfor2 5.e− 5 0 25 8.30 0.66 8.66 330, 3.69 2147, 1.59

share1b 0.001 0 6 0.00 0.00 *0.00 117, 0.04 547, 0.03

vtp base 2.e− 6 0 5 0.03 0.00 *0.03 119, 0.05 3667, 0.29

In Table5.3 we list our numerical results of full rank problems. We simply setτs to

0.0 so that we did not detect any linearly dependent columns. From Table5.3 we conclude

that our preconditioner performs competitively when matrices are ill-conditioned. In Table

5.4, we list the results of rank deficient problems. We compare GMRES method with

our preconditioner to GMRES with RIF preconditoiner, whichis listed in column “RIF-

GMRES”.

Chapter 5: Greville’s Methods for Preconditioning
Least Squares Problems 85

Table 5.4: Numerical results of rank deficient matrices

matrix τd τs Detected ITS Pre. T Its. T Tot. T RIF-GMRES GMRESNE D-CGLS

beaflw 1.e-5 1.e-10 28 66 0.96 0.24 *1.20 † 450, 2.00 †

beause 1.e-6 1.e-10 35 22 0.90 0.08 *0.98 † 447, 1.92 †

landmark 1.e-1 1.e-8 2 100 34.5 7.42 41.92 239, 38.43 (10.0) † 252, *8.77

lp cycle 1.e-4 1.e-6 17 43 2.24 0.84 *3.08 † 1020, 32.85 6799, 6.74

Maragal2 1.e-4 1.e-3 38 36 0.11 0.04 *0.15 † 169, *0.15 11224, 1.94

Pd rhs 1.e-4 1.e-8 3 4 0.93 0.00 0.93 † 780, 44.47 242, *0.29

†: GMRES did not converge in2500 steps or D-CGLS did not converge in100000 steps.

From Table5.4 we see that our preconditioning algorithm detected some linearly depen-

dent columns so that achieved faster convergence. On the other hand, RIF preconditioning

algorithm broke down at the preconditioning stage or RIF-preconditioned GMERS con-

verges slowly.

From Table5.3 and5.4 we conclude that, our preconditioner performs competitively

for ill-conditioned problem, and more robust with rank deficient problems.

Chapter 6

Applications to Linear Programming

Problems

A linear programming problem involves the optimization of alinear function subject

to linear constraints on the variables. Although linear functions are simple functions, they

arise frequently in economics, production planning, networks, scheduling and other ap-

plications. The simplex method is the most widely used method for linear programming.

It was developed in the1940’s at the same time as linear programming models was intro-

duced. Due to its efficiency, the simplex method has no competitors until recent years. With

the development of interior-point methods, the simplex method has had a serious challenge.

Interior-point methods are the most significant development in linear optimization since

the development of the simplex method. The methods have goodtheoretical efficiency and

good practical performance. Interior-point methods require to solve a least squares prob-

lem in each step. The closer the iteration solutions get to the optimal solution, the more

ill-conditioned the least squares problems become. Directmethods are usually used to

86

Chapter 6: Applications to Linear Programming
Problems 87

solve these least squares problems. In this thesis, we solvethe least squares problem by the

Krylov subspace methods with our preconditioner.

In this chapter, we first give an introduction to the basics oflinear programming and the

interior-point methods. For details, we refer to [32,54]. And we also present some numer-

ical results to show that our preconditioners are also suitable for this kind of problems.

6.1 Linear programming

There are many different ways to represent a linear programming problem. Sometimes

one form is more convenient than the other. The standard way to describe a linear program-

ming problem is

min CT x

s.t. Ax = b

x ≥ 0

(6.1)

whereA is anm×n matrix calledconstraint matrix, vectorsx andc are bothn dimensional

vectors,b ∈ Rm. if x satisfies the constraintsAx = b, x ≥ 0, we call it a feasible point.

the set of all feasible points is the feasible set. All the linear programming problems can

be written as standard form. The fundamental properties of alinear programming problem

are

• a vector of real variables, whose optimal values are found bysolving the problem;

• a linear objective function;

• linear constraints, both inequalities and equalities.

Chapter 6: Applications to Linear Programming
Problems 88

Associated with any linear program is another linear program called thedual, which

consists of the same data objects arranged in a different way. The dual for (6.1) is

max bT λ

s.t. AT λ + s = c

s ≥ 0,

(6.2)

whereλ is a vector inRm ands is a vector inRn. We call components ofλ the dual vari-

ables, whiles is the vector of dual slacks.

The linear programming problem (6.1) is called theprimal, to distinguish it from prob-

lem (6.2). The two problems together are referred to as theprimal-dual pair. Define the

primal-dualfeasible setF andstrictly feasible setF o,

F = {(x, λ, s)|Ax = b, AT λ + s = c, (x, s) ≥ 0} (6.3)

F o = {(x, λ, s)|Ax = b, AT λ + s = c, (x, s) > 0}. (6.4)

Elements inF are called feasible solutions, and the ones inF o are called strictly feasible

solutions. Assume(x̄, λ̄, s̄) is a feasible solution, hence,x̄, λ̄ and s̄ satisfy the following

equations, and inequalities,

Ax̄ = b (6.5)

AT λ̄ + s̄ = c (6.6)

x̄ ≥ 0, s̄ ≥ 0. (6.7)

Chapter 6: Applications to Linear Programming
Problems 89

From the above relations, we can easily see that for any feasible solution we havecT x̄ ≥

bT λ̄.

cT x̄ = (AT λ̄ + s̄)T x̄ (6.8)

= λ̄T Ax̄ + s̄T x̄ (6.9)

= λ̄T b + s̄T x̄ (6.10)

≥ λ̄T b. (6.11)

We call

cT x̄− λ̄T b = s̄T x̄ (6.12)

theduality gap. The idea of the primal-dual method is to find a sequence of strictly feasible

solutions(x̄k, λ̄k, s̄k) ∈ F o so that the duality gap decreases gradually. Once the duality

gap reaches zero, then the solution would be optimal. Note that when the duality gap is

zero when the strictly feasible solution is(x̄, λ̄, s̄), thens̄T x̄ is zero too. Combing the fact

that a feasible solution is optimal to the primal problem (6.1) and the dual problem (6.2) if

and only if it satisfies the complementary slackness conditions

xjsj = 0, j = 1, . . . , n, (6.13)

we obtain the following conclusion.

LEMMA 6.1.1 The vector pair(x∗, λ∗, s∗) is the optimal solution to problem (6.2) and

Chapter 6: Applications to Linear Programming
Problems 90

problem (6.1) if and only if it satisfies the following conditions,

AT λ + s = c

Ax = b

xisi = 0, i = 1, 2, . . . , n

x ≥ 0, s ≥ 0 .

(6.14)

The Lemma 6.1.1 can also be concluded from KKT conditions [54], hence, here we call

the above conditionsKKT Conditions.

The idea of the primal-dual method is to move through a sequence of strictly feasible

primal and dual solutions that go closer and closer to zero. Specifically, at each iteration

we attempt to find vectorsx(µ), λ(µ), s(µ) satisfying, for someµ > 0,

AT λ + s = c

Ax = b

xisi = µ, i = 1, 2, . . . , n

x ≥ 0, s ≥ 0 .

(6.15)

The difference from KKT conditions is the third equation. Insteadxisi = 0, i = 1, 2, . . . , n,

we havexisi = µ, i = 1, 2, . . . , n, whereµ is a positive number and is reduced step by

step until convergence is achieved. We chooseµ to be a sequence of positive number so

that we can guarantee thatx > 0 ands > 0, i.e.,(x, λ, s) is a strictly feasible solution. In

this case, the duality gap is

xT s = nµ. (6.16)

Hence, when we reduceµ to zero gradually, we also reduce the duality gap, when the

duality gap is small enough, we say we find an optimal solutionwithin some tolerance. Let

Chapter 6: Applications to Linear Programming
Problems 91

X = diag(x), S = diag(s), and vectore = [1, 1, . . . , 1]T be an dimensional vector, the

third equation can be simplified as

XSe = µe. (6.17)

From the above discussion, it is easy to see that in the primal-dual algorithm, we need to

solve equations

AT λ + s = c

Ax = b

XSe = µe

x ≥ 0, s ≥ 0 .

(6.18)

in every step. And solving these equations is the main cost ofthe primal-dual algorithm.

Note that the third in Equations (6.18) is nonlinear. We use Newton’s Method to solve

it. Assume we have a solution(x, λ, s) satisfying Equations (6.18), and then we reduceµ

to µ̄ < µ, we need to find a new solution(x + ∆x, λ + ∆λ, s + ∆s) which satisfies the

Equations (6.18) with̄µ. Hence, we want to solve

AT (λ + ∆λ) + (s + ∆s) = c

A(x + ∆x) = b

(X + ∆X)(S + ∆S)e = µ̄e

(x + ∆x) ≥ 0, (s + ∆s) ≥ 0 ,

(6.19)

Chapter 6: Applications to Linear Programming
Problems 92

which is equivalent to

AT ∆λ + ∆s = 0

A∆x = 0

(X + ∆X)(S + ∆S)e = µ̄e

∆x ≥ 0, ∆s ≥ 0 ,

(6.20)

where∆X = diag(∆x), ∆S = diag(s). The third equation(X + ∆X)(S + ∆S)e = µ̄e

can be written as

X∆s + S∆x + ∆X∆Se = µ̄e−XSe. (6.21)

When∆x and∆s are small,∆X∆Se is much smaller, for this reason, we can omit this

second order term. To sum up, to obtain the new solution(x + ∆x, λ + ∆λ, s + ∆s), we

need to solve the following linear system,















0 AT I

A 0 0

S 0 X





























∆x

∆λ

∆s















=















0

0

−XSe + µ̄e















. (6.22)

Once the above linear system is solved, we set(x+∆x, λ+∆λ, s+∆s) as the new solution

and reducēµ to look for the next solution.

However, in practical the new solution may fail to satisfy the conditionsx + ∆x > 0,

s + ∆s. To ensure every solution is a strictly feasible solution, we choose a scalarα and

Chapter 6: Applications to Linear Programming
Problems 93

set the new solution as

x(α, µ) = x + α∆x (6.23)

λ(α, µ) = λ + α∆λ (6.24)

s(α, µ) = s + α∆s, (6.25)

whereα is chosen to ensure thatx(α, µ) > 0 ands(α, µ) > 0. In summary, we can obtain

the following algorithm.

ALGORITHM 6.1.1 Primal-Dual Framework [54]

1. Given(x0, λ0, s0) ∈ F o.

2. for k = 1, . . . until convergence

3. solve














0 AT I

A 0 0

Sk 0 Xk





























∆xk

∆λk

∆sk















=















0

0

−XkSke + σkµke















, (6.26)

whereσk ∈ [0, 1] andµk = (xk)T sk/n.

4. set(xk+1, λk+1, sk+1) ← (xk, λk, sk) + αk(∆xk, ∆λk, ∆sk), whereαk is chosen so

that (xk+1, sk+1) > 0. µk+1 = (sk+1)T xk+1.

5. end for

In Algorithm 6.1.1, we assume that we have a strictly feasible solution in the beginning.

However, in practice, this is not very common. If we have a solution(x, λ, s), wherex > 0

ands > 0, but one of

Ax = b and AT λ + s = c (6.27)

Chapter 6: Applications to Linear Programming
Problems 94

or both are not satisfied, Algorithm 6.1.1 is not suitable. Inthis case, we want to find a new

solution satisfying

AT (λ + ∆λ) + (s + ∆s) = c

A(x + ∆x) = b

(X + ∆X)(S + ∆S)e = µ̄e

(x + ∆x) ≥ 0, (s + ∆s) ≥ 0 .

(6.28)

MoveAT λ + s andAx to the right hand side of the equations, and omit term∆X∆Se, we

obtain an equivalent linear system

AT ∆λ + ∆s = rD

A∆x = rP

X∆s + S∆x = µ̄e−XSe

(x + ∆x) ≥ 0, (s + ∆s) ≥ 0 ,

(6.29)

whererD = c − AT λ is the residual of the dual problem andrP = b − Ax is the residual

of the primal problem. To sum up, for the case that an feasiblesolution is not available, we

have the following algorithm.

ALGORITHM 6.1.2 Primal-Dual Framework [54]

1. Given(x0, λ0, s0).

2. for k = 1, . . . until convergence

3. solve














0 AT I

A 0 0

Sk 0 Xk





























∆xk

∆λk

∆sk















=















rD

rP

−XkSke + σkµke















, (6.30)

whereσk ∈ [0, 1] andµk = (xk)T sk/n.

Chapter 6: Applications to Linear Programming
Problems 95

4. set(xk+1, λk+1, sk+1) ← (xk, λk, sk) + αk(∆xk, ∆λk, ∆sk), whereαk is chosen so

that (xk+1, sk+1) > 0. µk+1 = (sk+1)T xk+1.

5. end for

6.2 Application of the Greville’s method to linear pro-

gramming problems

6.2.1 When a feasible initial solution is available

In this section, we introduce how to apply our preconditioners to linear programming.

First we consider the case that we have a strictly feasible initial solution. In every step of

Algorithm 6.1.1, we solve















0 AT I

A 0 0

Sk 0 Xk





























∆xk

∆λk

∆sk















=















0

0

−XkSke + σkµke















, (6.31)

Chapter 6: Applications to Linear Programming
Problems 96

whereσk ∈ [0, 1] andµk = (xk)T sk/n. Since in the algorithm we ensure(xk, λk, sk) is a

strictly feasible solution,S−1 andX−1 exist. DenoteS−1/2X1/2 by D.

X∆s + S∆x = σkµke−XSe (6.32)

S−1X∆s + ∆x = σkµkS−1e− S−1XSe (6.33)

AD2∆s + A∆x = σkµkAS−1e− AD2Se (6.34)

AD2∆s = σkµkAS−1e− AD2Se (6.35)

AD2(−AT ∆λk) = σkµkAS−1e− AD2Se (6.36)

AD2AT ∆λk = AD2Se− σkµkAD2X−1e (6.37)

(AD)(AD)T∆λk = ADD(S − σkµkX−1)e. (6.38)

If we can solve∆λk from Equation (6.38), we can compute the other two vectors∆xk and

∆sk as follows,

∆sk = −AT ∆λ (6.39)

∆xk = −X(Sk)−1∆sk −Xke + σkµk(Sk)−1e. (6.40)

For Equation (6.38), if we define

C = (AD)T (6.41)

f = D(S − σkµkX−1)e, (6.42)

Equation (6.38) can be written as a normal equation form

CT C∆λk = CT f. (6.43)

Chapter 6: Applications to Linear Programming
Problems 97

Note that the above normal equation is equivalent to the least squares problem

min
∆λk∈Rm

‖C∆λk − f‖2, (6.44)

hence, we can apply our preconditions from Chapter 5 to the above least squares problem.

6.2.2 When a feasible initial solution is not available

In the Subsection 6.2.1 we introduced how to apply preconditioners to the interior-point

method when a feasible initial solution is available. However, there are many case that a

feasible initial solution is not available. In this case, from the discussion of Section 6.1, we

need to solve














0 AT I

A 0 0

Sk 0 Xk





























∆xk

∆λk

∆sk















=















rk
D

rk
P

−XkSke + σkµke















(6.45)

in every step of Algorithm 6.1.2. In the algorithm we keepxk and sk positive so that

D = S−1/2X1/2 is well defined.

Xk∆s + Sk∆x = µke−XkSke (6.46)

(Sk)−1Xk∆s + ∆x = σkµk(Sk)−1e− (Sk)−1XkSke (6.47)

A(Dk)2∆s + A∆x = σkµkA(Sk)−1e−AD2Ske (6.48)

A(Dk)2∆s + rk
P = σkµkA(Sk)−1e−A(Dk)2Ske (6.49)

A(Dk)2(rk
D − AT ∆λk) + rk

P = σkµkAS−1e− A(Dk)2Ske (6.50)

(ADk)(ADk)T ∆λk = rk
P + ADkDk(rk

D + Ske− σkµk(Xk)−1e).(6.51)

Chapter 6: Applications to Linear Programming
Problems 98

After solve∆λk from Equation (6.51), we can compute the other two vectors∆xk and∆sk

as follows,

∆sk = rk
D −AT ∆λ (6.52)

∆xk = −Xk(Sk)−1∆sk −Xke + σkµk(Sk)−1e. (6.53)

For Equation (6.51), if we define

C = (A(Dk))T (6.54)

f = (Dk)((Sk)− σkµk(Xk)−1)e, (6.55)

Equation (6.38) can be written as a normal equation form

CT C∆λk = rk
D + CT f. (6.56)

Hence, the above equation is not in a normal equation form because ofrk
D is generally

nonzero, which means that we cannot apply our preconditioners directly to the correspond-

ing least squares problem.

We can overcome this difficulty by reformulating the linear programming problem in a

special way. The following method is described in [39]. Consider a linear programming

problem in the standard form, its primal is (6.1), whereA is anm × n matrix, and its

dual is (6.2). We introduce another linear programming problem by augmenting this linear

Chapter 6: Applications to Linear Programming
Problems 99

programming problem. We first define some new quantities.

L = ⌈log







largest absolute value of the determinant

of any square submatrix of A

+ 1






⌉

+⌈log(1 + max
j
|cj|)⌉+ ⌈log(1 + max

i
|bi|)⌉+ ⌈log(m + n)⌉ (6.57)

α = 24L (6.58)

β = 22L (6.59)

m̃ = m + 1 (6.60)

ñ = n + 2 (6.61)

Kb = αβ(n + 1)− βcTe (6.62)

Kc = αβ, (6.63)

whereL is called the size of problem (6.1),⌈. . . ⌉ is defined as, for a scalarw ∈ R

⌈w⌉ = min{z ∈ Z|z ≥ w}. (6.64)

From the definition ofL, it is easy to see thatL ≥ 4. Then the augmented problem can be

stated as follows,

min cT x + Kcxñ

s.t. Ax + (b− βAe)xñ = b

(αe− c)T x + αxñ−1 = Kb

x ≥ 0, xñ−1 ≥ 0, xñ ≥ 0,

(6.65)

Chapter 6: Applications to Linear Programming
Problems 100

wherexñ−1 andxñ are scalars. The dual of the problem (6.65) is then given as follows.

max bT λ + Kbλm̃

s.t. AT y + (αe− c)λm̃ + s = c

αλm̃ + sñ−1 = 0

(b− βAe)T λ + sñ = Kc

s ≥ 0, sñ−1 ≥ 0, sñ ≥ 0,

(6.66)

whereλm̃, sñ−1 andsñ are scalars. Definẽx ∈ Rñ, λ̃ ∈ Rm̃, s̃ ∈ Rñ, b̃ ∈ Rm̃, c̃ ∈ Rñ and

Ã ∈ Rm̃×ñ as follows, We define

x̃ =















x

xñ−1

xñ















, λ̃ =







λ

λm̃






(6.67)

b̃ =







b

Kb






, c̃ =















c

0

Kc















(6.68)

Ã =







A 0 b− βAe

(αe− c)T α 0






. (6.69)

With these notations, we can reform the linear programming problem to obtain the aug-

mented problem. The primal problem (6.1) is rewritten as

min c̃T x̃

s.t. Ãx̃ = b̃

x̃ ≥ 0.

(6.70)

Chapter 6: Applications to Linear Programming
Problems 101

The dual problem (6.2) is rewritten as

max b̃T λ̃

s, t. ÃT λ̃ + s̃ = c̃

s̃ ≥ 0.

(6.71)

For this augmented linear programming problem, a feasible solution always exists. Con-

sider the point(x̃0, λ̃0, s̃0) which is defined as follows.

x̃0 = [β, β, . . . , β, 1]T ∈ R
ñ (6.72)

λ̃0 = [0, 0, . . . , 0,−1]T ∈ R
m̃ (6.73)

s̃0 = [α, α, . . . , α, αβ]T ∈ R
ñ. (6.74)

It is easy to verify the point(x̃0, λ̃0, s̃0) satisfies

Ãx̃0 = b̃ (6.75)

ÃT λ̃0 + s̃0 = c̃ (6.76)

x̃0 ≥ 0 (6.77)

s̃0 ≥ 0, (6.78)

which implies that(x̃0, λ̃0, s̃0) is a feasible solution to the augmented linear programming

problem. Then, we can use Algorithm 6.1.1 to solve the augmented linear programming

problem.

SinceL is uncomputable, we have to estimate the size ofL according to the problems.

If we use iterative methods solve the least squares problemsrising in each interior point

Chapter 6: Applications to Linear Programming
Problems 102

method step, the size of theL can have big influence on the convergence of the iterative

methods we use. Consider the size ofL. From the definition ofL we can see thatL ≥

3 + ⌈log(m + n)⌉. If we takeL as5,

α = 24L = 220 = (210)2 ≈ 10002 = 106 (6.79)

β = 22L ≈= 1000. (6.80)

α andβ can be much larger when a largerL is taken.

6.3 Numerical Examples

Our test matrices are provided by Prof. Takashi Tsuchiya andthese matrices can also

be found in [25]. All computations were run on a Dell Precision 690, where the CPU is3

GHz and the memory is16 GB, and the programming language and compiling environment

was GNU C/C++ 3.4.3 in Redhat Linux.

In the following tables, we use Interior Point Method to solve the augmented linear

programming problems. We use different methods to solve theleast squares problems

arising in the Interior Point Method. In the tables,

• DCGLS stands for solving the least squares problems by CGLS with diagonal scal-

ing.

• DGMRESNE stands for solving the least squares problem by using GMRES with

diagonal scaling to solve the corresponding normal equations.

• GreGMRES stands for solving the least squares problems by using GMRES with

Chapter 6: Applications to Linear Programming
Problems 103

Greville’s method as preconditioning algorithm.

• Cholesky stands for solving the least squares problem by forming the normal equa-

tion explicitly and using the Cholesky decomposition with the approximate minimal

degree ordering [1].

In the Cholesky approach, at thekth step of the interior-point method, to solve∆λ̃(k)

from

ÃD̃2
kÃ

T ∆λ̃(k) = ÃD̃2
kS̃

(k)e− σkµkÃD̃2
k(X̃

(k))−1e, (6.81)

the Cholesky decomposition of̃AD̃2
kÃ

T has to be computed, where

Ã =







A 0 b− βAe

(αe− c)T α 0






, (6.82)

D̃2
k = S̃−1

k X̃k = diag{(s̃(k)
1)−1, . . . , (s̃

(k)
n)−1}diag{x̃(k)

1 , . . . , x̃
(k)
n }. To perform the Cholesky

decomposition,̃AD̃2
kÃ

T has to be formed explicitly. However, even thoughA is a sparse

matrix,ÃD̃2
kÃ

T can be dense. Consider matrix̃A in column form,

Ã = [ã1, ã2, . . . , ãn], (6.83)

then,

ÃD̃2
kÃ

T = [ã1, ã2, . . . , ãn]D̃2
k[ã1, ã2, . . . , ãn]T (6.84)

=

n
∑

i=1

ãiã
T
i x̃

(k)
i

s̃
(k)
i

. (6.85)

ÃD̃2
kÃ

T is a linear combination of a sequence of rank-one matrices. If one of these rank-

Chapter 6: Applications to Linear Programming
Problems 104

one matrices is dense, i.e. if one column ofÃ is dense, the whole matrix̃AD̃2
kÃ

T is dense.

WhenÃD̃2
kÃ

T is dense, it is expensive to compute its Cholesky decomposition. To over-

come this problem, we used the Sherman-Morrison formula to deal with the dense columns

in Ã, details are introduced in [54]. Assume there is only one dense columñaj.

ÃD̃2
kÃ

T =
n
∑

i=1,i6=j

ãiã
T
i x̃

(k)
i

s̃
(k)
i

+
ãj ã

T
j x̃

(k)
j

s̃j
(k)

. (6.86)

In this case, the first term is sparse, and the second term is dense. Then, we perform

minimal degree ordering algorithm and sparse Cholesky decomposition to the first term to

obtain

LkL
T
k = P T

k (
n
∑

i=1,i6=j

ãiã
T
i x̃

(k)
i

s̃
(k)
i

)Pk, (6.87)

wherePk is a permutation matrix which comes from reordering algorithms. Then, Equation

(6.82) becomes

(PkLLT P T
k +

ãj ã
T
j x̃

(k)
j

s̃
(k)
j

)∆λ̃(k) = Ã(x̃k − σµ(S̃(k))−1e). (6.88)

To obtain∆λ̃(k) we first compute∆λ̂(k) = (PkLLT P T
k)−1Ã(x̃(k)−σµ(S̃(k))−1e) which can

be solved by two triangular substitutions. Whenλ̂(k) is obtained, we can use the Sherman-

Morrison formula to computẽλ(k) easily. The Sherman-Morrison formula can be written

as follows,

(G + abT)−1 = G−1 −
G−1abT G−1

1 + bT G−1a
, (6.89)

whereG ∈ Rn×n is nonsingular, anda, b ∈ Rn. Hence, according to the Sherman-Morrison

Chapter 6: Applications to Linear Programming
Problems 105

formula

λ̃(k) =

(

PkLLT P T
k +

ãj ã
T
j x̃

(k)
j

s̃
(k)
j

)−1

Ã(x̃(k) − σµ(S̃(k))−1e)

=









(PkLLT P T
k)−1 −

(PkLLT P T
k)−1 ãj ãT

j x̃
(k)
j

s̃
(k)
j

(PkLLT P T
k)−1

1 + ãT
j (PkLLT P T

k)−1 ãj x̃
(k)
j

s̃
(k)
j









Ã(x̃(k) − σµ(S̃(k))−1e)

= λ̂(k) −
(PkLLT P T

k)−1 ãj ãT
j x̃

(k)
j

s̃
(k)
j

λ̂(k)

1 + ãT
j (PkLLT P T

k)−1 ãj x̃
(k)
j

s̃
(k)
j

.

In the above equations,(PkLLT P T
k)−1ãj can be computed by two triangular substitutions.

For DCGLS, DGMRESNE and GreGMRES approaches, we set the inner iteration stop-

ping criterion to be,

‖ÃT r‖2 < 10−8‖ÃT b‖2, (6.90)

whereÃ is the coefficient of the least squares problem, andb is the corresponding right

hand side vector, and ther is the residual vector. We stop the Interior Point Method when

x̃
(k)
i s̃

(k)
i < 10−6, i = 1, 2, . . . , n. (6.91)

In the followings tables, in each cell, for DCGLS and DGMRESNE we list the follow-

ing information,

• Number of outer iteration,

• Average inner iteration per outer iteration,

• Total cpu time.

For GreGMRES, we record

Chapter 6: Applications to Linear Programming
Problems 106

• Number of outer iteration,

• Average inner iteration per outer iteration,

• Total cpu time,

• Dropping tolerance.

• Switching tolerance.

For Cholesky, we record

• Number of outer iteration,

• Total cpu time.

From Equation (6.57),L is difficult to compute. Hence, here we simply setL to be a integer

between1 and10 for different problems. The parameterσk in the Interior Point method

Algorithm 6.1.1 is set to be0.5. For the GreGMRES method, the switching tolerance is usu-

ally reduced by half after each Interior Point method step because when the solution tends

to the true solution, the least squares problem may become more and more ill-conditioned

and tend to be nearly rank deficient, hence, smaller switching tolerance makes sure that no

wrong linearly dependent columns are detected. We set the maximal iteration for DCGLS

to be50, 000, and the maximal iteration of DGMRESNE and GreGMRES is2000. In the

tables “X” means the optimal value of the objective function of the linear programming

problem is not achieved by the computed solution. “†” means that the inner iterative meth-

ods did not converge within the maximal iteration, or a breakdown happens.

Chapter 6: Applications to Linear Programming
Problems 107

Table 6.1: Numerical Results, augmented approach

Matrices Size L DCGLS DGMRESNE GreGMRES Cholesky

names m × n out, in, cpu out, in, cpu out, in, cpu, (τd τs) out, cpu

25fv47 821×1876 3 52, 1914, 55.92 42, 280, 50.85 51, 2, 79.08 (1.e-6, 1.e-5) 50, 19.44

adlittle 56×138 4 33, 98 , 0.12 34, 49, 1.64 33, 14, 1.1 (1.e-2, 1.e-6) 33, 0.02

afiro 27×51 3 27, 27, 0.01 27, 27, 1.14 27, 4, 0.88 (1.e-2, 1.e-6) 27, 0.00

agg 488×615 9 61, 408, 5.27X 60, 148, 25.07X 62, 19, 13.64 (1.e-6, 1.e-6) 49, 4.03X

agg2 516×758 7 54, 226, 3.36 53, 117, 17.81 53, 2, 13.85 (1.e-6, 1.e-6) 53, 6.06

agg3 516×758 7 L =8, 59, 218, 3.57 52, 128, 20.14 55, 2, 14.25 (1.e-6, 1.e-6) 55, 6.34

bandm 305×472 3 35, 634, 3.48 35, 206, 17.82 34, 2, 4.6 (1.e-6, 1.e-6) 34, 0.71

beaconfd 173×295 4 33, 73, 0.36 34, 58, 2.39 32, 13, 2.21 (1.e-6, 1.e-3) 33, 0.32

blend 74×114 2 27, 210, 0.21 26, 74, 1.51 26, 3, 0.98 (1.e-3, 1.e-4) 26, 0.03

bnl1 643×1586 4 54, 1262, 25.75X 47, 343, 129.89X 58, 6, 42.87 (1.e-6, 1.e-6) 48, 2.21X

bnl2 2324×4486 3 66, 2493, 182.15 64, 466, 1145.98 60, 6, 1134.94 (1.e-6, 1.e-6) 60, 40.94

brandy 220×303 3 36, 1315, 5.66 36, 174, 9.62 36, 7, 2.48 (1.e-6, 1.e-5) 35, 0.31

capri 418×643 4 47, 3669, 31.19X 41, 241, 34.26X 45, 5, 11.71 (1.e-6, 1.e-4) 39, 1.03

d6cube 415×6184 3 65, 710, 68.11X 70, 243, 85.24X 61, 12, 66.61(1.e-6, 1.e-6) 61, 12.02

degen2 444×757 4 37, 1240, 10.9X 37, 241, 38.66X 42, 146, 45.14(1.e-1.e-6, 1.e-2) 4†

degen3 1503×2604 3 43, 5471, 243.54X 39, 400, 399.47X 40, 246, 999.8(1.e-6, 1.e-3) 39, 222.43

fffff800 524×1028 6 61, 6833, 138.97X 66, 366, 160.22X 74, 12, 46.96 (1.e-6, 1.e-6) 74, 16.43

fit1d 1050×2075 4 47, 109, 3.68 47, 52, 7.58X 48, 5, 129.29(1.e-4, 1.e-6) 49, 4.36

fit1p 1026×2076 4 45, 654, 17.75X 45, 137, 47.82 43, 13, 138.56 (1.e-4, 1.e-6) 45, 40.6

gfrd-pnc 874×1418 7 55, 3335, 62.33X 53, 291, 168.88X 58, 30, 125.81 (1.e-6, 1.e-6)X 43, 2.57

Chapter 6: Applications to Linear Programming
Problems 108

Table 6.2: Numerical Results, augmented approach

Matrices Size L DCGLS DGMRESNE GreGMRES Cholesky

names m × n out, in, cpu out, in, cpu out, in, cpu (τd, τs) out, cpu

grow15 900×1245 9 61, 340, 8.48 60, 202, 107.14 62, 2, 118.89 (1.e-6, 1.e-6) 62, 19.85

grow22 1320×1826 9 65, 754, 29.23 65, 261, 272.76 68, 6, 425.38(1.e-6, 1.e-6) 66, 60.57

grow7 420×581 9 57, 168, 1.9 60, 137, 22.8 57, 2, 15.39 (1.e-6, 1.e-6) 57, 2.69

israel 174×316 7 51, 633, 3.74X 57,152, 10.95X 59, 3, 3.69 (1.e-6, 1.e-6) 59, 1.27

kb2 52×77 5 38, 212, 0.22 36, 47, 1.83X 38, 1, 1.35 (1.e-4, 1.e-6) 38, 0.02

lotfi 153×366 5 46, 357, 1.48X 42, 108, 4.82 42, 25, 2.87 (1.e-4, 1.e-3) 41, 0.16

pilotnov 1519×2990 5 53, 1925, 85.21 63, 673, 1514.82 62, 103, 889.93 (1.e-5, 1.e-6) 61, 50.6

qap8 912×1632 1 26, 1676, 19.61 25, 108, 14.81 25, 129, 200 (1.e-6, 1.e-1) 1†

recipe 186×299 3 31, 349, 0.87 32, 144, 5.66 27, 4, 1.42 (1.e-6, 1.e-6) 27, 0.1

sc105 105×163 4 35, 118, 0.19 35, 81, 2.53 34, 2, 1.34 (1.e-4, 1.e-6) 34, 0.05

sc205 205×317 4 34, 240, 0.68 34, 142, 6.78 31, 3, 1.76 (1.e-4, 1.e-6) 31, 0.14

sc50a 50×78 3 28, 55, 0.04 28, 46, 1.43 28, 9, 1.02 (1.e-1, 1.e-6) 28, 0.01

sc50b 50×78 3 27, 49, 0.03 26, 43, 1.32 26, 9, 0.95 (1.e-1, 1.e-6) 26, 0.01

scagr25 471×671 6 50, 938, 8.67 50, 252, 58.92 50, 3, 9.46 (1.e-5, 1.e-6) 50, 1.16

scagr7 129×185 5 40, 193, 0.42 40, 102, 3.81 40, 2, 1.61 (1.e-5, 1.e-6) 40, 0.08

scfxm1 330×600 4 46, 1891, 15.34 45, 289, 42.81 42, 3, 5.62 (1.e-6, 1.e-6) 42, 0.84

scfxm2 660×1200 4 46, 3882, 62.65 46, 510, 259.88 46, 5, 33.85 (1.e-6, 1.e-6) 44, 3.3

scfxm3 990×1800 4 47, 6298, 155.63 44, 676, 678.86 46, 7, 108.23 (1.e-6, 1.e-6) 44, 7.18

scorpion 388×466 4 40, 297, 1.68X 47, 225, 37.39X 38, 62, 13.28 (1.e-6, 1.e-3) 1†

scrs8 490×1275 2 39, 773, 8.03 39, 310, 60.72 39, 6, 12.27 (1.e-6, 1.e-6) 38, 0.9

Chapter 6: Applications to Linear Programming
Problems 109

Table 6.3: Numerical Results, augmented approach

Matrices Size L DCGLS DGMRESNE GreGMRES Cholesky

names m × n out, in, cpu out, in, cpu out, in, cpu (τd, τs) out, cpu

scsd1 77×760 2 28, 49, 0.21 28, 44, 1.62 24, 5, 1.03 (1.e-3, 1.e-6) 24, 0.08

scsd6 147×1350 1 25, 81, 0.52 26, 76, 2.43 24, 6, 1.47 (1.e-3, 1.e-6) 24, 0.25

scsd8 397×2750 2 29, 172, 2.64 29, 153, 13.24 29, 2, 6.84 (1.e-6, 1.e-6) 29, 1.86

sctap1 300×660 2 40, 357, 2.19 40, 179, 15.53 36, 6, 3.16 (1.e-4, 1.e-6) 36, 0.36

sctap2 1090×2500 1 35, 465, 7.29 36, 261, 97.13 33, 2, 72.31 (1.e-6, 1.e-6) 33, 3.46

sctap3 1480×3340 1 38, 394, 11.37 38, 235, 124.91 35, 2, 130.33 (1.e-5, 1.e-6) 35, 6.74

share1b 117×253 7 57, 787, 3.34X 54, 111, 5.41X 58, 2, 2.52 (1.e-6, 1.e-6) 58, 0.16

share2b 96×162 3 34, 625, 1.13 32, 91, 2.45 32, 2, 1.31 (1.e-5, 1.e-6) 32, 0.08

shell 903×2144 7 68, 1100, 33.39 63, 242, 11.45 80, 43, 171.78 (1.e-6, 1.e-6) 59, 3.83

ship04l 402×2166 3 45, 647, 11.98 44, 153, 17.62 42, 40, 14.65 (1.e-6, 1.e-6) 31, 0.62

ship04s 912×1506 5 42, 414, 5.37X 49, 79, 7.36X 49, 31, 11.45 (1.e-6, 1.e-6) 46, 0.74

ship08l 778×4363 3 47, 934, 35.86X 53, 233, 88.07X 54, 105, 155.02 (1.e-6, 1.e-6) 52, 3.37

ship08s 778×2467 5 42, 834, 18.32X 53, 113, 23.21X 51, 78, 86.58 (1.e-6, 1.e-6) 50, 2.44

ship12l 1151×5533 3 61, 941, 60.92 62, 314, 307.46X 72, 63, 410.77 (1.e-6, 1.e-6) 66, 8.12

ship12s 1151×2869 4 L = 3, 56, 697, 25.16 56, 260, 162.5 53, 57, 195.65(1.e-6, 1.e-6) 55, 5.05

standata 479×1394 4 55, 360, 5.58X 53, 191, 33.64X 50, 6, 19.64 (1.e-6, 1.e-6) 47, 1.05

standmps 587×1394 4 61, 435, 8.25 64, 257, 85.29X 65, 7, 43.45 (1.e-6, 1.e-6) 61, 2.03

stocfor1 117×165 4 35, 197, 0.34 34, 109, 3.27 34, 5, 1.41 (1.e-5, 1.e-6) 34, 0.06

stocfor2 2157×3045 4 47, 3249, 124.6 45, 469, 761.03 44, 53, 1122.03 (1.e-6, 1.e-8) 44, 36.22

truss 1000×8806 4 50, 2390, 191.69X 43, 432, 415.38 48, 10, 179.36 (1.e-5) 49, 49.18

tuff 362×659 3 38, 791, 6.77 39, 290, 39.68 38, 4, 6.88 (1.e-6, 1.e-8) 37, 0.89

vtp.base 281×430 5 48, 1131, 6.1X 48, 189, 17.94X 50, 30, 6.99 (1.e-6, 1.e-8) 46, 0.48

wood1p 244×2595 4 51, 198, 18.63 36, 83, 10.64X 57, 1, 28.15 (1.e-8, 1.e-10) 51, 5.61

Chapter 6: Applications to Linear Programming
Problems 110

6.4 Conclusion

From the above the numerical results, we find out:

• The Cholesky approach is the fastest method to solve the linear programming prob-

lems. However, for some problems, the Cholesky decomposition broke down.

• Comparing to the Cholesky approach, using iterative methods to solve the least

squares problems in the interior-point method steps is usually slow. One reason

is that when the augmented approach is used, the last column of D̃kÃ
T , which is

the coefficient matrix of the least squares problem in thekth interior-point method

step, is dense. This dense column makes the operations involving D̃kÃ
T much more

expensive.

• Among these three iterative methods we used, CGLS with diagonal scaling is usually

the fastest, and GMRES solving the diagonal scaled normal equation approach is

usually the slowest. There are also many cases in which GMRESwith our Greville

preconditioner is the fasted.

• CGLS with diagonal scaling approach and GMRES solving the diagonal scaled nor-

mal equation approach sometimes can not obtain the optimal solution. At this point,

GMRES with the Greville preconditioner is more reliable.

• Although the GMRES with the Greville preconditioner approach is the slowest in

many cases, it can obtain the optimal solution when the Cholesky approach breaks

down or could not obtain the optimal solution. The reason is the Cholesky approach

becomes less stable when the Cholesky decomposition is usedtogether with the

Sherman-Morrison. If the Sherman-Morrison is not used, then the Cholesky de-

Chapter 6: Applications to Linear Programming
Problems 111

composition is performed on a almost dense matrix, which is much more expensive

than using GMRES with the Greville preconditioner.

Chapter 7

Conclusion

In this thesis, we studied preconditioning techniques for least squares problems and es-

pecially the rank deficient problems. We focused on constructing approximate generalized

inverse of the coefficient matrices of the problems and usingwhat we constructed to pre-

condition the Krylov subspaces methods. In our methods, we can construct rank deficient

preconditioners for rank deficient problems, which is a new idea to preconditioning. We

also proved the equivalence between the preconditioned problem and the original problem

which gives theoretical justification to our preconditioning methods.

In this thesis, two different approaches are considered.

• One is based on the Minimal Residual method which was developed for computing

the approximate inverse of a nonsingular matrix. We adaptedthis method so that

we can compute the approximate generalized inverse of a rectangular matrix. We

also did theoretical analysis to show that the preconditioners constructed by our al-

gorithm are suitable to be used to precondition least squares problems. To make the

minimal residual method work with rectangular matrices, wehave to use the steep-

112

Chapter 7: Conclusion 113

est descent direction to update the preconditioner matrixMk so that‖I −MkA‖F

reduces. The steepest descent direction makes the minimal residual method more ex-

pensive. Hence, without numerical droppings the preconditioning will become very

expensive in computations and storage. However, our theoretical analysis do not hold

when numerical droppings are performed.

• The other approach was based on an old algorithm: the ”Greville’s Method”. The

Greville’s method was used to compute the Moore-Penrose inverse of any matrix, the

main idea is based on the rank-one update. We reformed this algorithm and showed

the inexplicitAT A-orthogonalization process in the algorithm and its relation with

the RIF algorithm. This approach can give rank deficient preconditioners for rank

deficient matrices. And our theoretical results justify that the preconditioned prob-

lems is equivalent to the original problem and can be solved by the GMRES method

under Assumption 5.5.1 even with numerical droppings. Our numerical examples

showed that our preconditioners may perform better than other methods when the

coefficient matrix of the linear system is rank deficient and ill-conditioned. We also

showed that for rank deficient matrices, detecting certain amount of rank deficiencies

can bring advantage to the convergence. However, we cannot control the sparsity of

the preconditioner directly. Since in the preconditionerM = ZF−1V T , we can only

control the sparsity of matrixZ. If we perform numerical droppings on the vectors

of V , this factorization will not hold. The computational cost is also related with

how many rank deficient columns we detect in the preconditioning algorithm, since

it takes more computations to deal with the rank deficiency. In this preconditioning

algorithm we have two parametersτd, τs. τd is a threshold for numerical droppings,

τs is a threshold for detecting the linear dependence. The choice of τs is not very

clear. In our experiments, we usually setτs to be10−6. A small τs is safer in the

Chapter 7: Conclusion 114

sense to keep the equivalence between the original problem and the preconditioned

problem.

As an application from the real world, we applied our preconditioners to the linear pro-

gramming problems in which sparse, ill-conditioned and sometimes rank deficient matrices

arise. To solve the linear programming problems, we used ourpreconditioner to precon-

dition the least squares problems abstracted from the interior-point method in each step.

Numerical results showed that using our preconditioners, the least squares problems can

be solved more efficiently compared to using diagonal scaledGMRES to solve the normal

equations, but it is slower than using diagonal scaled CGLS to solve the least squares prob-

lems for many problems. All of these three iterative methodsare slower than the Cholesky

approach. Numerical results also shows that GMRES with Greville preconditioner ap-

proach is more stable compared to the rest methods. Even whenthe Cholesky approach

does not work, GMRES with our preconditioner approach stillcan compute an optimal

solution.

There are still a lot of issues to consider in the future. For both of our preconditioning

algorithms, preconditioning time is very heavy. A preprocessing to the coefficient matrices

or a more delicate dropping strategy is necessary. For the Greville’s method approach,

detecting the linear dependencies relies on how to choose the parameterτs which is still

open. In the end, we hope our work can bring some new ideas to this preconditioning field.

Bibliography

[1] P. R. AMESTOY, T. A. DAVIS, AND I. S. DUFF, Amd version 2.2 user guide, 2007.
http://www.cise.ufl.edu/research/sparse/amd.

[2] Z.-Z. BAI , I. S. DUFF, AND A. J. WATHEN, A class of incomplete orthogonal fac-
torization methods. i: Methods and theories, BIT Numerical Mathematics, 41 (2001),
pp. 53 – 70.

[3] R. E. BANK AND C. WAGNER, Multilevel ilu decomposition, Numer. Math., 82
(1999), pp. 543 – 574.

[4] S. T. BARNARD, L. M. BERNARDO, AND H. D. SIMON, An mpi implementation
of the spai preconditioner on the t3e, The International Journal of High Performance
Computing Applications, 13 (1999), pp. 107 – 128.

[5] A. BEN-ISRAEL AND T. N. GREVILLE, Generalized inverses: Theory and applica-
tions, Pure and Applied Mathematics. John Wiley & Sons, New York etc., 1974.

[6] M. W. BENSON, Iterative solution of large scale linear systems, M.Sc. Thesis, Lake-
head Universeity, Thunder Bay, ON, Canada, 1973.

[7] M. W. BENSON AND P. O. FREDERICKSON, Iterative solution of large sparse linear
systems arising in certain multidimensional approximataion problems, Utilitas Math.,
22 (1982), pp. 127 – 140.

[8] M. BENZI, Preconditioning techniques for large linear systems: a survey, J. Comput.
Phys., 182 (2002), pp. 418–477.

[9] M. BENZI, J. K. CULLUM , AND M. TŮMA , Robust approximate inverse precondi-
tioning for the conjugate gradient method, SIAM Journal on Scientific Computing,
22 (2000), pp. 1318–1332.

[10] M. BENZI AND M. TŮMA , Numerical experiments with two approximate inverse
preconditioners, BIT Numerical Mathematics, 38 (1998), pp. 234–241.

[11] , A comparative study of sparse approximate inverse preconditioners, Applied
Numerical Mathematics, 30 (1999), pp. 305 – 340.

[12] , A robust incomplete factorization preconditioner for poitive definite matrices,
Numerical linaer algebra with applications, 10 (2003), pp.385–400.

115

Bibliography 116

[13] , A robust preconditioner with low memory requirements for large sparse least
squares problems, SIAM Journal on Scientific Computing, 25 (2003), pp. 499–512.

[14] Å. BJÖRCK, Numerical Methods for Least Squares Problems, Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 1996.

[15] Å. BJÖRCK, T. ELFVING , AND Z. STRAKOS, Stability of conjugate gradient and
lanczos methods for linear least squares problems, SIAM Journal on Matrix Analysis
and Applications, 19 (1998), pp. 720–736.

[16] P. N. BROWN AND H. F. WALKER, GMRES on (nearly) singular systems, SIAM
Journal on Matrix Analysis and Applications, 18 (1997), pp.37–51.

[17] N. I. BULEEV, A numerical method for solving two- and three-dimensional diffusion
equations, Mat. Sb., 51 (1960), pp. 227 – 238.

[18] P. BUSINGER AND G. H. GOLUB, Linear least squares solutions by Householder
transformations, Numer. Math., 7 (1965), pp. 269–276. Also in [53, pp. 111–118],
Contribution I/8.

[19] S. L. CAMPBELL AND C. D. MEYER, JR., Generalized Inverses of Linear Transfor-
mations, Pitman, London, 1979. Reprinted by Dover, New York, 1991.

[20] E. CHOW AND Y. SAAD , Approximate inverse preconditioners via sparse-sparse it-
erations, SIAM Journal on Scientific Computing, 19 (1998), pp. 995–1023.

[21] J. D. F. COSGROVE, J. C.D́AZ , AND A. GRIEWANK, Approximate inverse precon-
ditioning for sparse linear systems, International Journal of Computer Mathematics,
44 (1992), pp. 91 – 110.

[22] X. CUI AND K. HAYAMI , Greville’s method for preconditioning least squares prob-
lems, Tech. Report NII-2008-008E, National Institute of Informatics, Tokyo, August
2008.

[23] , Generalized approximate inverse preconditioners for least squares problems,
Japan Journal of Industrial and Applied Mathematics, 26 (2009), pp. 1 – 14.

[24] X. CUI , K. HAYAMI , AND J.-F. YIN, Greville’s method for preconditioning least
squares problems, in Proceedings of ALGORITMY 2009 Conference on Scientific
Computing, 2009, pp. 440–448.

[25] T. A. DAVIS, The universtiy of florida sparse matrix collection, 2008.
http://www.cise.ufl.edu/research/sparse/matrices/.

[26] I. S. DUFF, R. G. GRIMES, AND J. G. LEWIS, Sparse matrix test problems, ACM
Transactions on Mathematical Software, 15 (1989), pp. 1–14.

[27] M. EIERMANN AND O. G. ERNST, Geometric aspects of the theory of krylov sub-
space methods, Acta Numerica, 10 (2001), pp. 251–312.

Bibliography 117

[28] M. ENGELI, T. GINSBURG, AND H. RUTISHAUSER, Refined iterative methods for
computation of the solution and the eigenvalues of self-adjoint boundary value prob-
lems, Birkhäuser, Basel/Stuttgart, 1959.

[29] G. H. GOLUB AND C. F. V. LOAN, Matrix Computations, Johns Hopkins University
Press, Baltimore, MD, USA, third ed., 1996.

[30] N. I. M. GOULD AND J. A. SCOTT, Sparse approximate-inverse preconditioners
using norm-minimization techniques, SIAM Journal on Scientific Computing, 19
(1998), pp. 605–625.

[31] T. N. E. GREVILLE, Some applications of the pseudoinverse of a matrix, SIAM Re-
view, 2 (1960), pp. 15–22.

[32] I. GRIVA , S. G. NASH, AND A. SOFER, Linear and Nonlinear Optimization, Society
for Industrial and Applied Mathematics, Philadelphia, PA,USA, second ed., 2009.

[33] M. J. GROTE AND T. HUCKLE, Parallel preconditioning with sparse approximate
inverses, SIAM Journal on Scientific Computing, 18 (1997), pp. 838–853.

[34] K. HAYAMI , J.-F. YIN , AND T. ITO, GMRES methods for least squares problems,
Tech. Report NII-2007-009E, National Institute of Informatics, Tokyo, July 2007.

[35] M. R. HESTENES ANDE. STIEFEL, Methods of conjugate gradients for solving lin-
ear system, J. Res. Nat. Bur. Standards., B49 (1952), pp. 409–436.

[36] A. JENNINGSAND M. A. AJIZ, Incomplete methods for solving a’ax = b, SIAM
J. Sci. Comput., 5 (1984), pp. 978 – 987.

[37] V. P. LL’ IN, Iterative incomplete factorization methods, World Scientific Pub Co Inc,
Singapore, 1992.

[38] J. A. MEIJERINK AND H. A. VAN DER VORST, An iterative solution method for
linear systems of which the coefficient matrix is a symmetricm-matrix, Math. Comp.,
31 (1977), pp. 148–162.

[39] R. D. MONTEIRO AND I. ADLER, Interior path following primal-dual algorithms.
part i: Linear programming, Mathematical Programming, 44 (1989), pp. 27–41.

[40] N.I.BULEEV, A numerical method for solving two-dimensional diffusion equations,
Atomic Energer, 6 (1960), pp. 222 – 224.

[41] T. A. OLIPHANT, An extrapolation process for solving linear systems, Q. Appl.
Math., 20 (1962), pp. 257 – 267.

[42] C. C. PAIGE AND M. A. SAUNDERS, Solution of sparse indefinite systems of linear
equations, SIAM Journal on Numerical Analysis, 12 (1975), pp. 617–629.

[43] C. C. PAIGE AND M. A. SAUNDERS, LSQR: An algorithm for sparse linear equa-
tions and sparse least squares, ACM Trans. Math. Softw., 8 (1982), pp. 43–71.

Bibliography 118

[44] A. T. PAPADOPOULOS, I. S. DUFF, AND A. J. WATHEN, A class of incomplete or-
thogonal factorization methods. ii: Implementation and results, BIT Numerical Math-
ematics, 45 (2005), pp. 159 – 179.

[45] Y. SAAD , Preconditioning techniques for nonsymmetric and indefinite linear systems,
Journal of Computational and Applied Mathematics, 24 (1984), pp. 89 – 105.

[46] , Iterative Methods for Sparse Linear Systems, Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, second ed., 2003.

[47] Y. SAAD AND M. H. SCHULTZ, GMRES: A generalized minimal residual algorithm
for solving nonsymmetric linear systems, SIAM Journal on Scientific and Statistical
Computing, 7 (1986), pp. 856–869.

[48] R. S. VARGA, Factorization and normalized iterative methods, Boundary Problems
in Differential Equations (R. E. Langer, ed.), (1960), pp. 121 – 142.

[49] K. VUIK , A. G. J. SEVINK , AND G. C. HERMAN, A preconditioned krylov subspace
method for the solution of least squares problems in inversescattering, J. Comput.
Phys., 123 (1996), pp. 330–340.

[50] G. WANG, Y. WEI, AND S. QIAO, Generalized Inverses: Theory and Computations,
Since Press, Beijing, 2003.

[51] X. WANG, K. A. GALLIVAN , AND R. BRAMLEY , Cimgs: An incomplete orthogo-
nal factorizationpreconditioner, SIAM Journal on Scientific Computing, 18 (1997),
pp. 516–536.

[52] P.-Å. WEDIN, Perturbation theory for pseudo-inverses, BIT Numerical Mathematics,
13 (1973), pp. 217 – 232.

[53] J. H. WILKINSON AND C. REINSCH, eds.,Linear Algebra, vol. II of Handbook for
Automatic Computation, Springer-Verlag, Berlin, 1971.

[54] S. J. WRIGHT, Primal-Dual Interior-Point Methods, Society for Industrial and Ap-
plied Mathematics, Philadelphia, PA, USA, 1997.

