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Abstract

In distributed object systems, object-oriented (OO) applications are repli-

cated from remote servers to client sites to improve performance, scala-

bility, and availability. This study focuses on fine-grained replications of

distributed OO applications. Unlike the traditional replication scheme by

which a self-contained application is replicated entirely at once, the fine-

grained replication scheme enables partial and on-demand incremental

replications of self-contained applications.

Fine-grained replications can be classified into two categories based on

their deployment patterns: 1) replicating running applications for local

accesses and 2) downloading application programs from persistent repos-

itories for local executions. Based on the classification, the study has

proposed a pair of fine-grained replication middlewares: one aims for the

fine-grained replications of remote runtime applications, and the other

aims for the partial and on-demand incremental downloadings of applica-

tion programs.

In addition, to exploit the fine-grained replications effectively requires a

proper means to figure out application portions as the units of replication.

The study has proposed object class clustering algorithms to support the

use of the latter middleware, while showing that object clustering, which

is used to support the former middleware, can be performed based on

programmer’s application knowledge.

The details of the middlewares and the class clustering algorithms are

summarized individually as follows.

Fine-grained replication of runtime application: Replicating re-

mote application objects to user locality is a common technique to reduce

the effects of network problem. The traditional replication scheme is not



suitable for cooperative applications because only part of a shared appli-

cation rather than a whole application should be replicated. Furthermore,

the scheme is not appropriate for mobile computing devices due to their

common constraints of memory spaces. Both problems can be addressed

by using a fine-grained replication scheme by which the portions of a self-

contained application can be replicated.

Since most object replication systems exploit the traditional replication

scheme, to fulfil fine-grained replication is an unexperienced task for sev-

eral application programmers. There exist few middlewares that support

runtime fine-grained replications of OO applications. All of them aim for

peer-to-peer applications in which objects that constitute a self-contained

application are decomposed and distributed among peers. Therefore,

peers that hold master copies of the application objects must always be

reachable by other peers to replicate the master copies. This is not suitable

for pervasive collaboration because the servant peers (e.g., mobile users)

can get disconnected arbitrarily or be unreachable due to network parti-

tioning. Instead, using dedicated servers to maintain the master copies of

applications is more appropriate. Unfortunately, no fine-grained replica-

tion middleware is designed for a client-server model.

This dissertation presents SOOM, a Java-based middleware for perva-

sive client-server cooperative applications. SOOM provides fine-grained

replication capability for clients in wide-area networks or on the Internet

and allows clients in local area network to exploit a conventional remote

method invocation mechanism in coordination with the fine-grained repli-

cation. SOOM also supports fine-grained concurrent access control and

update synchronization. To realize the middleware, several challenge re-

search problems have been identified and resolved.

An application for cooperative software modeling has been developed to

assure the practical applicability of SOOM and demonstrate the practi-

cality of fine-grained replication scheme, fine-grained consistency mainte-

nance, and the coexistence of fine-grained replications and remote method

invocations in client-server environment. The quantitative properties of

SOOM were measured through the following empirical evaluations. First,

experiments in single-user and multi-user environments based on different



consistency protocols indicated the practical throughputs of SOOM-based

application. Second, throughout accessing all member objects of a bench-

mark cluster showed that SOOM-based replication began to outperform

Java RMI when each object was accessed locally more than twice. Third,

an experiment using the varied numbers of client processors assured the

scalability of SOOM. Finally, an experiment on the memory space require-

ment showed that SOOM could reduce the significant amount of client

memory space consumption as well as network bandwidth.

Fine-grained replication of application program: OO applications

have been distributed more and more over the Internet. Deploying an ap-

plication by retrieving the entire program from a remote repository such

as HTTP server often encounters extended delay due to network conges-

tion or large program size. Many times system resources, such as network

bandwidth and client memory space, are also wasted because users do

not utilize every component of the downloaded applications. Moreover,

downloading a whole program at once is usually impractical for mobile

computing devices due to their memory space constrains.

These problems can be addressed by decomposing a program into groups

of classes and data resources to be downloaded on demand.

This dissertation presents C2, a Java-based middleware by which a Java

application can be partially and on-demand incrementally deployed via

HTTP. The middleware also supports application caching and transpar-

ently automatic updating.

The launching delay of an experimented application was found to be re-

duced by 83% from that of the traditional whole-at-once application de-

ployment scheme. Total program deployment and execution overhead was

22% less than that of Java Web Start.

Object class clustering approach: It is typical that only part of whole

program code is necessary for successful execution. Decomposing an OO

program into clusters of closely relevant classes and data resources for

on-demand incremental loading optimizes the program start-up latency

and system resource consumption. The lack of systematic yet simple class

clustering approach prohibits this kind of optimization.



This dissertation presents a Java class clustering approach that is capa-

ble of improving both spatial locality and temporal affinity of the opti-

mized programs. The approach provides two clustering algorithms: initial

delay-centric and intermittent delay-centric ones, to achieve different re-

quirements of optimizations.

Experimental results indicated that the algorithms were practically use-

ful to both interactive programs and non-interactive programs. Among

the tested Java programs, using the initial delay-centric algorithm and

the intermittent delay-centric algorithm improved initial program loading

latencies on average by 2.9 and 2.2 times respectively faster than the tra-

ditional whole-at-once program loading scheme. The intermittent delay-

centric algorithm reduced the number of intermittent delays to half of the

initial delay-centric algorithm. Both algorithms also led to the chances

to economize on system resources, such as memory spaces and network

bandwidths.
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Chapter 1

Introduction

1.1 Background

Distributed system provides a single coherent environment of computers and softwares

to accommodate remote resource sharing. Depending on the organization of processes,

distributed system can be classified into two models: client-server and peer-to-peer.

In the basic client-server model, processes are divided into two groups: a server is

a process implementing a specific service, and a client is a process that requests a

service from a server. In contrast, processes in the peer-to-peer model can play both

roles of server and client, and are hence called peers. Most distributed systems are

based on the client-server model.

Object-oriented (OO) model is a widely used software abstraction methodology

that encompasses the concepts of encapsulation, inheritance, and polymorphism.

State (data) and behavior (methods used to perform operations on the data) are

encapsulated into a single entity called an object. The key power of the OO model

lies in its separation of interface from implementation.

The integration of distributed system and OO model leads to distributed object

computing (DOC). Objects are distributed across network computers and typically

communicate with one another by means of remote method invocation in which client

objects invoking methods on and subsequently receiving responses from remote ser-

vant objects. The methods are made available to clients via a public interface. Both

client’s invocations and server’s responses are conveyed in form of messages exchanged

across the network.

1



1. INTRODUCTION

With the advancement of networking technologies, DOC systems have been imple-

mented more and more on wide area networks and the Internet. However, to achieve

this is not easy because network problems, such as long communication latencies and

unpredictable network disconnections, are rudimentary to the large-scale DOC. They

are commonly addressed by an object replication technique. Replicating objects from

remote servers to client machines for local executions reduces user response times.

Replication also improves system scalability when several replicas are executed on

multiple client machines simultaneously. Moreover, replication enhances availability

as the clients are able to request services from local valid replicas even though network

connections to the servers are not available.

Most existing DOC systems exploit a traditional replication scheme, called coarse-

grained replication, by which a self-contained OO application is replicated entirely at

once (2; 12; 17; 41; 46; 51; 57). Nonetheless, this scheme is not suitable for all

kinds of DOC especially those characterized by cooperative computing or pervasive

computing.

• In cooperative computing such as computer supported cooperative work (CSCW),

users are normally in charge of the certain portions of a single shared task rather

than the entire task. The shared task is implemented as a servant application

running on a central server machine to which the cooperative users or client

machines connect for accessing the servant application in a relative isolation.

For example, in a large-scale cooperative CAD application, a developing system

model (servant application) maintained on a server is constituted from several

subsystem models. Different team architects develop different certain groups

of subsystem models. In other words, the architects have their own private

workspaces (subsystem model) in a shared workspace (system model). This

means that each cooperative client accesses only the specific portions of the

servant application rather than the entire application. In this common sce-

nario, the coarse-grained replication scheme is not appropriate since it does not

support the replication of an individual application subsystem.

• Pervasive computing enables users to access the remote resources from anywhere

by using small mobile computing devices, such as cellular phones, personal dig-

ital assistants. However, they usually have limitations of memory space. This

often makes the utilization of the coarse-grained replication scheme infeasible:

2



1.1 Background

mobile users cannot whole-at-once download the large-sized application pro-

grams for local executions. For similar reason, it is impossible for mobile clients

to participate in the CSCW based on coarse-grained replications. Also, because

the mobile computing devices typically have slow Internet connections, it thus

takes a lengthy time to wait for a whole program to be downloaded as in the

case of coarse-grained replication.

The problems pointed out in both computing paradigms can be resolved by using

an intuitive solution: a remote application should be replicated in a partial fashion,

and further portions of the application should be replicated later when needed. This

alternative replication scheme is referred to as a fine-grained replication. It enables

the partial and on-demand incremental replications of a self-contained application.

The fine-grained replication embraces the basic advantage of the traditional scheme

(i.e., the prevention of network problem effects for better performance, scalability, and

availability) and new advantages, which are the abilities to realize private workspaces

in client-server CSCW and reduce system resource requirements (e.g., client memory

space and network bandwidth) in both cooperative and pervasive computings.

Fine-grained replications are effective for at least two application domains.

• The proliferation of mobile computing devices has been increasingly encouraging

the anywhere collaboration among people. As a consequence, the client-server

CSCW aforementioned has been evolving to pervasive client-server CSCW. In

the pervasive client-server CSCW, clients in local area network access a remote

servant application by using a conventional remote method invocation mech-

anism, while other clients in wide area networks or on the Internet replicate

the servant application to their proximities to avoid network problems. The

replication must achieve the notion of private workspace irrespective of whether

the clients are stationary or mobile with limited memory spaces. This require-

ment can be met naturally by using a fine-grained replication. The pervasive

client-server CSCW is a vision and one of the target application fields of this

study.

• The other application field is the deployment of easy-to-launch OO application

programs over the mobile Internet to minimize end user’s effort. This deploy-

ment paradigm has been becoming more and more common. The easy-to-launch

3



1. INTRODUCTION

application programs, once downloaded, can be launched directly without com-

plete installations (just like the idea of Java applet). This deployment paradigm

can be practical for mobile computing devices by using a fine-grained replication

technique to hide their memory space constraints. The fine-grained replication

also helps improve an initial program response time because the program can be

launched as soon as its start-up program portion instead of the whole program

is downloaded.

1.1.1 Types of Fine-grained Replications in DOC

As previously exemplified by the cooperative CAD system, one common usage pattern

of fine-grained replication is that a running servant OO application is partially and

on-demand incrementally replicated in client localities. Objects that constitute the

application can be either stateful or stateless. The stateless objects do not preserve the

object data across method calls unlike the stateful objects. Replicating the runtime

stateful objects requires that not only their codes but also state data be replicated,

whereas replicating the runtime stateless objects requires only object code to be

replicated.

The other usage pattern of fine-grained replication is the partial and on-demand

incremental downloadings of an OO application program (codes and data resources)

from a remote persistent repository for local initialization and execution. Note that

though this deployment model has no remote method invocation sent between objects

located on different computers, this is regarded into the realm of DOC from the

viewpoint that this is the distribution of an OO (standalone) application across the

network. This way of consideration automatically excludes from the study the non-

OO application or plain WWW document downloadings in the traditional distributed

computing.

Based on these applicability patterns, fine-grained replications in DOC can be cat-

egorized into two types: 1) object-cluster replication refers to fine-grained replication

of stateful objects and 2) class-cluster replication refers to fine-grained replication

of stateless objects or partial and on-demand incremental downloadings of program

codes (class files and data resource files). Consequently, these types of fine-grained

replications characterize the clustering approaches, which can be categorized into two

kinds: object clustering and object class clustering.
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Cluster root object

Boundary object

Cluster

Object

Reference

Inter-cluster reference

Figure 1.1: Anatomy of sample object clusters

1.1.2 Basic Concepts of Fine-grained Replication

Fine-grained replication deals primarily with the ensembles of related objects called

object clusters. Object clusters are conceptual entities in the programming phase

and actual entities in the runtime phase, i.e., the units of replication and consistency

synchronization. Each cluster is constituted from an application’s object subgraph,

which consists of a single root object, one or more boundary objects, and none or

several of neither root nor boundary objects (Fig. 1.1). The boundary objects delimit

the group of objects in the cluster; each boundary object either holds no reference

to the other objects in the same cluster or holds reference to some other cluster’s

object. The latter object reference is referred to as an inter-cluster reference. Every

application object resides in some cluster. A set of dependent clusters, which belong to

the same application object graph, in turn forms a cluster graph. The basic concepts

of class clusters are similar to those of object clusters; the key difference is that a

class cluster is constituted from a class subgraph instead of an object subgraph.

Clearly, it is essential to have clustering methods to figure out the potential groups

of objects or classes to be assigned into the same object clusters or class clusters,

respectively, for efficient replications.

1.2 Survey of Existing Researches

To accomplish fine-grained replication requires both a supporting platform and a

clustering approach as justified earlier. The survey on previous researches related to

the platform implementation is conducted in the context of Java programming lan-

guage due to its several technological benefits including object orientation, platform

independence, rich set of libraries, etc.

5
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1.2.1 Fine-grained Replication Middlewares

In DOC, fine-grained replication is mostly realized in form of middlewares and rarely

in form of distributed shared memory systems or distributed operating systems. Mid-

dleware is a software framework that provides a runtime environment beneath applica-

tion and atop network operating system, realizes distribution transparency, resolves

heterogeneity, and facilitates network communication and the coordination of dis-

tributed components (11; 23; 38; 56; 62). Middleware simplifies not only application

deployment but also application development and maintenance.

1.2.1.1 Object-cluster Replication Middlewares

A standard middleware model, the Common Object Request Broker Architecture

(CORBA), are implemented in several programming languages including Java. The

body of CORBA standard offers a replication support for fault tolerance (49) by which

the servant objects are replicated only in a server side without being distributed to

a client side. Alhough there is the effort to provide object caching service imple-

mentations for CORBA (17; 41), the implementations are based on coarse-grained

replication scheme.

Java community has defined a specification for Java object caching. Nevertheless,

the notion of fine-grained replication is not present in the current specification (12).

Also, its existing implementations (26; 51; 57) do not added a support for fine-

grained replication. Other caching implementations of Java objects are based on the

Java Remote method invocation (RMI) mechanism: (46) supports only coarse-grained

replication, while (22; 45) supports partial replication but incremental replication.

As for existent Java-based middlewares supporting object-cluster replication, none

of them is designed specifically for pervasive client-server CSCW. Instead, they (25;

30; 65) aim for peer-to-peer applications. This difference of application fields leads to

several points of differences in the design and optimization of the middlewares. Peer-

to-peer middleware platform seem to have an identical structure across all peers. It

relies on push communication mechanism to achieve update propagation functional-

ity. However, the push communication model is not practical for pervasive computing

environment because user machines especially the mobile ones usually use private IP

addresses and can stay disconnected anytime. Peers located in a global IP network

cannot initiate the connections to other peers in private IP networks to start servicing

without a special support (e.g., relay server). Push communications also necessitates
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a target machine to be reachable every time a communication demand for synchro-

nization information pushing arises.

The middleware platform for client-server model needs not have an identical struc-

ture. Instead, the structure should be optimized according to its particular role (ei-

ther server or client) at runtime. As a consequence, the client-server middleware

has two-tier structures: 1) a server-side middleware has one of the design goals to

maintain an up-to-date central servant application and 2) a client-side middleware

must be able to capture all kinds of updates and commit them to the server. To

extend the client-server middleware to a pervasive client-server middleware involves

one more requirement of pull communication model conformance. Specialization of

the pervasive client-server middleware further towards pervasive client-server CSCW

entails a new challenge of the runtime coexistence between different object accessing

mechanisms, the conventional remote method invocation and the fine-grained repli-

cation. For these rationales, peer-to-peer middleware is not effective for the pervasive

client-server CSCW.

1.2.1.2 Class-cluster Replication Middlewares

Since OO application programs have been growing in size, the traditional deployment

method by which the programs are whole-at-once downloaded is becoming impractical

for mobile users. A recent technique of compression (33) has been exploited to reduce

the program’s transferred size. However, the technique seems unable to cope with

the problem of memory constraints in mobile computing devices. Existing variants

of partial downloading technique (14; 42) can hide the memory constraints. But they

do not support incremental downloading of further program portions.

A Java-based middleware for class-cluster replication has been released as an in-

dustrial product (34) recently. It supports both partial and on-demand incremental

program downloading. Based on an idea of concern separation, the middleware trades

off a learning curve of a specific application descriptor format for the elimination of

program modification and re-compilation. This benefit would be effective only if the

program was expected to be frequently modified. The middleware lacks a support

for deferred downloading of actively used classes (e.g., classes appearing in the class’s

field declarations); they must always reside in a start-up cluster. Thus the utility of

the middleware is restricted to only the programs whose most classes are non-actively

7
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used. Furthermore, the middleware eagerly validates all the local replicas during pro-

gram start-up instead of on execution demand. This leads to the wastes of system

resources when some replicas, which are updated, are never executed.

The other Java-based middleware that supports class-cluster replication (63) has

the same limitation of lacking the ability to defer actively used class loading.

1.2.2 Clustering Approach

In present existence, the only algorithm for class clustering (63) exists in CORBA

object caching system. The algorithm requires both static information and dynamic

information, thus difficult to use. Importantly, the algorithm relies on a user-defined

threshold, which is used to compute the cluster boundaries. This lack of consistent

clustering principle potentially leads to inefficient results of clustering: closely relevant

classes may be placed in different clusters.

A research problem remaining unsolved in the field of study is an automatic ap-

proach for object clustering.

1.3 Research Objectives

Although replication has been extensively studied in the past decades, little effort has

been made on the fine-grained replication of object-oriented applications in distrib-

uted environments. According to this situation, a long-term objective of this study

is to promote the research and real-world deployment of fine-grained replications in

DOC systems by demonstrating several benefits of the fine-grained replications in

real-world practices. To contribute to this goal, this study also makes a short-term

objective to devise the novel fine-grained replication supports in form of Java-based

middleware platforms and clustering algorithms in such a way to address the problems

identified previously.

Even though it is possible to invent a general-purpose middleware platform en-

compassing two features of object-cluster replication and class-cluster replication,

only either of the features is utilized in a distributed object system in practice. Re-

alizing the different types of replications into two specific-purpose platforms yields

the clean designs, performance optimizations, and decrease of prerequisite system-

resource requirements.
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Implementation
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algorithms
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Figure 1.2: Research scope. Note that SOOM and C2 are the given names of the

middleware outcomes of this study.

Therefore, a pair of middleware platforms is devised separately. One is a middle-

ware for Java object-cluster replication by which a runtime application is partially

and incrementally replicated. The other middleware is for Java class-cluster replica-

tion by which an application program stored in persistent repository is partially and

incrementally replicated. To realize these fine-grained replication middlewares must

meet several requirements, such as cluster formulation, cluster realization, partial and

on demand incremental executions, cluster consistency maintenance, and conceptual

properties of middleware. They all have been addressed in this study.

As a counterpart of fine-grained replication middlewares, a clustering approach

must be present. This is because the real effectiveness of fine-grained replications

mainly depends on how good the clusters are formulated. A principle of clustering

must be defined towards a distributed replication purpose. Based on the clustering

principle, the two kinds of clustering schemes aforementioned in Section 1.1.1 can

be invented. However, object clustering is demonstrated in this study that it can

be achieved efficiently based on programmer’s application knowledge. An automatic

algorithm for object clustering is remained as future research to satisfy the limited

time frame of the study.

Fig. 1.2 portrays an overview of research scope described above.
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Chapter 2

Object Cluster Replication

2.1 Introduction

The increasing emergence of diverse pervasive computing technologies has been en-

couraging the collaboration in which a group of people can work in different geo-

graphical locations in relatively isolated manner by using desktop computers, lap-

tops, personal digital assistants, and hand phones. To develop, deploy, and maintain

pervasively cooperative software systems requires a considerable amount of effort be-

cause of several encountered problems related to distributed computing and mobile

computing. The main problems are slow unreliable networks, platform heterogeneity,

and memory space constraints in mobile computing devices. Java-based middleware

seamlessly answers the heterogeneity issue. To support pervasively cooperative sys-

tems, the middleware must also address the other two fundamental issues.

Replicating objects in distributed object systems is a common technique to reduce

the effects of unreliable network connections. With a traditional object replication

approach, a self-contained servant application’s object graph, which consists of a root

object and typically other objects that are transitively reachable from the root object,

is “entirely” replicated into client locality. This approach, however, is often not

practical for memory-constrained clients. Moreover, in the context of cooperative

computing, the approach does not support the notion of a private workspace in which

each team participant works on a subsystem in relative isolation (i.e., only objects of

certain subsystems, rather than object graph of entire system, should be replicated

in clients).

Fine-grained replicating an application object graph is an intuitive solution to

addressing these problems. Fine-grained replication enables partial and on-demand

11
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Local Area Network

Mobile thin client

replicate

remote

access

Cooperative

servant application

update

Cluster replica

Wide Area Network / the Internet

replicate
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Figure 2.1: Pervasively cooperative scenario of fine-grained replication scheme and

conventional remote access.

replications of a remotely shared object graph for concurrently local or disconnected

processing. It economizes on client memory spaces by replicating only objects that are

needed, improves an initial service response time by replicating only portion rather

than entirety at first, and enables fine-grained consistency maintenance, which helps

avoid the maintenance task of the unused objects.

Figure 2.1 illustrates a deployment scenario of fine-grained replications in con-

junction with conventional remote access in a pervasive CSCW environment.

This chapter explains a distributed object computing platform called Scalable OO

middleware (SOOM) that supports transparent fine-grained replication as a key fea-

ture. SOOM aims to liberate application programmers from system level issues, such

as update synchronization, concurrency control and cooperation with a conventional

remote access mechanism, by providing a comprehensive set of services in a Java

context.

The intended application field of SOOM is a pervasive client-server CSCW as

illustrated by Figure 2.1 in which participating clients in local area network perform

conventional remote accesses to a shared servant application running on a central

server, while stationary or mobile participating clients in wide area network or on

the Internet perform fine-grained replications of the servant application. A concrete

example of pervasive client-server CSCW applications is a cooperative software mod-

eling in which team designers in different geographical locations cooperatively develop

a software model maintained on a central server.

12
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2.2 Middleware Requirement Analysis

To ensure the practicality and adequacy of SOOM, the requirements of SOOM must

be captured from a realistic application. Therefore, the client-server cooperative

application for OO software modeling1 briefly mentioned above has been implemented.

The application provides a shared workspace maintained on a central server for team

software designers (clients) who are present in different geographical locations. The

workspace is used to create a software model, a blueprint of a software system in the

development and maintenance phases.

The model represents a structural abstraction of modeled software, and is con-

stituted from a set of modeling primitives: a diagram element, a package element,

and a class element. From a user’s perspective, the diagram element represents the

highest-level view of a model called a diagram. A diagram consists of packages rep-

resented by package elements. Each package may contain one or more object classes,

represented by class elements, and (sub-)packages, represented by package elements

(Figure 2.2 left).

Based on a Java remote method invocation (RMI) mechanism, a diagram is shared

on a server by the team participants in a relatively isolated manner: each participant

works on a certain remote package(s) by using GUI program. At the implementation

level, the whole diagram is represented by an object graph in Figure 2.2 (right). Each

object implements a certain model element. When created, objects automatically

bind themselves to a Java RMI runtime. When deleted, the objects are unbound

from the RMI runtime. Objects in the example object graph can be grouped into

five clusters (which form a cluster graph) on a per-package basis. Each cluster has

a package element as a root object and class(es) as the boundary object(s), except

for a root cluster. Note that the root object Package "consistency" also acts as a

boundary object.

At the beginning of the development process, a diagram element is created on the

server. Throughout the development cycle, the participants may create new pack-

age elements (including class elements) in the diagram, remove some of them from

the diagram, modifying elements’ attributes, and change inter-relationships (contain-

ments) between them. These development activities, hereafter called cluster life-cycle

1The idea behind this application is identical to a commercial product that provides similar

functionality for cooperative UML development (15).
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Figure 2.2: Example software model (left) and corresponding cluster graph (right).

updates, correspond to the cluster modification, creation, removal, and inter-cluster

reference re-organization.

To support this operational scenario in the context of replication, SOOM must

meet the following functional requirements.

1. Support remote access-based clients : RMI is typically used for client-server sys-

tems and especially essential for real-time cooperation. Utilizing a replication

must not prohibit the use of RMI in the same system.

2. Dynamically on-demand incremental cluster replication: Each participant is

supposed to access only the packages for which they are responsible. This

means that replications should be performed at the units of clusters instead

of the entire object graph. The clusters may be accessed at different times

in an incremental manner, therefore, the replications need to be performed

incrementally according to the runtime demands. The replication should also be

transparent to the client processes to hide the intricate implementation details.

3. Cluster life-cycle update synchronization: Once replicated in the clients, a root

cluster (representing a diagram) is used as a main entry point for the diagram

to create new consecutive clusters (containing (sub)packages or classes). Some

clusters may be modified, removed, or have inter-cluster references changed.

These effects of these updates must be transparently reflected in an original
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server-side cluster graph, which is used to serve the replication requests and

RMIs.

4. Concurrent access control : It is imperative to take into account an update con-

flict among the replicas. For instance, a conflict might occur between a team

member and a leader, who has authorization to edit any cluster. A consistency

protocol needs to be provided to support the synchronization of concurrent

accesses to replicas of the same cluster. The protocol must also be able to

synchronize concurrent RMIs to a shared cluster on the server and be able to

synchronize both the RMI to a server-side cluster and local access to a corre-

sponding replica at the same time. Additionally, since the shared applications

may require guarantees of different consistency semantics, fundamental consis-

tency protocols should be provided.

2.3 Functional Design Outline

The design goal of SOOM is to meet the requirements stated above and to pro-

vide access, location, replication, and transaction transparencies (38) to application

processes. Figure 2.3 illustrates the layered architecture of SOOM. SOOM relies

on a client-server model in which a server-side SOOM is run on a central server ma-

chine, while a client-side SOOM can be run on several client machines concurrently to

communicate with the server-side SOOM. The implementation of SOOM requires no

modification in standard Java virtual machines (JVM), thus encouraging deployment

ubiquity.

2.3.1 Cluster Replication

The second middleware requirement in Section 2.2 is met based on proxy and hook

technique (5): proxy (indicated by a pentagon symbol in Figure 2.3) enables partial

object graph (or cluster) replication; hook (indicated by a hook symbol in Figure 2.3)

enables incremental replication on demand. Both operate with the assistances of a

cluster replication bus, a cluster table, and a replica table. The details are as follows.

The cluster replication bus (CRB) is responsible for communications between the

server and a client to achieve cluster replication, concurrency control, and update

synchronization. The CRB uses reliable TCP/IP protocols to send or receive CRB
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Figure 2.3: SOOM architecture.

messages, the instances of class CRBmessage. This class encapsulates a request, reply,

or one-way data and the implementation of a CRBmessage.execute() method, which

is used to process the data in a specific way. Example CRB messages are replication

requests, replication replies, and update messages. Before dispatching, a CRB mes-

sage is marshaled into a single bytecode stream. Upon receiving, the CRB message

is demarshaled and its execute() method is invoked by a recipient CRB to process

the message.

The CRB communication is conducted in a pull fashion to allow the deployment

of SOOM in a pervasive computing environment. Once initialized, the server-side

CRB starts listening to a supplied network socket for an incoming CRB message and

spawns a new thread to fulfill each message concurrently.

When a servant application is launched, it initializes a server-side CRB and reg-

isters the application’s root cluster with a cluster table maintained by the CRB. The

table holds the pairs of CID—a unique system-wide Cluster Identification— and cor-

responding reference to an in-memory cluster. Once replicated in a client, a cluster

replica is registered with a replica table—a client-side data structure, which maintains

the pairs of CID and reference to an in-memory replica.
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A cluster that has consecutive cluster also contains special boundary object called

a proxy, which is responsible for holding both the reference to the consecutive cluster

and its CID. Based on a Java transient modifier, a proxy delimits the recursion

of the Java serialization process to stop at a cluster’s boundary so that the cluster

is a unit of a replication and update propagation. The proxy is created together

with a cluster where the proxy resides and has the same program interface as the

root object of a proxied consecutive cluster. However, they implement the interface

differently: the proxy simply forwards the invocations to its interface to a root object

of local proxied cluster for actual processing. In addition, the proxy on a client side is

responsible for retaining the original program semantics, while a consecutive cluster

for which the proxy is a surrogate is not yet replicated in the client locality. Without

a proxy, the execution of the preceding cluster will potentially fail because it contains

only an object graph fragment.

Before performing read or write accesses to a cluster (which is either local or

remote), a client process must always invoke methods CRB.beforeRead() or

CRB.beforeWrite(), respectively, with a reference to a local proxy of the cluster as

a parameter. (Both methods are part of a facade interface to a consistency protocol

API, which is described in Section 2.3.2.1.) As a result, a client-side CRB invokes

the proxy’s hook() method that utilizes a local replication service to replicate an up-

to-date cluster from the server. The replication service creates a cluster replication

request that conveys a CID supplied by the proxy and a LastModified timestamp of

a local replica if it exists in a replica table (due to past replication) and dispatches

the request message through a CRB to the server, respectively.

When a server-side CRB executes this type of replication request by invoking a

CRBmessage.execute() method, the following sequence of actions occurs.

1. If the LastModified timestamp is available in the replication request, the CRB

will verify the validity of the replica by comparing its timestamp with that of

the requested server-side cluster.

2. If the replica is found inconsistent or there is no timestamp information available

in the replication request, the CRB will consult a replication service to create the

requested cluster’s replica. The bytecodes of such a replica and its associated

class definitions including the class definitions of the proxies representing its

consecutive clusters (these class definitions are stored in a persistent cluster

repository) are encapsulated in a replication reply message.
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3. If the replica is found consistent, the replication reply will only contain a validity

flag with a true value.

4. The server-side CRB serializes the reply message and delivers it to the client.

When a client-side CRB executes the replication reply message, the CRB will

return the local valid replica from the replica table to the proxy if the validity flag is

set true, otherwise the CRB consults a local replication service to deserialize the new

replica’s bytecode stream from the reply message, to store the replica into a persistent

replica repository, to register the replica with a replica table, and to load the replica

into the client process (the replica’s reference will be held by the proxy), respectively.

Now the read or write accesses (and successive ones) can be carried out locally by

using the replica.

Similarly, other remote clusters that are consecutive to the local replica can be

incrementally replicated on demand by invoking the beforeRead() or beforeWrite()

methods on their corresponding proxies, which are available inside the local replica

(Figure 2.3).

Although every inter-cluster invocation is intercepted by a proxy, this overhead is

insignificant as substantiated by the experimental results; the proxy is in fact a key

player in achieving cluster graph life-cycle updates (described in Section 2.3.3.1).

2.3.2 Cluster Consistency Maintenance

Maintaining cluster consistency in SOOM consists of two major tasks: concurrent ac-

cess control and update synchronization (i.e., the last two requirements in Section 2.2,

respectively).

2.3.2.1 Concurrent Access Control

Three consistency protocols are provided to guarantee fundamental consistency se-

mantics at cluster granularity. The protocols are pluggable via a common interface

SOOMconsistencyProtocol, which consists of the methods beforeRead(), afterRead(),

beforeWrite(), and afterWrite() methods. These synchronization operations are

client programming primitives used to control concurrent accesses and implemented

based on the Java synchronized modifier to achieve atomicity.
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As portrayed by Figure 2.4, invoking a beforeRead() or beforeWrite() may

acquire read or write lock depending on the protocol and results in cluster replication

(if there is no valid replica available in a replica table as described in Section 2.3.1).

Invoking an afterRead() or afterWrite() may result in a read or write lock re-

lease depending on the protocol. Invoking an afterWrite() also sets the replica’s

LastModified timestamp and writes it back to the server before a write lock release.

All critical sections are realized based on centralized locks.

1. Entry consistency (62): This protocol provides per-cluster critical sections to

restrict concurrent write accesses to sequential ones and to prevent the sread and

write accesses from occurring simultaneously (Figure 2.4 top). The protocol is

suited for synchronous cooperation on the shared critical data.

2. Eventual consistency (62): This protocol maximizes the degree of parallelism

by allowing concurrent writes and concurrent reads at the same time (Figure

2.4 bottom). Therefore, it is suitable for an optimistic computing environments

(55) where inconsistency is tolerable and conflict is occasional and easily re-

solvable, such as in a concurrent versions system (CVS) in which cooperation

is asynchronous and seldom overlapped and personal computing environment

where the only user acts as either the writer or the reader each time.

3. Exclusive-write: This protocol fulfils the consistency gap between Entry con-

sistency and Eventual consistency by allowing read accesses to occur simulta-

neously with an exclusive write access (Figure 2.4 middle). The protocol only

guarantees that concurrent writes never occur to prevent a write-write conflict,

while allowing read-write conflicts (i.e., users might see some stale clusters).

An example application of this protocol is a cooperative WWW-like authoring

in which the team authors are controlled in a mutually-exclusive manner, and

the readers prefer reading probably stale content rather than experiencing an

unavailability of the content for some extended period due to authoring.

During an initialization of the server-side CRB, a servant application process

plugs in a certain consistency protocol into the CRB. A client-side cluster consistency

manager automatically plugs in the same protocol by asking a server-side cluster

consistency manager.

A client who gains write permission can also perform read accesses on the replica,

but not vice versa. An attempt to invoke an afterRead() or afterWrite() without
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Figure 2.4: UML (50) sequence diagrams showing SOOM’s consistency protocol op-

erations. (“CR” stands for critical section.)
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prior invoking a beforeRead() or beforeWrite() with respect to the same cluster

results in throwing an exception SOOMconsistencyException. This exception is also

thrown when invoking either a beforeRead() or beforeWrite() consecutively with

respect to the same cluster. It is however the programmer’s responsibility to ensure

that a cluster does not remain locked forever. Currently, SOOM alleviates this concern

by a providing CRB.shutdown() method to release all the acquired locks for safe client

termination.

2.3.2.2 Update Synchronization

The following explains how to synchronize a server-side cluster graph with a client-side

one in which an update exists.

When a client process creates a new cluster, the client-side CRB acquires a new

CID for the cluster from a server-side CRB. The newly created cluster along with its

CID is then registered with a replica table, and the CID is added into a new cluster

list.

When a client process releases a cluster from a local cluster graph, the client must

explicitly inform a client-side CRB by invoking a CRB.removeCluster() parameter-

ized with the CID of the released cluster so that the cluster is also removed from the

replica table (to allow garbage collection). The removed cluster’s CID is added into

a removed cluster list held by the client-side CRB.

Once an afterWrite() is invoked, the synchronization of the client-side updates

proceeds by, initially, a modified replica and client-created clusters (known by using

the new cluster list) as well as a removed cluster list are encapsulated into a single

update message (one-way CRB message) by a cluster consistency manager. The

message is then serialized and dispatched to a server-side CRB. The removed cluster

list and new cluster list are emptied after committing the updates.

When the update message is executed by the server-side CRB, it first removes

the clusters specified by the removed cluster list from the cluster table. The removal

procedure also includes unbinding the removed clusters from an RMI runtime.

Second, the modified replica and client-created clusters are re-built and registered

with the cluster table; the modified replica will automatically replace the stale one.

The updated cluster (i.e., the re-built modified replica) and newly added clusters (i.e.,

the re-built client-created clusters) also (re)bind themselves to the RMI runtime.
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In this way, the cluster life-cycle updates (i.e., the modified replica, client-created

clusters, and client-removed clusters) are reflected in a server-side cluster graph.

2.3.3 Coexistence of Fine-grained Replication and RMI

The first middleware requirement in Section 2.2 implies that simultaneous operations

of RMI and fine-grained replication technologies must be supported. The following

issues need to be taken into account to achieve this coexistence.

2.3.3.1 Update synchronization

Since RMI is based on client-server architecture, SOOM must conform to this archi-

tecture to ensure the coexistence with RMI. The conformance leads to two design

decisions as follows.

• Centralized up-to-date cluster graph: In distributed cooperation, rather than

propagating each updated cluster replica to other associated replication-based

clients (push-based update propagation) holding replicas of the same cluster,

every client-side update must always be written back to a server when invoking

an afterWrite() method. This is because a server-side cluster graph must be

used to serve RMI-based clients, and therefore, it must be kept up-to-date. The

replication-based clients can then fetch the up-to-date clusters from the server

(pull-based update propagation) by invoking the methods beforeWrite() or

beforeRead().

• Inter-cluster reachability maintenance: Since the server-side cluster graph must

be used to serve RMIs, which can lead to invocations between clusters, the inter-

cluster reachability in the server-side cluster graph must somehow be maintained

and synchronized with the client-side inter-cluster reference updates. The inter-

cluster reference update can occur when a client process reorganizes the inter-

cluster reference via a parameter passing resulting in a relocation of the proxy

object between the relevant clusters. Examples of inter-cluster reference updates

are that a newly created cluster is inserted between two clusters, an intermedi-

ate cluster is removed from a cluster graph, or two inter-cluster references are

swapped.
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Figure 2.5: Maintaining server-side inter-cluster references.

Section 2.3.2.2 described how updates are written back to the server but did

not mention about the re-building of inter-cluster references between the writ-

ten back replica and other adjacent clusters in the server-side cluster graph. To

maintain the centralized up-to-date inter-cluster reachability by directly updat-

ing the server-side inter-cluster references is complicated. SOOM resolves this

problem by means of a proxy and cluster table-based invocation indirection.

Let us consider Figure 2.5 that exemplifies how to synchronize and realize the

server-side inter-cluster reachability without manipulation of the actual inter-

cluster references. Given that two inter-cluster references within a client-side

cluster graph are reorganized by swapping, which results in cluster 2 pointing

to cluster 5 and cluster 3 pointing to cluster 4 (client view). To reflect these

updates in a server-side cluster graph, the modified clusters 2 and 3 must first

written back to the server. Then, instead of manipulating the actual inter-

cluster references so hardly that the new server-side clusters 2 and 3 are pointed

by cluster 1 and hold the references to the clusters 5 and 4 respectively, SOOM

straightforwardly replaces the references to stale clusters 2 and 5 in a cluster

table with the updated cluster 2 (now containing the relocated proxy that points

to cluster 5) and updated cluster 3 (now containing the relocated proxy to

cluster 4) shown in Figure 2.5 the server view.

RMIs that transitively access cluster 2 followed by cluster 5 in the server view

can be achieved by using a CID in the proxy pointing to cluster 5 to retrieve a
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Figure 2.6: Controlling the concurrent accesses of fine-grained replication and RMI.

reference to the cluster 5 from the cluster table then the inter-cluster invocations

(the RMIs) are performed through a Java reflection facility (37) based on such

a reference.

With this invocation indirection strategy, the semantics of cyclic inter-cluster

references (between clusters 4 and 5) shown in the figure can also be preserved.

Note that on a client side, the indirection strategy is unnecessary because actual

inter-cluster references are spontaneously created through a hook() method

during incremental replications, and directly manipulated by a client process.

2.3.3.2 Concurrent access control

When an RMI to a server-side cluster and a local access to a replica of the same

server-side cluster occur simultaneously, both kinds of accesses must be controlled

according to an applied consistency protocol (Figure 2.6).

Since the mutual exclusions in the Entry and Exclusive-write consistency protocols

are designed based on a centralized locking mechanism (i.e., lock variables maintained

on the server) as described in Section 2.3.2.1, RMI-based clients must explicitly utilize

an overloading SOOMconsistencyProtocol API (cf. Section 2.3.2.1) so that they can

issue lock management requests to the server. For example, with an Entry consistency

protocol, write access to a replica is not allowed while an RMI-based client has been

holding a write lock associated with the server-side cluster of the replica, and vice

versa. Invoking an overloading beforeRead() or beforeWrite() will never cause

replication; invoking an afterWrite() will never cause replica write back but will

set a LastModified timestamp of server-side cluster.
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public interface ClassDiagramIntf extends Remote {

  public String getName() throws RemoteException;

  public void setName(String diagramName) throws RemoteException;

  public void createPackage(String packageName) throws RemoteException;

  public void deletePackage(String packageName) throws RemoteException;

  public PackageElementIntf getPackageElement(String packageName) throws RemoteException;

  public int getCID() throws RemoteException;

}

public class ProxyClassDiagram implements ClassDiagramIntf, SOOMproxyIntf, Serializable {

  private transient ClassDiagramIntf classDiagram = null;

  private int cid;

  public void hook()  { classDiagram = (ClassDiagramIntf) CRB.hook(cid); }

  public int getCID() { return cid; }

  public String getName() throws RemoteException { return classDiagram.getName(); }

  public void setName(String diagramName) throws RemoteException {

    classDiagram.setName(diagramName);

  }

  public void createPackage(String packageName) throws RemoteException {

    classDiagram.createPackage(packageName);

  }

  public void deletePackage(String packageName) throws RemoteException {

    classDiagram.deletePackage(packageName);

  }

  public PackageElementIntf getPackageElement(String packageName) throws RemoteException {

    return classDiagram.getPackageElement(packageName);

  }

}

Figure 2.7: Example servant application interface, platform interface, and correspond-

ing proxy class.

As a major benefit to not only replication-based clients but also RMI-based ones,

fine-grained consistency enhances the concurrency among them: with a classical con-

sistency control mechanism, an entire shared servant object graph is typically locked,

thus blocking other RMI-based users (as well as replication-based ones).

2.4 SOOM-based Application Development

To avoid introducing a new programming model to programmers, SOOM adopts a

Java RMI’s programming model in which a servant application provides a remote

service, and a client acquires a remote reference (proxy) to the remote service to

access it. Servant applications are developed like usual RMI-based ones, and then

are enabled for replication by taking some modifications in the servant program to

incorporate proxies. A proxy must be generated for each cluster. The program

transformation and proxy generation are facilitated by an annotation-based bytecode
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public class FGRclient {

  public static void main(String[] args) throws Exception {

    ...

    CRB.init(serverIP, serverPort);

    //*** Accessing a root cluster “SOOM”. ***//

    ClassDiagramIntf diagramSOOM = new ProxyClassDiagram();

    while(!CRB.beforeWrite((SOOMproxyIntf)diagramSOOM))

 /*wait*/;

    // Begin critical section.

    diagramSOOM.createPackage("Consistency");

    ...

    PackageElementIntf packageCRB = diagramSOOM.

    getPackageElement("CRB");

    // End critical section.

    CRB.afterWrite((SOOMproxyIntf)diagramSOOM);

    //*** Accessing a consecutive cluster “CRB”. ***//

    while(!CRB.beforeWrite((SOOMproxyIntf)packageCRB))

 /*wait*/;

    packageCRB.createClass(“CRBmessage”);

    CRB.afterWrite((SOOMproxyIntf)packageCRB);

  }

}

public class RMIclient {

  public static void main(String[] args) throws Exception {

    ...

    CRB.init(serverIP, serverPort);

    //*** Accessing a root cluster “SOOM”. ***//

    ClassDiagramIntf diagramSOOM = (ClassDiagramIntf)

                  Naming.lookup("rmi://"+serverIP+"/SOOM");

    while(!CRB.beforeWrite(diagramSOOM.getCID()))

 /*wait*/;

    // Begin critical section.

    diagramSOOM.createPackage("Consistency");

    ...

    // End critical section.

    CRB.afterWrite(diagramSOOM.getCID());

    //*** Accessing a consecutive cluster “CRB”. ***//

    PackageElementIntf packageCRB = (PackageElementIntf)

Naming.lookup("rmi://"+serverIP+”CRB”);

    while(!CRB.beforeWrite(packageCRB.getCID()))

 /*wait*/;

    packageCRB.createClass(“CRBmessage”);

    CRB.afterWrite(packageCRB.getCID());

  }

}

Figure 2.8: Example FGR-based and RMI-based client programs.
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SOOM compiler.

Figure 2.7 shows example code fragments of the application described in Sec-

tion 2.2. A ClassDiagramIntf is a servant interface implemented by the root cluster

SOOM depicted in Figure 2.2. A ProxyClassDiagram defines a proxy that is a surrogate

for the root cluster. This class is pre-installed in clients or dynamically downloaded

during the client program start-up; other proxies that are surrogates for non-root

clusters are dynamically replicated on demand. On the server side, the root cluster is

created and registered with a server-side CRB as mentioned by the following example

code:

rootCluster = new ClassDiagram("SOOM");

CRB.init(serverPort, rootCluster, new EntryProtocol());

Figure 2.8 shows examples of fine-grained-replication (FGR)- and RMI-based

client programs. Each of them utilizes SOOM’s consistency service in order to create a

pair of critical sections for accessing cluster SOOM and its consecutive one, namely CRB

(cf. Figure 2.2), respectively. Note that the getPackageElement("CRB") method in

an FGR-based client program returns a reference to a proxy representing the consec-

utive cluster CRB, which is actually replicated via a following beforeWrite().

As a programming caution, applications typically must provide a feature for brows-

ing consecutive clusters. This can lead to early replications of the clusters as they are

read. For example, a user wants to browse subpackages inside a current package then

operates solely on a certain subpackage. To prevent early replications, the browsed

information, such as element name, in the consecutive clusters’ root objects should

be duplicated into the proxies surrogate for the clusters. Consequently, each proxy

class should provides methods used to get the browsing information and to set it

and its original one (in a consecutive cluster’s root object) at the same time. This

task is automated by the SOOM compiler. Programmers simply annotate the desired

browsing information.

2.5 Empirical Analysis

To evaluate the benefits of a SOOM platform, several benchmarks were conducted by

using heterogeneous computers as shown in table 2.1. They all had J2SE 5.0 installed
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Table 2.1: Computers used in the experiments.

Computer Hardware specification OS specification

name

Computer-1 Pentium4 3.0 GHz, 512-MB RAM RedHat Linux(kernel version 2.4.20-8)

Computer-2 Pentium4 2.8 GHz, 512-MB RAM RedHat Linux(kernel version 2.4.20-8)

Computer-3 Pentium-M 1.2 GHz, 512-MB RAM RedHat Linux(kernel version 2.4.20-8)

Computer-4 Pentium Celeron 2.7 GHz, 480-MB RAM RedHat Linux(kernel version 2.6.9-1)

Computer-5 Pentium III 600 MHz, 256-MB RAM RedHat Linux(kernel version 2.6.9-1)

and were connected through a Fast Ethernet network. The application described in

Section 2.2 was used as a realistic benchmark program to create various experimental

clusters. All latency results are presented in µseconds.

2.5.1 Basic Operations

Table 2.2 presents the latencies of the client-side basic operations on a cluster, con-

taining a single classDiagram object, under three consistency protocols. Computer-1

and Computer-2 were used as server and client machines, respectively, throughout all

experiments described in this section. The latencies in parentheses were measured

with an RMI-based client. Descriptions for these results are as follows.

• Client-side CRB initialization involved CRB’s internal object instantiations and

CRB message exchange to plug in a consistency protocol.

• The cost of invoking a beforeRead() method under Entry consistency was

higher than those of Exclusive-write consistency and Eventual consistency due

to a read lock acquisition (besides replicating a 11-KB remote cluster).

• Although an RMI-based beforeRead() with respect to Exclusive-write and

Eventual consistency protocols involved neither lock acquisition nor replication,

there was still in total a 25 µsec overhead of multi-layered invocations in an

underlying SOOM platform.
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Table 2.2: Basic SOOM performances in µsec., (): RMI case.

Operation Entry Exclusive- Eventual

Write

A) CRB initialization: CRB.init() 9000 (9000)

B.1) beforeRead() 9000 (3000) 6000 (25)

B.1.1) Read lock acquisition 3000 (3000) - (-)

B.1.2) Cluster replication 6000 (-) 6000 (-)

B.2) read access: classDiagram.getName() 0.2 (520)

B.3) afterRead() 900 (2000) 25 (25)

C.1) beforeWrite() 10000 (3000) 6000 (25)

C.1.1) Write lock acquisition 4000 (3000) - (-)

C.1.2) Cluster replication 6000 (-) 6000 (-)

C.2) write access: classDiagram.setName("SOOM") 0.3 (520)

C.3) afterWrite() 3000 (2000) 2000 (25)

C.3.1) Write lock release 800 (2000) - (-)

C.3.2) Update dispatch 2200 (-) 2000 (-)

D) creation: classDiagram.createPackage("CRB") 13000 (10000)

E) removal: classDiagram.deletePackage("CRB") 35 (1400)

• The time required by a FGR-based client to perform a read access was 1040

times faster than that of an RMI. The latency of a write access as well as that

of a read access included an intermediate proxy overhead.

• In reality, the cost of a beforeRead() and afterRead() can be offset by frequent

reads on a replica, while the costs of a beforeWrite() and afterWrite() can

be amortized by frequent writes or reads on a replica.

• Cluster creation incurred larger latency than that of cluster removal since it

needed to request a new CID from the server, and in fact, was mainly influenced

by the Java object creation performance.

To demonstrate a comparative performance of FGR and RMI, a 118-KB cluster

consisting of one package element object and 19 class element objects was used for

completely accesses via both access schemes. For each scheme of access, the following
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Figure 2.9: RMI and FGR cost comparison.

experimental configurations were applied: (1) each total access latency (Figure 2.9)

was an elapsed time immediately before the program execution control flow entered a

critical section (starting with beforeWrite()) until immediately exiting the critical

section (ending with afterWrite()), and (2) the accesses were divided equally into

reads and writes and distributed equally across all cluster member objects. The

finding was that to outperform RMI, the cluster must be accessed at least 50 times

(i.e., 3 times per cluster member object).

On the server side, the cost of an inter-cluster invocation indirection was measured

by adding two timer probes into the servant code before and after a representative

method CRB.setName("communicationBus"), which was delegated from a root clus-

ter SOOM to a cluster CRB (Figure 2.2) by invoking a SOOM.setPackageName("CRB",

"communicationBus") to get a CRB package renamed communicationBus. The la-

tency of such an invocation indirection was 350 µseconds.

Figure 2.10 presents the times taken to write back newly created clusters to the

server. Each of these clusters contained a single 11-KB packageElement object. They

were created as consecutive clusters of a root cluster classDiagram. SOOM wrote

back all of these clusters by using a single update message. Each update committing

latency was an execution time of an afterWrite() method. The results indicated

that SOOM could serve non-trivial sized private workspaces efficiently because the

update committing latencies were not steeply sensitive to the numbers of committed

clusters.
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2.5.2 Concurrent Clients

2.5.2.1 System Throughputs

The performance of SOOM in a multi-user environment was studied in terms of

overall system throughput under three consistency protocols. The experiment was

set up based on a pragmatic scenario of cooperative software design described in

Section 2.2: multiple software designers had simultaneous demands to access the same

package (cluster) of a shared software model in server memory. A variant of Figure

2.1 in that all clients concurrently access the same cluster portrays this scenario.

Various numbers of concurrent clients were implemented as readers or writers on

a per-thread basis. The clients were divided equally to run on two physical client

machines (two JVMs) to generate stress workloads to the server machine (Computer-

1). Since multi-user environments can range from where there are either RMI- or

FGR-based clients to where RMI-based clients and FGR-based ones coexist, three

experimental configurations were conducted according to the possible access means

by the clients: (1) all clients were based on FGR, (2) all clients were based on RMI,

and (3) half of the clients were based on FGR and the other half was based on RMI.

The FGR-based clients were run on the Computer-3 client machine, and the RMI-

based clients were run on Computer-2 client machine.

A new benchmark cluster that represented a moderately-sized software package

(with nine member classes) was used for concurrent accessing by the above clients.

The cluster consisted of one package element object and nine class element objects;
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each class element had five fields and five methods. Each client acted as either a

reader or a writer of the cluster. Suppose that every reader retrieved names of all

cluster members for complete display on a user interface, and every writer modified

every cluster member for maintenance purpose:

• Every reader invoked the same series of read operations: beforeRead(),

sharedPackage.getName(), class1.getName() to class9.getName(),

class1.getFieldName(j) to class9.getFieldName(j) (where field index j

was iterated from 1 to 5 for each class element), class1.getMethodName(k) to

class9.getMethodName(k) (where method index k was iterated from 1 to 5 for

each class element), and afterRead().

• Every writer invoked the same series of write operations: beforeWrite(),

sharedPackage.setName("foo"), class1.setName("bar1") to

class9.setName("bar9"), class1.setFieldName(j,"foo"+j) to

class9.setFieldName(j,"foo"+j) (where field index j was iterated from 1 to

5 for each class element), class1.setMethodName(k, "bar"+k) to

class9.setMethodName(k,"bar"+k) (where method index k was iterated from

1 to 5 for each class element), and afterWrite().

Both the beforeRead() and beforeWrite() were repeatedly issued until a re-

quested lock was granted.

Note that because the concurrent client threads share the same client-side SOOM

platform at runtime, the LastModified timestamp comparison logic of server-side

SOOM was slightly modified to ensure that the first request issued from each client

thread always caused a replication of the benchmark cluster rather than reusing the

benchmark replica in the replica table.

Based on the above experimental setting, Figure 2.11 presents a comparative of

the overall system throughputs. Each throughput can be interpreted as the total

numbers of processed read or write accesses to the server-side cluster in the case of

RMI-based access and, in the case of an FGR-based access, to the client-side replicas

of the servant application per second. Based on these results, the following conclusions

were reached:

• For all consistency protocols, FGR could deliver higher throughputs than those

of RMI in an order of magnitude because of the replication advantage.
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Figure 2.11: Read and write throughputs using concurrent FGR- and/or RMI-based

clients under three consistency protocols: Entry consistency (top), Exclusive-write

(middle), and Eventual consistency (bottom).
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Figure 2.12: Combinative read-write throughputs of concurrent FGR- or RMI-based

clients under three consistency semantics.

• Substantiated by these results, an Entry consistency traded off the slowest read

and write throughputs for the strongest consistency among the other two pro-

tocols. The most efficient throughputs were gained under Eventual consistency,

while an Exclusive-write consistency yielded moderate efficiency.

• FGR-based read throughputs were considerably enhanced when changing from

Entry consistency to an Exclusive-write one. This implied that the overheads of

a read lock acquisition and release in the Entry consistency dominated the cost

of read sharing. In contrast, read lock overheads did not significantly affect the

performance of RMI-based read accesses as the read throughputs only slightly

improved. This implied that RMIs were expensive and dominated the cost of

read sharing.

• The write throughputs based on Entry and Exclusive-write consistency proto-

cols decreased against the increased numbers of concurrent clients. The finding

from this effect was that increasing the degree of concurrency resulted in a

greater overhead of the write lock management.

• The combined FGR-RMI throughputs were still more effective than those of

pure RMI. These results substantiated the distinct achievement of SOOM in

coordinating both FGRs and conventional remote accesses.

To study the performance of SOOM in a real-world deployment scenario, another

experiment was conducted by running both readers and writers simultaneously in
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equal numbers to read or write the same cluster (e.g., 100 concurrent clients consisted

of 50 readers and 50 writers). Readers and writers were executed separately on

Computer-3 and Computer-2 client machines, respectively. The benchmark cluster

and the access numbers by the reader and writer were the same as that of Figure

2.11. The results in Figure 2.12 compared the performances of the three consistency

protocols. The findings from these results were as follows.

• The combinative read-write throughputs based on Entry and Exclusive-write

consistency protocols identically descended when the number of clients was en-

larged. This indicated that the contribution of cluster locking overhead to the

overall performances of both protocols increased by a similar rate against the in-

creased number of concurrent clients. However, the Exclusive-write consistency

protocol was more efficient due to no read lock overhead.

• FGR delivered higher throughputs than those of RMI for all tested consistency

protocols.

• More general findings from these results and those presented by Figure 2.11 were

that the application system’s throughput was influenced by not only consistency

semantics but also the read-write ratio.

The results in Figs. 2.11 and 2.12 also substantiated a possible scale of the SOOM-

based application at 1000 concurrent client nodes. Precisely speaking, SOOM could

accommodate the experimented servant application for up to 1000 concurrent requests

without a system crash. In fact, since server-side SOOM runs on a single JVM process,

the number of concurrent requests is bound to a hard-limited number of per-process

file descriptors, which are used to serve simultaneous connections from clients, of

an underlying operating system of a server. (Linux usually has the hard limit’s

default value of 1024, while allowing customization to raise this limit.) Besides the

technical limitation, the practical scales of SOOM-based applications also depend on

the applications’ non-functional requirements. For example, the maximum number of

clients can be limited by an acceptable slowest user response time because of server

sharing.
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2.5.2.2 System Scalaility

Theoretically, replication improves the degree of parallelism: the increased number of

concurrent replication-based client processors leads to the overall system through-

put improvement. To assure that SOOM is a scalable midfrastructure in prac-

tice, Computer-5 was used as a server; Computer-4, Computer-3, Computer-2, and

Computer-1 were used as concurrent client machines in a respectively incremental

manner (i.e., when the number of client machines was one, only Computer-4 was

used; when the number of client machines was two, Computer-4 and Computer-3

were used, and so on). All clients issued the same series of accesses at an exact point

of time. A benchmark cluster consisted of one package element object and 10 class

element objects. Every object was read by invoking getName() method 10 times

and written by invoking setName() method 10 times. The overall throughput results

shown by Figure 2.13 were concluded as follows. Note that the measured elapsed

time used for computing the throughputs is the time since the first client entered a

critical section until the last client exited a critical section.

• For all consistency protocols, RMI-based access approach was not scalable as the

system throughputs descreased against the increasing number of client proces-

sors. A rationale is that RMI-based clients must share the server computational

time.

• Except for the Entry consistency protocol, FGR-based access approach was scal-

able as throughputs increased when increasing the number of client processors.

With the Entry consistency protocol, total lock-acquisition time was propor-

tional to the number of clients; therefore, the degree of parallelism did not

improve when increasing the number of client processors. Under the Exclusive-

write consistency protocol, the performance attained from concurrent read ac-

cesses outweighed system throughput drop due to sequential write accesses that

resulted in the overall system scalability improvement as indicated by the graph

curve’s slope.

To provide precise information that helps identify SOOM-based application scales,

the scalability aspect of SOOM will be elaborately studied in future work based on a

scalability metric proposed in (40).
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Figure 2.13: Combinative read-write throughputs using concurrent RMI-based (left)

or FGR-based (right) client machines under three consistency semantics.

2.5.3 Reduced Memory Space Requirement

A new realistic object graph was constructed to represent a diagram consisting of 20

packages, each of which consisted of 10 subpackages; each subpackage also contained

20 classes (Figure 2.14). The profiled memory footprints of each kind of cluster were:

953 KB for the diagram cluster, 341 KB for the package cluster and 124 KB for the

subpackage cluster. Note that the diagram cluster was largest because it contained

21 proxy objects.

Given a per-package maintenance scenario where each team participant is respon-

sible for a single package in the above described cluster graph, this means that one

diagram cluster, a single certain package cluster, and 10 subpackage clusters should

be replicated in each client using FGR. Therefore, each participant requires at least

2534 KB of memory space to achieve the replication.
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Figure 2.14: Cluster graph used to analyze clients’ actual memory space requirement.

Using a coarse-grained replication approach, on the other hand, requires 25150 KB

to replicate the whole shared object graph, which was not clustered. (For the non-

clustered object graph, a diagram object, a (sub) package object, and a class object

had the respective sizes of 129 KB, 11 KB, and 5.65 KB; no proxy objects existed

in the object graph.) This memory space requirement is less practical for small

computing devices with a limited memory capacity. In the per-package cooperation,

network bandwidth and client memory are consumed by 19 unused packages including

190 unused subpackages and 3800 unused classes that cost 23769 KB per participant

(and 475 MB for all 20 participants) in total.

In an exceptional scenario, the FGR of the whole shared object graph had 30%

clustering overhead (proxy objects) in terms of size additional to 25150 KB. The

coarse-grained scheme is therefore more appropriate when a whole servant application

must be replicated.

With respect to SOOM-based application scales in terms of the maximum num-

ber of clusters allowed on each SOOM-based server or client, the number of clus-

ters is not limited by SOOM’s internal data structures (java.util.Hashtable and

java.util.ArrayList) because of their dynamic capacities. Instead, the scales are

application specific. For example, based on the measured cluster sizes shown in Figure

2.14 and a JVM’s extreme heap size, the maximum number of clusters of the exper-

imented SOOM-based servant application could be estimated: with HotSpot JVM’s

extreme heap size (about 3850 MB (61)), 27028 clusters (consisting of 1 diagram

cluster, 2457 package clusters, and 24570 subpackage clusters) could be created.
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2.6 Handling Non-replicable Objects

In reality, some objects are non-replicable because they are in any of the following

conditions.

• The objects may be explicitly defined as non-replicable if they seem to consume

a huge amount of system resources, contain the frequently changed content,

require a central administration or maintenance, contain non-encrypted unre-

vealable data, or have rare access frequency (which cannot outweigh the cost of

replication).

• The objects may be circumstance-dependent, such as objects containing native

codes, wrapping specific device drivers, or accessing the server’s file system.

• The objects may have a communication constraint: (1) They intensively interact

with a non-replicable entity, such as a database front-end object that accesses

a persistent data source. Replicating an object in this situation potentially

increases the network traffic. (2) They are only referenced by a non-replicable

object. Replicating this kind of object causes a remote communication between

the non-replicable object (server side) and the replicated object (client side).

• The objects may have other technical constraints: (1) They are instantiated

from a class whose some of its superclass is non-replicable. Note that we disre-

gard the superclasses that are standard Java classes. (2) They contain threads.

As our framework exploits a standard Java serialization, thread cannot be repli-

cated. (3) They contain only static or transient fields. Java serialization

disallows these kinds of field to be serialized.

These non-replicable objects must be anchored on the server. To enable the in-

teractions between replicated and non-replicable objects when they are in different

address spaces, an anchored hook, which is a special kind of hook method, can be

used. The anchored hook straightforwardly exploits Java RMI to achieve the cross

address-space communication.

2.7 Related Work

Most existing practices on CORBA-compliant and Java object caching (2; 12; 17; 26;

41; 46; 51; 57) do not support partial replication of the runtime object graph. The
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term fine-grained replication used in (39) means per-field updating after a replica has

been created by a coarse-grained replication technique. Object caching is also widely

used in an OODB domain, such as Thor (44); they are typically heavyweight and out

of the scope of this dissertation, which targets volatile objects rather than persistent

ones.

A Java RMI-compatible implementation (22) achieves the idea of selective caching

based on a reduced object notion. A reduced object is a version of an object where

unused instance fields (as well as methods using such fields) are removed. Accesses

to the instance fields or methods that are not available in the reduced object’s replica

are forwarded to the original object on the server. This approach does not aim for

an incremental replication of an object graph.

Javanaise (13; 30) originally provides a middleware support of cluster replication

for peer-to-peer cooperative applications. This means that all peers in the system

should be available during the same time period to serve replication requests, thus not

suitable for a pervasive computing environment. When Javanaise client instantiates a

cluster by fetching its code from a coordinating server’s file storage, a proxy-out object

is created. The proxy-out object in turn creates a proxy-in object. When a consecutive

cluster is not yet resident locally, inter-cluster invocation on the cluster will cause a

cluster fault, the proxy-out object is used to locate (based on an object ID) and

to fetch a proxy-in object including actual cluster. Every inter-cluster invocation is

indirected via a proxy-out and proxy-in pair.

The proxy-in object is responsible for (1) fetching a consistent cluster including the

proxy-out object of a consecutive cluster and (2) transparently controlling concurrent

accesses to the consecutive cluster that the proxy-in object references by embedding

synchronization operations in every application method exposed by the proxy-in ob-

ject to block the accesses until the associated locks are granted. Therefore, every

invocation on the application interface causes network communication. This practice

conflicts with the idea of replication (which tries to avoid the network communica-

tions) and disallows disconnected processing. SOOM allows critical sections to be

defined in client programs rather than in the proxy objects. Network communica-

tions occur only at the entrance and exit of critical section regardless of the number

of invocations performed inside the critical section. Moreover, SOOM synchroniza-

tion operations always return current availability status of the requested lock without

any blocking to allow QoS manageability. This inside-client critical section approach

40



2.7 Related Work

trades off the transparency of concurrent access control (or programmer comfort) for

performance and QoS manageability (or end user satisfaction).

In fact, the proxy-in object is introduced in Javanaise to enable efficient and simple

cluster invalidation (or updating) in peer-to-peer environment. Without proxy-in

object, all proxy-out objects pointing to a to-be invalidated cluster must be identified,

and invalidation messages must be sent to those proxy-out objects. It is easier to

identify proxy-out object pointing to the to-be invalidated cluster, and only a single

invalidation message is needed for the proxy-in object.

Because all replicas of the cluster must also be invalidated, the corresponding

proxy-in objects must be available in the peers holding the replicas. However, using

proxy-in objects is not suitable for pervasive client-server systems as update in a client

is written back to only the server; proxy-in objects replicated in other clients are

wasteful. SOOM achieves cluster validations and resolves cluster faults by applying a

cluster table and a single proxy scheme (5), which is equivalent to proxy-in function

but optimized for pervasive client-server systems.

When new clusters are created by methods invoked in the same critical section,

they can be written back to the server by using a single update message unlike Ja-

vanaise in which a modified cluster (holding proxies to the newly created clusters) is

first propagated then the requiring peers explicitly replicated the new clusters one by

one using separate update messages.

Also, replacing an intermediate stale cluster with a new one in a server-side cluster

graph can cause the unintentional release of valid consecutive clusters; they have to

be replicated again. This problem does not appear in SOOM because references to

the valid consecutive clusters are still held by the cluster table.

Javanaise does not support the coexistence between fine-grained replication and

RMI. The coexistence is accomplished in SOOM by lowering and overloading the

synchronization API to be utilized by both RMI- and fine-grained replication-based

client programs. Moreover, Javanaise provides two consistency protocols, single-

writer/single-reader and single-writer/multiple-reader, based on a broadcast commu-

nication, and uses a coordinating server to maintain global states of all replicas in

the system, thus not scalable.

Manta (45) is a high-performance Java RMI implementation. It is capable of ob-

ject cluster (there called cloud) replication but with several restrictions that limit its
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applicability. Manta disallows an inter-cluster reference, thus an incremental replica-

tion is not allowed. Consistency management in Manta does not support mutual ex-

clusion. The update propagation mechanism is based on an active replication scheme

(62) whereby update operations (instead of updated objects), including parameter

objects are propagated. This scheme leads to considerable computational and net-

work overheads when clusters are frequently modified. Manta also requires a totally

ordered broadcast support, thus not appropriate for a pervasive computing environ-

ment.

OBIWAN (25) is a peer-to-peer middleware that supports both incremental Java

object cluster replication and RMI. It engages a dual proxy technique similar to

Javanaise but differs in that the proxies are intermediate objects of two clusters in

only different address spaces. A proxy-out object is used to send a cluster replication

request (via Java RMI) to a corresponding proxy-in object on a remote node. Proxy-

out object can also be released after a corresponding cluster is replicated. However,

OBIWAN lacks a consistency protocol, which is indispensable to replication and in

fact significantly influences the middleware design and implementation.

DCOBE (65) is a Java-based middleware that supports peer-to-peer cooperation

based on the fine-grained replication of a distributed composite object (equivalent to

object subgraph notion in this chapter). The composite object comprises a single

container object (root of an object subgraph) and multiple sub-objects (non-root ob-

jects). The replication is achieved at the sub-object level when a read operation of

the sub-object is invoked. Similar to Javanaise, the connective and control objects are

inserted between the container object and each sub-object to enable sub-object repli-

cation and consistency management, respectively. DCOBE provides only an Entry

consistency protocol, which can broadcast updated data or invalidation messages. In-

heriting all major characteristics from Javanaise, DCOBE is not suitable for pervasive

client-server CSCW.

GLOBE (62) is an object-based middleware designed for the Internet-scale dis-

tributed shared objects. Each distributed shared object, called a local object consists

of a semantics subobject, which represents a real application object group, and sub-

objects that enable separation of concern, such as a replication subobject, which is

responsible for replicating a semantics subobject. Although, the semantics subobject

is also organized as a rooted graph (exemplified there by a group of web documents),

the replication of the semantics subobject is not performed in a fine-grained manner.
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The authors’ previous work includes a programming framework for object-cluster

replication (5) based on a single proxy scheme. It allows client-side proxy objects to

be released once the remote proxied clusters are replicated. It is also able to perform

on-demand incremental replication in an automatic fashion. However, the framework

is partially middleware-based in terms of access transparency and replication trans-

parency: programmers have to explicitly deal with access synchronization between

RMI and fine-grained replication and the reflecting of cluster life-cycle updates in a

server-side cluster graph, respectively.

Replication is also used in several software-based distributed shared memory

(DSM) systems in both a page-based scheme and an object-based scheme. Recent

object-based DSM systems, such as DJO (24), cJVM (1) and Hyperion (47), enables

the sharing of Java objects in loosely-coupled heterogeneous systems with distribu-

tion transparency just like a middleware concept. Among these DSM systems, only

cJVM supports the caching of an individual field of an object by modifying JVM.

Nonetheless, the key difference of SOOM from these heterogeneous DSM systems lies

in the programming model: SOOM offers a client-server model instead of a distributed

shared memory one.

Besides, partial replication exists in the distributed operating system (DOS), such

as E1 (54). However, DOS has a different goal from the middleware in that DOS aims

for tightly-coupled homogeneous distributed systems.
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Chapter 3

Class Cluster Replication

3.1 Introduction

Java is a promising technology for the Internet-based computing because of its plat-

form independence and its rich set of libraries. Several Java applications and applets

are dynamically deployed over the Internet to provide a powerful computing para-

digm. However, users still encounter the same rudimentary deployment problem as

in classical WWW: long program transfer delay because of large program size and

network congestion. Java Archive (Jar) (33) is a recent technology that lessens this

problem by compressing and packaging a program’s components (class definitions and

data files) into a single downloadable bundle. However, fetching a large remote pro-

gram via the unpredictable QoS or mobile Internet may still result in extended user

waiting time. This effect might even discourage users from using the programs that

are to be dynamically deployed over the Internet. Moreover, downloading a complete

program at once leads to wastes of computing resources (e.g., network bandwidth and

client resources) if some program components are downloaded but do not need to be

executed. This issue is particularly serious for mobile users who are charged based

on transferred data amount for the network services they use.

Since not all program components are necessary for successful program execution,

downloading only a program’s start-up portion at first and then downloading further

portions incrementally on demand is an intuitive solution to the previously stated

problems. As a concrete example, a program may be decomposed into first, a start-up

portion consisting of GUI class definitions and relevant program resources (e.g., con-

figuration files) that are necessary for program launching to enter a main event loop

and second, other deferrable program portions, each of which implements a specific
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program function (e.g., help function). A partial and on-demand incremental deploy-

ment strategy improves not only initial program response time but also economizes

on system resources because only the needed program portions are loaded. Combined

with Jar technology, this deployment strategy becomes more effective. Consequently,

the idea of on-demand incremental program update can be realized: in this process,

each individual program portion is a unit of upgrading so that overheads in upgrading

the unused program portions can be avoided.

This chapter explains a middleware called Cluster Caching (C2) by which Java

application programs can be partially and on-demand incrementally downloaded and

cached at granularity of program component cluster (the group of relevant class im-

plementations and data resources of a program).

3.2 Related Work

A well known implementation of Java Network Launching Protocol (JNLP) (59) called

Java Web Start (JWS) (34) supports dynamic deployment of Java applications in Jar

format over the Internet just like Java applets. JWS allows Java applications to

be executed offline (from a desktop shortcut or cache viewer); this is unlike applet,

which has to be launched from a Web page and thus cannot be used if the web server

hosting the applet is down. JWS also supports partial and on-demand incremental

downloading of Java applications (and applets1) through a lazy downloading feature,

by which the deferrable application Jars are marked as lazy in the application de-

scriptor. JWS-based programmers have to learn and maintain throughout application

development and maintenance cycles the complicated application descriptors (JNLP

files) in parallel with program source codes. Because JWS has a restriction that

every application has to be launched in Jar file format, access to the application’s

data (non-code) resources can no longer be performed in simple ordinary style; API

such as java.lang.ClassLoader.getResource() (60) is needed. Although JWS is

convenient from the viewpoint of concern separation as using the application de-

scriptor needs no program modification and re-compilation, this benefit might not

outweigh the disadvantages of using application descriptor mentioned above if the

1Since an applet is typically a small-sized program, it does not gain much performance improve-

ment from the partial downloading technique.
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need for program modifications (which will occur in application descriptors) is not

often.

With JWS’s lazy downloading feature, actively used classes—ones that are loaded

early by the linking process of JVM (43), such as classes used in other classes’ fields,

constructors and static initialization blocks—cannot be lazily downloaded and must

always be included in the program’s start-up portion even though they might never

be executed. Lazily downloading (and caching) of data resources has to be explicitly

controlled via complicated javax.jnlp.DownloadService APIs. JWS also provides

an incremental update feature, which requires JarDiff and special servlet supports.

With this feature, all locally cached Jar files of an application are eagerly validated

during the start-up phase (rather than validated on demand) even though they might

not be entirely utilized during execution; the application’s JNLP file itself also has to

be maintained for update.

CASCADE (63), a CORBA-compliant Java application caching system, employs

multiple user-defined class loaders to enable incremental downloading of program class

bundles. The class loaders do not participate in JVM’s resolution process. They are

instead responsible for supplying a class bytecode when a JVM encounters a reference

to a class it cannot find. In other words, CASCADE cannot defer the downloadings

of actively used classes.

The class splitting technique (14) partitions each Java class file into hot (fre-

quently used) and cold (seldom used) portions based on the profiling information to

lesson transfer delay. The cold portions may include actively used classes that are

rarely or never executed. Transferring the hot classes can be overlapped with pro-

gram execution via a pre-fetching capability. This work, however, does not support

incrementally downloading a program’s cold portions.

Java dynamic class loading (42) enables programmers to define their own network

class loaders from scratch by subclassing java.lang.ClassLoader.

The authors’ previous work on class cluster replication (5) provides a programming

framework for partial and on-demand incremental code replication of Java program

based on lazy object creation and hook techniques. That framework is extended into a

middleware with cache coherence detection and enforcement capabilities as described

in this chapter.

In the context of the Internet-based deployment of Java applications, this chapter

presents the following contributions:
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• The design and implementation of a novel mobile object code computing mid-

dleware1, which has the following unique features:

– Support for partial and on-demand incremental downloading of not only a

program’s data resources and inactively used classes but also its actively

used classes. This capability is achieved based on a class-cluster replication

framework (5).

– On-demand incremental updating of program portions. The local copies

of program fragments are neither eagerly nor entirely updated during pro-

gram launching. Instead, they are incrementally updated on demand

throughout program execution in response to their first uses. This fea-

ture operates automatically and transparently to programmers.

– Ease of development. Programmers need not learn and maintain applica-

tion descriptors, while data resources can be accessed via usual java.io

APIs. Both the downloading and updating features mentioned above are

achieved via a single point of service called hook() method.

• The comparative performance analysis of JWS, a traditional whole-at-once pro-

gram downloading scheme and the proposed middleware.

3.3 Requirement Analysis

To address the problems identified above and to ensure the comprehensiveness of C2

in supporting Internet-based application development and deployment, the following

requirements must be met.

• R1: To alleviate the effects of large program size and the Internet’s unpre-

dictable QoS, partial and on-demand incremental program downloading must

be supported. It should also be performed in a way that is transparent to end

users.

1Although, the middleware runs on the client side only, the middleware is considered as middle-

ware (cf. Section 1.2.1 for the definition of middleware) because it realizes replication transparency

and coordinates distributed components (OO applications running on client machines) and the code

stores (HTTP servers).
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• R2: To minimize network overhead and bandwidth requirements, programs

should not be downloaded at the smallest granularity of individual components

one by one. Instead, the program’s relevant classes and data resources should

be packed together and transferred in the form of compressed Jars.

• R3: To speed up program launching time, the program updatings should occur

incrementally based on real usage demands, and should be performed automat-

ically and transparently.

• R4: To enable the program to be launched anywhere and at anytime, it must

allow offline execution of local copies of program portions so that .

• R5: It should allow a simple application development cycle. Programmers

should not need to learn or maintain any application descriptor other than

their program source codes and data resources. Programmers should also be

able to access the data resources with ordinary API.

• R6: Lastly, to allow ubiquitous deployment, it must not require any modifica-

tion in a standard JVM. Furthermore, since deploying programs on the Internet

is typically hindered by proxies or firewalls, all communications should rely on

a ubiquitous protocol, i.e. HTTP. As a consequence, standard Web servers can

be used to host C2-based application programs.

3.4 Functional Outline

C2 is designed to meet the above functional requirements as described below.

3.4.1 Partial and On-Demand Incremental Downloading

This section describes how to meet requirements R1, R2 & R6. Because this feature

prescribes that all class definitions (and data resources) of a program need not be

available together in the same address space at the same time, the program may

require modification (depending on whether or not the program’s classes actively use

other deferred classes) so that the execution of each Jar, which contains a fragment

of the program, can succeed.
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public class TheSky implements ActionListener {

private SolarObject sun=new SolarObject(1300,150000);

private SolarObject moon=new SolarObject(3.5,384);

...

public void actionPerformed(ActionEvent e) {

String source = e.getActionCommand();

...

if(source.equals("Sun")) {

distance = sun.currentDistance();

size = sun.apparentSize();

} else if(source.equals("Moon")) {

distance = moon.currentDistance();

size = moon.apparentSize();

} else if(source.equals("Usage")) {

Help.showUsage("Usage.doc");

} else if(source.equals("Home location")) {

Help.showWorldMap("WorldMap.jpg");

} else if(source.equals("Exit")) {

System.exit(0);

}

}

}

Figure 3.1: Example interactive program

Let us consider a moderate-sized scientific program in Figure 3.1. A main class

TheSky actively uses (instantiates through class fields) class SolarObject and inac-

tively uses class Help. The program’s deployment can be optimized by assigning the

main class to a start-up Jar and other deferrable classes to separate Jars (Figure

3.2). Each Jar is titled with a uniquely arbitrary name (here, a contained root class’s

name).

To achieve this optimization, the program is modified (on the lines with asterisks)

as in Figure 3.3.

Codes on lines 2, 9-11 and 3, 16-18 defer the instantiations of actively used class

SolarObject by using a lazy object creation design pattern. Lines 10 and 17 utilize

C2’s API namely CRB.hook() to download Jars (whose names are specified by String
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SolarObject.jar

(830 KB)

Help.jar

(1 MB)

TheSky.jar (3.8 KB)

TheSky.class

SolarObject.class Help.class

uses

Usage.doc

start-up Jar

200608.dat WorldMap.jpg

Figure 3.2: The Example Program’s classes and data resources grouped into Jars

parameters as shown in Figure 3.2) containing the required class definitions from the

HTTP server.

In the case of inactively used classes, the JVM do not eagerly load these classes

during instantiation of TheSky class. However, the inactively used classes must be

dynamically downloaded whenever demanded by invoking CRB.hook() on lines 23

and 26 immediately before their first uses. Once, Help.jar is cached, C2 manages

these two program statements in such a way that invoking them causes no underlying

operation in C2.

In this way, the program can be safely partitioned into different Jar files, which

will be downloaded incrementally on demand. Users launch the program by explicitly

downloading only the program’s start-up Jar (TheSky.jar); other individual Jars are

downloaded on demand. The downloaded Jars are stored in a certain directory, which

is used as C2’s per-application cache. The Jar sizes shown in Figure 3.2 are those

after modifications.

Note that to utilize CRB.hook(), Java event-driven programs can be written based

on not only a call-back technique using this object reference (which is omitted in Fig-

ure 3.1) but also an anonymous inner class (which is used to create a listener class) e.g.

menuItem.addActionListener(new java.awt.event.ActionListener() {...});.

However, using the call-back technique, CRB.hook() might have to be invoked in many

sites in a program with respect to caching the same class.

3.4.2 Transparent On-Demand Incremental Updating

This section describes how to meet requirements R3 & R6. C2 achieves on-demand in-

cremental updating in two phases: during program launching and during incremental

downloading. First, when a program’s local start-up Jar is executed, C2 automatically

validates the start-up Jar by checking with the HTTP server to determine whether
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1 public class TheSky implements ActionListener {

2* private SolarObject sun = null;

3* private SolarObject moon = null;

4 ...

5 public void actionPerformed(ActionEvent e) {

6 String source = e.getActionCommand();

7 ...

8 if(source.equals("Sun")) {

9* if(sun == null) {

10* CRB.hook("SolarObject");

11* sun = new SolarObject(1300,150000);

12 }

13 distance = sun.currentDistance();

14 size = sun.apparentSize();

15 } else if(source.equals("Moon")) {

16* if(moon == null) {

17* CRB.hook("SolarObject");

18* moon = new SolarObject(3.5,384);

19 }

20 distance = moon.currentDistance();

21 size = moon.apparentSize();

22 } else if(source.equals("Usage")) {

23* CRB.hook("Help");

24 Help.showUsage("Usage.doc");

25 } else if(source.equals("Home location")) {

26* CRB.hook("Help");

27 Help.showWorldMap("WorldMap.jpg");

28 } else if(source.equals("Exit")) {

29 System.exit(0);

30 }

31 }

32 }

Figure 3.3: Example program after modification
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or not the local copy of the start-up Jar is up-to-date or not. If not, a valid copy of

the start-up Jar will be downloaded and will replace that stale copy in a cache. In

this case, the program must be re-launched by using the newly cached start-up Jar.

Second, before downloading further Jars (requested via CRB.hook()) C2 automat-

ically checks in a local cache to determine whether or not a valid local copy of the

requested Jar is available. If not, C2 will transparently download and cache a valid

copy from the HTTP server.

A cache coherence detection procedure is used to verify whether any update is

present on the server, this procedure relies on a pair of timestamps. First, a server-

side Jar’s timestamp is read from a Last-Modified header field returned by a HTTP

GET request from the server. Second, a timestamp of locally cached Jar (if any) is a

file-system last modified attribute of a C2-generated cache meta file associated with

the cached Jar.

Every used class definition or data resource is validated only once throughout

program execution even though CRB.hook() (Figure 3.3, lines 23, 26) is invoked

every time when an inactively used class is accessed.

3.4.3 Offline Execution

This section describes how to meet requirement R4. When the application in a

cache is launched without connectivity to a remote server, the local cached Jars of

the application will be automatically utilized by a cluster replication broker (CRB).

Network connection timeout exceptions occurring during cache coherence detection

are caught and ignored to allow disconnected execution. Of course, to execute an

uncached Jar requires a network connection to the server.

3.5 Non-functional Outline

3.5.1 Ease of Development and Deployment

This section describes how to meet requirement R5. All of the above functions can be

readily realized through a minimal set of C2’s APIs (CRB.init() and CRB.hook()).

Once downloaded, every Jar (except the start-up Jar) is unpacked into a local

cache and an associated cache meta file—a null file with extension rep automatically

created for each Jar when it is cached in a local cache store; a cache meta file is
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Figure 3.4: C2’s architecture

created with the same name as the cached Jar so that it can be readily identified by a

coherence service. This design decision allows applications to access their local data

resources in usual fashion without the inconvenient API necessitated by Jar technol-

ogy. Based on the cache meta file, the cache coherence can virtually be maintained at

the unit of Jar rather than by individual class definition or data resources. Each Jar

should contain only relevant classes or data resources for effective cache coherence

maintenance.

C2 itself is also a lightweight middleware (size in Jar format is only 3 KB). It

can be shrink-wrapped in application start-up Jars for effortless deployment by sim-

ply clicking the downloaded start-up Jars to launch the applications; of course, this

requires a Jar manifest.

3.6 Architecture and Operation

Figure 3.4 illustrates C2’s architecture. Its operational steps are next described in

details. They are performed transparently to application processes. Figure 3.5 sum-

marizes these operation steps.

1. C2’s initialization: When a start-up Jar, which is downloaded manually by a

user, is executed, the application’s main() method invokes method CRB.init()
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of a CRB with a supplied URL of an HTTP server and the start-up Jar’s file

name as the parameters. For example:

CRB.init(serverURL, "TheSky");

2. Cache coherence detection: CRB then verifies the validity of the start-up

Jar by consulting a cache coherence service. If there is no cache meta file of the

start-up Jar available in the local cache (the file directory where the start-up Jar

resides) because the client is launching the application for the first time, the co-

herence service creates a cache meta file for the start-up Jar (e.g., TheSky.rep).

The cache meta file’s last-modified timestamp is also synchronized to be the

same as that of the start-up Jar.

Then the coherence service retrieves the last-modified information of the start-

up Jar’s local copy by invoking method java.io.File.lastModified() on

the start-up Jar’s cache meta file. The coherence service also retrieves the

last-modified information of the start-up Jar’s server-side copy via method

java.net.HttpURLConnection.getLastModified() which is parameterized with

a fully specified URL to the server-side copy.

3. Cache coherence enforcement: If the coherence service finds that the server-

side copy is newer than the local one, it will consult a replication service to fetch

a valid copy to replace the stale copy in the cache. Once cached, a new cache

meta file of the start-up Jar (e.g., TheSky.rep) is created and the application

is forced to terminate so that the validated start-up Jar can be used in a new

execution.

If no update is available on the server, CRB.init() returns and the application

continues execution.

4. On-demand incremental caching: During the application’s execution, if

some further Jar is demanded (i.e., CRB receives a message, for example, CRB.hook(

"SolarObject")) the coherence service will search in a cache for a valid copy

of the requested Jar (SolarObject.jar). If the requested Jar’s cache meta file

(SolarObject.rep) is not present in the cache (i.e., SolarObject.jar is not

yet cached), a server-side copy of the Jar will be downloaded. Otherwise, if

the cached copy has not been validated since program launch, a valid Jar copy

(verified based on timestamps as previously described) will be brought from the
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Figure 3.5: C2’s operational steps
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server. The newly downloaded Jars in both cases are unpacked into the cache,

and a corresponding cache meta file is created in the cache. The last-modified

timestamp of the cache meta file is also synchronized to be the same as that of

the downloaded Jar. The application’s execution then proceeds based on the

newly cached Jar.

There is a difference between caching a start-up Jar and a non-start-up Jar:

the latter is fetched by invoking java.net.JarURLConnection.getJarFile()

method and is unpacked before being saved in the cache. Because the start-up

Jar is cached in the form of Jar, it should not contain any data resource (to

avoid using java.lang.ClassLoader.getResource()) which can be instead

placed in a separate Jar. This design decision enables applications to be both

conveniently launched in non-command line mode and developed by using usual

resource access mechanisms.

3.7 Performance Experience

To evaluate the performance of C2, experiments were conducted by using two ma-

chines connected via an NIST Net (48)-emulated 56 Kbps network. (The 56Kbps

speed is the representative data transfer rate of modems or 2.5G mobile phones, the

target domains of C2.) The HTTP server was Pentium4 3.0 GHz and the client

machine was Pentium-M 1.2 GHz, both with equal 512-MB memories. Apache ver-

sion 2.0.40-21 was run on top of Linux RedHat 9 (kernel version 2.4.20-8) on the

server. The client used MS Windows XP Professional (version 2002 with service pack

2 installed), J2SE 5.0 (including built-in JWS), and MS Internet Explorer version 6.

The interactive program TheSky described previously was used as a realistic bench-

mark program. The performances of three deployment approaches were measured:

• The first approach used the non-modified version in Figure 3.1 together with

JWS. The start-up Jar (831 KB) consisted of two classes, TheSky and SolarObject

(as the latter could not be deferred for downloading in JWS), and data re-

source 200608.dat. The other Jar was Help.jar consisting of Help.class,

Usage.doc, and WorldMap.jpg.
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Figure 3.6: Program launching delays

• The second approach was based on C2 and used the code in Figure 3.3. All

Jars were manipulated as shown in Figure 3.2. In addition, C2 was also packed

into TheSky.jar (whose new size was 6.5 KB).

• The last approach, called whole-at-once program deployment, used the non-

modified version; all class definitions and data resources were packed into a

single Jar (1.84 MB) to be wholly downloaded at once with the Internet Ex-

plorer.

3.7.1 Program Launching

The earliest performance aspect that users can recognize is program launching delay.

It comprises an initial downloading delay of the program start-up portion and a start-

up delay in executing the start-up portion until the main loop of the event is entered.

In the case of whole-at-once program deployment, program launching delay is the

total time taken for downloading a whole program (i.e., a single complete Jar) and

starting it up. Program launching delay seems to be a key factor to the application

deployment success since users often give up downloading programs that take a long

time.

Figure 3.6 compares the program launching delays of all of the deployment ap-

proaches tested. Each approach was tested in two configurations: before and after

cached. In the case of “after cached” delays, the program was exited and launched
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again. The delays did not involve another downloading delay because the server-

side Jars were not updated. All results were measured while online. However, cache

coherence detection did not operate in the case of JWS but did in the case of C2

(because the start-up Jar must be downloaded before executed). The ratio between

initial downloading and start-up delays in the case of JWS’s “before cached” was not

determined.

• The results demonstrated that C2-based launching before caching was 3980 mil-

liseconds faster than that of JWS mainly because of caching overhead (JWS-

based start-up Jar, which was 827.2 KB bigger than that of C2, took 2200

milliseconds to download) and the loading latency of JWS itself (taking ap-

proximately 1545 milliseconds1). As a remark, the initial download latency in

the case of C2 before cached was 20 milliseconds. C2-based launching delay be-

fore caching was 17% of the total time taken to download and start up a single

complete Jar.

• Regarding after-cached performance, C2 still performed 1215 milliseconds faster

than JWS due to the JWS’s self-loading latency, the latency to early validate

the start-up Jar, and the latency of dynamic start-up Jar unpacking.

3.7.2 Incremental Caching

When an interactive application is partially and incrementally deployed, the execution

time of each function involves not only the function’s processing time but also caching

latencies (cache coherence detection and either corresponding enforcement or initial

replication) of the program portion by which the function is implemented.

TheSky benchmark has four major functions (excluding Exit) as shown by the

action events listened in Figure 3.1. In the JWS-based deployment approach, since

the implementations of functions Sun and Moon were packed in the same start-up Jar,

executing these two functions did not involve caching delay. In C2-based deployment,

executing each function incurred caching delay (for cache coherence detection and

corresponding coherence enforcement). With a whole-at-once deployment approach,

each execution time solely involved function processing time (and also Jar unpacking

delay). Figure 3.7 presents the elapsed times in executing each function in a top-

down order as shown by legend in the figure. The “after cached” execution times

1The latency potentially included XML parser loading latency.
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Figure 3.7: Execution times of four program functions

were measured once the program was restarted (after measuring the “before cached”

execution times). From these results, the following conclusion can be reached:

• In the case of C2 before caching, executing a function Moon was faster than

executing a function Sun because a SolarObject.jar was already cached when

executing the function Sun. Similarly, executing a function Home location was

faster than that of a function Usage because a Help.jar was already cached

when the function Usage was executed. The execution time of the function Sun

based on C2 was slower than that of JWS because JWS needed not download

SolarObject.class and 200608.dat, which were cached previously during the

program start-up.

• After caching, C2-based execution of each function was slightly faster than that

of a single complete Jar because the C2-based application could read the cached

data resources without performance overheads of dynamic Jar unpackings. Fur-

thermore, C2-based execution of functions Sun and Usage that included cache

coherence detections were still shorter than those of JWS. This means that,

based on the tested network speed, the overheads of cache coherence detections

were smaller than those of dynamic Jar unpackings.

• By comparing the elapsed times (before cached) of the function Usage between

JWS and the single complete Jar, the total caching latency for Help.jar that

was performed early in JWS could be estimated as 2910 milliseconds This la-

tency would be the wasted time imposed by the early cache validation mech-

anism of JWS if the functions Usage and Home location were not executed,
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Figure 3.8: Total execution Times

and network bandwidth would also be wasted for transferring a 1-MB unused

copy of Help.jar.

3.7.3 Overall Execution

Figure 3.8 portrays the total program execution times by combining the results from

Figure 3.6 and Figure 3.7 together. Total execution time implied how much total

performance overhead imposed by each deployment approach.

• Before caching, the total execution times based on C2 were 200 milliseconds

faster than those of the single complete Jar. This implied that the total cost

of incremental cachings was lower than that of dynamically accessing data re-

sources in Jar format, which involved dynamic Jar unpackings.

• After caching, the total execution time based on C2 was 260 milliseconds faster

than that of the single complete Jar. This speed-up, which was greater than

that of before caching (200 milliseconds), indicated that the total cost of incre-

mental cachings (existing in the case of before caching) was higher than that of

incremental cache validations (existing in the case of after caching).

• Before caching, the total execution time based on C2 was 2210 milliseconds

shorter than that of JWS and, after caching, 1475 milliseconds faster than that
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of JWS because of the same reasons: JWS’s self-loading latency and dynamic

Jar unpacking latencies. However, the former speed-up was larger than the

former because the cost of early cache validation in the case of JWS after cache

was smaller than the total cost of incremental validations in the case of C2 after

cache.
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Chapter 4

Object Class Clustering Approach

4.1 Introduction

It is usual that only a subset of whole OO program classes is used by each program

function. This fact opens up opportunity to optimize program performance and

system resource usage. For example, a start-up process of an interactive program

typically need no classes of the program’s help function. In particular, optimization

of program start-up time is a loading of only initial subset of entire program classes

when the program is launched. (Loading of the help function classes can be done

at later point of time on demand, i.e., incremental loadings of deferrable classes).

Note that the term load refers to downloading over the network or loading from local

storage. As another motivative example, exception handling classes might not be used

in a program execution. By loading really needed classes on demand instead of eager

loading whole program classes that potentially include unused ones, system resources

(e.g., network bandwidth, computer memory, and CPU time) can be prevented from

being wasted.

To achieve the program loading optimizations, an approach used to determine

the deferrable classes is essential. Instead of loading deferrable classes one by one at

each time, it is more efficient to load a cluster of deferrable classes at once to reduce

overheads in computation, memory space, and network bandwidth. In other words,

the unit of loading should be a cluster.

As a matter of fact, the idea of partial and incremental class loading has been

gaining more interest and is enabled by several recent technologies of dynamic pro-

gram deployment, such as lazy resource downloading of Java Web Start (34), Java

dynamic class loading (42), and code splitting technique (14). Unfortunately, lacking
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Figure 4.1: Overview of the class clustering approach

simple and systematic method for class clustering to complement such technologies is

a major hindrance to the program loading optimization. This shortage becomes even

more important to the large or complicated programs. To the authors’ knowledge,

very little effort has been made on the development of class clustering method for

program loading optimization: (63) proposed a class clustering approach for object

caching that is difficult to use because it involves not only execution profiling but

also dynamic runtime analysis. Therefore, a new static approach for class clustering

that is practically useful for users of above mentioned technologies including static

tool developers was proposed.

4.2 Class Clustering Approach

The proposed approach performs clustering analysis on input Java program source

codes. Figure 4.1 provides an overview of the clustering approach, which is detailed

as follows.

4.2.1 Clustering Principle

The approach relies on a simple, intuitive principle that is “classes that are potentially

used in the same time interval and address space should be assigned to the same
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cluster to be loaded at once”. This principle improves both spatial locality1 and

temporal affinity2 that are crucial to the optimization of code loading. For the sake

of conciseness, classes that exhibit both spatial locality and temporal affinity are

referred to as they exhibit contemporaneous proximity, which is defined as a time-

space property which indicates an ensemble of entities (classes) that are used in the

same time interval and space. Classes that manifest contemporaneous proximity can

benefit from both grouping and (implicit) prefetching, i.e., cluster (as a loading unit).

The approach exploits following criteria to identify Java classes that exhibit con-

temporaneous proximity. The criteria are explained based on Figure 4.2. Note that

the term classes are used to refer to user-defined classes; Java system classes need not

be considered.

• Inheritance relation: A class and its all ancestors (including implemented

interfaces) must be available together to the program’s class loader. Therefore,

Editor must be agglomerated with TextEditor.

• Inter-class usage dependence: Usage dependence between two classes occurs

when one class invokes any method of the other class. If the invocation occurs

with high probability, both classes should be assigned to the same cluster. For

example, TextEditor class definitely uses Comp3, both should be available in

the same cluster. In fact, even though classes that do not invoke a method

of each other but are always used together by some other class should also be

assigned to the same cluster. For example, classes Comp1 and Comp2 belong to

the same branch of a conditional branch statement, they are always used (or not

used) together by TextEditor. Consequently, both Comp1 and Comp2 should be

placed in the same cluster. The latter kind of cluster loose cluster is called as

it contains loosely-coupling classes. In other words, a loose cluster incorporates

classes that belong to the same basic block.3

• Non-loop conditional branch (or conditional branch in short): It is impor-

tant to take into account a conditional branch construct since it decreases the

1Classes exhibit spatial locality(58) when the use of one class indicates future use to class in

nearby memory space. These classes can benefit from “grouping”.
2Classes manifest temporal affinity(53) when they are used in the same time period. These

classes can benefit from “prefetching”.
3In compiler optimization, the term “basic block” refers to a straight-line piece of code without

any jump or jump target in the middle; jump target, if any, starts a block, and jump ends a block.
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Editor
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Comp0 Comp1

TextEditor Comp3

public class TextEditor extends Editor {

 public void func()

 {           if(   )

              {        comp1.m1();

                       comp2.m2();

              }

              comp3.m3();

              for(   )  if(   )  comp4.m4();

              new Comp8(this);

 }

 static

 {  comp5 = new Comp5();   comp5.m5();

 }

 public static void main(...)

 { TextEditor te = new TextEditor(); te.func();

    JFrame f = new JFrame();  f.add(te);  ...

    f.add(new Comp6());  ...

 }

 Comp1 comp1=new Comp1(); Comp2 comp2=new Comp2();

 Comp3 comp3=new Comp3(); Comp4 comp4=new Comp4();

 static Comp5 comp5;

}

Comp4
<<definitely uses>>

<<probably uses>>

Comp2

Comp5

<<defin
ite

ly uses>>

+ func()

class Editor extends JPanel {

 //overridden method

 public void func()

 { comp0.m0();

 }

 //component creation

 Comp0 comp0 = new Comp0();

}

Comp7

class Comp6 extends JPanel

implements ActionListener

{ public void actionPerformed(...)

  {     Comp7 comp7 = new Comp7();

         comp7.m7();

  }

}

<<probably
use

s>
>

<<probably uses>>

class Comp8

{ public Comp8(TextEditor te)

  {  if(...)  te.func();   //call-back

  }

}

Comp8

Comp6

Figure 4.2: UML(50) class diagram of an example Java program that contains fun-

damental programming patterns

usage probability of classes. For example, if the if(α) statement that Comp1

resides has low probability of being taken, Comp1 (and Comp2) should not be

assigned to the same cluster as TextEditor. Of course, class Comp3 used outside

the conditional branch should be agglomerated with TextEditor. (cf. Appen-

dix C.1 for Java constructs that are regarded as non-loop conditional branches.)

• Loop: In a nested structure of both loop and conditional branch constructs, the

iteration of loop increases the usage probability of classes inside unlike condi-

tional branch. For example, whether or not class Comp4 should be agglomerated

with TextEditor depends on the number of iterations of for(β) statement and

the probability of if(γ) statement being taken.

• Method overriding: Since Editor.func()method is overriden in TextEditor

subclass, class Comp0 will not be used by TextEditor. Thus, there is no need to
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have Comp0 in TextEditor’s cluster. This kind of situation often occurs when

Editor is a reused component.

4.2.2 Analytic Model

In order to analyze an input Java source code against the above criteria, the approach

engages a graph-theoretic model that consists of two kinds of graph, Enhanced call

graph and Class dependence graph. The former is used as an intermediate representa-

tion to reveal potential method invocations of an input program. The latter aims to

provide a unified view of all application classes and their inter-dependences based on

the former graph to enable actual clustering analysis. The model particularly takes

Java programming features into account to ensure the approach’s practicality in Java

context.

Enhanced call graph (ECG) enhances a conventional program call graph (28)—

a directed rooted graph representing potential invocations among program methods—

with control flow information. Hence, ECG consists of:

• Method vertex denotes a class method. A root vertex of ECG is always this

kind of vertex.

• Conditional branch vertex is a weighted vertex that denotes a conditional branch

construct. Each conditional branch vertex has a probability of corresponding

conditional branch being taken as a vertex weight. (cf. Appendix C.2 for

conditional branch prediction.)

• Loop vertex is a weighted vertex that denotes a (count-controlled or condition-

controlled) loop construct. The vertex’ weight represents the number of loop

iterations. (cf. Appendix C.2 for loop iteration estimation.)

• Edge is a directed edge that denotes a transit of program control flow caused

by method invocation, conditional branch, or loop.

The traditional program call graph, root vertex represent a program’s entry method.

A root vertex of ECG is used to represent main() method, Java Applet’s init()

method, or other system-invoked method (i.e., user-defined constructor, static ini-

tializer, java.awt.event.*Listener.*(), or user-defined system-invoked method).
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Figure 4.3: ECGs of the program in Figure 4.2

Note that the system-invoked methods of a program are not explicitly invoked at the

source code level; and there can be multiple ECGs for each Java program.

Figure 4.3 demonstrates ECGs derived from the single program in Figure 4.2

based on two assumptions: (1) assume that m1(), m2(), m3(), m4(), m5(), and m7()

do not use any other instance variable (which can be in form of field, local variable,

or parameter), so they have no successive vertices; (2) assume that the probability of

every if() statements being taken is 0.2, and the number of for() statement’s iter-

ations is 10. Note that by exploiting a call graph construction framework proposed

in (28) (and their inter-procedural analysis tool (20)), the method overriding crite-

rion previously described is automatically satisfied during the construction of ECG.

Consequently, Comp0 is suppressed from the ECGs in Figure 4.3.

Class dependence graph (CDG) is a directed rooted graph that represents a

static view of dependences among classes of a program. It consists of:

• Class vertex represents a class.

• Conditional branch vertex has the same concept as that of ECG.

• Loop vertex has the same concept as that of ECG.

• Normal edge has the same concept as ECG edge, plus a control flow to the

creation of an event listener1 class.

• Event edge denotes a flow of Java event. The edge is directed from a class vertex

representing an event listener to another class vertex. The edge is labeled with

1In Java event model, an event listener is a class whose ancestor or itself implements an interface

or subinterface of java.util.EventListener.
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Figure 4.4: Intermediate CDGs (left) and final CDG (right) derived step by step from

Figure 4.3

“evt”. (It is important to model the event flow in CDG so as to analyze Java

event-driven programs.)

Each program has a single unified CDG, which is used for clustering analysis. The

CDG is constructed by transforming the ECGs in two steps as follows (Figure 4.4).

Step 1: Reveal inter-class usage dependences by substituting corresponding class

vertices for all method vertices in every ECG. (Using the call graph construction

framework of (28), each method vertex in ECG contains class information to be

used in this step.) All edges derived from ECGs remain unchanged in CDGs except

for edges directed from method vertices representing event listeners’ standard event

method (e.g., actionPerformed() vertices in Figure 4.3) that must be replaced with

event edges. The result of this step is a set of intermediate CDGs (Figure 4.4 left).

Step 2: Create a unified CDG by the following steps:

(2.1) Considering intermediate CDGs as a whole, augment it with a normal edge

between every pair of class vertices representing event listener creator and event

listener. In Figure 4.4 (left), for example, class Comp6 acts as an event listener

because it implements actionPerformed(), while class TextEditor that instantiates

Comp6 is an event listener creator.

(2.2) All edges in a path that points toward a vertex denoting called-back1 class

(which is converted from a called-back method vertex of ECG) must be changed to

reverse direction (e.g., the path between TextEditor and Comp8 vertices in Figure

4.4).

(2.3) Merge all redundant class vertices (e.g., TextEditor vertices in Figure 4.4

left) into a single unique one. All normal edges incident to the merged vertices must

1Call-back technique is often used to implement event listeners in Java event-driven programs.
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be retained. A final unified CDG (Figure 4.4 right) has a single root vertex.

4.2.3 Clustering algorithms

A CDG is taken as an input for cluster identification. Two variants of cluster identi-

fication process is provided as follows.

4.2.3.1 Initial delay-centric algorithm

This algorithm is conservative in the sense that if a class is solely used through

conditional branch by another class, both classes will never be agglomerated together.

The algorithm therefore ensures no wastes of system resources due to the penalty of

conditional branch misprediction. This merit is significant to resource-constrained

computing in which only classes that are absolutely used should be loaded.

The algorithm is presented by Figure 4.5 and described in details as follow.

• It traverses a CDG in depth-first order (just like the order used to create the

ECGs from an input program). rootVertexQueue supports three operations:

enqueue, dequeue, and remove a specified item (used on line 8).

• The inheritance relation criterion (Section 4.2.1) is determined through

superClassesOf() and implementedInterfacesOf() on line 8 (based on the

class information supplied by the call graph construction framework in (28) as

aforementioned).

• The algorithm does not agglomerate event listener class and classes used by

standard event method (called event-driven used classes) (line 14-15). A ra-

tionale is that the standard event method is never invoked by any application

class but underlying system, thus the event-driven used classes are considered

probably used by the event listener class.

• On line 17, if a new class vertex (as a root vertex of new traversal) belong to

the same preceding conditional branch vertex as a starting vertex of a current

cluster, the new traversal will assign any newly discovered member class to a

current cluster (i.e., loose cluster) rather than to a new cluster.
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algorithm InitialDelayCentricClusterIdentification

input CDG

output C: set of resulting clusters

declare rootV ertexQueue: queue of root vertices of new candidate clusters

Cluster: currently identifying class cluster

v: visiting vertex

e: passing edge

P ←FALSE: flag indicating that there exists conditional branch vertex or event

edge on the currently traversing path connecting adjacent class

vertices; initial value of this flag is FALSE

cb: conditional branch vertex used to verify a loose cluster

begin

1: v ← aRootV ertexOf(CDG)

2: do

3: cb ← v.precedingConditionalBranch()

4: Traverse CDG starting at v in depth-first order

5: if v is a class vertex

6: if P = FALSE

7: Cluster ← v ∪ superclassesOf(v) ∪ implementedInterfacesOf(v) ∪ Cluster

8: Remove from rootV ertexQueue all occurences of v enqueued during

identifying the current cluster

9: else ifv /∈ Cluster //P = TRUE

10: rootV ertexQueue.enqueue(v)

11: P ← FALSE

12: else if v is a conditional branch vertex

13: P ← TRUE

14: if e is an event edge

15: P ← TRUE

16: v ← rootV ertexQueue.dequeue()

17: if v.precedingConditionalBranch() 6= cb

18: C ← Cluster ∪ C

19: Cluster.clearMember()

20: while v 6= NULL

end

Figure 4.5: Initial delay-centric algorithm
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Figure 4.6 provides a comprehensive demonstration of this algorithm based on

an input CDG. Of course, the input CDG to be used with this algorithm can be

constructed inexpensively without the weight information of conditional branch and

loop vertices because it is unnecessary. The details of important steps are as follows.

• Any vertex marked with half circle is a candidate for a new cluster’s root vertex.

• In step 5, E is not a candidate for new cluster as it has been already agglomerated

with Cluster 1.

• In step 7, F, which is regarded as a candidate for Cluster 4 by step 6, is instead

included into Cluster 1 and no longer a candidate for Cluster 4.

• Step 11 detects a loose cluster, which makes if() statement on line 16 in Figure

4.6 evaluate to false because C belongs to the same preceding conditional branch

vertex as B. As a result, C is agglomerated with B in a loose Cluster 2.

• Step 12 assigns G to a candidate Cluster 4 though G has already been a member

of Cluster 1. In practice, the presences of G in both clusters do not mean that

G has to be reloaded when loading Cluster 4 unless G in Cluster 1 (which has

been loaded before Cluster 4) has become invalid (e.g., expired, or evicted from

the locality of a client class loader). (Java Web Start, for example, follows this

idea by looking locally before remotely for a valid class file.)

• Step 13 shows the final clustering result.

4.2.3.2 Intermittent delay-centric algorithm

This algorithm is speculative in the sense that it agglomerates a class and its all “po-

tentially” used classes together. The potentially used classes are determined through

a stochastic process, which consists of conditional branch prediction and loop iter-

ation estimation. The algorithm trades off the ability to prevent system resources

from being wasted (due to the penalty of both conditional branch misprediction and

possibly loop iteration mis-estimation) for the chance of performance improvement

(through aggressive prefetching of potentially used classes).

By extending the previous algorithm in Figure 4.5, the intermittent delay-centric

algorithm proceeds as shown in Figure 4.7. As mentioned, the main difference from

the pervious one of this algorithm is that it agglomerates all classes with another class
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algorithm IntermittentDelayCentricClusterIdentification

input CDG

output C: set of resulting clusters

declare rootV ertexQueue: queue of root vertices of new candidate clusters

Cluster: currently identifying class cluster

v: visiting vertex

e: passing edge

pW ←1.0: weight of currently traversing path connecting adjacent class vertices

with initial value of 1

cb: conditional branch vertex used to verify a loose cluster

totalpW : total weight of all paths linking between root vertex of Cluster and v

begin

1: v ← aRootV ertexOf(CDG)

2: do

3: cb ← v.precedingConditionalBranch()

4: Traverse ssCDG starting at v in depth-first order

5: if v is a class vertex

6: totalpW ← pW+Total weight of all paths to v that were found previously during

identifying the current cluster

7: if totalpW ≥ 0.5

8: Cluster ← v ∪ superclassesOf(v) ∪ implementedInterfacesOf(v) ∪ Cluster

9: Remove from rootV ertexQueue all occurences of v enqueued during identifying

the current cluster

10: else if v /∈ Cluster //prevTotalpW < 0.5

11: rootV ertexQueue.enqueue(v, pW, Cluster)

12: pW ← 1

13: else if v is a conditional branch vertex ∨ v is a loop vertex

14: pW ← pW ∗ weightOf(v)

15: if e is an event edge

16: rootV ertexQueue.enqueue(e.towardV ertex())

17: v ← rootV ertexQueue.dequeue()

18: if v.precedingConditionalBranch() 6= cb

19: C ← Cluster ∪ C

20: Cluster.clearMember()

21: while v 6= NULL

end

Figure 4.7: Intermittent delay-centric algorithm
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Figure 4.8: An example of intermittent delay-centric cluster identification
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that uses them with probability at least 50%. However, event-driven used classes are

not agglomerated with their corresponding event listener classes. To compute the

previous total weight path with respect to a currently identifying cluster (line 6), a

value of pW and a value of Cluster are associated with each vertex when enqueued

into a rootVertexQueue (line 11). Method enqueue() on line 16 overloads enqueue()

on line 11.

Figure 4.8 demonstrates a comprehensive cluster identification using this algo-

rithm. In step 9, a total path weight to I becomes 4 multiplied by 0.1 plus the

previous weight of the path to I computed in step 8 (0.4) that is totally 0.8. Step 11

detects a loose Cluster 2.

4.3 Algorithm Scalability and Effectiveness

The worst-case computational time complexity of the approach involves three major

costs.

First, constructing a complete set of ECGs from an input program requires the

construction of context-sensitive call graph, O(N2·α), where N and α are the number

of call sites of a program and the average number of parameters per call site, respec-

tively (28). Let CB and L be the number of conditional branches and loops in the

program, respectively. The total construction cost of ECGs, represented with adja-

cency matrices, is O((Nα+1 + CB + L)2). In fact, ECG construction cost in the case

of the initial delay-centric algorithm can be further optimized to O((Nα+1 + CB)2)

in which actual cost to create each CB could be lessoned by omitting the branch

prediction process (i.e., creating conditional branch vertices of ECG without vertex

weights as aforementioned).

Second, to transform ECGs to a program-wide unified CDG consists of the follow-

ing tasks: (1) Transform ECGs to intermediate CDGs, which costs O(N), where N is

the total number of vertices in all ECGs. (2) Add normal edges into the intermediate

CDGs according to the number of event listener classes, R. (3) Redundant CDG

vertices are determined and merged in O((N2 − N)/2) steps. Therefore, the cost of

a unified CDG construction is O(R + (N2 + N)/2).

Finally, since both cluster identification algorithms fully traverse an input CDG,

their costs are bounded to O((C + CB + L)2) where C, CB, and L are the number

of class vertices, conditional branch vertices, and loop vertices, respectively.
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Number of

Program Description source code lines CS CB L Evt

JMail(66) E-mail client 10305 2504 683 171 36

PlanetFinder(19) Celestial map applet 2479 345 151 16 1

Webpad(35) Sun’s word processor 1164 276 74 6 13

JavaDoc(27) API document generator 1320 314 138 27 0

JDepend(32) Design quality measurer 3151 141 137 56 0

Table 4.1: General information and CDG quantitative features of the analyzed Java

programs. (The number of source code lines excludes comments. Columns CS, CB, L,

and Evt show the respective number of call sites, non-loop conditional-branch blocks,

loop statements, and event-driven used classes in each program.)

Because the costs above are the order of quadratic in the sizes of their inputs,

both algorithms are significantly scalable to any program size.

The effectivenesses of both algorithms were studied by applying them to real Java

programs presented in Table 4.1. The study focused on interactive programs (which

are also GUI-based and event-driven) since their start-up latency—the time period be-

tween the program’s initial invocation and the entry of control flow into a main event

loop to start responding to user activity—could be immediately perceived by user.

Nevertheless, the study also used non-interactive programs, JavaDoc and JDepend,

for analyses to show if the programs could gain advantages from class clustering.

The comparative results of cluster identifications are provided by Figure 4.9. From

these results, the following conclusion could be drawn.

• The results varied across the tested programs even of the same kinds (i.e.,

interactive or non-interactive one). These results, however, substantiated the

applicability of the clustering principle for Java programs.

• For loosely-coupled programs (in which most classes use or are used by others

with low probability), such as JMail, Webpad, and JavaDoc, they could gain

benefits from the clustering, especially JMail and Webpad that contained several

event-driven used classes.

• The effects of both algorithms were not obvious in tightly-coupled programs,

such as Planet Finder and JDepend, in that the results tended to consist of
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Figure 4.9: Clustering results and effectiveness of the clustering approach. (Algo.1:
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ones, the lowest stack is an initial cluster that contained a program’s root class.)

a single large cluster and some small clusters (due to most classes of such pro-

grams exhibit a high degree of contemporaneous proximity). This algorithmic

behavior is particularly plausible for two reasons. First, aggresively decompos-

ing the large cluster into finer-grained clusters would cause frequent overheads

of incremental loadings. Second, when some small clusters are not loaded, pro-

gram response time could still be improved especially in unreliable network

environment where downloading a small piece of code potentially imposes long

delay.

• For both kinds of program, the initial delay-centric algorithm mostly produced

finer grained set of clusters than the intermittent delay-centric one. This is

an evidence of the algorithms’ major characteristics (i.e., being conservative or

speculative).
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• The improvement of initial program loading latencies by the algorithms are

shown on top of Figure 4.9. They were approximated from the total bytecode

size of all clusters per the bytecode size of an initial cluster (which contained

a program’s root class). The approximation shows the effect of code transfer

speeding up. Besides the code transfer time, actual program start-up latency

also involves an initial program execution and file processing latencies required

by an execution environment. Also note that each initial cluster was used as

a minimum part for successful program execution. For interactive programs,

their initial clusters were sufficient to make them enter the main loops of event.

The initial program loading times based on the initial delay-centric algorithm

were never worse than those of the intermittent delay-centric one of the same

program as demonstrated by the experimental results.

• The algorithms enabled the chances to economize system resources for almost

all tested programs except JDepend (as it could not be decomposed). Both algo-

rithms resulted in similar effect of system resource waste prevention in Webpad

and JDepend. However, how much the system resources could be economized

in real program execution depends on real entire program usage behavior and,

in fact, the precision in ECG construction. The amount of economized system

resources could be estimated from the total bytecode size of non-loaded clusters

of each program.

• The algorithmic pros and cons could be exemplified as follows. Let us consider

the JMail program, when executing its initial cluster, user of intermittent delay-

centric algorithm has to prefetch seven classes more than that of initial delay-

centric one. These classes were predicted by the former algorithm to have

high probability of being used. If the classes are not really used, they will waste

system resources; otherwise, they will give extra performance improvement since

the intermittent delay-centric algorithm’s user does not experience delays in

incremental loadings of these additional classes unlike the user of initial delay-

centric algorithm.

The intermittent delay-centric algorithm, on the one hand, could provide extra

performance improvement over the initial delay-centric one by aggressive code

prefetching. On the other hand, the intermittent delay-centric algorithm might

impose system resource waste due to mis-prediction in analysis.
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Although the initial program loading time improvement is a major advantage of

partial and incremental program loading technique, it is noteworthy that an unfa-

vorable effect of this technique is intermittent delays due to incremental loadings. A

conventional whole-at-once program loading scheme, on the other hand, trades off

initial program loading time reduction for smooth program execution because all pro-

gram components are brought locally before program launching. However, the partial

and incremental program loading scheme has another benefit in opening up a chance

to optimize system resource consumption. For example, some program component

(e.g., help system) might never be used by a program execution, thus need not be

loaded.

4.4 Related work

First, the applicability of existent clustering techniques in various domains were exten-

sively discussed toward partial and incremental program loading. Then the pertinent

class clustering schemes were discussed.

Clustering for CPU cache performance (16) improves both spatial locality and

temporal affinity through data structure reorganizing. It solely targets the structure

of data but program control flow. Static clustering in OODB field (29) reduces the

number of disk I/O operations by placing frequently co-accessed persistent objects

in the same disk block and at the same time by balancing the number of clusters

between disk blocks. It overlooks OO polymorphism concept and is directed by a

constraint of disk block size. Software clustering in parallel computation (18) is used

as units of distribution in order to minimize communications among parallel comput-

ing nodes. It improves spatial locality, whereas temporal affinity is not considered.

Cluster analysis in data mining domain (31) works based on actual data of the ob-

jects being clustered rather than relation among them (the relation is represented as

a program call graph). It is not suited for performance optimization, the focus of this

dissertation. To summarize, clustering schemes in these domains are not optimized

for the program loading.

As closely pertinent work, CASCADE (63) provides an approach to figure out

each Java class bundle (i.e., class cluster) to improve CORBA object caching perfor-

mance. The approach relies on a distance measurement of a weighted class graph,

which is constructed from (flow-insensitive) static and profile-based information and
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dynamically updated according to runtime class loading behavior. Although this

technique seems to be sophisticated, to use it is inconvenient (due to requiring the

profiling information) and intricate (as pointed out on page 62 of the literature per

se). Furthermore, this approach lacks reliable cluster identification technique because

it simply uses a user-defined threshold to decide the boundary of each code bundle

based on the expensively-constructed class graph. A slight change on such a threshold

can lead to substantial impact on both performance and system resources.

The authors previously proposed a premature version of initial delay-centric algo-

rithm (9). The algorithm generates CDGs from method-attribute dependence graphs.

Unreachable classes due to method overriding are not excluded from CDGs, thus com-

plicating cluster identification process.
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Chapter 5

Conclusion

The philosophy of this study lies in the realm of fine-grained replications in distrib-

uted object computing. Fine-grained replication enables a remote object-oriented

application to be replicated partially and on demand incrementally in locality.

5.1 Research Outcomes

The applicability patterns of the fine-grained replications in distributed object sys-

tems have been identified: object-cluster replication and class-cluster replication. The

research scope has been drawn to focus on object-cluster middleware, class-cluster

middleware, and class clustering method. The problems in related work have been

researched and summarized in general along with the solutions as follows.

1. Lack of replication middlewares for pervasive client-server CSCW. SOOM object-

cluster replication middleware (4; 5; 6; 8) has been proposed to resolve this

problem. The architecture of SOOM is optimized into two tiers communicating

with each other in a pull style. SOOM’s server tier is responsible for (1) creat-

ing and returning the replicas in response to replication requests from clients,

(2) updating the master copy of a servant application based on the received

update messages, (3) maintaining inter-cluster reachabilities, (4) instantiating

a consistency protocol and maintaining the centralized lock variables for con-

current access control, and (5) serving RMIs in a coordinated manner with the

corresponding replica accesses. A client tier is responsible for (1) issuing repli-

cation requests and rebuilding the replicas from the responses, (2) recording

83



5. CONCLUSION

the updates and writing them back to the server, and (3) acquiring and releas-

ing locks from the server to achieve the concurrency control and coexistence

between RMI and fine-grained replication.

2. Lack of easy-to-use and efficient middlewares for Java application deployment

over the mobile Internet. C2, a client-side class-cluster replication middleware,

has been devised to address this problem. C2 (5; 10) provides a simple API

by which a Java application program, including its actively used classes, can

be partially and on-demand incrementally downloaded from a HTTP server.

Cache validation of C2 also operates on demand. C2 is lightweight and conceals

heterogeneity by using Java and HTTP, thus relatively portable on the Internet.

3. Lack of static clustering approaches for program loading optimization. There-

fore, the initial delay- and intermittent delay-centric class clustering algorithms

(7; 9) have been devised. The algorithms are specialized for Java programs

to be practically useful. The algorithms guide the clustering based on the

novel clustering principle called contemporaneous proximity, which is program-

ming language independent. The algorithm-based optimized programs can be

deployed by not only C2 but also other equivalent technologies that support

partial and on-demand incremental program loading.

Both SOOM and C2 have been released publicly at http://research.nii.ac.jp/H2O/

soom/index.html.

5.2 Empirical Results and Findings

The quantitative properties of SOOM were measured through the following empiri-

cal evaluations. First, experiments in single user and multi-user environments using

different consistency protocols indicated the practical throughputs of SOOM-based

application. Second, for the tested cluster, SOOM-based replication was not expen-

sive compared to Java RMI as each member of the cluster must be accessed locally

only three times to outweigh the costs of replication and update committing. Third,

an experiment using the varied numbers of client processors assured the scalability

of SOOM. Finally, an experiment on the memory space requirement of a cooperative

application showed that SOOM could reduce significant amount of network band-

width and client memory consumptions that is incurred when using the traditional
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replication approach. Based on a realistic SOOM-based cooperative application and

the real-world usage scenarios, the experimental findings were (1) replication at clus-

ter granularity can yield better performance than RMI, (2) maintaining consistency

at the cluster unit is practical as substantiated by the system throughput results,

(3) the combinative deployment of fine-grained replication and RMI improves system

performance against pure using RMI, and (4) fine-grained replication is suitable for

an application that need not be shared in its entirety.

Empirical results showed that C2-based application’s launching latency was re-

duced by 83% of that of whole-at-once program deployment. Total program deploy-

ment and execution overhead based on C2 was 22% less than that of a well-known

Java Web Start. The experimental findings were (1) C2 can be completely transpar-

ent to end users because distributing it together with applications yielded practical

downloading latency and (2) the whole-at-once program deployment in Jar format

can lead to longer total execution time than the C2-based program deployment.

Applying the class clustering algorithms to real Java programs resulted in the sig-

nificant improvement of initial program loading time. In specific, among the experi-

mented Java programs, using the initial delay-centric algorithm and the intermittent

delay-centric algorithm improved initial program loadings, on average, by 2.9 and 2.2

times faster than the whole-at-once program loading, respectively. The intermittent

delay-centric algorithm could reduce the number of intermittent delays to half of the

initial delay-centric algorithm. Experimental results also indicated that the algo-

rithms are practically useful to not only interactive programs but also non-interactive

programs. An experimental finding was that both algorithms open up the chances to

economize on system resources for loosely-coupled programs.

As a general lesson learnt, fine-grained replication should be a supplement to the

traditional means of replication rather than to replace it.

5.3 Contributions

In the context of Java-based object-cluster replication middleware, SOOM provides

the following contributions: (1) the design and implementation of fine-grained repli-

cation and RMI-supporting middleware, which has the following novelties: (1.1) a

single proxy-based cluster realization framework, (1.2) a cluster table-based cluster

validation technique, (1.3) a cluster table-based cluster loss prevention technique,
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(1.4) a single-step cluster creation update committing technique, (1.5) an efficient

inside-client consistency maintenance approach, (1.6) a quality-of-service manageable

non-blocking consistency API, (1.7) a proxy and cluster table-based technique for

centralized maintenance of inter-cluster reachabilities, (1.8) a relaxed version of En-

try consistency protocol called Exclusive-write, which offers better efficiency than the

Entry consistency, and (2) the performance analyses of combinative deployment of

fine-grained replication and RMI.

Compared to related Java-based technologies for class-cluster replication, C2 pro-

vides finer-grained replicability of actively used classes at the expense of simple pro-

gram modification, transparently on-demand incremental updatability, and simpler

data resource accessability.

The proposed class clustering principle “contemporaneous proximity” and the

initial delay-centric and intermittent delay-centric clustering algorithms are original

from the viewpoint of static program analysis.

5.4 Limitations and Premises

SOOM is optimized for pervasive client-server systems through the two-tier architec-

ture and pull communication model. Thus SOOM is unable to attain object-cluster

replications in peer-to-peer applications. Also, SOOM has made three assumptions.

First, a cluster replica is accessed frequently and sufficiently to outweigh the cost of

replication and update committing. This assumption makes object-cluster replication

cost effective because total latency of replication-based invocations becomes smaller

than that of remote method invocations in equal number. Second, most member ob-

jects in a cluster replica are modified before the replica is written back to the server.

It would not be efficient if on few member objects of the cluster were modified but the

whole cluster had to be committed to the server. Whether this assumption is valid

or not also depends on the effectiveness of an applied object clustering method. Last,

nested critical sections, if there are any in a client program, do not occur on the con-

secutive clusters holding mutual references. This is to prevent deadlock, for example,

when each of two different clients currently locking two different clusters is trying to

lock the other cluster locked by the other client can lead to deadlock depending on

an applied consistency semantics and involved lock types (write or read).
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Although C2 seems to have several advantages, they come with the expense of

program modification to utilize C2’s API. This also prevents the ease-of-development

when the program codes using the API are often modified as the programs must

be often re-compiled as a consequence. C2 has made an assumption: all class files

and data resources in a downloaded class cluster (Jar file) are utilized before they

are replaced with the up-to-date ones. Otherwise, there is no benefit to do class

clustering. The assumption’s validity is also influenced by a used class clustering

method.

The proposed class clustering algorithms turned out to be not useful for tightly-

coupled programs as substantiated by the experimental results.

5.5 Recommendations for Future Researches

The first research direction on middlewares is drawn towards mobile computing. An

emphasis should be made on how to fit them into the small memory spaces of mobile

computing devices without losing the major functionality. Porting SOOM and C2

into mobile computing platforms, such as Java ME platform (36), more or less incurs

the tasks of re-design due to the limited set of platform library.

Second, evolving SOOM and C2 into the complete caching systems to reduce

client’s memory space or persistent cache space requirements needs further research

on fine-grained cache replacement.

Last, particular research on SOOM is recommended to improve the reliability of

SOOM-based applications. Because SOOM’s consistency protocols rely on the shared

locks, if a client holding a lock crashes, other clients that desire the lock will have to

wait forever. One solution is applying a lease concept (21) to control the lifetimes of

locks to ensure that no client is kept waiting forever due to associated lock is never re-

leased. To bear in mind, using the leases degrades overall system performance, further

experiments can be conducted to observe the performance degradation. In terms of

API, lease-relevant parameters (e.g., lease duration) should be parameterized through

CRB.init() method. Initializing a CRB without supplying the lease-relevant parame-

ters can lead to using a default mode in which no lease is applied (i.e., unreliable

operation).

With respect to a clustering approach, two points of improvement can be per-

formed on the proposed class clustering algorithms. First, since the static analysis by
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its nature cannot accurately cope with classed that are dynamically used via Java re-

flection mechanism, a solution to address this issue is by using a program annotation

technique to enable programmers to supply their application knowledge as the hints

of the potential classes that are dynamically used. Second, the program annotation

can also be used to improve the precision of conditional branch and loop iteration

analyses and to hint the prediction of event flow that is useful for the agglomeration

of event listener classes and event-driven used classes based on the evaluation of event

flow probability.

Future researches also include an object clustering algorithm based on the con-

temporaneous proximity principle. Alternatively, object re-clustering in a dynamic

manner based on the real access behaviors should be researched. This can be achieved

by means of runtime instrumentation.

There is still a long way to go on the research of fine-grained replication. The

last scene of the story is hoped to be there where the fine-grained replication is as

commonly deployed as the coarse-grained one.
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Appendix A

SOOM’s Design Structure

SOOM package consists of four subpackages. They are recursively presented as UML

class diagrams as follows.
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Figure A.1: SOOM package
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Figure A.2: SOOM’s CRB subpackage
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A. SOOM’S DESIGN STRUCTURE

Figure A.3: Replication engine subpackage
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Figure A.4: Consistency engine subpackage
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A. SOOM’S DESIGN STRUCTURE

Figure A.5: Consistency protocol suite subpackage
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Figure A.6: Cluster population subpackage
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A. SOOM’S DESIGN STRUCTURE
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Appendix B

C2’s Design Structure

C2 package consists of a single self-contained class. It is recursively presented through

the following UML class diagrams.
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B. C2’S DESIGN STRUCTURE

Figure B.1: C2 package

Figure B.2: C2’s CRB subpackage
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Appendix C

Class Clustering Algorithm

C.1 Non-Loop Conditional-Branch Equivalent Con-

structs in Java

• if, if-else, and if-else-if statements.

• switch statement: The number of case blocks including default blocks are

regarded as N in an N-way conditional branch.

• catch and finally blocks in try-catch statement are equivalent to if state-

ment and its variants.

C.2 Conditional Branch Prediction and Loop It-

eration Estimation

The probability of conditional branch being taken is predicted by exploiting the fol-

lowing techniques in fallback order:

1. Value Range Propagation (52): When a conditional branch is nested inside a

count-controlled loop whose iteration range is determinate at compile time, this

technique is applied.

2. Two-way conditional branch prediction heuristics (3): They are applied in the

following order: Call, Return, Loop, and Guard. A branch that is predicted is
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given probability of being taken equal to 74% (according to an average mispre-

diction rate reported in (3)).

3. Naive strategy: The probability of each branch being taken of an N-way con-

ditional branch is calculated by 1/N (where N ≥ 2, i.e., target and fall-thru

branches).

The number of loop iterations is estimated by exploiting the following techniques in

fallback order:

1. If a constant is explicitly used to carry a loop, such a constant can be directly

used as a loop vertex’ weight.

2. Constant propagation (64): When a loop-control variable is constant on all

possible executions of a program, this technique is used to discover an actual

value of such a variable.

3. A heuristic value of 8.
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