
MODELING EXCEPTION MANAGEMENT

IN

MULTI-AGENT SYSTEMS

Eric Platon

DOCTOR OF PHILOSOPHY

Department of Informatics,
School of Multidisciplinary Sciences,

The Graduate University for Advanced Studies (SOKENDAI)

2007

January 2007

i

Abstract

Multi-agent systems are often presented as the next major generation of software to
cope with the increasing complexity in modern applications. MAS are distributed systems of
autonomous and interacting entities named agents. They are possibly large-scale systems
and the agent research community aims at having agents collaborate or compete with
one another to achieve their functions in a highly modular and flexible way. A variety of
applications of agent technologies can be observed in state-of-the-art software developed
from autonomous robots in manufacturing to software agents that assist users over the
Internet. Multi-agent systems are therefore promising models and technologies in the
future advances in Software engineering and Artificial intelligence.

Multi-agent systems are software in the first place, and 50 years of history in Computer
science has shown that constructing dependable systems requires dedicated endeavors and
practices. Dependability refers to qualities of a system, in terms of availability to the
user of the system, reliability to provide the functions it is designed for, and safety and
security of execution. Fault tolerance techniques were developed in traditional Software
engineering to increase the degree of dependability of software, and current achievements
allow guaranteeing several of the aforementioned qualities in many cases of close and
homogeneous systems. Multi-agent systems challenge the current achievements and target
more complex systems, as required in the current demand from software users and the
infrastructure of our society. Multi-agent systems target open and heterogeneous systems
of autonomous agents.

Among the techniques to increase the dependability of software systems, exception han-
dling is notably famous for its strength and simplicity. Programming languages have for
long exception handling capabilities to process conveniently and systematically exceptional
conditions encountered during a program execution. Distributed computing has however
shown that exception handling required specific extensions in the case of distributed appli-
cations, and work on software architectures and component-based development have shown
the need for other models as well. Multi-agent systems set forth challenging properties
that also need to reconsider the question of exception.

The aim of this thesis is to study the notion of exception in Multi-agent systems and to
propose a framework adapted to the challenges of openness, heterogeneity, and especially
the autonomy of agents. Related work in the agent community has achieved in the past a
number of results that showed the need for system-level exception management in Multi-
agent systems. The management encompasses handling and the required mechanisms
around the handling. The achievements to date set limitations on the type of MAS they
can apply to. Agents are often not autonomous and the system-level approaches require
agents to perfectly collaborate in the exception management procedure. In this thesis,
the ability of agents to deal with exceptions by themselves in the first place is seen as
a prerequisite to guarantee autonomy. Exception management then relies on agent-level
mechanisms to cope with the shortcomings of current achievements and complement them.
Agents keep the capability to freely choose when to initiate exception handling, and when
to accept system-level support or rely on individual skills.

The approach developed in this thesis ensures the autonomy of agents by a novel
execution model that guarantees the agent preserves control of itself all along its execution
and despite the occurrence of exceptions. The model lets the agent decide whether an event
is an exception as an individual decision, thus enforcing further the autonomy. The model is
formally described and a corresponding software architecture is proposed to implement it.
The architecture is subsequently applied to a case study to validate the approach, compare

ii

it to existing work, and evaluate its computational cost. The perspectives of this work lie
in a number of challenges that can be further elaborated in the framework proposed in this
thesis. In particular, the automatic generation of handling strategies by agents in a range of
situations is a promising capability that can expand the autonomy of agents in dealing with
various exceptional situations. Another notable research direction is the evaluation by an
agent of handling strategies received from other agents in the system. The interest in this
topic is particularly relevant in future endeavors to bridge previous work, that essentially
provide agents with strategies, with the present approach for autonomous agents that are
able to estimate when such an external support is acceptable.

Contents

List of Figures v

List of Tables vii

Acknowledgments ix

1 Introduction 1

1.1 Concepts in Multi-agent systems . 5
1.2 Purpose & Scope of this document . 10
1.3 Case study . 11
1.4 Organization . 15

2 Exception Management in the Literature 17

2.1 Exceptions in programming languages 18
2.2 Exceptions in Distributed systems . 22
2.3 Architecture-level and Component-level exceptions 28
2.4 Exception in Logics . 30
2.5 Exceptions in MAS research . 33
2.6 Survey conclusion . 37

3 Definition of Agent Exception 39

3.1 Agent exception . 40
3.2 Programming and agent exceptions . 41

3.2.1 From programming to agent exceptions. 42
3.2.2 From agent to programming exceptions. 43

3.3 Exception space in Multi-agent systems 43
3.4 Revisiting the terminology on exception management 46
3.5 Conclusion . 47

4 Agent Execution Model and Architecture 49

4.1 Agent Execution Model . 49
4.1.1 Model of Protocols and Handlers 50
4.1.2 Structure of Knowledge . 53

iii

iv CONTENTS

4.1.3 Execution model . 55
4.1.4 Complexity analysis . 61

4.2 Agent architecture . 63
4.2.1 Abstract architecture . 63
4.2.2 Elements of the architecture 63
4.2.3 Correspondence table with the execution model 65

4.3 Conclusion . 66

5 Experiments and Model Validation 67

5.1 Experimental settings . 67
5.1.1 Scope of the EMS implementation 68
5.1.2 Experimental protocol . 70
5.1.3 Technical details . 71

5.2 Qualitative Analysis and Comparison 72
5.2.1 Quality criteria . 72
5.2.2 Comparison . 73

5.3 Experimental Results . 74
5.3.1 Overhead cost of exception management mechanism: Exception-

free and EMS versions of the system 74
5.3.2 Comparison between the Plain and EMS exception man-

agement systems . 85
5.4 Conclusion . 86

6 Conclusions 89

6.1 General contributions of the present work 90
6.2 Contributions to Agent-Oriented Software Engineering 91
6.3 Contributions to Distributed Artificial Intelligence 92
6.4 Future perspectives . 92

Bibliography 95

Analysis of the agent execution model 105

Publications 113

Index 117

List of Figures

1.1 Basic exception handling in programming languages 4
1.2 Picture for an agent throughout the chapters 5
1.3 Dependency network among actors on the market. 12
1.4 Contract net protocol in the market. 13

2.1 Sample Java code to illustrate syntactic units and handler search. . . . 19
2.2 State-chart describing the operational semantics of exception handling

in many programming languages . 21
2.3 State-chart describing the operational semantics of exception handling

with the ‘guardian’ . 23
2.4 Architecture of the ‘primary-backup’ fault tolerance 24
2.5 Architecture of the ‘primary-backup’ with the guardian 24
2.6 The coordinated atomic action model . 25
2.7 The exception graph model (reproduced from [112]) 26
2.8 Syntactic bind at compile-time in a multi-procedure (reproduced from [43]) 27
2.9 Hierarchy organization of a MAS . 32
2.10 Representation of the original sentinel approach 33
2.11 Reliability database in the sentinel approach 35

3.1 View on the semantics of programming exceptions: Exceptions are de-
cided on the operation side . 40

3.2 Target of the semantics of agent exceptions: Exceptions are decided by
agents themselves . 40

3.3 Agents and their exception levels . 42
3.4 Relational mapping in an abstract exception space: Programming ex-

ceptions can breed agent exceptions, but not conversely 44

4.1 Execution model of an agent with incremental exception handling mech-
anisms . 56

4.2 Agent base architecture for exception management 64

5.1 Coverage of the implementation (plain lines) over the execution model (plain
and dashed lines) . 68

v

vi List of Figures

5.2 Experimental protocol of the experiments 70
5.3 Sample code from the experiments: Agent method handlerSelection 72
5.4 Number of execution cycles completed by agent ‘Machine Assembler 1’

- No EMS . 75
5.5 Number of execution cycles completed by agent ‘Machine Assembler 1’

(red) - With EMS . 76
5.6 Average number of execution cycles completed by agents over 100ms

periods - Exception-free . 77
5.7 Average number of execution cycle completed by agents over 100ms

periods - EMS . 78
5.8 Capital of agent ‘Machine Assembler 1’ over time (red), and Bezier

approximation (green) - No EMS . 80
5.9 Capital of agent ‘Machine Assembler 1’ over time (red), and Bezier

approximation (green) - With EMS . 80
5.10 Average of the capitals of agents over time (red), and Bezier approxi-

mation for the average and each agent (other colors) - No EMS 81
5.11 Average of the capitals of agents over time (red), and Bezier approxi-

mation for the average and each agent (other colors) - With EMS . . . 81
5.12 Average number of exceptional situations in the agent activities over

time (red), and number of exceptions recognized by each agent (other
colors) - With EMS . 82

5.13 Evolution of the capital of agents and exception occurrences 83
5.14 Average number of relevance rules generated by agents over time (red),

and Bezier approximation for the average and each agent (other colors)
- With EMS . 84

5.15 Average number of expectations rules generated by agents over time
(red), and Bezier approximation for the average and each agent (other
colors) - With EMS . 85

1 Execution model of agent with exception management capabilities: For-
malization in a Colored Petri Net . 107

2 Output of the automated verification tools 110

List of Tables

3.1 Exception space of agents: 6 classes of exception 44

4.1 Sample Relevance Table relTab . 54
4.2 Sample Expectation Table expecTab . 54
4.3 Sample Execution Table exeTab . 54
4.4 Sample Handler Table handTab . 55
4.5 Cost table depending on the execution type 62
4.6 Correspondence table between the execution model and the architec-

tural elements, according to Fig. 4.1 and Fig. 4.2 65

5.1 Qualitative comparison . 73
5.2 Comparison of the performance characteristics 77
5.3 Evaluation of the theoretical complexity 79
5.4 Comparison of the performance characteristics 86
5.5 Average computational cost of an agent cycle in terms of execution time 86

1 Full name of places on the CPN . 108

vii

Acknowledgments

The work presented in this document would have never been completed without the
support of five people. Pr. Shinichi Honiden was my main support in research and
more generally at work. All my thanks to him for the chance to join his laboratory
and spend time under his supervision. Dr. Nicolas Sabouret was also my main
support and deserves all my thanks as well, even 10,000 km away from my living
place. His advice and continuous endeavors for me were always helpful. Pr. Ken
Satoh played an essential role in my understanding of the research world. All my
thanks to him as well for showing me that we live on models and interpretations,
but research must look through them.

All my thanks go especially to the fourth and fifth persons. My wife Kumiko
supported me everyday of my research in research. She took good care of me and
accepted me to disappear in my world while physically present. She was also the
greatest support to take care of our daughter Louca, the fifth one and source of my
energy. Kumiko and Louca saw me while my mind was somewhere else, especially
when completing this document, and their support and understanding was the most
precious present from them to accomplish this work.

I need also thank Dr. Paul Guyot for sharing with me many discussions and
thinkings about research, engineering, and other social or technical themes that
we still like to discuss. Paul also played an important role in my understanding of
research and our mutual understanding—and misunderstandings—have seemingly
contributed to both of us. Dr. Cyrille Artho has taught me many things and I
would like to thank him for all that. I will never manage tr as well as he does,
but our common work was a great experience. Dr. José Ghislain Quenum has
also taught me many things on both technical and social matters. Our discussions
were great developments and considerations about topics as various as software
architectures or cultural considerations. Kazutaka Matsuzaki and Fuyuki Ishikawa
deserve special thanks as we went through the Ph.D. course together from the
beginning to the end. Kazutaka and Fuyuki have supported me in my Japanese life
all the time. I could not cope with administration matters without their help and
advice. Kazutaka had to remind me the shared passwords so many times that I have
to thank him for that! I would also like to thank the researcher team of the institute,
who advised me so many times about the conduction of my research, but also about
cultural matters. Nobukazu Yoshioka, Yasuyuki Tahara, Kenji Taguchi, and Hideaki

ix

x ACKNOWLEDGMENTS

Takeda were strong supports along my course for the Ph.D. Although I would like
to thank everyone individually in our laboratory, I simply list the names of all the
persons that supported me, and accepted to interact with my broken Japanese and
try hard to find what I wanted or needed. My thanks go to, in spatial distance
from my desk, Kenji Tei, Makoto Ishiguro, Yuki Matsuoka, Yuichi Sei, Ryota Seike,
Truong Khanh Quan, Takuo Doi, Takuya Karube, Satoshi Kataoka, Satoshi Niwa,
Ryu Tatsumi, Hiroyuki Nakagawa, Eric Tschetter, Shunichiro Suenaga, our dynamic
and so helpful Sayo Omata, Miki Nakagawa, and Shuko Yamada, and even farther
Yasmine Charif-Djebbar and Laurent Mazuel.

My research has also developed enormously by interacting with external per-
sons, essential ingredients in the research community metaphor. My encounter
with Danny Weyns and our continuous interactions allowed to develop our ideas,
notably on the question of environment for Multi-agent system that Danny led to
remarkable and significant research achievements. Although my present thesis does
not reflect the work done with Danny, the work has been improved from our interac-
tions and it will continue improving further in the directions we are still discussing
today. I would like to thank researchers with who I worked occasionally and who
guided me directly or indirectly. All my thanks to Van Parunak, Andrea Omicini,
and Marco Mamei for the advice and energy put into working together on research
papers. I also learned a lot from interactions with Jeff Kramer, Robert Kowalski,
Marie-Pierre Gleizes, Christophe Roche, and Eric Merle. I would like to send all
my thanks to them for their direct or indirect contributions to the development of
my research and the understanding of research.

The thanks are incomplete, no doubt about that. My apologies to the ones I
omitted in these acknowledgments, but I keep in my head enough thanks to always
remember their contribution to this work.

Eric Platon, Tokyo, November 2006.

One

Introduction

Multi-agent systems are among the latest generations of intelligent software sys-
tems. They consist of software programs named agents that execute in parallel
and interact to achieve functions of the system in an environment [106, see the
prologue]. They are used for example when a complex problem can be decomposed
into simpler sub-problems: Agents solve assigned sub-problems and they interact
to provide a global result. The particular trait of Multi-agent systems lies in the
property that agents are supposed autonomous decision making entities. In other
words, agents interact with one another to accomplish their tasks, but they have
no direct control over others and they can refuse to interact.

A consequence of autonomy is that the state of agents is private and cannot
be read or modified by others. Agents have then individual strategies to interact
and to reveal or hide contents in their states. In that sense, the notion of autonomy
is well suited to the present demand in software. The rise of the Internet and
the globalization of activities tends to have individuals interact more and more
through distributed computers, where individuals are either companies, institutions,
or human users—all of them autonomous entities that wish to preserve their ‘internal
information’. The software industry needs to support the activities of these actors,
either on-line over the Internet, or inside a smaller context such as an intranet.
These actors can be thought of as agents that act autonomously in a ‘social system’,
and that is why MAS particularly fit the current needs. MAS are appropriate,
possibly distributed, software architectures to deal with these issues and provide
adapted solutions to the software industry. The increasing interest in Service-
oriented architectures is an indicator of this trend to have individuals interact
on-line while controlling the type and amount of information they expose [94].

Beyond the adequacy of MAS to current needs in the software industry, au-
tonomous agents are also promising approaches to the ever-increasing requests
for automatic processing of tasks. The aforementioned individuals coordinate to
conduct their activities and many tasks are repetitive, even redundant, but their
performance requires a certain degree of autonomy. Introducing artificial agents to
assist or replace individuals in the performance of these tasks has been a target

1

2 CHAPTER 1. INTRODUCTION

since the advent of AI with ‘single-agent system’ [68, 83], and MAS has opened
a large number of challenges and applications. For example, medium and large
teamwork requires adequate and accurate project scheduling. The introduction of a
MAS to assist each team player in scheduling meetings and other shared activities
can help improving team work [11].

Some other traits are also important in MAS, notably that they are open,
interoperable, and heterogeneous systems. Openness allows agents to enter and
leave the system dynamically. Interoperability refers to the existence of common
coordination and interaction mechanisms, notably message-passing in the case
of agents [23]. Heterogeneity means agents can rely on different architectures,
programming languages, or mechanisms to take part into the system, provided they
just comply with the interoperability assumption. These three properties are also
particularly interesting to address the present needs of the software industry.

The challenges. Multi-agent systems appear as an adequate approach to current
challenges in many areas. The current state of research and development cannot
provide however certain characteristics that users and designers require from mod-
ern software systems, and that were originally promised by agent technologies as
‘desirable properties’ [106, p.8]. Two of the characteristics that remain difficult to
achieve are dependability and resilience, both concepts related to how MAS react
to unexpected situations, i.e. exceptions.

Dependability refers to qualities of a software system, in terms of availability,
reliability, safety, and security [4]. In other words, a system is dependable if it
is available when the user needs it, it can provide continuous service, it does not
cause any harm, and it guarantees the privacy of individuals. In the context of MAS,
much research is actually part of traditional software engineering concerns, for the
major part in the Distributed Computing domain. Little work deals explicitly with
issues specific to MAS [49, 39, 38]. Typically, fault-tolerance techniques such as
monitoring and replication are considered in the context of autonomous agents to
guarantee a level of dependability. The principal issue with the current achieve-
ments is that it is difficult to find an agent-oriented technique that provides both
convenience as a software engineering approach and full respect of the properties
of MAS, most notably the autonomy assumption, but also the open, interoperable,
and heterogeneous characteristics.

Resilience of a system is the capability for the system to achieve its purpose
despite internal problems and the immersion in dynamic and often unreliable en-
vironments. Resilience then characterizes how well a MAS adapts to internal or
external stress. MAS with no resilience function improperly whenever the dynamics
of their agents has unexpected fluctuations or the conditions required in the envi-
ronment are not met. MAS with high resilience can conversely adapt to changes in
the dynamics of their agents or the environment, and continue to function properly.
Resilience is therefore a mean to achieve dependability. It is however a challenging
mean as it is related to the concepts of ‘self-healing software’ and more gener-

3

ally ‘autonomic computing’ [3, 90]. Autonomous agents are expected to be resilient,
i.e. to accomplish there activities despite sources of stress. The dependability of
MAS can therefore rely on the resilience of the agents. Current issues with re-
silient agents are that most techniques tend to be ‘macro-approaches’ as they deal
with the system as a whole, by opposition to a ‘micro-approach’ that focuses on
the agent. Distributed algorithms, interaction protocols, and other ‘system-level’
mechanisms have been developed as macro-approaches in order to have agents
execute with some forms of resilience [66, 56, 53, respectively]. However, micro-
approaches have much less achievements, despite the potential of having agents
really resilient with respect to their autonomy. Little work has been conducted,
such as self-controlled agents and commitment protocols [13, 59, respectively], and
a number of issues remain to be addressed, including the combination of macro-
and micro-approaches.

The reason why macro-approaches are more developed can be explained in
the perspective of engineering software and for the sake of efficiency. Macro-
approaches adopt a global view on the problem at hand, divide the tasks to adapt
to change (or recover from problems), and distribute them to agents. These ‘de-
scending’ methods are well-known in many research area such as Management
or the Manufacturing industry, so that the introduction in MAS is eased. Micro-
approaches rely however on ‘ascending’ methods where each agent is endowed
with functionalities for resilience, and the resilience in shared activities ‘emerges’
from the interactions. Micro-approaches are therefore more complex to engineer
and control, especially for large-scale systems where the number of agents can be
high. Macro- and micro-approaches are however complementary. The former is
usually a service external to agents and it may fail in some circumstances. The
latter can then maintain the resilience of the system owing to the resilience of each
agent. In addition, most macro-approaches assume that agents are cooperative in
the adaptation or recovery methods. This assumption is however interfering with
the autonomy of agents, which rightly allows an agent to refuse a cooperation
for private reasons (e.g. cooperation is too slow or too costly). Current work is
therefore brittle facing such kind of decisions [53].

Toward exception management. Among the different ways to improve the depend-
ability and resilience of MAS, a number of techniques exist in Software engineering,
Distributed computing, and Artificial intelligence that have been introduced in MAS
under some assumptions. Exception handling is one of them as it stands for many
years in programming languages as a convenient and powerful technology, yet sim-
ple in its principles [34]. When a program has to process unexpected information
(e.g. missing parameters, unknown format), an exception handling system (EHS)
integrated in the program provides mechanisms to deviate the execution flow toward
a ‘handler’, i.e. a piece of code tailored to handle a specific situation on behalf
of the program. The EHS directs the execution flow on completion of the handler
back to the program. The basic handling mechanism is illustrated on Fig. 1.1.

4 CHAPTER 1. INTRODUCTION

Execution Flow

Program

Handler

Return to program

Deviation to a handler

Handling

Occurrence
Exception

Figure 1.1: Basic exception handling in programming languages

An EHS contains in fact additional mechanisms to deal with situations such as the
search for handlers along the program call-stack when no handler is available at the
point where the exception was declared. The call-stack is a record of the series of
operation invocations that are done in the execution of the program. If no handler
is available at the point where the exception occurs, a handler is searched and
asked to the previous ‘caller’ in the stack. The search continues until a handler is
found or when the call-stack is entirely ‘rewound’, which means the program cannot
handle the exception at all and must terminate.

In the context of MAS, the idea of having agents perform exception handling the
same way as shown on Fig. 1.1 is attractive, but two challenges make difficult the
use of this mechanism, namely distribution and autonomy. Research in distributed
computing has shown that the basic semantics of exception handling is not suffi-
cient to deal with problems such as concurrent exceptions [112, 43]. In distributed
software, concurrent exceptions occur when some interacting processes encounter
each an exception. These exceptions are concurrent as they must be handled, but
it is difficult to determine the order of handling and how to synchronize the pro-
cesses that where initially coordinated along their interactions. Autonomy adds
uncertainty in the interactions: Agents can refuse to participate in the handling of
exceptions encountered by others. In other words, exception handling mechanisms
in distributed systems must be robust to the possible refusal to participate from
some agents.

MAS are software systems, so the aforementioned model of exception remains
useful to deal with programming exceptions. Distribution and autonomy call for
new mechanisms to deal with the challenge they introduce. In particular, the scope
of exception is not only the agent process, but also the system as a whole. For this
reason, the term of exception management refers to the set of techniques involved
in the performance of exception handling in MAS.

1.1. CONCEPTS IN MULTI-AGENT SYSTEMS 5

1.1 Concepts in Multi-agent systems

This section aims at exposing in detail the concepts introduced in Multi-agent
systems (MAS) and the assumptions that define the present work. It develops the
notions of agent, interaction, protocol, autonomy, openness, and heterogeneity, and
it presents consequences on dealing with exceptions in MAS. The reader already
familiar with these notions may skip the whole section as it merely presents ‘fun-
damental knowledge’ about MAS. The main information to retain from this section
is that agents are supposed autonomous and interacting according to protocols, in
an open and heterogeneous environment.

Agent. Almost two decades of research in the field of Multi-agent systems and
half a century of Artificial Intelligence allow to sketch the notion of agent and to
give a consistent definition throughout this document.

An agent is a processing unit in Multi-Agent Systems. It is autonomous
and situated in an environment it can locally interact with.

Definition: Agent

An agent is first a processing unit that executes in the system to accomplish
some activities. An agent is in general a process that is able to change dy-
namically its state and the way it changes its state [71, 70]. The manipulation

Figure 1.2: Picture for an agent
throughout the chapters

of the state is usually named as a behavior of the
agent. This characteristic is important to distin-
guish the original concept of object1 in Object-
oriented programming from the concept of agent
as a processing unit. An object has a dynamic
state, but its behavior is statically determined
at design time, when its type is defined (see,
e.g., [28, page 16]). In addition, an agent is a
software process and it can rightly be imple-

mented as a multi-threaded application, either by mean of object technologies
or by other programming paradigms. Agents range in concrete applications from
artificial ants [19, 71, 8] to complete software systems [113, 109], provided they sat-
isfy the conditions of interactivity and autonomy. Two types of agents are often
distinguished, namely rational and reactive agents. Rational agents contain ex-
plicit and symbolic knowledge and a ‘general-purpose’ reasoning mechanism (e.g.
inference engine) to process input with this knowledge. On the other hand, reactive
agents have implicit knowledge and usually predefined and application-dependent

1The concept of object has evolved with the ideas of ‘active object’ and message-passing tech-
niques. These evolutions of the base concept tend to blur the difference with agents.

6 CHAPTER 1. INTRODUCTION

process of input. Rational agents are the type exploited in this document as they
are seen as more versatile, however more complex.

Interactivity and protocols. Interactivity emphasizes that agents perceive and act
upon resources (database, services) and other agents through the environment2.
Agents interact in a variety of manners, either direct or indirect. Direct interac-
tions are most notably message-passing, where messages are expressed with an
Agent-communication language (ACL) [23]. Indirect interactions are represented by
communication with tuple spaces [30] and blackboard architectures [81]. Interactivity
is essential to MAS, since it is the ‘glue’ among the agents to cooperate, compete,
or converse, to name a few techniques involved in the agent activities [73, 74].

Interactions are usually organized in protocols that define the circumstances
where agents should interact. The circumstances for an interaction are a purpose,
a set of roles, and a sequence of actions (e.g. message exchanges). The purpose is
the rationale of the protocol, i.e. the expected outcomes of its performance. Roles
are the functions of agents in the protocol, and sequence of actions are the actions
that each role can take in the frame of the protocol. Each agent plays a role in
order to fulfill the purpose of the protocol. The circumstances of each agent define
then the actions an agent can take to comply with the protocol.

For example, checking out a shopping cart in a department store follows an
interaction protocol between two agents, each with either the role of client or
checkout operator. The operator sends a greeting message at the beginning of the
protocol to invite the client. The client sends an acknowledgment message and
gives the contents of the cart to the operator. This daily-life protocol continues
until the client pays the operator and says goodbye. Artificial agents often interact
in the same way as such protocol. The main difference is that human have the
capability to be very flexible and to dynamically adapt a protocol slightly, so
that to bypass some difficulties or unexpected events, and still comply with the
constraints of the protocol (message order, timeouts). It is in general very difficult
to have such flexibility in the behavior of agents. Interaction protocols are therefore
one of the motivation for exception management. The challenge is to allow agents
to cope with some unexpected situations encountered in the execution of a protocol,
yet complying with its usually rigid constraints.

Agent technologies proposed alternatives to protocols so as to make agents
interact. Planning and computational argumentation models are notable examples.
Planning is the dynamic creation of a plan to achieve a goal or perform an activ-
ity. A plan is a sequence of actions to perform or sub-activities to complete. For
the TeamCore research group, a plan is a well-defined series of activities (go to a
meeting point by date t, wait for team members at position x, y) that team members
have to perform [49, 50]. A protocol is similarly a sequence of message sending

2In much research, the environment is considered as ‘transparent’, i.e. an identity function. In
this document, the more general stance of having an explicit environment is taken [78, 79, 77]. This
assumption has no consequence on the work presented here.

1.1. CONCEPTS IN MULTI-AGENT SYSTEMS 7

actions in the usual case of interactions in MAS. Plans and protocols are therefore
close notions, and the present document focuses on protocols. Computational argu-
mentation is much less structured than protocols, owing to the way humans argue
in practice [32]. Argumentation models are usually more abstract and flexible, in the
sense that the constraints over the agents are weaker than for protocols. They are
also more difficult to engineer due to this flexibility. In this state of the research,
the present study of exceptions focuses on protocols. Argumentation models could
be considered in the future as ways to reason on protocols and possible exceptions.

Autonomy. The second characteristic of agents is autonomy. This notion is elusive
as it is difficult to define in a disciplined and concrete way. Many interpretations
were proposed depending on the context of application [37, 14, 13], though often
seen as the ‘absence of global control’ [93]. Practical examples of autonomous
agents in the MAS community are auction agents that execute on behalf of their
owners, following predefined strategies [12, 103, 111, 52].

Formal definitions in dictionaries state the following for autonomy: ‘the quality
or state of being self-governing; especially : the right of self-government’ and ‘self-
directing freedom and especially moral independence’ (from the on-line Merriam-
Webster dictionary). In the case of artificial agents, autonomy is here seen as a
more pragmatic concept.

Agent autonomy is the capacity to decide independently from other agents,
and to own a control flow and private data.

Definition: Autonomy

An autonomous agent is then a process that is able to evaluate its input and
to produce output independently from other agents. In particular, an agent can
decide the circumstances of interactions, i.e. the conditions by which the agent
will decide to interact with others. The ownership of own control flow and private
data is essential to autonomy: Without this ownership, an agent cannot have the
guarantee that control is never taken over by another party, even temporarily. The
private data contains the knowledge of the agent and its other state information,
so that the absence of this type of data prevents autonomy, since such an agent
would have no consistency. Autonomy is therefore related to the encapsulation of
agents, similarly to the object encapsulation. The autonomy guarantees however a
stronger notion of encapsulation to agents, since they have the capability to choose
dynamically whether to grant access to the encapsulated information.

Beyond this base definition of autonomy, MAS research has proposed models to
describe the relationships between agents. These relationships are directly related
to autonomy, since they typically allow agents evaluating their social and resource
dependences toward other agents, and thus to modify their autonomous decisions

8 CHAPTER 1. INTRODUCTION

accordingly [92]. Social autonomy is the degree of independence of an agent to-
ward others within a social model. Social autonomy is often defined against an
organizational model, such as the typical hierarchy found in governments and com-
panies. Although agents are autonomous, the organization weaves power and other
social relationships that can impact the agent individual autonomy: Agents usually
comply with orders issued by agents higher in a hierarchical organization, even
though they would have refused to execute the order without the power influence.
Resource autonomy is similarly the degree of independence of an agent toward
resources. The agent execution usually requires resources such as databases, but
also processor time and memory. Some agents need to acquire a number of re-
sources so as to complete their tasks, and resource dependency typically impacts
the agent autonomy: An agent must sometimes accept external proposals in order
to acquire a resource and complete its task, whereas it would have acted differently
if the resource access was granted in the first place. In both cases of social and
resource autonomy, the agents are autonomous, which means they can evaluate in-
dependently input, output, and interactions. The difference with the base definition
is that the social and resource factors modulate the autonomy as they influence the
choices of the agent.

Agent autonomy has another consequence on MAS that matters with regards
to exception management. It emphasizes the decoupling of agents and the modu-
larity of the system—‘autonomy [. . .] becomes an additional dimension of modular-
ity’ [114]. Both properties result from the definition of autonomy that ensures the
encapsulation of agents. They are of direct importance as they are usually wanted
in traditional exception handling and other fault tolerance techniques. They con-
tribute to the robustness of software architectures as the propagation of unwanted
events such as errors does not spread to the all system, but to some ‘modules’, i.e.
sub-part of the system. Another reason of the importance of these two properties
is their relation to open systems.

Openness. Open systems are commonly defined as ‘system[s] allowing hardware
and software from different manufacturers to be used together seamlessly’ (from the
on-line Wiktionary dictionary). In the agent community, the meaning of openness
is rather akin to system theory, as can be observed in Physics and Management:
Energy, resources, or materials flow in and out the system freely. MAS follow this
latter meaning for agents in the system.

A MAS is said open when agents can enter and leave the system dynam-
ically.

Definition: Openness

Openness is a technical challenge as the software architecture of the system must
be robust to the addition and subtraction of some of its parts at runtime. MAS

1.1. CONCEPTS IN MULTI-AGENT SYSTEMS 9

(and related types such as Service-oriented architectures) provide such kind of
robustness inherently in theory, owing to the decoupling and modularity aforemen-
tioned. The technical concerns are however to ensure the interoperability of the
agents, their coordination, and their life-cycles. Interoperability and coordination
is addressed in MAS by the adoption of interaction standards, such as the ones
from the FIPA that define Agent communication languages (ACL) and services for
agents to coordinate (Directory facilitation to discover and connect to agents in
the system) [23, 25]. The life-cycles of agents are also defined by standards that
list the possible states of an agent and the transition between these states. The
FIPA also defines these states and their evolutions with the Agent management
system specification [24]. This specification is important for the system openness,
as it details how agents enter or leave the system, especially in the case of agent
mobility.

Openness is therefore an important characteristics in the design of an exception
management system for MAS. Such system must deal with the entrance and exit of
agents. It must notably be flexible regarding the number of agents that are involved
in the management process.

Heterogeneity. Heterogeneous systems consist of elements that are built ac-
cording to different design choices. An heterogeneous system can then be made
of pieces in different programming languages or it can be developed by different
designer teams. The definition in MAS is then:

A MAS is heterogeneous when agents or the infrastructure of the system
are developed by different means.

Definition: Heterogeneity

Heterogeneity makes agent interoperability more difficult and the standards pre-
sented in the previous paragraph were designed to be independent of the underlying
architecture or language chosen to implement it and the agents. Such standards
allow then heterogeneous agents to interact, provided they comply with the inter-
operability specifications. Another solution that has been suggested is the use of
middleware components, similarly to the approaches adopted in Distributed com-
puting such as CORBA [16]. Tuple spaces, tuple centers, and more generally the
notion of environment are some instances of such middleware in MAS [60, 20, 107].

As for exception management in MAS, the consequence of heterogeneity is that
an exception management system cannot always assume that agents are collabo-
rative or even benevolent. This assumption can be reasonable when the designers
belong to the same team and follow common design guidances. It is not reasonable
when designers are free to choose how agents react to some input and the only
requirement is to comply with an interoperability standard. An exception manage-

10 CHAPTER 1. INTRODUCTION

ment system must then be robust to unpredictable behaviors from agents, notably
the refusal to participate in the management process.

Heterogeneity leads then to one of the most general case of exception manage-
ment, i.e. the non-collaborative case. Although collaboration is often a reasonable
hypothesis when developing a heterogeneous software, collaboration occults several
problems, including that ‘perfectly collaborative agents’ can fail to do as expected
in the collaboration and thus showing unwanted non-collaborative behaviors (e.g.
to be late). Non-collaboration is therefore a more promising target for an exception
management system in MAS. By assuming that agents are non-collaborative in
the first place, an actual collaboration can just help improving the management
techniques, such as the convergence speed and accuracy of the technique.

1.2 Purpose & Scope of this document

Multi-agent systems are recent software models and techniques that require further
research to develop their resilience and their degree of dependability. One way to
this end is exception management and this document is devoted to this particular
topic in the case of knowledge-based agents.

The purpose of this work is twofold, first to study the notion of exception in
MAS so as to identify the research directions that need to be followed. The second
purpose is to explore some of these directions, notably the ones compiled in the
following list.

Concept of agent exception. Research on exception management in MAS has de-
veloped the intuitive idea that the concept of agent exception is akin to, but
differs from, the usual model of programming exception presented in Fig. 1.1.
This intuition originates in the work existing in Distributed computing and
the case of MAS introduces new challenges [29]. The first research issue is
then to define agent exception and to relate it to programming exceptions.

Execution model. Agents are the processing units of MAS and the aim of this
document is to endow them with exception management capabilities. A model
of execution is at the root of these capabilities to detect exceptions and
prepare an agent for their management. The main concerns are to deal with
the autonomy of agents, the openness of the system, and the heterogeneity
of the system parts. In addition, Software engineering practices recommend
a separation of concerns between the main application logic of a system, and
its exception handling logic. The separation should appear in the execution
model to let designers build systems based on the model, where the code for
exception handling is independent from the functional code of the application.
The second research issue is then to develop an execution model of agent
that deals with the characteristics of agents and software practices.

Architectural considerations. Agents are usually implemented as (finite state)
transducers, i.e. they transform an input into an output according to some

1.3. CASE STUDY 11

internal relation. The execution model describes how agents execute and can
deal with exceptional situations. The architecture of the agent is elaborated
from this execution model to support software designers in implementing
‘exception-ready agents’. The third issue is then to produce a software ar-
chitecture of agent that supports the exception management and separation
of concerns.

Agent exception handlers. Handlers are methods for agents to deal with excep-
tions. Several handlers are necessary for an agent as exceptional situations
occur usually in various circumstances that may require different handling.
In particular, agents are autonomous and they should be able to cope with
exceptions by themselves; but they also are part of a MAS, and they may
need to collaborate with other agents to cope with some exceptional situa-
tions. The fourth and last issue is then to create generic handlers for agents
and guidelines for domain-specific exception handling.

The approaches proposed in this document to address these research issues,
set forth results and techniques that are expected to serve in the agent-oriented
computing community, and, eventually, to serve in general Software Engineering,
perhaps under an evolved form.

1.3 Case study

The presentation of this document is organized in relation to a case study that
motivates and illustrates in a concrete example the model of exception management
in Multi-agent system. This section aims at describing the requirements, early
design and analysis phases for this case study. The reminder of this document will
go through the subsequents stages and refinements of the development process,
down to the implementation in chapter 5, with particular focus for the quality
requirements addressed with our exception management approach.

Choice of the case study. The case study is a market of rational agents, where
agents act and compete in the market on behalf of human owners. Each agent is
supposed developed by a different and independent designer for the human owner.
The choice for this case has been made based on the recognized applicability and
contribution of MAS technologies to market-like systems [12, 103, 111, 76]. Also,
this case has the properties of interest in MAS, while still remaining practical for
experiments. The properties of openness, heterogeneity, and interoperability are
therefore present in the system. Autonomy of the agent is guaranteed by the model
and architecture developed along this document, which were designed so that to
cope with the aforementioned properties.

The case study serves the essential aim to validate the model and evaluate its
computational complexity.

12 CHAPTER 1. INTRODUCTION

Settings of the case study. The case study is a market-like system where three
types of agents conduct their business, namely energy providers, machinery assem-
blers, and machine parts providers.

Energy providers produce energy (e.g. petrol, electricity), sell it in the market, and
buy machines and replacement parts necessary to conduct their exploitation.

Machinery assemblers build machines for energy exploitation and sell them in the
market. They need buy energy and machine parts to conduct their business.

Machine parts providers build machine parts and sell them in the market. They
need buy machines and energy to conduct their production.

The description of the agent types reveals resource dependencies. Although the
agents are autonomous, these dependencies will lead them to interact to continue
their respective activities. In other words, the dependencies are rational incentives
for agents to interact with one another. Fig. 1.3 depicts the dependencies and their
contents.

Provider Agent

Machinery

Machine Parts

Energy Provider

Agent

(replacements)

Need for parts

Need for energy

Need for parts

Need for machines

Need for energy

Need for machines

Assembler Agent

Figure 1.3: Dependency network among actors on the market.

When agents need to trade items, they use the classical Contract Net protocol
(CNet) [95] and directory facilities in the system to discover dynamically clients and
providers. The CNet is an interaction protocol that has been standardized by the
Foundation for Intelligent Physical Agent (FIPA) [27]. Fig. 1.4 represents a version
of the CNet adapted to the case study.

The CNet features two roles. The client is the initiator of the protocol and it
is the role of the agent that wants to buy items. The provider is the participant
role for agents who can sell items to the client. The CNet allows only one client
for several providers., i.e. the client calls for proposals from providers to compare
prices and choose the best offer. The syntax of the graphical notation is related
to UML sequence diagrams [104] and AUML [1], but it has been reduced to the
minimum required to describe the case study.

1.3. CASE STUDY 13

Client

[timeout]

accept

reject *

propose *

refuse *

Provider *

cfp

failure

result

Figure 1.4: Contract net protocol in the market.

Box. A box represents a role and contains the name of the role.

Vertical dashed line. The vertical dashed line represents the execution of a role,
where execution is performed along the line flow downward.

Cross. The cross along the vertical dashed line represents a termination of the
role.

Arrows. Arrows represent the sending of a message from the agent playing the
source role to the agent playing the target role. Interactions are supposed
asynchronous as a result of the message-passing model among agents.

Arrow labels. Labels are the type of message that agents can exchange.

Arrow bracketed labels. Bracketed labels are conditions for sending a type of
message.

Diamond. Diamonds represent a choice between the sending of several types of
message.

Star character. The star character represents items that can have several instances
in the protocol.

14 CHAPTER 1. INTRODUCTION

On Fig. 1.4, the client sends first a call-for-proposal (cfp) to selected providers.
Providers have to answer before a deadline (timeout), otherwise their participation
in the protocol is over (indicated by the cross). Each provider can send either a
refuse or propose message in reply to the cfp. The refusal causes the end of the
protocol for the corresponding provider. If all providers refuse the cfp, the client
also stops its participation in the protocol, which is then terminated. Proposals
allow the client to continue the interaction to reject proposals and accept only
one of them3. Rejection of the proposal of a provider leads it to stop its participation
in the protocol. Acceptance elects the provider that wins the cfp. At this point,
the contract between the client and the provider is settled and the client pays
the provider. Finally, the provider fulfills the contract. It can send to the client
a failure or a result message depending on the case. After reception of one of
these messages, both remaining roles terminate.

Functional requirements. The simulation aims at having agents conduct their
business as long as possible on behalf of their owners. They are initially given
a capital to produce their services (among energy, machines, and machine parts)
and to buy what they need to continue their productions, as defined in the settings
of the case study. An agent is considered ‘out-of-business’ as soon as it cannot
continue its business, i.e. when the agent has no more capital and no service to
provide. The value of services is constrained by an ‘offer & demand’ law that leads
agents to increase prices when demand is high, and to reduce them when demand
is low. The rationale for this law is to reproduce non-linear dynamics in the system.

Agents are allowed to trade with one another according to the CNet protocol.
Openness is due to agents that leave the market by lack of capital (the case of
entrance of agents is not considered in this scenario). Heterogeneity is due to
agents having to comply solely with interoperability matters.

Quality requirements. Quality requirements are relative to each agent. Each
agent represents an autonomous stakeholder in the market, as representative of
the human owner. The requirement for each agent is to maintain its activity in the
market, i.e. to increase the capital and at least to avoid bankrupt. In other words,
each agent is expected to be reliable and available to trade in the market. To this
end, agents should not fail in case of problem in the negotiation with other agents
or in their productions. One way to achieve this quality requirement is to deal with
exceptions in the protocol.

A number of agent exceptions can occur in these settings. For example, a
DelayAnnouncement exception announcing a delay in the reply or an offer is
likely to occur in the market. An agent might wait for the result of one protocol to
determine the commitment in another. It can then ask for delaying its answer to

3The client could accept several proposals and deal concurrently with each of them. The protocol
limits to only one proposal for simplifying the application, as this simplification does not reduce the
value of the example as for exception management.

1.4. ORGANIZATION 15

the second. When an agent receives a delay announcement, it can react in different
ways, i.e. handling such exception is mostly domain dependent. In the context of
the CNet, possible ways to handle it are for instance:

• If a provider of the CNet receives the announcement, it can accept or deny
the delay.

• If the client of the CNet receives the announcement, it can:

– Announce to some or all providers a time extension.
– Ignore the delay and continue the CNet with other providers.

The chosen way to handle the case is clearly dependent on the autonomous
decision of agents and their situations in the environment (e.g. delays are not
acceptable with some raw materials).

Another type of exception that should be managed by agents is the case of the
‘agent death’ [53], which occurs when an agent prematurely terminates and cannot
participate anymore in running protocols. Similarly to delays, handling the agent
death has different ways.

• If a provider of the CNet is informed about the death of the client, it should
stop its participation in the protocol.

• If a provider of the CNet is informed about the death of another provider, it
can simply ignore the event.

• If the client of the CNet is informed about the death of a provider before
contracting, it can simply ignore the event.

• If the client of the CNet is informed about the death of a provider after
contracting, it has to cope with the loss of money and the need for another
contract.

The case study serves along the document to illustrate the model and architec-
ture. In chapter 5, experiments are eventually conducted to validate and evaluate
the overall approach, by comparing market runs with activated and deactivated
exception management system.

1.4 Organization

The organization of this document has been designed to be progressive regarding
the research issues. First, chapter 2 presents research and major techniques akin
to exception management in software. This overview of the existing mechanisms
aims at describing the current achievements in the various existing approaches
and context. The presentation of the mechanisms also exposes the strength and
weakness relative to the requirements for agent exception management.

16 CHAPTER 1. INTRODUCTION

Chapter 3 is an extensive study of the meaning of exception in Multi-agent sys-
tems. The chapter aims at defining the expression ‘agent exception’ and explaining
the relationships and differences with the concept of programming exceptions. The
study results in an ‘exception space’ that classifies exceptions depending on their
impact (code or agent), scope (one or several agents), and sources (known or un-
known). The exception space serves subsequently to define handlers depending on
how they address the resolution of an exception.

Chapter 4 develops an execution model of agent exception and a software ar-
chitecture to implement it. The execution model describes in detail how agents
execute and how they deal with exceptional situations. The fundamental idea of
this model is for the agent to generate expectations that, if not fulfilled, allow to
detect exceptions and engage their handling. The architecture describes a pat-
tern to implement the execution model in an acceptable way, depending on the
application requirements. The main contribution of the architecture is to separate
at the architecture-level (that is early in the software development process) the
mechanisms for the application logics from the mechanisms for the exception logics.

Chapter 5 presents an evaluation of the model through experiments conducted
on the case study. The implementation of the system is presented with further
details on the experiments settings such as the number of agents and the items
they trade. Runs of the system first aim at validating the model and show how
agents can deal with exceptions. Runs also aim at comparing the computational
cost of the execution model (and the architecture) to the same system running
without exception management or with different approaches. The chapter continues
with an analysis of the experimental results and a discussion of the approach.

Finally, chapter 6 concludes the document by setting forth the contribution of
this work in different target disciplines. MAS are in fact related to Artificial Intelli-
gence and Software Engineering. Exception management relies on and contributes
to these two domains of Computer Science and the present work is integrated in
their perspectives to emphasize the contribution of the work. The chapter finishes
with the presentation of future work that can be derived from the current achieve-
ments.

Two

Exception Management in the
Literature

Exception management is a research theme that pertains to practical and theoret-
ical techniques in Software engineering (SE) and Artificial intelligence (AI). The
purpose of this chapter is to review the achievements in these two domains, and
to emphasize their shortcomings in dealing with exceptions in Multi-agent sys-
tems. This study is not intended to be exhaustive on the subject, as it rather aims
at introducing the most representative techniques that can contribute to exception
management in MAS.

Existing work in SE and AI deals with exceptions under many perspectives on
software systems. Programming language research was among the first to address
explicitly the concern of exception management, in the aim to build more reliable
software, more easily for the programmer. Since the early work in the 1970s, the
question of exception has followed the evolution of software with new challenges
to solve. Exceptions has been under active studies ever since in Distributed com-
puting, Software architecture and Component-based development, Formal models
of computation, notably in Logics, and finally in MAS research.

The chapter adopts a presentation method to expose the research consistently
in all domains, except the first review of programming exceptions (section 2.1), which
presents the work as a whole due to the historical background and aim to present
the general exception handling techniques. For all other sections, the scope and
assumptions of the research are first presented, followed by a detailed description
of the approach, and a discussion of the contribution to exception management in
MAS. The chapter concludes with an overview of all the achievements, a summary of
the research directions that are left open by these achievements, and an introduction
to the directions that are addressed in this document.

17

18 CHAPTER 2. EXCEPTION MANAGEMENT IN THE LITERATURE

2.1 Exceptions in programming languages

The original motivations for exception handling in programming languages are due
to the context of the 1970s. Hardware then suffered problems of reliability and
the development of reliable software was lacking systematic techniques, as can be
observed in the history of exception handling mechanisms [35, 33, 34]. Original
techniques to deal with exceptional situations were either ad hoc or complex to
exploit, at least from the perspective of the present achievements in programming
languages. The purpose of an exception handling system was then to have system-
atic treatment of exceptional conditions to either recover an appropriate program
state and resume the execution, or to terminate the software ‘gracefully’, i.e. to
ensure there is no side-effect in stopping the execution (e.g. release only reserved
memory, persistent data consistency).

From the original work of John Goodenough in the 1970s, most implementations
of exception facilities in a programming language follow similar semantics, with
slight differences depending on the constraints of each language paradigm (typically
procedural, functional, object). From languages as CLU to PL/1 to ML to Java, the
way to handle programming exceptions principally differ in the language syntax.
Some other languages have introduced different additional mechanisms1, such as
LISP.

This section of the related work presents first the common semantics of exception
handling in programming languages, i.e. the sequence that is executed by the
software at runtime when it encounters exceptional conditions. This section also
presents the case of LISP to show that there exists different ways to deal with
exceptions, despite the overwhelming success of the main-stream approach, due to
its simplicity and the qualities of implementations that can be found. The section
concludes with a discussion of the relation to MAS.

2.1.1 The original semantics of exception handling

Most languages rely on a similar model of exception that was introduced in
Fig. 1.1 (page 4). When a program is in execution, the invocation of an opera-
tion can encounter an exceptional condition. The execution flow is then deviated to
a handler that deals with the condition, until it resumes or terminates the execution
of the program. An operation is any instruction or set of instructions that is called
for execution. Before performing the actual operation, a set of pre-conditions is
checked to ensure no harmful execution can occur (e.g. committing to divide by
zero could have disastrous side-effects on the computer memory by erasing or
overwriting some areas). If one of the pre-conditions is not verified, the program is

1The supplementary mechanisms of these languages were often suggested by Goodenough in its
original papers. The common exception handling system actually implements for the major part the
essential subset of recommendations from Goodenough [34]. The recommendations that are usually
escaped are the ones dealing with monitoring that serve to take some ‘fortuitous’ initiatives in the
execution (react to events that are not only failures) and are therefore complex in use.

2.1. EXCEPTIONS IN PROGRAMMING LANGUAGES 19

said to encounter an ‘exceptional condition’, since the invocation of the operation
assumes that all conditions should pass. A handler is then searched: It is a block
of code that contains a series of instructions to deal with the exceptional condition.

The search is performed according to the program and the current execution.
Handlers are associated to a syntactic unit in the code, which is an instruction or
a block of instructions. Exceptions occur in a syntactic unit and handlers are first
searched in this one. If no handler is available where the exception has occurred,
the handler search continues by requiring the handlers attached to the syntactic
unit of the previously executed instruction, which is found according to the call-
stack maintained by the program. This search is called ‘unwinding the call-stack’.
The following code on Fig. 2.1 illustrates the syntactic units and the unwinding.

import java.io.FileReader;
import java.io.FileNotFoundException;
import java.io.IOException;

class SemanticsException {
public static void main(String[] args) {
System.out.println("Start example...");
final SemanticsException se = new SemanticsException();
try {
se.process();
} catch(IOException theIOException) {
System.err.println("***File cannot be read!***");
}
System.out.println("Finish example.");
}

public void process() throws IOException {
try {
final FileReader lfReader = new FileReader("file.dat");
final char lfChar = (char) lfReader.read();
System.out.println("First character: " + lfChar);
lfReader.close();
} catch(FileNotFoundException theFNFException) {
System.err.println("***File does not exists!***");
}
}
}

Figure 2.1: Sample Java code to illustrate syntactic units and handler search.

The try catch keywords in Java allow to define syntactic units where
handlers are attached. In the above example, the main method features
a handler for IOException, and the process method has a handler for
FileNotFoundException and can propagate (throws) IOException to the
calling method. In the code, the instructions read() and close() can fail

20 CHAPTER 2. EXCEPTION MANAGEMENT IN THE LITERATURE

and signal the IOException, while new FileReader can fail and signal
FileNotFoundException. When the piece of code is executed while the file
named ‘file.dat’ does not exists, the instruction new FileReader fails and searches
for a FileNotFoundException handler. As the syntactic unit is then the try block
in the process method, the code shows that a handler is available and the ex-
ception can be handled locally (relative to the execution flow). On the other hand,
we can assume that the file does exist when new FileReader is called, but it is
erased before the call to either read() or close(). The program then searches
for an IOException handler along the call-stack. The process method explicitly
propagates the handling of this exception to the caller, which means the handler
must be provided in the syntactic unit of the caller (which can also propagates it).
The caller is the main method, which provides the handler in the syntactic unit
defined by its try/catch block. The exception is therefore handled there.

The general search mechanism terminates when an appropriate handler is
found, or when the call-stack is totally unwound, which means the search has
failed and the program must be abnormally terminated (‘unhandled exception’ er-
ror). In case a handler is found, the handler can either resume or terminate the
execution of the instruction (or block of instruction), depending on the operation
and the language implementation. Once the handling procedure completed, the
execution of the program can continue, but the data in the block that has been
interrupted is lost. The state-chart 2.2 summarizes the description of the common
operational semantics.

The state-chart shows on the left-hand side (white part of the chart) the ex-
pected procedure to execute an operation when all its conditions are met. The
right-hand side shows the typical procedure to cope with exceptions (gray part of
the chart).

Most languages follow a semantics close to this one, notably Java [36], C#,
the different versions of C++ [99], ML, and so forth. The respective homepages of
these languages give all the necessary details to understand the actual semantics
in these language implementations. Slight differences can occur depending on
the language paradigm or design choices. For example, the Visual C++ from
Microsoft features a ‘structured exception handling’ mechanism that allows a closer
collaboration between the program and the operating system to deal with exception
conditions [69].

2.1.2 Alternative model: Condition handling in LISP

Exception handling in LISP is more general than the previous model and it is also
closer to the original proposal from Goodenough. The handling system is there
called ‘condition handling system’, where a condition is a generalization to any
event, either error, exceptional situation, or else [89, Chapter 19]. That is, conditions
stand at a higher level than exceptions, so that any event can be handled the same
way.

2.1. EXCEPTIONS IN PROGRAMMING LANGUAGES 21

Termination

AbnormalAbnormal

Invokation
Normal invokation

Request for handler

call stack?
End of

Rewind call stack

found?
Handler

can resume?
Execution

Execute handler

Handler
found?

Invoker

Request
Handler to the

no

yes

no

no

no

no

yes

yes

yes

yes

Conditions
validated?

Invoke operation

Execute operation

Figure 2.2: State-chart describing the operational semantics of exception handling
in many programming languages

The main difference in the semantics holds in the distinction between signaling,
handling, and restarting in the process of dealing with a condition. The previous
semantics focuses on the two first mechanisms only. In addition to the procedure
shown in Fig. 2.2, the condition system of LISP allows to define ‘restarts’ instead
of handlers in the program. When a condition is encountered in the program and a
restart is triggered, the call stack is not unwound, which means the program does
not terminate and it has the possibility to continue its execution without loss of
data. The restart defines a handling procedure for the condition and the point were
the execution should resume once the procedure has completed.

2.1.3 Programming exceptions and agents

Programming exceptions pertain to conditions in the execution flow of a program.
The level where exceptions occur is therefore instruction-wise, which has an accu-
rate meaning in the code. Agents are first of all software programs, so this type of
exception does matter and should be handled as in any program with the current
state-of-the-art handling systems.

However, agents are autonomous software that process events in their envi-
ronment. When such event occurs, the agent can encounter a situation that is
‘exceptional’ to the activity executed by the agent, while the event does not cause

22 CHAPTER 2. EXCEPTION MANAGEMENT IN THE LITERATURE

any programming exception (c.f. the DelayAnnouncement in the case study). The
reaction to an exceptional event at the agent level differs from an exception at the
code level: There is no call stack to rewind with an exceptional event, which must
be handled in the continuity of the agent activity. Also, the call stack rewind is a
lossy process, since the context of each call is lost at each step of the rewind. If the
agent is to remain autonomous in face of exceptional events, handling should occur
without loss of data for the agent. The operational semantics of exception han-
dling, and therefore exception management, requires a new model that is adapted
to the functioning of agents, and that completes the necessary handling system for
programming exceptions.

The observation of a type of exception in MAS that differs from programming
exception is originally due to the distributed (or decentralized) nature of MAS. The
next section then presents the achievements in the domain of Distributed systems.

2.2 Exceptions in Distributed systems

2.2.1 The Guardian

The ‘guardian’ is an architecture and a programming model to handle exceptions in
a distributed-object system, with applications to the mobile agent context [102, 66].
The guardian is a specific object designed to orchestrate concurrent exception
handling. It provides a set of methods to have application objects enter or leave
a context under its management, to signal global exceptions, and to propagate
them. Global exceptions are programming exceptions handled by the guardian.
When such an exception occurs, the guardian applies a corresponding rule that is
defined by the application developer to describe the global handling procedure.
The guardian follows the rule that usually entails the enabling of local exception
handling in the objects impacted by the global exception. The guardian allows then
to recover from exceptions in a distributed way, despite the possible concurrency
of exception signals or issues in coordination. Global exceptions are introduced as
a complementary model to the ‘local exceptions’ presented in the previous section.
Global exceptions are in fact particular to distributed systems and are not required
in sequential systems.

The semantics of the guardian handling process differs from the usual semantics
of programming exceptions, due to these global exceptions. Fig. 2.3 shows a state-
chart that illustrates this semantics, in comparison to the usual one in Fig. 2.2.

The original exception handling state-chart in Fig. 2.2 is reduced to the ‘Usual
exception handling’ box (dark gray), and the new elements of the semantics (light
gray) are introduced between the condition validation test and the usual handling
state. The notable difference in this semantics is that the guardian model allows
the continuation of the execution whenever a global exception is signaled. The
guardian model applies ‘recipes’ to deal with exceptions, instead of a rewind of a
call-stack-like structure. This continuation allows to abstract some issues due to

2.2. EXCEPTIONS IN DISTRIBUTED SYSTEMS 23

Execute operation

Invoke operation

validated?
Conditions

Normal invokation

yes

no

yes

yes

no
Request for

assignment
Handler

invokation
Guardian

Handling
Exception

Usual

To: Execute
Handler

exception?
Global

handler

to each process

Figure 2.3: State-chart describing the operational semantics of exception handling
with the ‘guardian’

concurrent exceptions: It would be very difficult to rewind in a coherent manner the
call-stacks of a multi-process distributed application. The guardian model bypasses
this difficulty by deciding the handling procedure on behalf of all processes involved
in an exception. Each process receives from the guardian a ‘usual’ handler to
execute, which is coherent with the handlers that other processes will execute in
the overall recovery procedure.

Example. A detailed example of exception handling is presented by Miller and
Tripathi where the direct relationship with Java facilities can be observed [66].
The guardian assists a client-server system shown in Fig. 2.4 that implements the
‘primary-backup’ approach to deal with server-side failures [101].

Clients connect to a server to get some services executed in a usual request/re-
ply fashion. Behind the scene on the server-side, the primary-backup is a repli-
cation of the server on another one. The actual server that connects to client is
named the primary, and the second is the backup. When the primary executes a
service, it modifies its state, delivers the service, and sends the modification to the
backup, so that both servers end in the same state after each service provision.
Whenever the primary fails and has to terminate, the backup transparently takes
over the connection for a seamless continuation of the server activity. Depending

24 CHAPTER 2. EXCEPTION MANAGEMENT IN THE LITERATURE

Server

(Primary)
Server

ACKupdate

reply

request

(Backup)

Clients

Figure 2.4: Architecture of the ‘primary-backup’ fault tolerance

on the quality of the swapping between the two servers, clients might not be aware
of the failure.

The guardian programming model provides the necessary facilities to implement
this approach. The introduction of the guardian yields a new architecture as shown
in Fig. 2.5.

Server

(Primary)
Server

Guardian ACKupdate

reply

request

(Backup)

Clients

Figure 2.5: Architecture of the ‘primary-backup’ with the guardian

If the primary server fails, a ‘global exception’ is raised, so that the guardian
handles the error by creating a handler for the backup, which is expecting to
synchronize with the primary. The handler requires the backup to take the role of
primary, and to instantiate a new backup.

Guardian and agents. The notion of global exception and the corresponding han-
dling semantics confirm the intuition that agents can encounter other exceptions
than traditional programming ones. The guardian programming model however as-
sumes that the processes under management are collaborative, and this is a limit
of the application in the case of open and heterogeneous systems such as MAS.

In addition, the guardian model ends its handling process by producing and
assigning traditional exception handlers to the processes. That is the usual se-
mantics is joined at the end of the global exception handling. In other words, the

2.2. EXCEPTIONS IN DISTRIBUTED SYSTEMS 25

processes still lose information in the handling procedure, which is proper to the
programming exception models.

2.2.2 Coordinated and cooperation exception handling in distributed

objects

Coordinated exception handling and Cooperation exception handling are two ap-
proaches designed to deal with exceptions in distributed object systems. The dif-
ference with the guardian is that they do not recommend a priori any particular
architecture and they elaborate on the ‘orchestration’ aspect of processes to manage
exceptions.

Coordinated exception handling. Coordinated exception handling relies on the
concept of coordinated atomic actions and exception graphs to deal with concurrent
issues that can occur in the system [112]. Fig. 2.6 helps to illustrate this concept.

A

t−4t−3t−2t−1

time

CA−2

CA−1

E

D

C

B

Figure 2.6: The coordinated atomic action model

In a distributed application, one of the main difficulties is to determine which
processes are involved or impacted by an exception. Coordinated atomic actions
(CA) create a virtual context for a number of processes to circumscribe the group
of processes that must participate in an exception handling procedure. When pro-
cesses belong to a CA, they interact among one another, but they do not interact
with some processes out of the CA as long as the CA exists. in Fig. 2.6 processes
C and D belong to CA-2, so that they do not interact with other processes in the
interval (t-2, t-3). In the intervals (t-1, t-2) and (t-3, t-4), processes B, C, and D
interact in CA-1, while they do not interact with other processes. A and E can
interact at any time according to this graph, and they can interact with B, C, and
D either before t-1 or after t-4. The CA model allows to confine an exception
handling procedure to a subset of processes. If an exception occurs in C in (t-2,

26 CHAPTER 2. EXCEPTION MANAGEMENT IN THE LITERATURE

t-3), the only process that will be involved in the handling procedure are C and
D. If the exception is handled inside the CA, the execution then continues. If there
is no handler available, the exception is propagated to the immediately enclosing
CA. In the case of an exception in C that is not handled in CA-2, the next attempt
to handle it will be in CA-1 with processes B, C, and D.

Another difficulty is to determine an appropriate handling procedure that is
consistent with all processes in a CA, especially in case of concurrent exception
signaling. Two or more processes can signal different exceptions. A consistent han-
dling must ensure that the handling procedure allows to deal with all the exception
types. In the coordinated exception approach, processes can access an exception
graph that allows to determine a common handler when concurrent exceptions are
signaled. Such graph is shown in Fig. 2.7

Universal Exception

E−2 and E−3E−1 and E3E−1 and E−2

E−3E−2E−1

E−1 and E−2 and E3

Figure 2.7: The exception graph model (reproduced from [112])

When concurrent exceptions are signaled, they are mapped to the leaves of the
exception graph. The common handler that will be selected is the first common
parent of the signaled exceptions. For example the signaling of E-1 and E-3 will
select the handler of the ‘E-1 and E-3’ parent in the tree. As with usual exceptions,
a universal exception is defined and it matches ‘any kind of exception’, so that
exception types that do not require specific handling or that are not supported by
the application in the first place can still get the basic support from the handling
system for ‘graceful termination’. The coordinated exception handling approach
was validated among others on a production cell application, which is the theme
of several MAS implementations and can make it relevant in practice [26, 21].

Cooperation exception handling. Cooperation exception handling elaborates on
a cooperation model among distributed objects involved in multi-party interac-
tions [43]. This work introduced the models of global exceptions and concerted
exceptions, later reused in the guardian. The difference with the guardian is that
the cooperation exception handling system relies on particular constructs that can
be integrated in languages. The model has been implemented in the program-

2.2. EXCEPTIONS IN DISTRIBUTED SYSTEMS 27

ming language Arche, which is designed to distribute computing over local area
networks. The detailed presentation of this language is out of the scope of this
presentation of the work, and it would require a significant space. The exception
handling part can however be explained with some simplifications.

The language models a distributed application as multi-procedures (MP), which
are procedures executed in parallel with a specific semantics for their initialization
and termination to ensure proper executions. Procedures declare exceptions they
can signal to their enclosing MP for handling. In addition, procedures can explic-
itly bind their execution to other procedures in order to synchronize with them.
Two procedures that are bound then execute in synchrony, and the occurrence of
exception is resolved in common. Without entering the details of the language,
Fig. 2.8 shows how the binding is expressed in the model.

resol rSumFac(handles ov() ; signals ov()) =
begin throw ov end

mproc fact(v x : int; r fx : int)
[ov()] = not detailed : fx = x!

mproc sum(v x : int, y : int ; r s : int)
[ov()] = not detailed : s = x + y

mproc sumFac(v a : int, b : int ; r sf : int)
[ov()] using rSumFac =
(v a : int ; r sf : int) [ov()] =
var f1 : int;
begin
{fact(a,f1)}[ov() : throw ov()];
{sum(x = f1, sf = s) with 2}[ov() : throw ov()]
end
parallel
(v b : int) [ov()] =
var f2 : int;
begin
{fact(b,f2)}[ov() : throw ov()];
{sum(y = f2) with 1}[ov() : throw ov()]
end

Figure 2.8: Syntactic bind at compile-time in a multi-procedure (reproduced
from [43])

The MP of interest is the last block introduced by ‘mproc’ named ‘sumFac’,
to compute the sum of two factorials computed in parallel. The MP contains two
procedures that compute individually a factorial. When these two procedures add
their respective results, they invoke the MP ‘sum’ with a subset of the required ar-
guments and the special keyword ‘with’, which introduces the identification number
of the process to synchronize with. The two processes have then safe access to the
shared variable of the sum and they are synchronized in case of exception.

The approach appears similar to the aforementioned coordinate atomic action

28 CHAPTER 2. EXCEPTION MANAGEMENT IN THE LITERATURE

model. The differences are however that bindings among processes are statically
declared in MP, whereas CA can evolve over time, as shown in Fig. 2.6. In addition,
the exception graph of CAs seems more generic approach than the introduction of
language constructs (the ‘resol’ keyword in Fig. 2.8). This last comment is however
weakened by the lack of knowledge about the implementation of the exception
graph.

Coordination, cooperation models, and agents. The coordination and coopera-
tion exception handling approaches explicitly deal with programming exceptions,
and the mechanisms based on distributed algorithms and programming seem appli-
cable to MAS, especially the work on multi-party interactions. These approaches
cannot be exploited directly however, owing to the assumptions that agents would
be cooperative and inspected. In addition, some agent exceptions such as the agent
death are not taken into account [53].

2.3 Architecture-level and Component-level exceptions

Research in Software Engineering recognizes exceptions not only in programming
language, but also at the level of the system. Exceptions then pertain to a significant
part of the system that must react in coordination with other parts, instead of just
having a local handling. At the system level, two main areas of work have been
developed, in terms of software architecture and component integration.

2.3.1 Architecture-level exception handling

Research in Software architecture proposes exception handling related to architec-
ture description languages (ADL), which target Software Engineering directly at
the architecture level. One notable instance is the work of Issarny and Banâtre
that introduces exception handling constructs and runtime support to an ADL [44].
The use of this extended ADL allows to specify how the architecture reacts to some
exceptions.

Examples of such architecture-level exceptions are related to the client-server
architecture. The language allows to specify that a base architecture (e.g. RPC
communication) can evolve for dynamic binding of component instances, enhanced
availability (replication), or enhanced response-time (pre-fetching), whenever such
evolution is necessary to maintain the system performance.

Such work at the architecture-level is relevant to MAS, which are open ar-
chitectures hosting autonomous agents. However, the extended ADL proposed in
current work mostly aims at cooperative components, so that further extensions are
required to deal with autonomous entities.

2.3. ARCHITECTURE-LEVEL AND COMPONENT-LEVEL EXCEPTIONS 29

2.3.2 Exceptions in Component-based Software Development

In relation to Software architecture, the development of software based on COTS
(Components-On-The-Shelf) aims at building systems by assembling generic
‘ready-to-use’ components [100]. The issue with COTS in practice is the actual
integration of arbitrary components into a robust application. The implementa-
tion details of components are usually not known, and only some details about
the provided functionalities are delivered with a given component. Integration of
components is therefore difficult as ‘systemic exceptions’ can occur due to their
assembling [18]. In addition to traditional exceptions handled inside components
as individual sub-parts of the system, system-level exceptions need specific mech-
anisms, in the same way agent exceptions call for novel approaches.

Sentinel components. Dellarocas proposes a model developed in relation to the
work of Klein et al. in MAS [18, 51, 53]. The approach is to introduce pluggable
‘sentinel components’ in the assembling of COTS and request the components of
the application to implement a set of interfaces that lets sentinels detect and deal
with exceptional behaviors. Sentinels actively observe the execution system-wide
for symptoms and they exploit a knowledge base of handling recipes to recover a
variety of situations.

Coordinated exception handling in components. A later approach relies on the
Coordinated exception handling approach, aforementioned in the case of distributed
systems [112, 84]. The work is a generalization of the atomic action model to com-
ponents. The execution of components is organized into actions that define a scope
wherein exceptional situations must be managed. Action scopes can be nested so
that the usual recursive handling schemes are reproduced: An exception that can-
not be handled inside an action scope is propagated to the enclosing action scope.
The main advantage of this approach is to provide a dynamic mean to organize
the execution of components into actions, and to manage the occurrence of con-
current exceptions inside these actions. In addition, this work proposes guidelines
to software integrators for introducing this exception handling mechanism in the
development process of COTS assembling.

Components and agents. The component-based approach assumes that appli-
cation components are observable and commandable (through the required set of
interfaces), and this hypothesis is not acceptable with agents. In the case of sentinel
components, the approach based on system-wide observation does not hold in MAS
where agents only have a local scope and scalability issues arise as the number of
agents or the complexity of their interactions increase. Finally, the exploitation of
a large knowledge base to provide handling recipes is attractive for many practical
cases, but scalability issues also arise when the size of the base and the frequency
of search increase. The structuring offered by the action model is also not fully
applicable in the case of agent exceptions. One of the assumption of this work is

30 CHAPTER 2. EXCEPTION MANAGEMENT IN THE LITERATURE

in fact that ‘components have deterministic behavior and do not change their state
spontaneously’ [84]. In other words, components need an invocation to ever react,
similarly to an object in Object-oriented programming. Although agents can be
predictable, they usually evolve spontaneously as they execute autonomously.

In the case of agent systems, a similar view to components can be observed as
putting agents together in a system can be thought of as assembling components
into an application. The major difference is however the notion of module. In
component-based development, a straightforward definition of a module is a single
component and this provides a context inside which exceptions are handled. The
respective work of Dellarocas and Romanovsky show this definition of a module only
allows to deal with traditional exceptions and let systemic exceptions unaddressed.
The notion of action is another definition for a module in the system to deal with
such exceptions, as illustrated in the Coordinated atomic action model. It offers
the advantage to be more flexible, therefore dynamically adaptable at runtime.
Assembling components together results in a tight coupling of modules, where
exceptions occur in each module and in the resulting product as a whole.

Two types of ‘module’ are observed in MAS, namely the agent and a group
agents involved in a common activity. Agents are indeed strongly decoupled entities,
and that is the reason why the component-based approach does not fully satisfy
the case of agent exceptions. The lesson that can be learned for agents is that
putting in the same system apparently interoperable agents does not guarantee
their proper functioning, especially as agents enter and exit dynamically.

2.4 Exception in Logics

Logics has been extensively exploited in AI to develop agents with cognitive ca-
pabilities. Logics allows to represent how agents can ‘reason’ to execute the work
they are submitted with. The mechanism behind the reasoning capability is an
inference engine embedded into the agent that derives logical conclusions from
a set of inputs including knowledge and changes in the environment. Interesting
work in logic-based agents pertains to the reaction to ‘abnormal situations’ with
non-monotonic reasoning techniques such as in default logic, the situation calculus,
or the event calculus [65, 54]. Abnormal situations are indeed akin to the exceptions
studied in this document.

2.4.1 Default logic and Circumscription

The usual example of formula with an abnormal situation is about birds. Common
sense dictates that birds normally fly, although it is not always true, for example
if the bird is injured or a penguin. The following formula states that if X is a bird
and it has no abnormal characteristic, then the inference engine can derive that X
flies.

∀X, bird(X) ∧ ¬abnormal(X) ⊃ flies(X) (2.1)

2.4. EXCEPTION IN LOGICS 31

The problem with this formula is that an inference engine cannot derive any
conclusion from the only knowledge that ‘X = Tweety’ is a bird. The logical
formula requires explicit knowledge relative to the abnormal predicate, either
abnormal(Tweety) or ¬abnormal(Tweety) in this case to conclude. Several
techniques were proposed to deal with this matter, and they are relevant here as
they illustrate how logical mechanisms allow distinguishing normal from excep-
tional cases.

Default logic. In default logic, specific rules are introduced to inform the inference
engine about default, i.e. assumed, knowledge. The pattern of the rules is A : B ⊃
C , where A is the hypothesis, B the default, and C the conclusion. It is informally
understood as if A holds, then C is true whenever the negation of B is not known.
For example, the next formula means that if X is a bird, it normally flies by default,
so the engine can conclude that X flies whenever there is no predicate that states
that it does not.

∀X, bird(X) : f lies(X) ⊃ flies(X)

Circumscription. In the Situation Calculus, McCarthy proposed the circumscrip-
tion of predicate as a logical mechanism to achieve the same as default logic, but
with the advantage to avoid using specific rules. Circumscription avoids to introduce
a new syntax and relies only on the usual logical operators of first-order predicate
logic2. The detail and formal mechanism of circumscription is described in the
original work [62, 63], and what matters for the engineering of agent exceptions is
the informal semantics of the approach. The problematic formula becomes:

∀X, bird(X) ∧ ¬Circ[abnormal](X) ⊃ flies(X)

Circ[abnormal] is a predicate that formally and concisely enumerates what is
known and deems ‘the rest’ to be false. Circ[abnormal] can be chosen, for example
Circ[abnormal](X) ≡ (X = Donald ∨ X = Daisy). It means that abnormal is
true for the value Donald and Daisy, and false for any other value. The inference
engine can then derive that X = Tweety can fly, since the only known exceptions
are Donald and Daisy.

Default logic, circumscription, and agents. Logical mechanisms such as default
logic and circumscription demonstrate formal means to model the reaction of an
agent to exceptional situations. The main relevance of these mechanisms appears in
many models of exception handling in programming language. An inference engine
cannot derive any result from formula 2.1 if the only input is the predicate bird(X):
The engine may just block or return it cannot conclude. Similarly, a program may
just block or exit in abnormal conditions when it encounters an exceptional situation

2Circ is a predicate over predicates, introducing a single second-order term (Circ itself) to achieve
circumscription of a first-order theory.

32 CHAPTER 2. EXCEPTION MANAGEMENT IN THE LITERATURE

without any handler available nor propagation option (i.e. lack of knowledge to be
compared to not knowing abnormal(X)). The strength of the above logical models
is that they provide a formal mean to avoid blocking or exiting, and still keep the
agent or program in a consistent state.

2.4.2 Abductive reasoning

The last contribution of Logics to this survey is actually devoted to Multi-agent
systems through the use of Abductive logics to reason about failures or speculate
about the possible futures [88, 87].

Abductive logics is usually exploited to generate hypothesis about the activities
at hands. A hypothesis allows a logic program to execute even though the knowl-
edge lacks proved grounds. The program can then execute speculatively until the
target result is obtained, or the hypothesis is proved incorrect. In the latter case,
the execution continues with the knowledge that the hypothesis was wrong.

The work of Satoh on failure and speculation shows examples of applications
of Abductive logics to cases akin to exception handling [88, 87]. One example is a
MAS organized as a hierarchy of agents. Agents on top of the tree receive tasks
that can be decomposed into sub-tasks and distributed to lower-level agents in the
hierarchy, as shown in Fig. 2.9.

A0

Level N

Level 1

Level 0

AN−MAN−1

A1−3A1−2A1−1

Figure 2.9: Hierarchy organization of a MAS

When an agent at level i receives some tasks, it decomposes them and requires
agent at level i − 1 to perform parts of the decomposition. During the performance
of the parts, the agent at level i is not waiting for the result of each part. It assumes
necessary results as optimistic hypothesis and continues its own execution until
the real results are necessary. If an assumed result is eventually received, the
hypothesis is replaced by this value. On the contrary, a failure leads the agent at

2.5. EXCEPTIONS IN MAS RESEARCH 33

Application agent layer

Sentinel agent layer

Figure 2.10: Representation of the original sentinel approach

level i to re-allocate the performance of the sub-task, which is a type of exception
handling.

Abductive reasoning allows to formally represent this mechanism. It appears
particularly useful in the case of MAS where the above situation is likely to oc-
cur. In addition, the abductive framework of this particular example illustrates that
agents can individually reason about their environment and manage a number of
exceptional situations autonomously.

2.5 Exceptions in MAS research

2.5.1 The sentinel-based architecture

Sentinels are agents introduced in a MAS application to provide the system with a
fault-tolerance service layer [40], as depicted in Fig. 2.10. Each sentinel assists an
application agent in its interactions with other agents. Sentinels are specialized
in error detection and recovery, with the capability to inspect the state of agents
(including their ‘beliefs’ [80]). When an exception is detected in interactions or
agent states, the sentinels execute specific code to recover a desired state.

A detailed application from Hägg is the use of MAS in the context of a power
distribution company. Application agents negotiate energy consumption credits for
load-balancing on the electric grid. Sentinels can detect and remedy to erroneous
behaviors in negotiation processes by inspecting ‘checkpoints’ in the agent code.

The original approach has been extended in the work of Klein et al. with
an exception handler repository that provides sentinels with handling recipes in-
spired by management research [51]. Sentinels can therefore better coordinate to
solve or improve the system execution facing exceptions. The advantage over the

34 CHAPTER 2. EXCEPTION MANAGEMENT IN THE LITERATURE

original sentinel model is that exception handlers are shared in the repository, so
that system designers do not need to produce specific sentinels. The ‘handling
code’ is available to any sentinel whenever required. Another work has extended
this approach with a detailed architecture for sentinels devoted to exception diag-
nosis [91]. This work focuses on analyzing the contents of FIPA-compliant agent
communication languages [23]. The analysis is performed by sentinels who also
hold knowledge on running agent protocols and plans. Whenever an exceptional
situation is detected, the sentinel dialogs with its corresponding application agent
to try recovering a consistent state.

The problem with the sentinel approach is that it violates assumptions of the
agent paradigm. Encapsulation is not respected since sentinels can access and
execute code in the so-called ‘agent-head’ [40], which should be a black-box to
respect agent autonomy. In addition, the latter extension is declared to be part of the
hosting system where agents can freely join and leave [91]. As sentinels are allowed
to fully inspect agents, this architectural style violates further the assumptions of
openness and agent autonomy. Finally, agents are supposed benevolent and this
hypothesis cannot hold in heterogeneous systems.

2.5.2 Reliability database and sentinel-like agents

Another version of the sentinel approach has taken a different approach and im-
proves some of the shortcomings, most notably the respect of agent autonomy. Klein
et al. proposed to keep the sentinel model of supporting application agents and
to complete the system with a reliability database [53]. The sentinels function
similarly to the original model of Hägg, but they do not inspect agent internals,
thus better preserving their autonomy. Sentinels serve as proxies of agents in the
system and monitor interactions to provide agents with appropriate interaction pro-
tocols when exceptions occur. The novelty is that failing agents are registered in
the reliability database to keep track of problems of high frequency. The database
guides sentinels in recovery procedures to improve the mean recovery time. The
corresponding architecture is presented in Fig. 2.11.

Application agents interact through their sentinels to contain any problem and
exploit the reliability database consistently.

The approach has however two shortcomings. The agent autonomy is not com-
pletely preserved because sentinels are allowed to modify agent messages in two
circumstances. Messages can be changed in handling of exceptions to resolve the
problem encountered by the agent, and messages can be redirected to more reliable
agents according to the database. Although these two changes are acceptable in
the context of this research on collaborative agents, it is not acceptable to preserve
autonomy. The second shortcoming is identified in the articles of this research: The
exception management system is brittle when agents or sentinels fail to fulfill their
tasks during an exception handling procedure. This issue is actually one of the
base motivations to complete the typically system-level approach with a reliability
database with agents that endow individual exception management capabilities.

2.5. EXCEPTIONS IN MAS RESEARCH 35

Application agent layer

Sentinel agent layer

Reliability database

Figure 2.11: Reliability database in the sentinel approach

2.5.3 Agent exceptions in commitment protocols

The work of Mallya and Singh deals with exception handling for autonomous agents
in the context of business process [59, 58]. This approach relies on commitment pro-
tocols to specify how autonomous agents interact in an open system. Commitment
protocols are interaction protocols whose formal semantics aims at better repre-
senting the social commitments of agents when they engage in a protocol. As for
exception management, the advantage of commitment protocols is to better preserve
the autonomy of agents.

When an agent detects an event that does not follow an agreed protocol specifi-
cation, it considers the event as an exception and two mechanisms formally defined
allow to handle expected and some unexpected situations. Expected exceptions are
foreseen by the designer who developed a specific handler (here, another protocol).
Unexpected exceptions are not coded beforehand and some mechanisms allow to
dynamically build a handler from a base set.

The method has been illustrated for a hotel reservation protocol. An expected
exception can be the case where there is no vacancy in the hotel. The system
designer usually foresees this issue and a specific handler is available in the
system to deal with it. An unexpected exception can be the start of a fire that
would oblige the hotel to redirect all clients to an alternative business partner. The
designer might not foreseen—or enough time to foresee—such a situation. Mallya

36 CHAPTER 2. EXCEPTION MANAGEMENT IN THE LITERATURE

and Singh propose to rely on an external exception handler repository to fetch a
specific handler and merge it automatically with adequate system protocols. In
other words, this approach elaborates on the model of Klein et al. to introduce a
shared repository of protocols [51].

This approach respects the assumptions of MAS introduced in this document,
as it was explicitly designed for open systems with autonomous agents. How-
ever, the work is mostly theoretical and it lacks validated results in practice. The
current issues are the computational complexity of handler selection and dynamic
assembly of new handlers [59]. The adoption of the architectural choice of Klein
et al. is said to partially solve these issues, but complexity and scalability remain
to be evaluated. The main contribution of this work is therefore the illustration of
exception handling mechanisms that hold at the agent level, that take into account
the case of unexpected situations, and that might be practical for a certain number
of agents.

2.5.4 Stigmergic systems

Stigmergy is an interaction model where agents put marks in the environment
(messages with no intended recipient) that other agents exploit to determine their
next actions. Stigmergy models and allows to simulate the behavior of some social
insects such as termites. One termite starts to build a nest by putting a piece of
material on the ground (a mark). Other termites use this information to determine
where to pile the piece they carry. Stigmergy is thus an indirect interaction model
as there is no direct message passing.

Stigmergic systems are particularly robust to some types of agent exceptions
such as the death or the failure of agents [71]. The robustness of these systems
is mostly due to the high redundancy of agents, which reminds the choice for
modularity of software architectures that could limit the impact of exceptions in
sequential systems.

There is little work on stigmergic systems that discusses robustness issues,
and no work on exception handling to date. Although the robustness inherent to
such systems entails that no significant advance might be expected in exception
handling, recent extensions of stigmergic systems to ‘human stigmergy’ are to be
demanding for such techniques [72]. As for architectural considerations, stigmergic
systems emphasize the importance of the application environment in the robustness
of the system. The environment can be thought of as a ‘glue’ in-between agents
that adequately diffuses the information ensuring system robustness.

Despite the potential of stigmergic systems, there are however not studied in
further details in the scope of this document. One of the main reasons for this
choice is Stigmergic systems are usually based on reactive agents, by opposition
to the present focus on knowledge-based agents.

2.6. SURVEY CONCLUSION 37

2.5.5 SaGE in the MadKit platform

Souchon et al. proposed the SaGE framework (acronym for Agent exception han-
dling system) [96]. SaGE extends the exception handling system of Java with facil-
ities to handle issues specific to autonomous agents in the MadKit platform [57]. In
MadKit, agents hold some roles and provide services to each other according to the
roles. Exceptions can occur at each of the three levels of service, agent, and role.
The propagation of exceptions in search for a handler follows a predefined chain
order. The possible chains share the same search order with services, agents, then
roles, and finally the calling service (the propagation to role is skipped when only
one agent is involved in the handling). In addition, SaGE provides a mechanism
for ‘concerted exception handling’ to resolve errors depending on several agents.
This mechanism allows to specify when agents effectively recover from some errors.
Agents ‘wait’ until sufficient reasons are collected to react to an error at the service
and role levels. Souchon et al. advance that the concerted exception model allows
to avoid reactions to under-critical situations and to collect exception reports so as
to evaluate a collective state.

An example of concerted exception handling in SaGE is implemented in a travel
reservation system where several service providers encounter a failure. When few
providers fail, limited results can be generated in a degraded mode. Too many
failures compared to the number of providers trigger a specific method in the agent
code to terminate properly the transaction for the reservation.

SaGE complies partially with the agent exception definition, owing to the focus
on autonomous agents. However, SaGE does not scale to heterogeneous system
issues as it assumes benevolent agents only. Nevertheless, SaGE brings notable
instances of mechanisms for exception handling to the agent-oriented engineering
community, namely the propagation that follows an agent-specific organization
model (AGR, Agent-Group-Role [22]) and the concerted exceptions.

2.6 Survey conclusion

Related work on exception handling spans over research in Software engineering
and Artificial intelligence. As Multi-agent systems rely on these two research
domains, a number of concrete achievements can be observed, either for the theory
underlying MAS or the practice of building them.

Most work do not however comply with the necessary requirements to deal
with the idea of exception in MAS. Current achievements do support MAS as
software entities: Programming exceptions are now well-known concepts. They do
not support MAS to a sufficient extent as an open and heterogeneous system of
autonomous agents.

The different approaches related to distributed systems, architecture, compo-
nents, and earlier work in MAS identified some of the essential issues to address a
full-fledged exception management system, notably the problems of concurrency in
handling or the systemic dimension. They can handle to some extent with the is-

38 CHAPTER 2. EXCEPTION MANAGEMENT IN THE LITERATURE

sues of openness and heterogeneity. They usually cannot cope with the assumption
of autonomy.

One surprising result of this survey is that there is almost no attempt to give a
clear definition of the concept of exception in MAS, especially in the work directly
related to the agent research community. Key examples are explained in detail,
such as the agent death, but the concept of exception remains an intuition. For
this reason, the reminder of this document proposes a definition of agent exception
and the study of an agent execution model that better addresses the semantics
of exception in MAS. Although the model does not cover to full extent the issues
of agent exception, it settles the foundation for future work with respect to agent
autonomy.

Three

Definition of Agent Exception

The current achievements for exception management in Multi-agent systems have
given the intuition that agents can encounter events that are not programming
exceptions, while they still need to consider these events as unexpected or rare
situations. This intuition leads to the concept of agent exception that is developed
in this chapter. The starting point to analyze and determine an acceptable definition
of agent exception is the original definition of programming exception.

In the era of procedural languages and object-oriented programming, the term
‘exception’ has acquired a specialized meaning, tightly attached to high-level pro-
gramming paradigms, as illustrated by the definition of Goodenough [34, 35, 33].

Of the conditions detected while attempting to perform some operation,
exception conditions are those brought to the attention of the opera-
tion’s invoker. The invoker is then permitted (or required) to respond
to the condition.

When a program attempts to call an operation in its execution flow, the operation
must check conditions that must hold before the actual performance can occur. In
case at least a condition is not passed, the operation returns a message to the
caller stating that it cannot execute due to the condition violation. This semantics
was extensively discussed in the previous chapter.

This definition applies to the different elements of a MAS, namely agents, en-
vironment, and deployment context (e.g. resources such as databases) since they
are all software programs. However, the characteristics of MAS and the study of
related work show that this definition is not adapted to fully address agent excep-
tions, owing to the characteristics of openness, heterogeneity, and autonomy. The
aforementioned exception definition makes the invoked operation declare unequiv-
ocally that a situation is exceptional. Such approach is not inappropriate to MAS,
where equivocal interpretation should occur. In fact, an agent can be deemed as
autonomous if it can decide by itself. The semantics of programming exceptions
does not allow such decision, as illustrated in the following Fig. 3.1 and Fig. 3.2.

39

40 CHAPTER 3. DEFINITION OF AGENT EXCEPTION

Operation

Invoke

signal : e.g. exception object

Invoker

Exception

Figure 3.1: View on the semantics of programming exceptions: Exceptions are
decided on the operation side

When an exception is decided on the side of the operation, the invoker has
no decision to perform. The reply from the operation is for example an exception
object in many object-oriented programming languages. This mechanism does not
however map on the target for agent exceptions, as shown hereafter.

Caller agent

Expected

Called agent

1: message M

2: message R

Exception

R?

Ignore

Figure 3.2: Target of the semantics of agent exceptions: Exceptions are decided by
agents themselves

Autonomous agents should be able to decide whether a message sent by other
agents (after a request or in the first place) is either expected, exceptional, or e.g.
to ignore. This claim can also be generalized to any input received by an agent,
either from peers, the environment, or elements in the deployment context [107].

3.1 Agent exception

According to the characteristics of MAS, the model of agent exception developed
in this document is defined as follows. The terms used shall be understood at the
granularity of agents, i.e. the syntactic unit that exceptions target is an entire agent
entity and not only a block of commands in its code.

An agent exception is the interpretation by the agent of a perceived event
as unexpected.

Definition: Agent Exception

3.2. PROGRAMMING AND AGENT EXCEPTIONS 41

This definition sets forth the role of the agent in the decision process of exceptions,
which is relative to events that are perceived by the agent, as introduced on Fig. 3.2.
When an agent receives an input, it can decide how to classify this input. The
decision criteria for exception is the expectation. Agents are knowledge-based
entities that execute protocols1. The activities and goals of the agent allow to
formulate expectations for the future evolution of the world: Agents send messages
to one another in the aim to receive certain results, which are expectations. An
agent is consequently able to interpret an input as unexpected, whenever this input
does not match its expectations.

The meaning of an agent exception then differs significantly from programming
exceptions. When the latter is associated to an event, the former is associated to
the interpretation of an event. Autonomous agents can then keep the control of
themselves and decide how to process an input.

This definition provides the basis of what an agent exception is. One argu-
ment could be formulated to weaken this definition. Autonomous agents are often
expected to execute in the context of an organization. An organization defines
power relationships, already mentioned in the introduction as social dependen-
cies (page 7). Such relationships are to guarantee that, despite autonomy, agents
comply with the requests that are sent to them. Such settings is appropriate in
closed systems where the software designer controls all parts of the system. The
typical ‘supervisor-worker’ model does actually rely on the assumption that workers
obey the supervisor. In open settings, individual agent designers want to keep their
own agents under full control, and they want to decide how the agents respond
to solicitation from external, perhaps unknown, agents. Despite power relation-
ships between two agents, the autonomy that should be preserved leads to the
aforementioned definition. Agents first decide how to process an input on their
own.

This model does not contradicts the power relationships settled by organiza-
tions. Organizational power is simply thought of as an overlay on the autonomy of
agents. Once an agent has decided whether an event is an exception—according
to its interpretation—the agent can revise its decision depending on some power
relationship. In other words, a worker agent can refuse to terminate on the order of
a ‘chief agent’, if e.g. the two agents belong to different companies and collaborate
in a virtual shared space.

3.2 Programming and agent exceptions

Although programming and agent exceptions are conceptually different, they pertain
to the same program and they are consequently related. Programming exceptions
impact the stability of the agent execution by deviating the execution flow to ex-

1The reader is reminded that this statement applies in the context of this document and other
models of agents do exist. The approach can be seemingly adapted to other agent models, provided
an appropriate representation for ‘expectations’ can be determined.

42 CHAPTER 3. DEFINITION OF AGENT EXCEPTION

ception handling code and attempting to restore a consistent state. They are then
activating mechanisms ‘at the code level’. Agent exceptions impact the activity of
the agent. The stability of the agent execution is maintained: Although the execu-
tion flow is directed to ‘agent handlers’, the agent remains in a consistent program
state. It has to act so that its activity can continue in the context setup by the
agent exception. Agent exceptions then activate mechanisms ‘at the agent level’.

In Multi-agent systems, programming exceptions are internal conditions.
They impact the code level of the agent. Agent exceptions are related to
the activities of the agent and they impact the agent level.

Definition: Code and agent levels

This situation is depicted on Fig. 3.3.

Agent
Code

Agent abstraction

Code abstraction

Agent
CodeAgent

Code

Level
of

Agent Exception

Level
of

Programming
Exception

Figure 3.3: Agents and their exception levels

The aim of this section is to present the relationships between these two levels
and to identify the exception spaces of agents.

3.2.1 From programming to agent exceptions.

Both types are related in a variety of cases. First, a programming exception can
result in an agent exception. For example, the sudden termination of an agent
due to a programming exception (e.g. NullPointerException in Java), has direct
consequences in the agency of the system. For example, a null pointer exception
usually causes the premature termination of the program. Such programming excep-
tion would then entail the ‘agent death exception’ [53]. When an agent dies, other
agents need usually to reorganize their activities to compensate the termination of
one of them, which is an exception that occurs at the agent level.

3.3. EXCEPTION SPACE IN MULTI-AGENT SYSTEMS 43

Programming exceptions can breed agent exceptions.

Property

A programming exception can also occur in an agent without generation of an
agent exception. For example, the agent may have to cope with network exceptions
(e.g. IOException in Java). A handler can sometimes deal with this problem by
retrying the network connection. This exception is usually managed at the code
level, so that the agent continues executing.

3.2.2 From agent to programming exceptions.

Agent exceptions do not however imply programming exceptions. In particular,
agents are not terminated by the occurrence of agent exceptions. In other words,
agent exceptions do not cause the code of the agent to encounter a failure.

Agent exceptions do not breed programming exceptions. In particular, agent
exceptions occur, while the software does not encounter any faulty situation.

Property

The reason for this property is that agent exceptions are identified in incoming
events by an individual evaluation process. The event can be considered as an agent
exception, whereas the code is properly executed and no programming exception
is signaled. The agent continues its execution either processing the exception or
ignoring the event and moving to the next execution cycle. In this process, the
internal state of the agent and its low-level contents follow a normal flow, without
having the agent exception causing any programming exception. In particular, the
call stack of the agent runtime is not unwound due to the agent exception. The agent
exception pertains to higher level units than the call stack, e.g. agent knowledge
and acquaintance network.

The two aforementioned properties allow to identify a unilateral relationship
between the two types of exceptions, as depicted on Fig. 3.4.

This figure represents the relationship between the spaces of exceptions that
can be designed for a MAS. As for all existing types of exceptions, programming
and agent exceptions differ but are related as aforementioned. The occurrence of
programming exceptions can breed in some situations an agent exception (black
arrow), whereas the contrary is not possible.

3.3 Exception space in Multi-agent systems

The relationship between programming and agent exceptions provides a basic clas-
sification of the exceptional situations that an agent can encounter. Further studies

44 CHAPTER 3. DEFINITION OF AGENT EXCEPTION

Exception space

Language
Exception

Space

Agent
Exception

Space

Figure 3.4: Relational mapping in an abstract exception space: Programming ex-
ceptions can breed agent exceptions, but not conversely

allow to refine the space of agent exceptions as shown in the following table. The
aim of this section is to distinguish different classes of exceptions to facilitate their
study and to classify the types of handlers that can be created.

Known Unknown

Agent Level Coordinated ACK ACU
Standalone ASK ASU

Code Level CK CU

Table 3.1: Exception space of agents: 6 classes of exception

The knowledge dimension. First of all, exceptions are usually either known or
unknown2 by the program. An exception is known whenever the program has access
to a handler to manage it; otherwise, the exception is unknown. At the code level,
unknown exceptions usually cause a premature termination of the program, since
it cannot handle the situation and might harm the operating system or hardware
low-level components. At the agent level, unknown exceptions mean the agent does
not know how to react to an event given its current activities. The agent is however
in a consistent state and it can decide according to its capabilities. Simple agents
would just ignore the event (in the same way objects answer doesNotUnderstand:
in the Squeak implementation of Smalltalk [97]), while complex reasoning agents
would exploit the situation, such as KGP agents [48].

The scope dimension. The agent level is refined according to the scope of the
agent exception. Two scopes are distinguished, namely standalone and coordi-
nated. When an agent considers it can handle an exception without additional

2Related work also exploit this distinction. They however use the terminology ‘expected’ and ‘un-
expected’ [59]. Given that exceptions are usually considered as unexpected situations, this document
exploits the ‘known’ quality instead.

3.3. EXCEPTION SPACE IN MULTI-AGENT SYSTEMS 45

interaction with other agents, the exception is classified as standalone. When the
agent considers the handling requires to coordinate with other agents, the excep-
tion is then deemed as coordinated. An example of standalone exception occurs in
negotiation protocols, such as the CNet introduced in the case study (page 13). If
a client receives an extraordinary offer, such as less than 10% of the target price
offered by the client, the situation can be considered as a standalone exception
that should be handled rapidly. The client can update its state so that this offer
will win the call-for-proposal. Then the client can complete the run of the protocol
to accept formally the offer and refuse others: No extra interaction was required to
handle this particular situation. The death of the client can also be another kind
of standalone exception depending on the handling strategy. Once the exception
detected, providers can individually stop the corresponding activity. A simple co-
ordinated exception can be the DelayAnnouncement exception introduced for the
case study. A provider announces a delay to the client, who can react by granting
a time extension to all providers.

Handler classification. The exception space serves to describe the exception types
and to classify the handlers that apply. For example, the agent death is an agent
exception that can be considered as known, since it is a basic case that can be
assumed by default due to the amount of past research [101, 51, 53, 66]. The agent
death is however either addressed in a standalone or coordinated way, depending
on the type of handler that is provided to the agent to manage the case.

The classification serves two purposes. It helps to guide designers in creat-
ing handlers or techniques to develop them at runtime. Depending on the target
application of the MAS, some types of handlers are necessary and others are su-
perfluous. Handlers in the unknown category require specific techniques to search
or generate them, and it can be too costly process for certain applications. The
second purpose is to provide the agents with a decision criteria. Depending on the
exception, a certain type of handler is searched.

Classes of handlers are defined by the acronyms in Tab. 3.3. ASK thus refers
to handlers for Agent-level Standalone Known exceptions and CU refers to han-
dlers for Code-level Unknown exceptions. In the remainder of this document, the
acronyms will be used to name the handler classes.

Ordering preference. As exceptions can be either handled in a standalone or
coordinated way, agents can face dilemma in deciding when a handler of each class
is available. Coordination is usually an expensive matter in distributed applications
and it can overwhelm the advantage of distribution by replacing the computational
cost into a communication cost. For this reason, a rationale choice for agents is to
prefer handlers that manage exceptions in a standalone way over others.

The possible high complexity of interactions in MAS emphasizes this ordering
preference. MAS are expected to be structured in multiple organizations and to
be regulated at runtime, e.g. in electronic institutions [20, 105]. These structures

46 CHAPTER 3. DEFINITION OF AGENT EXCEPTION

produce complex social relationships among agents that may constrain the handling
procedures. Consequently, it is usually significantly less expensive to attempt first
a standalone resolution of an exception whenever a handler is available.

3.4 Revisiting the terminology on exception management

The semantics of agent exceptions differs significantly from the one for programming
exceptions. For this reason, the vocabulary used in programming languages does
not always keep its original meaning. The purpose of this section is to revisit the
usual vocabulary exploited in exception management and provide definitions in the
context of MAS.

Exception diagnosis (or detection) refers to mechanisms to evaluate perceived
events and detect exceptions. Usual programming languages name similar
mechanisms as resolution (in the case of Distributed computing).

Exception signaling does not seem to need an equivalent in agent exceptions.
Indeed, signaling an exception means traditionally that an operation informs
its invoker that an exception occurred. The flow of controlled is reversed
back to the invoker. In MAS, the exceptions are detected by the agents,
and the need to reverse the control flow disappears, as the agent continues
its execution. Similar reasons pertain to exception raising, i.e. exceptions
implicitly declared by the software runtime environment.

Exception propagation is the mechanism that describes how agents deal with ex-
ception situations they are unable to manage. In such case, an agent can try
to find a peer agent for help. The term propagation is used to express that an
exception is turned into a message (e.g. a call for support) and propagated to
peers that may help. This propagation is from the point of view of the sender.
For other agents, this propagation is just an event that may be evaluated
as an exception. This expression then differs significantly from programming
exceptions, where it means ‘passing’ the exception along the call stack of the
process.

Exception transforming is a technique to change the type of an exception along
the handling procedure when it is necessary. In distributed computing, trans-
formations are used to find a common exception type when several software
components detect an exception concurrently [112, 66]. In agent systems, the
transformation mechanism is done by each agent that evaluates an event
as exceptional. The reason for the difference is the loose coupling between
agents. Techniques from distributed computing actually assume the close
collaboration among processes, which is not always possible in open and
heterogeneous systems.

Termination refers in usual systems to the end of a program caused by an ex-
ception condition (‘abnormal termination’). Agent exceptions cannot cause

3.5. CONCLUSION 47

a termination of a MAS due to the loose coupling among agents and their
autonomy. Agents are free to choose the consequence of an event (including
terminating), and their choices are individual, so that the termination of an
agent does not imply the termination of any other.

Resumption is usually defined as the continuation of a program execution after
the handling of an exception. In agent systems, the definition is the same
with different underlying mechanisms, since resumption then concerns the
activities of agents.

Exception handling is the actual processing of an exceptional situation by an
agent. Handling is the execution of specific tasks, while the execution of other
activities of the agent are either unmodified (the exception case is ignored
and the execution continues) or suspended (with subsequent termination or
resumption).

Exception management refers to all activities involved in the management of ex-
ceptions by agents. It encompasses all the previous mechanisms.

In the programming language literature, the aforementioned terms can have
formal models of the underlying mechanisms. This work remains to be done for
Agent-oriented computing. Besides, candidate mechanisms are not necessarily
language constructs. Agent exceptions are at the agent level and other ‘forms’ of
mechanisms seem more appropriate. For example, propagation and transformation
seem better served by architectural or algorithmic forms than a language construct.

3.5 Conclusion

Exception management in MAS shares the meaning of exception handling in pro-
gramming languages. That is, the design of MAS must deal with the occurrences of
programming exceptions, as done in usual software engineering. In addition, excep-
tion management in MAS refers to agent exceptions, a class of exception that differs
from programming exceptions, as presented in this chapter. One conclusion of the
introduction of the concept of agent exception is that designers must cope with an
additional class of issues. As a consequence, the tasks of the designer becomes
heavier and more error-prone, so appropriate modeling and support for agent ex-
ceptions is desired. The remainder of this document aims at providing such support.
The approach on exception management will focus on modeling exceptions relative
to interaction protocols, since engineering agent systems is mainly concerned with
agents that coordinate and execute according to interaction protocols.

In the remainder of this document, the term exception will refer to agent excep-
tion when there is no ambiguity with the concept of programming exception.

Four

Agent Execution Model and
Architecture

The definition of agent exception and related work have consequences on the execu-
tion and architecture of agents. Examples of well-known agent architectures are the
Subsumption from Brooks [7], instances of the BDI model, such as in the Jadex and
Jason frameworks [45, 46, 42], or the KGP model of agency [48, 98]. However, these
architectures have two shortcomings as for the question of agent exceptions. They
do not set forth explicit exception management facilities in the execution model of
the agent, and they do not distinguish the case of agent exceptions. Exceptions are
usually dealt with as programming exceptions and rely on the facilities provided
by the underlying languages, such as Java or Prolog. The management of agent
exceptions requires however to deal with the assumptions in MAS, and Software
engineering ‘good practice’ invites to separate explicitly the mechanisms for the
application logic form the mechanisms for exception management.

The aim of this chapter is to introduce an execution model of agent that inte-
grates exception management in such a way that the aforementioned separation of
mechanisms is realized. An agent software architecture is also proposed to bet-
ter implement the execution model, still maintaining the separation of mechanisms.
Although the execution model is straightforward to implement, the architecture ap-
peared as necessary to ease the engineering of agents and improve the performance
of the model based on engineering principles.

4.1 Agent Execution Model

Agents usually follow a cyclic execution model, classically the perception-
reasoning-action loop [86, Chapter 2]. The model presented here adopts the same
cycle, expanding the perception and action stages to appropriately setup the rea-
soning stage in case of exceptions, with respect to the agent autonomy assumption.
This section first describes the structure of protocols, handlers, and knowledge of

49

50 CHAPTER 4. AGENT EXECUTION MODEL AND ARCHITECTURE

the agents and then the execution model. Illustrations are given in the context of
the case study presented in the introduction, page 11.

4.1.1 Model of Protocols and Handlers

4.1.1.1 Structure of messages

First, we express ACL messages with the pattern:

msg = (id, from, to, perform, content, time) (4.1)

In a message msg, id identifies the protocol it belongs to, f rom and to are the
sender and receiver, perform is the performative, content is the message content,
and time is the time-stamp of the reception. The intent of this formal representation
is to have a sufficient and compact representation of agent communications in
the frame of this paper. This representation can be replaced by FIPA-ACL, if
required [23]. When either of the message parameter is the underscore character
‘ ’, it means the parameter is undefined and can be any value.

4.1.1.2 Structure of protocols and handlers

Protocols and Handlers as trees. AUML and related work on, e.g. commitment
protocols, have represented protocols and handlers as either sequence diagrams [2]
or graphs [58]. We chose to express protocols and handlers in terms of graphs in
order to establish a formal representation. They are represented as directed rooted
trees, where the root is the first message sent, and the graph is structured according
to the relation R, defined as follows. For any directed rooted tree T , we note M
the set of its edges, where the edges correspond to actions like sending messages
in protocols and handlers. We also note L the set of leaves in T (L ⊂ T).

R is a transitive, asymmetric, and irreflexive binary relation.
T verifies the following structural properties.

(1) ∀m ∈M\ L, ∃m′ ∈ M, mRm′

(2) ∀m ∈M\ L, succT (m) = {msg | mRmsg}
(3) ∀m ∈M\ {root}, ∃m′ ∈ M, m′ Rm

Property (1) states that each message sending has a successor but leafs. We note
succT (m) the set of successors for a given edge of T in property (2). Property (3)
expresses that each message sending has a predecessor, but the root.

Some protocols may contain cycles in their specifications. In those cases, the
tree representation applies by ‘unfolding’ the loops along a branch of the tree. Such
unfolding operation is common with graphs, for example with Petri nets, e.g. [61].

Protocol representation. The following algebra on message sending serves to
describe protocols. The syntax relies on the set of messages M and the structure
of the protocol complies with the previous tree model.

proto ::= end ∨ msg ∨ proto, proto ∨ proto ∗ ∨ proto | proto (4.2)

4.1. AGENT EXECUTION MODEL 51

The name of the message msg is the action of sending the message. The special
action end is a termination message that states the end of a protocol: L = {end}.
msg is the sending of a message as previously defined. proto, proto means the
agent executes in sequence two protocols. proto∗ means a message can be sent
optionally more than once in the protocol. It is a convenience formula that expresses
the sequence of several protocols (use in sequence of the previous operator). proto |
proto means the agent can choose the protocol execution it wants to follow. The
CNet exploited in the case study is therefore the following series (based on the
FIPA version in [27]):

cnet = (cfp,
(refuse∗, end∗) | propose∗,
(rejectProposal∗, end∗) | acceptProposal∗,
(failure, end) | result,
end)

Handler representation. Handlers differ from protocols in that the series of a
handler can contain either message sending or other types of actions internal to
the agent, such as the update of knowledge or operations on protocols (e.g. suspend,
resume, etc.). Internal actions are considered as ‘silent transitions’ similarly to τ in
the π-calculus [67], so that the same notation is adopted and extends the algebra
for protocols presented in formula (4.2). The set of these actions is M

⋃
{τ}, and

simply noted as M for short. The algebra for handlers is therefore:

handler ::= endh ∨ endp ∨ τ(?) ∨ msg ∨ handler, handler ∨
handler ∗ ∨ handler | handler

(4.3)

The semantics coincide with the protocol algebra on the common operators. The
handler algebra however deals with actions that are either the endh message
to terminate coordinated handling, the endp message to terminate a protocol, an
internal action τ(?), the sending of a message msg, a succession, or the branching
on handlers. The formula τ(?) is a convenience notation where the question mark
should be replaced by an application-dependent description of the corresponding
internal action, either add or remove data from the agent knowledge base (with
update as a successive application of remove then add). The types and effects of
internal actions are described in the following section 4.1.3.

Branches of the handler do not necessarily end with the endp message, which
indicates the end of the protocol interrupted to run the handler. The message can
be sent however when the handling procedure requires such action. All leaves
of the tree end with the endh message to terminate the handler: L = {endh}.
We describe hereafter three example handlers for the same exception type. An
ACK handler for the DelayAnnouncement exception of the case study can be the
following:

extendT ime = (τ(Update internal timeout), inform(”newtimeout”)∗)

52 CHAPTER 4. AGENT EXECUTION MODEL AND ARCHITECTURE

The handler leads the client to update the internal value of the timeout for the
corresponding protocol, then to send a message to all providers about the new
deadline for replies. An ASK version of extendT ime would be the same formula
without sending the inform message, i.e. the formula contains no message sending.

Another simple handler for the same delay request is to refuse in any way. The
handler is expressed as follows.

h = (τ(“Remove expectations for the sender in this protocol”), refuse)

The delay request is refused with the corresponding message. In addition, the
agent updates its knowledge base by removing the requester from the protocol
participant list, since the agent decided not to interact anymore with the requester
on this protocol instance. A more flexible version of the handler is as follows, which
asks for reactions depending on the delay value.

h = (τ(“Check delay ≤ 1s”), accept) | (τ(“Check delay > 1s”), refuse)

If the delay lasts for less than a second, the delay is accepted, whereas it is refused
otherwise.

Unfold representation. The above representations of protocols and handlers are
introduced for more compactness of formulas, but they abstract the details. Accord-
ing to the form of a message and the algebras, protocols and handlers are actually
longer formula where all necessary details are given. The unfold representation
can be used when details must explicitly appear. For example, the extendT ime
handler is represented as follows:

extendT ime = (τ(Update timeout),
(id,myself , {provider list}, inform, deadline = T ,))

The message inform(”newtimeout”) is unfold to reveal its parameters. Messages
that are sent several time (noted with msg∗) appear with a list of recipients. The
time parameter is unknown as it is intended to contain the reception time-stamp.

4.1.1.3 Semantics of the protocol and handler execution

The execution of agents follows the semantics hereafter. The similar syntax of
protocols and handlers allows to construct a common execution mechanism. First,
we define sets of messages, protocols, handlers, and neutral elements, i.e. a protocol
and a handler that do nothing.

M, Set of messages
E , Set of execution histories
OE ∈ E, Empty execution

4.1. AGENT EXECUTION MODEL 53

The following mechanism ‘execute’ describes the evolution of the protocol and han-
dler executions by the agent.

execute: M× E × E → E × E

(m,Ep,OE) +→

{
(Ep

⋃
{m},OE) if m .= end

(OE ,OE) if m = end

(m,Ep, Eh) +→

⎧
⎨

⎩

(Ep, Eh
⋃
{m}) if m .∈ {endp, endh}

(Ep,OE) if m = endh
(OE , Eh

⋃
{m}) if m = endp

The execution evolves depending on the type of message received by the agent
and the state of protocol and handlers it is running. The first case (m,Ep,OE)
expresses the execution of a protocol p. The history of execution grows while
messages are processed (reception and sending), and the execution stops whenever
end is received, which empties the history for the completed protocol. In the second
case (m,Ep, Eh), a handler is executed by the agent, so that the handler execution
supersedes the protocol one. If the message is endp, the protocol is stopped and
the handler execution continues. If the message is endh, the handler execution has
successfully completed and the protocol execution is restarted.

4.1.2 Structure of Knowledge

Agents maintain some data structures in order to process their inputs and dis-
tinguish exceptional conditions from ‘normal’ ones. The contents of these data
structures is expressed in first-order predicate logic, and we assume all identifiers
are unique.

The key knowledge that agents manage in the detection and handling of ex-
ceptions is the expectation [10, 9]. In the present case, expectations are defined
relatively to protocol and handler sequences: At any step of a sequence enact-
ment, the expectations of the agent are the next possible steps in the sequence.
Such model of expectation and appropriate comparison mechanisms allow to detect
exceptional situations and trigger handling procedures, as presented in this section.

4.1.2.1 Tabular knowledge

Agents maintain specific knowledge structures that we represent as tables for read-
ability. They first have a relevance table relTab that gathers ‘filters’ for the agent
input, as shown in table 4.1. Filters are patterns of acceptable messages. Mes-
sages that do not comply with the filters are discarded. Filters allow to ignore
all messages that may yield exceptional conditions but that are not relevant to
the agent in any case. Filtering out these messages before any further process is
necessary in dynamic and open environments due to the computational cost [55].
In the case study, an agent considers already running CNet cnet1 and cnet2
as relevant (first two entries), in addition to any message from agent ag1 (the
underscore ‘ ’ means ‘any value’).

54 CHAPTER 4. AGENT EXECUTION MODEL AND ARCHITECTURE

id from to perf content time

cnet1
cnet2

ag1

Table 4.1: Sample Relevance Table relTab

The second table expecTab stores the expectations of the agent, as presented
in table 4.2. Expectations are patterns of messages that the agent is waiting for
with regards to the sequence of messages in an interaction protocol. Expectations
allow the agent to distinguish expected situations from exceptional conditions, i.e.
unexpected cases, hence the name of the .

id from to perf content time

cnet1 ag1 self inform bid(s1,) t < Tbid
cnet2 t < Tlim

Table 4.2: Sample Expectation Table expecTab

Table 4.2 shows an agent in the case study that expects a bid from ag1 relative to
the running protocol cnet1 before a certain date Tbid is reached (first entry of the
table). Failing to receive such a message on time will be considered as an agent
exception. The second entry is more general: The agent expects to be informed
about any message relative to cnet2, for example as a referee.

Table 4.3 shows a execution table of an agent, where each running and sus-
pended protocol and handlers involving the agent is a 3-tuple entry.

id state dependency

cnet1 running nil
cnet2 suspended4 hand1
hand1 running nil

Table 4.3: Sample Execution Table exeTab

In this sample table, the protocol cnet1 is running, whereas protocol cnet2 is
suspended in the fourth step of its execution. cnet2 waits for the completion of the
running handler hand1.

Finally, agents maintain a handler table as in table 4.4, so that to relate
unexpected events with known handlers. Each handler is related to one or more
conditions that describe the kind of events where the handler is applicable. A
condition can also lead to several handlers that the agent can choose from at
runtime.

4.1. AGENT EXECUTION MODEL 55

condition handler

(, , , inform, delay(,),) DelayAnnouncement
(, , self , , , now > time) DelayedAnswer
(id .∈ exeTab, , , , ,) UnexpectedProtocol

Table 4.4: Sample Handler Table handTab

In the case study, an agent detects a delay announcement whenever a mes-
sage matches the pattern in the first entry, i.e. an inform message (as for the
FIPA-ACL like semantics [23]) with a predicate formula that announces a delay.
When such message is encountered and deemed as unexpected, the corresponding
DelayAnnouncement handler is selected.

In the remainder of this section, we will use a convenience macro-formula about
these tables, formally defined as:

match((a1, . . . , an), (b1, . . . , bn)) ≡ (∀i, ai = bi)

In other words, two tuples ‘match’ whenever their values are exactly the same.

4.1.3 Execution model

The overall execution model of agents is presented in Fig. 4.1, with four levels.
We describe them in turn in the following. Descriptions rely on algorithms for the
domain-independent parts, whereas the descriptions are restricted to the case of
the case study for domain-dependent parts.

4.1.3.1 Top-level execution

Message reception, relevance filtering, & expectation matching. The top-level
boxes (in white on the figure) are the fundamental stages of the execution model.
Input messages are collected by the agent in the Message Reception box. They
are forwarded to the Relevance Filter to filter out messages that do not matter for
the agent according to the relevance table relTab, depending on its autonomous
choice. Relevant messages are then compared to the agent expectations in the
Expectation Matching box, depending on the expectation table expecTab of the
agent. Alg. 4.1 describes the functioning of this stage.
The message is compared to each entry of expecTab until either a match is found,
or the table is entirely read. If a match is found the output is an expected message
‘expMsg ← msg’ and ‘nil’ for the unexpMsg. If no match is found, the contrary
assignment is performed. In the former case, the Decision Process is then activated,
whereas it is the Handler Selection in the latter.

Decision process. As for the top-level boxes, expected messages are forwarded
to the Decision Process, which is the reasoning part of the agent. The message

56 CHAPTER 4. AGENT EXECUTION MODEL AND ARCHITECTURE

msg

msg

Reception
Message

Sending
Message

Update
State

Filtering
Relevance

Handling
Preparation

Handler
Evaluation

directive

(msg,hand)

msg’

msg

(msg,hand)

(msg,hand)

(msg,hand)

msg

msg

msgmsg

Process
Decision

Matching
Expectation

Mechanisms for

Known Exceptions

Mechanisms for

Unknown Exceptions

Handler
Generation

Handler
Search

Selection
Handler

msg

msg

Figure 4.1: Execution model of an agent with incremental exception handling mech-
anisms

Input: msg, expecTab,
Output: expMsg, unexpMsg
expMsg ← nil, unexpMsg ← nil;
foreach tuple ∈ expecTab do

if match(tuple,msg) then
expMsg ← msg;
Break for loop;

end

end

if expMsg = nil then
unexpMsg ← msg;

end

Algorithm 4.1: Expectation matching

is there processed to determine the next action of the agent, if any, as shown in
Alg. 4.2. In addition to this algorithm, it should be noted that the Decision process
box executes continuously and it does not require an input message to trigger an
output. This execution is not represented in the algorithm as it does not participate
in the exception handling cycle. It is however important as it is the ‘proactive’ part
of the agent, necessary for the agent to initiate activities. In that sense, proactive
agents differ from Mealy machines.

4.1. AGENT EXECUTION MODEL 57

Input: msg, exeTab,
Output: msg′, directive,
Input/Output: K
msg′ ← nil;
foreach tuple ∈ exeTab do

if match(tuple, (msg.id, running,)) then
msg′ ← decide(msg,K);
directive ← generateDirectives(msg′, exeTab);

end

end

Algorithm 4.2: Decision process

Depending on the current advancement in the protocol concerned with the incoming
message, the agent takes some decisions in decide and generates relevance and ex-
pectation directives in generateDirectives, both domain-dependent functionalities
of the agent that exploit the knowledge of the agent K. The generateDirectives
is however endowed with a domain-independent mechanism to produce expectation
and relevance filters. This mechanism produces directives about the expected and
relevant messages awaited by the agent according to the running protocols and
handlers. Alg. 4.3 details the basic algorithm. This algorithm is not concerned
with starting a protocol or with additional updates that can be done afterward in
a domain-dependent manner.
Alg. 4.3 processes domain-independent data only, namely the different knowledge
structures for managing the agent execution and the type of messages processed
by the agent.

The algorithm exploits the message msg′ produced by the agent decision pro-
cess to generate the directives used in the next state update. The outer loop of
the algorithm reviews in turn each tree of the agent execution table (protocols and
handlers). If msg′ is the root of the current tree, it means the agent has pro-
actively initiated a protocol (msg is void). Two directives are produced to update
the relevance and expectation tables with information about the new tree. If msg′
terminates a tree with either end or endh, relevance and expectation tuples for
the corresponding tree are removed from the tables. The case of endp is partic-
ular, since it occurs during the execution of a handler to terminate the attached
protocol. The exeTab contains a dependency column that serves to retrieve the
reference of the protocol to terminate, so that two directives are produced to remove
the related information in the tables. All other cases in the enactment of a tree
require removing the expectation rules that are outdated and the addition of the
next expectations. The relevance table do not need to be updated at this stage,
since the corresponding protocol is running and still useful to the agent.

The decision eventually outputs a messagemsg′, which can be either a message
according to the next steps of the protocol, or a ‘null action’ when the agents decides

58 CHAPTER 4. AGENT EXECUTION MODEL AND ARCHITECTURE

Input: msg′, exeTab,
Output: directives,
Input/Output: relTab, expecTab
directives ← ∅;
foreach tree ∈ exeTab where tree.id = msg.id do

if msg′ is root of tree then
directives ← {relTab ← relTab

⋃
{(tree.id, , , , ,)}};

directives ← {expecTab ← expecTab
⋃

succtree(msg′)};
else if msg′ ∈ {end, endh} then

directives ← {relTab ← relTab \ {t | t.id = tree.id}};
directives ← {expecTab ← expecTab \ {t | t.id = tree.id}};

else if msg′ ∈ {endp} then
directives ←
{relTab ← relTab \ {t | t.dependency = tree.id}};

directives ←
{expecTab ← expecTab \ {t | t.dependency = tree.id}};

else
directives ← {expecTab ← expecTab \ {t | t.id = tree.id}};
directives ← {expecTab ← expecTab

⋃
succtree(msg′)};

end

end

Algorithm 4.3: Generation of directives in generateDirectives

to ignore the input (Alg. 4.3 is then not executed). The directives serve in the next
stage State Update to update the relevance and expectation filters for the future
cycles, and to commit the optional action in the environment in Message Sending.

State update. Alg. 4.4 describes the update procedure for the knowledge of the
agent. The tables are updated in turn. The order of update does not matter in the
model1.

Input: directive,
Input/Output: msg, relTab, expecTab, exeTab
update(exeTab,msg, directive);
update(expecTab,msg, directive);
update(relTab,msg, directive);

Algorithm 4.4: State update

The update function is domain-independent as it merely applies the directives on
the tabular knowledge of the agent, as indicated in Alg. 4.3.

1It was however convenient in practice to enforce the order to perform some consistency checks
on the tables.

4.1. AGENT EXECUTION MODEL 59

4.1.3.2 Exception handling execution

The agent detects exceptional conditions whenever an expectation is not met at
the Expectation matching stage. The execution flows of the agent then continues
through the deeper levels of the model.

Handler selection. The second level is to deal with known exceptions, i.e. when
the agent owns a handler in handTab that applies to the detected exception.
Unexpected messages are sent to the Handler Selection box, where a handling
procedure is searched for as done in Alg. 4.5.

Input: expecTab, handTab,
Output: hand,
Input/Output: msg
Require msg .= nil;
hand ← nil;
foreach tuple ∈ handTab do

if match(msg, tuple.condition) then
hand ← preferred(hand, tuple.handler) ;

end

end

Algorithm 4.5: Handler selection

Alg. 4.5 searches the handler table handTab of the agent for an appropriate
handler. If an entry of the table has a condition that matches the message, a
handler is found and returned by the algorithm. In case several handlers are found,
the preferred function allows to determine which handler is preferred to the agent,
depending on its configuration and context. The preferred function is consequently
a domain-dependent part of the algorithm. Preference functions typically adopt a
metrics to evaluate handlers. For example, the case study can accept a preference
function that prefers ASK handlers over ACK ones for performance issues. Another
criteria can be the complexity of the handler, based on e.g. the length of its
sequence.

Handling preparation. If a handler is found, it is forwarded with the unexpected
message to the Handling Preparation stage detailed in Alg. 4.6. The preparation
consists in suspending the protocol impacted by the incoming message, starting the
handler as an activity of the agent, and specifying that the suspended protocol must
be evaluated when the handler completes by creating a dependency of the protocol
for the handler. The agent can then decide whether to resume the suspended
protocol where it was interrupted or to terminate it. The preparation concludes
with the sending of the message to the Decision process, ready for dealing with
the exception, owing to the prepared handler.

60 CHAPTER 4. AGENT EXECUTION MODEL AND ARCHITECTURE

Input: hand,
Input/Output: msg, exeTab
foreach tuple ∈ exeTab do

if match(tuple, (msg.id, ,)) then
msgi ← Get the expectation before handling for msg.id;
exeTab ← exeTab \ {tuple};
exeTab ← exeTab ∪ {(tuple.id, suspendedmsgi , hand)};
Break for loop;

end

end

exeTab ← exeTab ∪ {(hand, running, nil)};
Algorithm 4.6: Handling preparation

Handler search & evaluation. If no handler is found in the selection stage, the
agent encounters an unknown exception, i.e. the agent does not own any corre-
sponding handler. The agent can then try a Handler Search by interacting either
with other agents in the system or with a handler repository. A query is sent to
a collaborative agent or such repository to attempt finding a handler (see [51, 82]
for original approaches). The success of the search produces a handler that is
forwarded to the Handler Evaluation for checking the adequacy to the problem at
hand, maintaining the agent autonomy relative to this external handling code, and
linking the exception type to the handler in the handling table if the agent keeps
this handler. In general, the evaluation process is a complex issue and we adopt
a simplified approach for the presentation in this section: We assume that if the
handler leads to a state where the interrupted protocol can resume execution, then
it is acceptable.

Definition of handler acceptability: h acceptable i.f.f. hn = pinterr
With handler: h = (hi)i≤n,
And protocol: p = (pi)i≤m, interrupted at step pinterr ,
And: endp ≡ end

(4.4)

In other words, the agent ‘trusts’ external code whenever it leads the execution to the
previously desired state before the occurrence of the exception. This simple check
does not allow however to guarantee that any step of the handler is acceptable for
the agent. Such general mechanism would depend on the application domain.

Handler generation. In the final case were no handler can be found (or when the
evaluation is not satisfactory), the agent then attempts a Handler Generation. In
our approach, this generation necessarily produces a default handler if no better
solution is available. This default generation is essential for the continuity of the
execution model, to ensure the model does not stop in such process. The default
handler of the execution model is to ‘ignore’ messages a fixed number of times

4.1. AGENT EXECUTION MODEL 61

before considering the corresponding protocol has failed. The generated handler
is parameterized with the expected message and put in the protocol table at the
Handler preparation stage. For instance, the handler hgen generated to wait for the
message msg within three execution cycles concerning the protocol p is defined
as:

hgen = ((msg, endh)|(msg, τ(Ignore)),
(msg, endh)|(msg, τ(Ignore),
msg|(msg, τ(Update protocol information), endp, endh))

The agent then expects to receive the msg in one of the three steps of the handler,
and then returns to the protocol with endh. At each step, the agent ignores the
message if it is not conforming with its expectations. Beyond the reception of
three non-conforming messages, an internal action update the protocol state, and
a protocol cancellation message (endp) is sent to all the participants.

4.1.4 Complexity analysis

Given the algorithms presented in this section, the purpose of the complexity eval-
uation is to measure the overhead computational cost of the exception handling
mechanism. We compare the cost of the expected execution model to the excep-
tional one to this end. Practical evaluation based on this analysis are conducted
in chapter 5 on the validation of the model.

Notations. In usual agent execution models, the cost is concentrated in the De-
cision process box, without generation of directives. This cost is application-
dependent and is noted NDP . The other application-dependent algorithms are
for Handler evaluation and Handler generation, with respective cost NEval and
NGen. Let us also note npro the size of the protocol table exeTab, representing
the number of protocols or handler exploited by the agent (state is running or
suspended), and nk the number of handlers known to the agent.

Basic complexities. In the overall agent execution model, the complexity of each
box depends on the number of directives generated by the decision process. In fact,
the number of directives entails the production of expectations and relevance, which
directly influence the cost of the filtering, matching, and state update. A typical
execution cycle generates up to 3 directives per protocol in the present approach
(due to Alg. 4.3), which entails a complexity of O(npro. Most algorithms have then
a complexity related to the size of the protocol table exeTab, i.e. npro. We have
the following costs for each algorithm.

• O(npro) for generateDirectives

• O(npro) for Relevance Filter and Expectation matching

• max(NDP,O(npro)) for Decision Process

62 CHAPTER 4. AGENT EXECUTION MODEL AND ARCHITECTURE

• O(npro) for State Update

• O(nk) for Handler Selection

• O(npro) for Handler Preparation

As for the Handler search part, the computational cost is not significant compared
to others. The reason is that the search is a request to other agents or handler
repositories. The communication cost is however increased, but it does not par-
ticipate in the computational one we are evaluating here. The following table 4.5
compiles the different overhead costs depending on the execution type.

Execution type Cost

No handling NDP
With handling Nbase = max(NDP,O(npro))

Overhead cost over Nbase
Known exception max(O(nk), O(npro))

Unknown exception,
Search & Evaluation max(NEval, O(nk), O(npro))

Unknown exception
Search, Generation, Evaluation max(NEval, NGen, O(nk), O(npro))

Table 4.5: Cost table depending on the execution type

The complexity of the agent execution model increases by one order with the only
introduction of the top-level elements of the handling mechanisms (the white boxes
on Fig. 4.1). If we assume that in practice agents are expected to run a low number
of protocols simultaneously, a cost of O(n2

pro) (assuming O(npro) ∼ NDP) can then
be reasonable compared with an agent without exception management system. It
is however prohibitive for ‘heavy-weight agents’, for which some other kinds of
fault-tolerance mechanisms can be considered.

The complexity of cycles where an exception is detected depends on the neces-
sary depth to handle the case. In addition to the number of protocols, the number
of handlers that the agent knows is a costly factor as soon as the handler table
must be searched. An interesting result of this complexity table is that it might
be better to delegate the search of handlers as long as the evaluation algorithm
is less expensive than the selection algorithm, i.e. NEval < O(nk). However, we
think that a robust evaluation is costly, especially to guarantee the handlers are
entirely acceptable (in this analysis, the handler evaluation only guarantees the
consistency of the result, see page 60 with formula (4.4)).

The generation adds another parameter in the complexity evaluation. In most
cases, the generation of a default handler to ignore the unexpected event and lead
the agent to a consistent state should not be costly to produce and evaluate. The
complexity depends however on the level of generation desired for the agent.

4.2. AGENT ARCHITECTURE 63

4.2 Agent architecture

The architecture of the agent aims at setting forth the architectural elements that
corresponds to the execution model of agents presented in the previous section.
The architecture is abstract in the sense that it defines the elements required to
design agents with exception management capabilities. As for the literature on
software architecture, the abstract model of agent can be compared to reference
models, defined as ‘a division of functionality together with data flow between the
pieces’ [5]. The main difference is that the abstract model is not based on as much
experience as full-fledged reference models, although it relies for the major part on
well-known resources.

The section first introduces the abstract architecture with a graphical repre-
sentation, and then links it to the execution model.

4.2.1 Abstract architecture

Figure 4.2 depicts the agent architecture. It is similar to general ones in the agent
community, and it introduces specialized elements for exception management. In
particular, the elements were introduced so as they can be removed from agents
that do not require such functionality or due to design decisions.

4.2.2 Elements of the architecture

The agent architecture contains four main elements to correspond with the exe-
cution model, namely the perception, actuation, internal mechanisms, and internal
representation.

Perception. The perception element encompasses the sensory functionalities and
the evaluation function. Sensors receive and interpret events from the environment
and pass them to the evaluation. This latter element is responsible for estimating
the relevance and the appropriateness of the events. An event is categorized as rel-
evant by the relevance filter when it pertains to the agent, its acquaintances, or its
activities, according to the decision of the agent. The event is otherwise discarded
as irrelevant, and the agent then returns to the sensor function. Relevance filters
are dynamically generated by the relevance generation in the actuation element to
steer the agent perception strategy (similar to the ‘focus’ of active perception [110]).
Relevant events are further evaluated for appropriateness by the expectation filter to
distinguish expected events from known and unknown exceptions. Awaited events
are defined dynamically by the expectation generation function in the actuation
element, according to the agent decisions.

Agent internal mechanisms & internal representation. An event and its evalu-
ation (expected, known or unknown exception) are forwarded to the agent internal
mechanisms. The evaluation uses the internal representation element as reference

64 CHAPTER 4. AGENT EXECUTION MODEL AND ARCHITECTURE

Agent

Internal Representation

Actuator Sensor

Application Environment

Evaluation

Agent Internal Mechanisms

Read access
Agent cycle transition

Legend
Relevance filter

Expectation filter

Generation

Relevance

Expectation

Base mechanisms

Known exceptions

Unknown exceptions

Write access

Figure 4.2: Agent base architecture for exception management

to distinguish the events by accessing the agent acquaintance network, for example.
The internal representation refers to any representation type inside the agent. For
example, the BDI and KGP architectures have a set of knowledge bases [80, 48],
whereas some other agents can have simpler internal representations, such as a
set of configuration parameters.

The agent internal mechanisms element receives evaluated events and activates
one of its three elements, depending on the evaluation. Expected events trigger the
base mechanisms, whereas exceptions trigger the corresponding mechanisms. The
base mechanism can provide facilities such as planners, inference engines, or others
such as PRS, MANTA, etc. [19] to deal with expected events. The two exception
mechanisms manage the event by setting appropriately the agent internals, so that
the base mechanism can handle the case or continue the activities of the agent.

The three mechanisms are interconnected and they just form a reference model
of this part of the architecture. Implementations of this model may merge the
three mechanisms into a general-purpose one, keep it layered, or simply ignore
the exception layers. In particular, existing agent architectures would mostly cover

4.2. AGENT ARCHITECTURE 65

the functions of the base mechanisms. The abstract architecture only requires that
the result of the process ends in the base mechanism and outputs some commands
for actions to be taken in the environment (possibly none, e.g. observation mode).
The internal mechanisms as a whole exploits the international representation, which
contains the agent knowledge including the tabular knowledge introduced in 4.1.2.1,
page 53.

Actuation. The action command finally entails the generation of expectations and
relevance criteria for the next evaluation of percepts from the environment by the
Evaluation functions. Typically, changing to the next states of an interaction proto-
col are added as ‘relevant expectations’ in the internal representation. In the end,
the command is applied in the environment by the actuator function.

4.2.3 Correspondence table with the execution model

The following table explicits the correspondence between the elements of the ex-
ecution model and the architecture. The first column lists the elements of the
execution model as presented in the previous section. The second column compiles
the elements of the architecture presented in this section. Some of these elements
are also the coarse compounds of the architecture, and some of them are grouped
in distinguished architectural compounds in the third column.

Execution Model Architectural Element Architectural Compound

Message reception Sensor
PerceptionRelevance filtering Relevance Filter

Expectation matching Expectation Filter
Decision process Base mechanism

Agent Internal
Handler selection Known exception

Mechanisms

Handler preparation
Handler search

Unknown exceptionHandler evaluation
Handler generation

State update Generation ActuationMessage sending Actuator
K and tabular knowledge Internal representation

Table 4.6: Correspondence table between the execution model and the architectural
elements, according to Fig. 4.1 and Fig. 4.2

The table allows to show that the abstract architecture covers all requirements
for a full implementation of the execution model. The architectural elements and
compounds serve two properties in the implementation of an agent with exception
management capabilities.

66 CHAPTER 4. AGENT EXECUTION MODEL AND ARCHITECTURE

• The compounds provide the designer with a high-level and common archi-
tecture model [86]. The columns then guide toward refinements of the archi-
tecture and considerations about the exception management mechanisms.

• Elements and compounds allow separating the concerns of application logic
and exception logic.

Application logic. Base mechanism, sensor, actuator, and internal represen-
tation (K). One element per compound.

Exception logic. The remaining elements, with at least one per compound
(the internal representation is also part of it in K and the tabular
knowledge).

The two properties are important for the designer as explained throughout the
document: The refinement and separation of concerns are recognized good practices
in Software engineering.

4.3 Conclusion

The definition of agent exception relies on the notion of ‘unexpected event’ (c.f.
chapter 3). The model of agent execution formalizes this notion in terms of viola-
tion of expectations according to interaction protocols. Agents execute interaction
protocols in their activities, and they predict what should happen according to the
specifications of the protocols by generating dynamically a set of expectations. In-
puts that do not comply with these expectations are then deemed as unexpected
events, thus triggering exception management mechanisms.

Agent exceptions require specific mechanisms indeed to support designers in
writing appropriate management code. Our approach is to elaborate on the agent
architecture to develop the analysis of inputs and detect unexpected events, in
the case of interaction protocols. The set of mechanisms presented in this chapter
becomes part of the agent architecture, so that the tasks of the designer in exception
management is concentrated on writing appropriate handlers. The mechanisms
exploit handlers to treat exceptions when appropriate.

The architecture endows agents with mechanisms, so that they can deal with
exceptions by themselves. Previous work on exception management take similar
or complementary approaches that we compare in the next chapter, along with a
quantitative evaluation of the computational cost of our approach.

Five

Experiments and Model Validation

The aim of this chapter is to provide a qualitative and quantitative analysis of the
agent exception management mechanisms presented in this document. The analysis
is based on a series of experiments realized with several implementations of the
case study presented in the introduction, from page 11. The purpose of having
several implementations is to compare the characteristics of different approaches
devoted to the issue of exception management.

The organization of this chapter is as follows. In the first section, the experi-
mental settings are given with a description of the scope of the implementations,
the experimental protocol, and technical details. The second section focuses on
the qualitative analysis of the work, focusing on comparing the properties of the
approach to related work. The third section exposes the numerical results produced
by the series of experiments and a quantitative analysis of the model.

5.1 Experimental settings

The experiments rely on several implementations of the case study, each with a
specific approach, as an agent-based simulation. In other words, the different
implementations provide the same services related to the case study, and they differ
on the way to build the system and the mechanisms for exception management.

Exception-free is the reference system, where the agents are ideal and do not
cause any agent exception. This system is unrealistic due to the hypoth-
esis of having ideal agents, and it serves essentially to compare the extra
computational cost introduced by exception handling mechanisms.

Plain system is the reference system with an ad hoc set of mechanisms to cope
with agent exceptions. The approach is ad hoc in the sense that it only relies
on usual good practices in software engineering to implement the reactions
of agents facing agent exceptions.

67

68 CHAPTER 5. EXPERIMENTS AND MODEL VALIDATION

Sentinel system is the reference system extended accordingly to the sentinel ap-
proach [40]. Although the present sentinel approaches do not verify proper-
ties of agent systems, this implementation is introduced to compare such a
system-level approach to the agent-level approach proposed in this document.

EMS (Exception Handling System) is an implementation of our approach for the
validation purpose.

All the implementations with exception management capabilities are equivalent
in the sense that they can cope with the same kind of exceptions during the ex-
periments and they are executed under the same conditions. They differ however
fundamentally in the underlying approach.

5.1.1 Scope of the EMS implementation

The EMS implementation covers partially the extent of the execution model. Fig. 5.1
shows the coverage of the implementation over the model introduced in section 4.1.3.
The fundamental mechanisms of the agent and the exception management system
are included in EMS. The other mechanisms for searching, generating, and eval-
uating handlers are not included in these experiments, since they are out of the
scope of the possible comparisons with other approaches.

msg

msg

Reception
Message

Sending
Message

Update
State

Filtering
Relevance

Handling
Preparation

Handler
Evaluation

directive

(msg,hand)

msg’

msg

(msg,hand)

(msg,hand)

(msg,hand)

msg

msg

msgmsg

Process
Decision

Matching
Expectation

Handler
Generation

Handler
Search

Selection
Handler

msg

msg

Figure 5.1: Coverage of the implementation (plain lines) over the execution
model (plain and dashed lines)

The mechanisms for unknown exception management are in fact part of the
EMS, but they do not intervene in the simulations since the situations encountered

5.1. EXPERIMENTAL SETTINGS 69

by agents are controlled and exceptions are all known, i.e. agents own appropriate
handlers for the exceptions that can occur.

Exceptional situation in the experiments. The case study is source of a number of
potential agent exceptions. The experiments target a single exceptional situation in
the aim to evaluate the overhead cost. The RefuseDelay handler leads the agent
that uses it to refuse any delay and reorganize the execution of the interrupted
protocol. The rationale of this handler is to make the agent focus on its main task
and not waste time with delay request from providers. A formal account of this
protocol is written with the formula:

RefuseDelay = (inform(RefuseDelay),
τ(Remove expectation for this agent),
τ(Update protocol information,)
endh)

The handler leads the agent to inform the delay announcer that the delay is not
granted. The implementation uses an inform performative that returns a refusal
based on the request. The agent sends this message and also updates information
about the protocol. The expectation related to the announcer is removed from the
expectation table as it is not expected to reply on time, and the announcer is
removed from the participant list. The handler allows then to return immediately
to the interrupted protocol by terminating the handler.

The pattern to select the handler is presented in the following formula, based
on the message pattern (c.f. formula 4.1, page 50).

(, , , inform, ”delay = (\d) + ”,)

Messages that trigger the RefuseDelay handler are therefore messages with an
inform performative and a content that matches the regular expression delay =
(\d)+. For instance, the expressions delay = 500 and delay = 12000 are rec-
ognized by this expression, whereas delay = 5.00 and delay = Tonight are
rejected. It is therefore assumed that agents have access to minimal coordination
facilities for open systems, including a common ontology to share the concepts of
delay and time (in the experiments, time is in milliseconds).

The RefuseDelay handler provides the advantage to fit the case study, belongs
to the ACK class that makes it non-trivial, and ensures the agent continuity of
execution. The RefuseDelay handler is however not always the best solution to
the agent. When adequate peers for an interaction protocol are rare in the system,
an agent should accept delays and handle them properly. The remark is important
in the sense that the RefuseDelay handler is generic (it can be applied to other
domains), but not a general solution. This is the reason why the agent execution
model includes a handler selection phase that sets forth the preferences of the
agent in its context (c.f. algorithm 4.5, page 59). The preference of the agent allows
to tune the selection of handler, for example the RefuseDelay when the system is
crowded, and a looser one when peers are rare.

70 CHAPTER 5. EXPERIMENTS AND MODEL VALIDATION

5.1.2 Experimental protocol

The series of experiments conducted in this research so far followed the process
depicted in Fig. 5.2.

Run experiments

Results for analysis

Comparison

Time Performance

Relevance rate

Expectation rate

Exception rate

Capital of agents

without
Run experiments

Exception management system

Generation of log filesGeneration of log files

with

Time Performance

Capital of agents

a system with exception management

Figure 5.2: Experimental protocol of the experiments

Series of two types were conducted to evaluate the properties of the imple-
mentations and the quantitative overhead of the EMS. The first type used the
exception-free and plain versions of the system (left-hand side of the figure). Al-
though agents would fail in handling exceptions for the exception-free version, the
runs with this system were ‘ideal’, i.e. the experiments could guarantee the proper
execution of the CNet protocol by the agents. The ideal case serves as a refer-
ence to evaluate the overhead of other approaches. In practice, the relevance of
the ideal case is rather low as it does not reproduce real conditions. The second
type of runs used systems with the different exception management approaches
(right-hand-side of the figure). The management capabilities were concentrated on

5.1. EXPERIMENTAL SETTINGS 71

the RefuseDelay handler, and this type of exception is artificially generated at
runtime with a rate of 5%. In fact, agents announce randomly a delay to simulate
an exception.

The two types of experiments were run three times each for one hour to produce
statistical results. The initial conditions were the same in all experiments. For
example of initial conditions, each agent starts with a capital of 1000 units of
currency and with a ‘stock’ of service to sell in the first place. Production rules for
services and requirements are the same in all experiments.

The reason for one-hour runs is explained in the later parts of this section. The
basic reason is that stationary states appear after few minutes onward. Experiments
were repeated three times only, since very similar characteristics could be observed.
All runs produce log files about the different criteria presented in Fig. 5.2. The log
files are processed to extract statistical information and compared to evaluate the
overhead in practice.

5.1.3 Technical details

The code of the experiments was written in Java 5.0 for portability and efficiency
reasons. In order to run experiments on several computers, this programming lan-
guage was convenient. In particular, the program generates individual log files for
agents, and a log analyzer produces additional files with statistical computations.
The access to the file system in Java is transparently managed and the program
could run on several platforms. An additional reason for choosing this language
is that the system has been implemented as a multi-threaded application to ease
its debug, maintenance, and modifications for the purpose of the experiments. Java
provides good support for multi-threaded applications and ease their development.
Finally, the language was chosen among others including Smalltalk and C++. As
for the goal of the experiments, none of these languages seems to provide signif-
icant advantage over the others, and the ease to use Java and its numerous API
settled the choice.

The following code sample in Fig. 5.3 shows how part of the agent ar-
chitecture has been implemented. The figure shows the complete code of the
handlerSelection method, which aims at implementing the functionality of the
same name in the execution model.

The message that is input to the method is already deemed as an exception. The
method aims at returning an appropriate handler, if any. The code creates a tuple
based on the message to check against the agent handler table. In the present
code, it is required to find only one handler, and other cases are not managed
(no preference, no re-direction to the handler search). If no handler is found, the
method returns null, and it otherwise returns the found handler. The method logs
its activity for this agent for analysis purpose.

72 CHAPTER 5. EXPERIMENTS AND MODEL VALIDATION

private Handler handlerSelection(Message theMessage) {
final Handler result;

List<String> message = theMessage.getAll();

// Look for handlers
message.add("nil");

Tuple mess = new Tuple(message);

List<Tuple> handlerList = handlerTable.findWeak(mess);

assert handlerList.size() == 1 : "The selection does not deal with this case yet.";

if (handlerList.size() == 1) {
String handlerName = handlerList.get(0).lastElement();
Handler hand = null;
try {
hand = (Handler) Class.forName("exag." + handlerName).newInstance();

} catch (InstantiationException lException) {
System.err.println(lException.getMessage());

} catch (IllegalAccessException lException) {
System.err.println(lException.getMessage());

} catch (ClassNotFoundException lException) {
System.err.println(lException.getMessage());

}
result = hand;

} else {
result = null;

}

logMe("Handler selection done for " + theMessage.toString() + ": "
+ ((result != null) ? result.getName() : "null"));

return result;
}

Figure 5.3: Sample code from the experiments: Agent method handlerSelection

5.2 Qualitative Analysis and Comparison

5.2.1 Quality criteria

The selected approaches to exception management are equivalent in terms of func-
tionalities. The engineering properties for the system designers are however dif-
ferent on several issues. The following list compiles the quality criteria that we
evaluated in this comparison.

• Separation of concerns

• Maintenance of exception management code

• Robustness to autonomous behaviors

• Tasks for engineering management code

The separation of concerns refers to the distinction between the code of the
implementation devoted to the application scenario (to fulfill functional require-
ments) and the one devoted to exception handling (to fulfill quality requirements).

5.2. QUALITATIVE ANALYSIS AND COMPARISON 73

The maintenance of exception management code evaluates the ease of modification
of the code in the application. The robustness to autonomous behaviors refers to
the panel of situations that can be managed by the code without change by the
designer. Robust code should react consistently, not necessarily appropriately, to
a certain range of inputs. On the contrary, code that is not robust is very brittle
facing most inputs but the ones explicitly declared by the designer. Finally, the
tasks for engineering management code refer to the range of activities that must be
completed by the designer to set up appropriate code for exception management.

5.2.2 Comparison

Table 5.1 compiles our comparison of the different approaches to implement the
running example. The base system is not presented in this table as it does not
implement exception handling facilities.

Plain Sentinels EMS
Separation of No Yes Yesconcerns

Maintenance of
Low Med Highexception

handling code
Robustness to

Low Low Med/autonomous
behaviors High

Tasks for
Ad hoc Sentinels and Handlersengineering

handling code Protocols

Table 5.1: Qualitative comparison

The plain implementation does not separate code according to the agent approach.
Separation of concerns depends on the implementation language. Agent exceptions
can however occur while there is no programming exception. Separation of concerns
for agent exceptions then differs from the usual one, and the plain approach, which
is ad hoc, does not feature this property. Sentinels and EMS provide specific
mechanisms to deal with exceptions, and the separation of concern is verified. Two
types of separations are however realized. Sentinels separate application agents
from sentinel agents. The former fulfills the functional requirements and the latter
implements the quality requirements. The separation is therefore in the agent
society, with specialization of agent roles, either application or exception handling
agents. EMS separates the code of a single agent into a part for the application
scenario (the top part of Fig. 4.1, page 56) and a part for the handling (the bottom
part of Fig. 4.1).

74 CHAPTER 5. EXPERIMENTS AND MODEL VALIDATION

Consequent to the separation of concern, the plain implementation is hard to
maintain as the code is brittle to changes. The sentinel approach offers better main-
tainability, since the essential code for exception handling is in the sentinel agents.
Sentinel agent must however coordinate with application agents. If the ‘interface’
code between sentinel and application agents must evolve, the maintainability be-
comes harder. Finally, the maintenance of the exception handling code in EMS
is higher than the other approaches, due to the execution model that provides an
application-independent mechanism to exploit handlers at runtime automatically.
Maintenance can thus target the mechanism or—independently—handlers that are
attributed to agents.

The robustness of the different approaches to autonomous behaviors is one of
the main motivations in this work. Plain and sentinel approaches are recognized as
brittle when facing non-collaborative behaviors in agents (e.g. refuse to participate
in handling a case). EMS provides agents with individual mechanisms, so that
they acquire some robustness facing other agents. Depending on the number of
handlers available and the default handler, agents can at least terminate flawed
protocol executions, remain in a consistent state, and continue their executions.

The tasks of the designer to engineer the exception handling code differ depend-
ing on the approach. The plain implementation is ad hoc, i.e. different designers
may use different methods, with various qualities and drawbacks that are difficult
to evaluate and track. The sentinel approach reduces the tasks to the design of
appropriate sentinel agents and coordination protocols between application and
sentinel agents. The guidance provided by the sentinel approach does not let the
designer with an ad hoc method anymore. EMS reduces further the tasks to the
creation of handlers only. Handlers design is similar to protocol design in the
frame of this work, so that we can expect the task to be easier than for the sentinel
approach.

5.3 Experimental Results

The experimental results pertain to the exception-free, plain, and EMS versions of
the system, so as to compare the different approaches quantitatively. The results
are presented as graphs and statistical information obtained from the logs.

The first part of this section presents the results for the exception-free and EMS
versions in detail. It evaluates the overhead cost of introducing exception manage-
ment mechanisms in agents. The second part of the section aims at comparing the
plain and EMS versions, focusing on the numerical values. The comparison shows
the overhead cost of the EMS version over the plain one.

5.3.1 Overhead cost of exception management mechanism:

Exception-free and EMS versions of the system

Runs with the exception-free system produced logs that led to Fig. 5.4. The figure
shows a typical time-series of the performance of an agent in the market. The

5.3. EXPERIMENTAL RESULTS 75

performance is represented as the number of execution cycles completed by the
agent per millisecond.

Figure 5.4: Number of execution cycles completed by agent ‘Machine Assembler 1’
- No EMS

The figure shows that the agent executes once per millisecond with a constant
frequency. At the beginning of the curve, the agent is in fact executed more than
once per cycle: The log file reveals that the agent could execute twice in one
cycle at two occasions in the few first cycles of execution (this information does
not appear on the figure plot). Otherwise, the agent executes only once, which
is ensured by the scheduler of the multi-threaded application since all agents are
threads of the same priority (the Java virtual machine used in these experiments did
not guarantee fairness though). One reason for multiple cycles at the beginning is
the competition for the processor time. The agents compete less at the beginning
for the time their threads and activities all start. The individual curve of each agent
was drawn to observe all agents have similar curve profiles, which confirms the
explanation of the processor time competition.

Similar profiles are also observed for agents in the EMS experiments, with
similar explanation. Fig. 5.5 shows however that the frequency of executions de-
creases over time to reach a stable value after about two third of the time. It can
also be observed that the execution frequency is lower with the EMS, which means
the agent executes less often. This observation results from the overhead cost of
the EMS that is evaluated in this section.

76 CHAPTER 5. EXPERIMENTS AND MODEL VALIDATION

Figure 5.5: Number of execution cycles completed by agent ‘Machine Assembler 1’
(red) - With EMS

Another run with the EMS had an interesting irregularity: In the plateau of ac-
tivities (right part, about the last third of the time), two agent threads stopped
prematurely due to memory shortage (problem of configuration of the simulation
parameters). Other agents continued their activities until the end of the simula-
tions. The irregularities causes an increase of the frequency in the execution of
agents for few seconds, and then a return to the almost constant frequency before
the irregularity. The occurrence of such event allows to state that agents execute
less because of a constant rate of activity. In other words, agents do not lack
computing resources but execute their activities according to their constraints (e.g.
enough money or machine parts for the production). This leads the analysis to
distinguish between the first half of the execution time, where competition for com-
puting resources is high, with the second half, where computing resources are more
available.

The following two figures present an averaging that allows to better approximate
the cost of each approach. Fig. 5.6 and Fig. 5.7 represent the average execution
time of agents in the system over a period of 100ms. In other word, each 100ms
plateau is the average number of agents that execute at the same time. Although the
two profiles are similar, several runs show the agents in the exception-free system
execute more on average. Numerical values and rates are compiled in table 5.2 for
quantitative analysis.
The maximal values presented in the table show the difference between the exper-
iment types. 56.8% is the maximal performance with EMS against the reference,
which means the EMS divides the maximal performance by a factor 1.7.
The minimum value is almost unchanged in both experiments, which confirms the
observation with individual curves: The processor and the Java virtual machine
ensure that agents eventually obtain processing time. The overhead of the EMS

5.3. EXPERIMENTAL RESULTS 77

Type
Max Min In Stationary Interval

Average Average Max delta Max Min

Exception-free 3.57 1.0 0.09 1.09 1.0
EMS 2.13 1.0 0.04 1.04 1.0

Ratio (±10−2) 0.568 1.0 2.25 1.05 1.0
Inverse (±10−2) 1.761 1.0 0.45 0.95 1.0

Table 5.2: Comparison of the performance characteristics

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

N
um

be
r

of
 e

xe
cu

tio
n

cy
cl

es

Time (ms)

Number of execution cycles averaged over 100ms

Average over 100ms

Figure 5.6: Average number of execution cycles completed by agents over 100ms
periods - Exception-free

is therefore bounded, since the corresponding agents are run at lest once in each
period.

As for the stationary plateau, the values in the table are taken from half-time
onward. After the high activity at the beginning of the market execution, the system
reaches a stable state, which depends on the initial conditions (capital and stock of
agents). In the result table, the maximal values are of the two systems are close (5%
difference according to the ratio). One interesting value is the difference between
the maximal and minimal values in the plateau (delta). Despite the apparent
reduction of the difference between the two types of systems in the long run (on
average, agents execute a similar number of times), the EMS has still a significant
cost since the delta value differ by 55%.

The following reports show a detailed analysis of the average performance
of agent over one execution cycle only. This information complements the one
presented so far and gives an accurate estimation of the raw computational cost.
The ‘Mean average’ is the average of the mean execution time of each agent, and
the ‘Mean deviation’ is the standard deviation around the average value. Results

78 CHAPTER 5. EXPERIMENTS AND MODEL VALIDATION

0.000

0.500

1.000

1.500

2.000

2.500

N
um

be
r

of
 e

xe
cu

tio
n

cy
cl

es

Time (ms)

Number of execution cycles averaged over 5ms

Average over 5ms

Figure 5.7: Average number of execution cycle completed by agents over 100ms
periods - EMS

are given in milliseconds. In the exception-free version, the following results are
obtained from the logs.

Mean average: 2345.1369627596932
Mean deviation: 530.0239370593646

The average execution time is therefore centered around the rounded value 2345ms
and its deviation is around 530ms.

In the EMS version of the execution, the results become as follows.

Mean average: 5080.905346085171
Mean deviation: 1535.1855354055572

The average execution time becomes close to 5081ms and the average deviation
is around 1535ms. The raw cost is therefore about 2.17 more expensive with the
EMS on average. The standard deviations with and without EMS are similar
(between 22% to 30% of the mean values), so the rate of 2.17 can be considered as
meaningful indicator. The extra cost of 2.17 is significantly expensive, but it can
seemingly be reduced by optimizing the data structures used for the knowledge of
agents. In the present experiments, agents process their knowledge data structures
as tables (straightforward implementation of the knowledge structure of the model
on the software architecture), and most steps in the EMS require expensive look-up
through them.

The values obtained can finally serve to compare the theoretical computational
cost to numerical analysis. The complexity analysis in table 4.5 (page 62) leads to
the following estimation, with NDP the complexity of the reference system, O(nk)
the complexity for Handler Selection, and O(npro) for Handler Preparation. The
complexities are related to the execution time per cycle, so that the estimation is

5.3. EXPERIMENTAL RESULTS 79

based on the order of execution time. Other measures showed that the average size
of the agent knowledge tables was of constant in the experiments (agents execute
on average once per cycle).

Execution type Theoretical Cost Order (ms)

Exception-free NDP 103 (2345)

EMS Nbase = max(NDP,O(npro)) max(103, O(1))

Known exception N = max(O(nk), O(npro)) max(O(1), O(1))

Total estimation Nbase +N 103

Measured Value 103 (5081)

Table 5.3: Evaluation of the theoretical complexity

The theoretical value has the same order than the measured one. The original
analysis predicted that the introduction of the EMS only would increase the com-
plexity by one order, which is not that costly in practice since the experiments are
based on the software architecture instead of the execution model, and the activity
of agents were restricted to run only few protocols simultaneously.

The study of the time performance of agents show the influence of the EMS on
the agent execution cycle. In addition to the absolute performance of the compu-
tational cost, the next section exposes other aspects of the performance of agents,
namely their capital and their knowledge about the running activities.

5.3.1.1 Comparison of the capital of agents

The comparison between the two types of experiments is also based on the ‘money’
(unit of currency) exchanged in the market during the execution, which gives a
‘social’ dimension of the performance of agents, in addition to the raw performance
in time and processor.

Agent exceptions impact primarily the activity of the market, i.e. service and
money exchanges. The way money evolves over time is therefore expected to show
some variations when exceptional situations occur.

Fig. 5.8 and Fig. 5.9 first show the evolution of the money for one agent in the
market. The red curves represent in each case the raw data from the logs, and
the green curves represent a Bezier approximation of the raw data. The type of
approximation was selected as it adequately reproduces the tendencies of the raw
data over time in this case. For this reason, the next curves will mostly use the
Bezier approximation, unless raw data shows interesting features.

80 CHAPTER 5. EXPERIMENTS AND MODEL VALIDATION

Figure 5.8: Capital of agent ‘Machine Assembler 1’ over time (red), and Bezier
approximation (green) - No EMS

Figure 5.9: Capital of agent ‘Machine Assembler 1’ over time (red), and Bezier
approximation (green) - With EMS

The curves of the agent in the two situations are similar on these runs. In
the context of the whole system, Fig. 5.10 and Fig. 5.11 superimpose the curves
for each agent and for the average in the two types of experiments. The average
is represented both in raw and approximate forms to show the tendency of the
whole system over time. The two present curves of individual agents ‘Machine
Assembler 1’ appear also on these curves to show their evolutions in the context of
the system.

The two types of experiments produce different system reactions over time. This
observation was verified over repeated runs of the experiments with same initial

5.3. EXPERIMENTAL RESULTS 81

Figure 5.10: Average of the capitals of agents over time (red), and Bezier approxi-
mation for the average and each agent (other colors) - No EMS

Figure 5.11: Average of the capitals of agents over time (red), and Bezier approxi-
mation for the average and each agent (other colors) - With EMS

conditions: 3 runs were used for the final results presented here, but similar system
reactions were observed each time.

The interesting common points in all runs is the number of change in the
monotonicity of the curves. In the exception-free version, Fig. 5.10 shows that the
monotonicity changed at most twice, and for only one agent. In the EMS version,
Fig. 5.11 shows curves change monotonicity several times and at any time during
the experiments. Although changes occur more often at the beginning, they are still
observable at the time of the aforementioned stationary plateau. Runs of several
experiments for each type confirm the tendency to have more monotonicity changes

82 CHAPTER 5. EXPERIMENTS AND MODEL VALIDATION

with EMS than without it.
Changes in monotonicity are then a possible consequence of introducing ex-

ceptions in the system. The dynamics of agents are modified by exceptions and the
EMS, so that their reactions and outcomes in the market differ from the exception-
free runs. The relation of the effect to the EMS leads to compare the occurrence of
exceptions in the system with the profile of the agent capitals. The next Fig. 5.12
and Fig. 5.13 show the occurrences of exceptions over time and the superimposition
with the agent capitals respectively.

Figure 5.12: Average number of exceptional situations in the agent activities over
time (red), and number of exceptions recognized by each agent (other colors) - With
EMS

The observation of the exception spikes over the capital curves show a possible
correlation between the occurrence of exceptions and the change in monotonicity.
All curves are not impacted by exceptions at each spike. Unfortunately, the spikes
influence agents that are involved in unrelated protocols, some without exception
occurrence. The log files confirm with figures that the possible correlation cannot
be verified.

22:15:31: New turn, Money=1000
22:15:31: Rel. ok (cnet19, mp3, ma2, inform, [delay=500], 97)
22:15:31: Exp. NOK (cnet19, ...)
22:15:31: Exception detected
22:15:31: Han. sel. (cnet19, ...) done: RefuseDelayHandler
22:15:31: Han. prep. (cnet19, ...)
22:15:31: Proc. (cnet19, ...)
22:15:31: Start handler...

5.3. EXPERIMENTAL RESULTS 83

Figure 5.13: Evolution of the capital of agents and exception occurrences

22:15:31: Number of directives for this turn is 9
22:15:31: Protocol ended by RefuseDelayHandler44910899
22:15:31: Remove expectation: [cnet19,mp3,ma2,nil,nil,nil]
22:15:31: Upd. (cnet19, ma2, mp3, inform, [nope], 284)
22:15:31: Msg sent: (cnet19, ma2, mp3, inform, [nope], 284)
...
22:15:31: New turn, Money=1000

The extract from the log file of one agent shows no influence on the capital
over one turn despite the occurrence of an exception.

In conclusion of the study of the capital of agents, the EMS has apparently
no influence on the evolution of the capital over time. The EMS has however a
concrete influence on the continuity of the execution of the agent, since it allows
the agent to continue its execution despite the occurrence of exceptions. Without
EMS, the same agents terminate or enter ‘infinite loops’ expecting messages that
can never arrive. The infinite loops can be interrupted by the addition of timeouts,
but whenever such timeout is omitted, agents without an exception management
mechanism do not behave adequately. The EMS allows agents to continue their
activity, thus contributing to the future evolutions of their capitals.

5.3.1.2 Other mechanisms of the exception management

The experiments results allowed to collect detailed information at each step of the
EMS phases. The graph of exceptions presented in the previous section showed

84 CHAPTER 5. EXPERIMENTS AND MODEL VALIDATION

the information related to the Handler Selection and Handler Preparation phases,
which are necessarily used together in the settings of the case study.

In this section, results about the Relevance and Expectation filtering phases
are presented and related to the performance of agents. Fig. 5.14 and Fig. 5.15
show the graphs of the two phases over time.

Figure 5.14: Average number of relevance rules generated by agents over time
(red), and Bezier approximation for the average and each agent (other colors) -
With EMS

The profiles of relevance and expectation graphs are very close since both are
produced and remove at the same time in situations like the creation or termination
of a protocol. The graphs are however not identical since expectation rules can be
created during the execution of a protocol, while the relevance remains the same
all along the protocol (see Alg. 4.3, page 58). For example, a client creates only
an expectation for the result performative when it sends an acceptProposal
message to the provider that won in the protocol. No relevance rule is created at
that time.

The graphs show the period of high activity in the system. When rules are
created in higher number, it means more protocols are run simultaneously, whereas
fewer rules indicate a slow down in the agent activities. In the plateau of activities
introduced in the performance evaluation (Fig. 5.7), the production of rules is one
per cycle in accordance with the single execution of the agent on average.

The graphs allow to illustrate the reason for the overhead cost of the EMS over
exception-free version of the system. The maintenance of relevance of expectation
rules that serve in the EMS mechanism demand a significant computation. As a
result, the consequent cost can be controlled by optimizing the management of the

5.3. EXPERIMENTAL RESULTS 85

Figure 5.15: Average number of expectations rules generated by agents over time
(red), and Bezier approximation for the average and each agent (other colors) -
With EMS

rules with appropriate algorithms, although this cost cannot be eliminated.

5.3.2 Comparison between the Plain and EMS exception management

systems

The aim of this comparison is to present the different costs of the Plain and EMS
versions of the system. A difference is expected owing to the type of approach
implemented. The Plain version is especially tailored for the case study, and
the exception management is integrated based on standard practices in Software
engineering. In other words, the Plain approach is ‘optimized’ for the case study. On
the other hand, the EMS version is based on our general mechanism to let agents
deal with agent exceptions. The EMS-based system is therefore ‘less optimized’
and we expected a higher overhead cost. The present part details the comparison
with the results extracted from the logs of the experiments.

Tables 5.4 and 5.5 provide performance results of our implementations in the
case of the plain and EMS versions of the system. The exception-free performance
is shown again as a reference.

The plain approach is close to 95% of the performance of the exception-free
systems, which confirms that this implementation is close to optimal in terms of
the overhead cost of an exception management mechanism. On the other hand,
the performance of the EMS version is around 63% of the Plain one. The EMS
approach is therefore 47% more expensive than the Plain one.

86 CHAPTER 5. EXPERIMENTS AND MODEL VALIDATION

Approach Max Min Max in Stationary Interval

Exception-free 3.57 1.0 1.09
Plain 3.37 1.0 1.08
EMS 2.13 1.0 1.04

Table 5.4: Comparison of the performance characteristics

Approach Time (±10−2s)
Exception-free 2.35

Plain 2.35
EMS 5.08

Table 5.5: Average computational cost of an agent cycle in terms of execution time

The plain implementation has no significantly different cost with the exception-free
system. The EMS version costs consequently 2.17 more time to complete an agent
execution cycle (including deliberation), which is the same numerical value as the
previous section. The explanation is the overhead cost introduced by management
of relevance and expectation rules, which does not exist in the Plain approach.
Since the Plain approach allows to perform exception management similarly to the
EMS at runtime, this result confirms that the management of the rules is the key
factor to optimize the EMS and still leverage the generality of the approach over
the Plain version.

5.4 Conclusion

The analysis presented in this chapter compares different approaches that deal with
exception management in MAS. The purpose of the EMS approach is to endow the
agents individually with appropriate capabilities with regards to exceptions, and
to comply with the characteristics of agents, notably their autonomy. Other ap-
proaches verify some of the agent characteristics, but the comparison shows that
only the EMS deals adequately with the autonomy matter (by design of the ap-
proach). Consequences on engineering agents with exception management capa-
bilities are also examined. The main advantage of the EMS over other approaches
is to be more robust and to reduce the tasks of the designer, thus reducing the load
and focusing on essential handling mechanisms. On the other hand, the contribution
of the EMS to the design has a cost at runtime, so that designers have to eval-
uate whether the target system can cope with the additional cost. For instance,
the design of systems on resource-limited platforms (e.g. mobile devices) might
prevent from using the EMS. The overhead cost is however bounded, as shown in
the experiments, and an optimized management of relevance and expectation rules
can allow to reduce this cost, such that specialized versions of the EMS might be

5.4. CONCLUSION 87

adapted to resource-limited platforms.

Six

Conclusions

Multi-agent systems are expected to feature many qualities in terms of flexibility,
robustness, and perhaps more generally, the capability to adapt automatically to
the dynamics of its agents and its environment. Exception management is among
the mechanisms that participate in the realization of these qualities, and the agent
research community has produced models and techniques to endow MAS with
exception management capabilities.

The past research has focused in the first place on the systemic dimension
of exception management. The notable achievements of Hägg with the sentinel
agents and Klein et al. with the reliability database are significant contributions
to exception management at the level of the system: Both approaches rely on
introducing exception-oriented services in the environment of MAS [40, 53].

The other approach developed in this document is at the level of agents: How
can designers introduce the qualities of flexibility, robustness, or adaptability in
MAS in case the sentinels or the reliability database fails? In other words, the
motivation of this second approach is to endow individual agents with exception
management capabilities. The capabilities allow the agent to continue its activity
and to remain in a consistent state despite the occurrence of exception, indepen-
dently from external services.

The two approaches are complementary in their benefits to MAS. The original
work at the system level deals with coordinated exceptions efficiently, owing to
a central or decentralized service that ‘orchestrates’ the management. The work
at the agent level allows to deal with individual and coordinated exceptions in
a distributed fashion, which is more complex—therefore less efficient [101]— but
also more robust and flexible when parts of the system encounter exceptions. The
system level contributes to the efficiency and the agent level work palliates the
issues of robustness at the system level, primarily due to the agent autonomy, and
the system openness and heterogeneity.

89

90 CHAPTER 6. CONCLUSIONS

6.1 General contributions of the present work

The general contributions of the present work are first to define the notion of agent
exception in the context of Multi-agent systems. Past research has succeeded in
setting forth the intuition of agent exception, but no work had proposed so far
any definition of the nature of an exception in agent systems. The definition of
this document is elaborated in the context of agents that execute protocols, but
the fundamental notion in the definition is the unexpected character of an event.
Other types of agents can probably reuse the present work provided a proper
interpretation of the term ‘unexpected’ is chosen. For example, planning agents
could seemingly leverage the approach developed in this document if ‘unexpected
event’ is understood as an event that is not indicated in the plan. This example
is very close to the protocol approach, but it shows an instance of transposition of
this work to another type of agent.

The preservation of the agent autonomy is the second general contribution of
this work. Past research on system-level approaches recognize a common limi-
tation: Agents must collaborate during the exception management procedure [53].
The assumption of agent collaboration is however strong within a society of au-
tonomous agents. The main consequence of autonomy is the inability to predict a
collaborative situation. Besides, collaboration is a reasonable assumption in the
rationale for creating a system [41, Chapter 7], but it hides numerous issues for
exception management in MAS. Agent can be collaborative but fail for unexpected
reason, thus having a ‘non-collaborative’ behavior in the context of an activity [6].
The preservation of autonomy as a condition provides foundations to deal with the
non-collaborative case. The work presented in this document is under a strong
condition of agent autonomy so that the models and facilities elaborated in this
research allow agents to continue their activity and remain in a consistent state
despite non-collaborative situations. Agents are able to decide the termination of
an activity and continue others independently from the decision of other agents.
The actual handling of such situation depends on the handlers available to the
agent, and the foundation guarantees that such handlers are found and used by
the agent with respect to its knowledge and autonomy.

The last general contribution of this work is the preparation of the agent exe-
cution model and corresponding architecture for integration with some other works
akin to exception management. The proposed model deals with agent exceptions at
the level of agent, while related work focused on the system. The model features
two ‘connection points’ where both approaches can complement. First, the execution
model is built on a classical agent cycle with perception, process, and actuation.
The same assumption is done in other research so that the execution model can
accept messages from external entities that support exception management. Such
messages can inform the agent about system events, such as network congestions,
or more intricate situations, such as a circular wait deadlock. The external entity
is then an event notification service, as can be observed in the agent commu-
nity [115, 78, 79]. Other messages can also advice the agent to act in a particular

6.2. CONTRIBUTIONS TO AGENT-ORIENTED SOFTWARE ENGINEERING91

way, for example to break a circular wait deadlock. The second connection point
is the Handler search phase of the agent. When the agent reaches this phase, it
attempts to poll agents and other alternative external entities to obtain advices on
how to handle a situation [51, 82]. Such situation does not infringe the autonomy
assumption in the sense the agent remains independent on the application of the
received advice. In this phase, the usage of external entities is explicitly consid-
ered as an appropriate action to take by the agent, thus exploiting the system-level
facilities.

6.2 Contributions to Agent-Oriented Software Engineering

Software engineering is one of the domains of application of the present work. Ex-
ception management systems in software exist since early programming languages,
and they evolved with the increasing complexity and the novel challenges of mod-
ern software systems. The apparition of exception models in distributed computing
illustrates such evolutions.

Multi-agent systems constitute a comprehensive view on modern systems that
embrace the complexity of large-scale distribution over nondeterministic environ-
ments such as the Internet or wireless networks. The dependability of MAS is
essential for the development of agent technologies, and exception management
should therefore deal with them. As software, MAS can leverage the past achieve-
ments in distributed systems, although the complexity, openness, and heterogeneity
require further research. MAS need however specific support as systems of au-
tonomous agents, and the present work is thought of as a contribution to this
endeavor. Concrete contributions to Software engineering is to consider the ab-
stract notion of autonomy as a guidance to create exception management systems.
An essential concept in the exception models of programming languages and dis-
tributed systems is the context of an exception (or syntactic unit, historically). In
the example of Java, such context is determined by the peer keywords try/catch.
In the following code sample, the context of the exception is determined by the
curly brackets between try and catch, i.e. the syntactic units introduced in chap-
ter 2 [34].

try{
//Do something

} catch (Exception theException) {
//Handle the exception

}
In distributed computing, the context is a joint activity between process, such as

the Coordinated Atomic Actions [112]. Agent systems naturally lead to consider the
agent itself as context for an exception due to the notion of autonomy. The autonomy
then becomes a criteria of modularity for systems that can be useful for analyzing
system architectures. The modularity of MAS is a consequence of autonomy and it

92 CHAPTER 6. CONCLUSIONS

appears as a possible assumption that should be chosen to engineer systems that
have to interact with other systems, built by unknown designers.

Finally the work presented in this document follows a tradition in Software
engineering to separate the concerns of application logics and exception logics
embedded in programs. Past research in MAS already set up such separation,
but the contribution was then at the system level. Agents were considered as
the application logics and external entities provided the exception logics. In the
present work, the separation of concerns is established at the agent level, and it
complements the system level separation. The two levels of separation are then
another view on the modularity of MAS as for exception management.

6.3 Contributions to Distributed Artificial Intelligence

The contribution to Distributed Artificial Intelligence (DAI) is threefold. The agent
execution model is first an attempt in Artificial Intelligence to create a model that
explicitly separates the general-purpose reasoning capabilities of the agent from
mechanisms devoted to exception management. The separation is important owing
to the numerous agent models that already exist: The exception management system
is a separate extension that can be ‘plugged’ to a general-purpose reasoning model.
The ‘plug-point’ is then the Decision process phase in the agent execution model.
Some models such as the KGP model of agency are already capable of adapting
to exceptional situations [48, 98], and the major contribution of the present work
is to set forth the autonomy and a model that explicitly separates the logics, as
aforementioned in the Software engineering section.

The second contribution of this work is to position work in DAI on the topic
with work in AI. The properties of MAS led to distinguish system- and agent-level
exception management. The former pertains primarily to DAI, and the latter to AI.
The complementarity of the approaches was discussed throughout this document,
which shows that benefits can be expected from a future synergy of techniques from
the two points of view.

Finally the third contribution is the technical framework provided by the agent
execution model and the corresponding software architecture. The software archi-
tecture serves in the first place to guide the implementation of the execution model,
which allowed straightforward applications such as the Energy market case study.
The execution model is furthermore a framework in AI, as several mechanisms of
AI such as Abductive reasoning are relevant to develop some of the phases of the
model, notably the Handler generation.

6.4 Future perspectives

The agent execution model presented in this document settles a number of future
perspectives. The model is a framework and the current coverage of the study does

6.4. FUTURE PERSPECTIVES 93

not address all the underlying research issues. This last section aims at presenting
the work that is either on-going or extending the current state of study.

Integration of approaches and work on handlers. The two main on-going ac-
tivities are the practical integration of the work with models that rely on external
entities, and the generation of handlers with abductive reasoning. Although the
two levels are complementary, the pragmatics of this claim are not studied in detail
yet. One of the underlying research issues lies in the evaluation by the agent of
a handler received from an external entity. The Handler evaluation phase is then
the key phase, and the present achievements in this work are limited to a simple
case: The evaluation just checks that the external handler leads to a desired state
eventually. This case can apply to simple cases, but it becomes hazardous in real
settings, i.e. in open and heterogeneous settings. One possible target achievement
is for the agent to check that each step of the handler is acceptable in a computa-
tionally economical way. Related work about this topic is for instance the analysis
of generic protocols1 by the agent to adapt it to its specific concerns.

The generation of handlers is a challenging issue that has the potential to
make agents more robust in unknown situations. The purpose of the generation
should not be the production of any kind of handling, but it should at least focus
on mechanisms that maintain the agent continuity, i.e. maintaining its activities in
a consistent state. This minimal requirement is essential in the agent execution
model and current work aims at exploring different ways to generate useful handlers
in an economical way. This minimal requirement is also the reason why a handler
that ‘ignores’ a message seems appropriate as default. Ignoring a message cause
no harm to the agent state and can maintain activities. The ignore handler is
however insufficient whenever the exception has a real impact on the activity. A
supplementary analysis is required to ensure that ignoring should have no side-
effect.

Two ways are currently considered for handler generation, namely Case-based
(CBR) and Abductive (AR) reasoning models. CBR allows more flexibility in the
agent and appears as an economical way to generate handlers from an existing
handling knowledge base. In practice, CBR allows to generate handlers slightly
different from existing ones, but adapted to a new situation. For example, two han-
dlers can have similarities and CBR techniques are possible approaches to deduce
one from the other and some additional knowledge. The problem of a CBR-approach
in the context of the execution model is that it is usually difficult to guarantee a
sound handler for the social context of agents. The preliminary investigation on the
topic cannot permit to conclude at present. As for AR, the approach appears more
flexible and sound. One possible way to exploit an abductive reasoning framework
for handler generation is to generate ‘abducible hypothesis’ from the unexpected
event and the impacted protocol. The hypothesis allow the agent to ‘simulate’

1A handler is thought of as a generalization of a protocol in this work, due to the inclusion of
‘internal actions’.

94 CHAPTER 6. CONCLUSIONS

internally the possible evolutions of the activity in the next stages. If the series
of simulated actions leads to a desired state and complies with constraints of the
agent (e.g. time), then the series becomes a handler, and the hypothesis can be
assumed. Past work on agent models show the potential of abduction [88, 87, 48],
but the technical issues of such approach are numerous and the present research
remains in a premature stage.

Further issues. The concept of nested exceptions has not been explicitly pre-
sented in this document. Nested exceptions are encountered during the handling
of another exception, thus requiring the suspension of a handler and the start of
another one. The agent execution model implicitly supports this procedure. The
implicit support comes from the close representation and properties of protocols
and handlers in the framework. When a handler is executed, it produces some
expectations that must be verified otherwise causing another exception, similarly
to protocols. Handlers can then be suspended and resumed as protocols in the
handling of nested exceptions. The present work does not however study the case
of nested exceptions in detail, due to the strong similarity of their managements.

Further research shall eventually be conducted beyond the framework settled
by this document for agents that execute according to protocols. The present work
explicitly focuses on these agents owing to the target applications to agent-oriented
software engineering. Other models do exist, such as interactions based on dialog
or argumentation, and they require appropriate adaptation of the present mecha-
nisms. This document has however identified a key issue for exception management
in such models, which can serve as a starting point and a way to reuse the present
work: Another model should determine adequately what is an unexpected event.

Bibliography

[1] Agent Unified Modeling Language (AUML) Web-Site.
http://www.auml.org/. 12

[2] FIPA Modeling: Interaction Diagrams.
http://www.auml.org/auml/documents/ID-03-07-02.pdf. 50

[3] Autonomic Computing. http://www.research.ibm.com/autonomic/, Ac-
cessed in October 2006. 3

[4] Algirdas Avižienis, Jean-Claude Laprie, and Brian Randell. Fundamental Con-
cepts of Dependability. In Third Information Survivability Workshop, pages
7–12. IEEE, 2000. 2

[5] Len Bass, Paul Clements, and Rich Kazman, editors. Software Architecture
in Practice, Second Edition. Addison-Wesley, 2003. 63

[6] Carole Bernon, Valérie Camps, Marie-Pierre Gleizes, and Gauthier Picard.
Agent-Oriented Methodologies, chapter Engineering Adaptive Multi-Agent
Systems: the ADELFE Methodology, pages 172–202. In Henderson-Sellers
and Giorgini [41], 2005. 90

[7] Rodney Brooks. Intelligence without representation. Artificial Intelligence,
47(1–3):139–159, 1991. 49

[8] Sven Brueckner. Return from the Ant — Synthetic Ecosystems for Manu-
facturing Control. PhD thesis, Humboldt University, Berlin, Germany, 2000.
5

[9] Cristiano Castelfranchi. Mind as an Anticipatory Device: For a Theory of
Expectations. In Massimo De Gregorio, Vito Di Maio, Maria Frucci, and Carlo
Musio, editors, BVAI, volume 3704 of Lecture Notes in Computer Science,
pages 258–276. Springer, 2005. 53

[10] Cristiano Castelfranchi and Emiliano Lorini. Cognitive Anatomy and Func-
tions of Expectations. In Cognitive Modeling of Agents and Multi-Agents
Interactions, pages 842–849, 2003. 53

95

http://www.auml.org/
http://www.research.ibm.com/autonomic/

96 BIBLIOGRAPHY

[11] Hans Chalupsky, Yolanda Gil, Craig A. Knoblock, Kristina Lerman, Jean Oh,
David V. Pynadath, Thomas A. Russ, and Milind Tambe. Electric elves: Ap-
plying agent technology to support human organizations. In Haym Hirsh and
Steve A. Chien, editors, IAAI, pages 51–58. AAAI, 2001. 2

[12] A. Chavez and Patie Maes. Kasbah: An agent marketplace for buying and
selling goods. In International Conference on the Practical Application of
Intelligent Agents and Multi-Agent Technology, 1996. 7, 11

[13] Caroline Chopinaud, Amal El Fallah-Seghrouchni, and Patrick Taillibert. Pre-
vention of harmful behaviors within cognitive and autonomous agents. In
Gerhard Brewka, Silvia Coradeschi, Anna Perini, and Paolo Traverso, editors,
ECAI, pages 205–209. IOS Press, 2006. 3, 7

[14] Caroline Chopinaud, Amal El Fallah-Seghrouchni, and Patrick Taillibert. Au-
tomatic generation of self-controlled autonomous agents. In Andrzej Skowron,
Jean-Paul A. Barthès, Lakhmi C. Jain, Ron Sun, Pierre Morizet-Mahoudeaux,
Jiming Liu, and Ning Zhong, editors, IAT, pages 755–758. IEEE Computer
Society, 2005. 7

[15] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model checking.
MIT Press, 1999. 106

[16] Corba website. http://www.corba.org/. 9

[17] CPN Tools website. http://www.daimi.au.dk/CPNTools/, Accessed in
November 2006. University of Aarhus, Denmark. 105

[18] Chrysanthos Dellarocas. Toward Exception Handling Infrastructures in
Component-based Software. In Proceedings of the International Workshop
on Component-based Software Engineering., 1998. 29

[19] Alexis Drogoul, B. Corbara, and S. Lalande. MANTA: New Experimental
Results on the Emergence of (Artificial) Ant Societies. In N. Gilbert and
R. Conte, editors, Artificial Societies: The Computer Simulation of Social
Life, pages 190–211. UCL Press: London, 1995. 5, 64

[20] Marc Esteva, Bruno Rosell, Juan A. Rodŕıguez-Aguilar, and Josep Lúıs Arcos.
Ameli: An agent-based middleware for electronic institutions. In AAMAS,
pages 236–243. IEEE Computer Society, 2004. 9, 45

[21] Torsten Eymann, Boris Padovan, and Detlef Schoder. Avalanche - An Agent
Based Value Chain Coordination Experiment. In Workshop on Artificial So-
cieties and Computational Markets (ASCMA’98) at Autonomous Agents ’98,
pages 48–53, 1998. 26

http://www.corba.org/
http://www.daimi.au.dk/CPNTools/

97

[22] Jacques Ferber and Olivier Gutknecht. A Meta-Model for the Analysis and
Design of Organizations in Multi-Agent Systems. In ICMAS, pages 128–135.
IEEE Computer Society, 1998. 37

[23] FIPA Agent Communication Language Specification.
http://www.fipa.org/repository/aclspecs.html. Accessed in June
2006. 2, 6, 9, 34, 50, 55

[24] FIPA Agent Management Specification.
http://www.fipa.org/specs/fipa00023/SC00023K.html. 9

[25] FIPA Abstract Architecture Specification.
http://www.fipa.org/specs/fipa00001/SC00001L.html. 9

[26] Klaus Fischer, Jörg P. Müller, and Markus Pischel. A pragmatic BDI archi-
tecture. In Michael Wooldridge, Jörg P. Müller, and Milind Tambe, editors,
ATAL, volume 1037 of Lecture Notes in Computer Science, pages 203–218.
Springer, 1995. 26

[27] Foundation for Intelligent Pysical Agents. FIPA Contract Net Interaction Pro-
tocol Specification.
http://www.fipa.org/specs/fipa00029/SC00029H.html. Document
number SC00029H, Accessed in October 2006. 12, 51

[28] Erich Gamma, R Helm, R Johnson, and J Vlissides. Design Patterns. Addison-
Wesley, 1999. 5

[29] Alessandro Garcia, Holger Giese, Alexander Romanovsky, Ricardo Choren,
Ho fung Leung, Carlos Lucena, Florian Klein, and Eric Platon. Software
engineering for large-scale multi-agent systems - SELMAS 2006: Workshop
report. SIGSOFT Softw. Eng. Notes, 31(5):24–32, 2006. 10

[30] David Gelernter. Generative communication in linda. ACM Transactions on
Programming Languages and Systems, 7(1):80–112, January 1985. 6

[31] Maria Gini and Toru Ishida, editors. The First International Joint Conference
on Autonomous Agents & Multiagent Systems, AAMAS 2002, July 15-19, 2002,
Bologna, Italy, Proceedings. ACM, 2002. 100, 102

[32] Jacob Glazer and Ariel Rubinstein. Debates and Decisions, On a Rationale
of Argumentation Rules. Games and Economic Behavior, 36:158–176, 2001. 7

[33] John B. Goodenough. Exception handling design issues. SIGPLAN Not.,
10(7):41–45, 1975. 18, 39

[34] John B. Goodenough. Exception Handling: Issues and a Proposed Notation.
Commun. ACM, 18(12):683–696, 1975. 3, 18, 39, 91

http://www.fipa.org/repository/aclspecs.html
http://www.fipa.org/specs/fipa00023/SC00023K.html
http://www.fipa.org/specs/fipa00001/SC00001L.html
http://www.fipa.org/specs/fipa00029/SC00029H.html

98 BIBLIOGRAPHY

[35] John B. Goodenough. Structured exception handling. In POPL ’75: Pro-
ceedings of the 2nd ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, pages 204–224, New York, NY, USA, 1975. ACM
Press. 18, 39

[36] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha, editors. The JavaTM
Language Specification, Third Edition. Addison-Wesley, 2005. 20

[37] Abdelkader Gouäıch, Fabien Michel, and Yves Guiraud. MIC*: A deployment
environment for autonomous agents. In Danny Weyns, H. Van Dyke Parunak,
and Fabien Michel, editors, Environment for Multi–Agent Systems’04, volume
3374 of Lecture Notes in Artificial Intelligence, pages 109–126. Springer–
Verlag, 2005. 7

[38] Zahia Guessoum, Nora Faci, and Jean-Pierre Briot. Adaptive replication of
large-scale multi-agent systems - towards a fault-tolerant multi-agent plat-
form. In Alessandro F. Garcia, Ricardo Choren, Carlos José Pereira de Lucena,
Paolo Giorgini, Tom Holvoet, and Alexander B. Romanovsky, editors, SEL-
MAS, volume 3914 of Lecture Notes in Computer Science, pages 238–253.
Springer, 2005. 2

[39] Zahia Guessoum, Mikal Ziane, and Nora Faci. Monitoring and organizational-
level adaptation of multi-agent systems. In AAMAS, pages 514–521. IEEE
Computer Society, 2004. 2

[40] Staffan Hägg. A Sentinel Approach to Fault Handling in Multi-Agent Sys-
tems. In Chengqi Zhang and Dickson Lukose, editors, Distributed AI, volume
1286 of Lecture Notes in Computer Science, pages 181–195. Springer, 1996.
33, 34, 68, 89

[41] Brian Henderson-Sellers and Paolo Giorgini, editors. Agent-Oriented
Methodologies. Whitestein Series in Software Agent Technologies. Idea
Group Publishing, 2005. 90, 95

[42] Koen V. Hindriks, Frank S. de Boer, Wiebe van der Hoek, and John-Jules Ch.
Meyer. Agent programming in 3apl. Autonomous Agents and Multi-Agent
Systems, 2(4):357–401, 1999. 49

[43] Valérie Issarny. Concurrent Exception Handling. In Romanovsky et al. [85],
pages 111–127. v, 4, 26, 27

[44] Valérie Issarny and Jean-Pierre Banâtre. Architecture-based Exception Han-
dling. In Hawaii International Conference on System Sciences, 2001. 28

[45] Jadex Agent Platform Project. http://sourceforge.net/projects/jadex.
Accessed in August 2006. 49

http://sourceforge.net/projects/jadex

99

[46] Jason Agent Platform Project. http://jason.sourceforge.net/. Ac-
cessed in August 2006. 49

[47] Kurt Jensen. Coloured Petri Nets: A High Level Language for System Design
and Analysis . In Advances in Petri Nets, volume 483 of Lecture Notes in
Computer Science, pages 342–416, 1991. 105

[48] Antonis C. Kakas, Paolo Mancarella, Fariba Sadri, Kostas Stathis, and
Francesca Toni. The KGP model of agency. In Ramon López de Mántaras
and Lorenza Saitta, editors, ECAI, pages 33–37. IOS Press, 2004. 44, 49, 64,
92, 94

[49] Gal A. Kaminka. Execution Monitoring in Multi-Agent Environments. PhD
thesis, Computer Science Department—University of Southern California,
2000. 2, 6

[50] Gal A. Kaminka, David V. Pynadath, and Milind Tambe. Monitoring Teams by
Overhearing: A Multi-Agent Plan-Recognition Approach. Journal of Artificial
Intelligence Research, 17:83–135, 2002. 6

[51] Mark Klein and Chrysanthos Dellarocas. Exception handling in agent sys-
tems. In Agents, pages 62–68, 1999. 29, 33, 36, 45, 60, 91

[52] Mark Klein, P. Faratin, H. Sayama, and Y. Bar-Yam. Protocols for Negotiating
Complex Contracts. IEEE Intelligent Systems, Nov./Dec.:32–38, 2003. 7

[53] Mark Klein, Juan A. Rodŕıguez-Aguilar, and Chrysanthos Dellarocas. Using
domain-independent exception handling services to enable robust open multi-
agent systems: The case of agent death. Autonomous Agents and Multi-Agent
Systems, 7(1-2):179–189, 2003. 3, 15, 28, 29, 34, 42, 45, 89, 90

[54] Robert A. Kowalski and Marek J. Sergot. A Logic–Based Calculus of Events.
New Generation Computing, 4:67–95, 1986. 30

[55] Nicholas Kushmerick. Software agents and their bodies. Minds and Machines,
7(2):227–247, 1997. 53

[56] François Legras and Catherine Tessier. LOTTO: Group Formation by Over-
hearing in Large Teams. In Autonomous Agents and Multi–Agent Systems,
pages 425–432. ACM Press, 2003. 3

[57] The MadKit Agent Platform Project. http://www.madkit.org/. Accessed
in July 2006. 37

[58] Ashok U. Mallya. Modeling and Enacting Business Processes via Commit-
ment Protocols among Agents. PhD thesis, North Carolina State University,
Raleigh, United States, 2005. 35, 50

http://jason.sourceforge.net/
http://www.madkit.org/

100 BIBLIOGRAPHY

[59] Ashok U. Mallya and Munindar P. Singh. Modeling exceptions via commitment
protocols. In Autonomous Agents and Multi–Agent Systems, pages 122–129,
New York, NY, USA, 2005. ACM Press. 3, 35, 36, 44

[60] Marco Mamei and Franco Zambonelli. Programming pervasive and mobile
computing applications with the tota middleware. In Proceedings of the In-
ternational Conference On Pervasive Computing (Percom). IEEE CS Press,
Orlando, Florida, USA, 2004. 9

[61] Hamza Mazouzi, Amal El Fallah-Seghrouchni, and Serge Haddad. Open
protocol design for complex interactions in multi-agent systems. In Gini and
Ishida [31], pages 517–526. 50, 105

[62] John McCarthy. Circumscription—A Form of Non-Monotonic Reasoning. Ar-
tificial Intelligence, 13:27–39, 1980. Reprinted in [64]. 31

[63] John McCarthy. Applications of Circumscription to Formalizing Common
Sense Knowledge. Artificial Intelligence, 28:89–116, 1986. Reprinted in [64].
31

[64] John McCarthy. Formalization of common sense, papers by John McCarthy
edited by V. Lifschitz. Ablex, 1990. 100

[65] John McCarthy and Patrick J. Hayes. Some Philosophical Problems from the
Standpoint of Artificial Intelligence. In B. Meltzer and D. Michie, editors,
Machine Intelligence 4, pages 463–502. Edinburgh University Press, 1969.
30

[66] Robert Miller and Anand Tripathi. The Guardian Model and Primitives for
Exception Handling in Distributed Systems. IEEE Trans. Software Eng.,
30(12):1008–1022, 2004. 3, 22, 23, 45, 46

[67] Robin Milner. Communicating and Mobile Systems: The π-calculus. Cam-
bridge University Press, 1999. 51

[68] Tom Mitchell, Rich Caruana, Dayne Freitag, John McDermott, and David
Zabowski. Experience with a learning personal assistant. Communications of
the ACM, 37(7):81–91, 1994. 2

[69] Microsoft Win32 Structured Exception Handling for C++.
http://www.microsoft.com/msj/0197/Exception/Exception.aspx.
Accessed in October 2006. 20

[70] James Odell. Objects and agents compared. Journal of Object Technology,
1(1):41–53, May-June 2002. 5

[71] H. Van Dyke Parunak. “Go to the Ant”: Engineering Principles from Natural
Multi-Agent Systems. Annals of Operation Research, 75:69–101, 1997. 5, 36

http://www.microsoft.com/msj/0197/Exception/Exception.aspx

101

[72] H. Van Dyke Parunak. A survey of environments and mechanisms for human-
human stigmergy. In Weyns et al. [108], pages 163–186. 36

[73] H. Van Dyke Parunak, Sven Brueckner, Mitch Fleischer, and James Odell. A
design taxonomy of multi-agent interactions. In Paolo Giorgini, Jörg P. Müller,
and James Odell, editors, AOSE, volume 2935 of Lecture Notes in Computer
Science, pages 123–137. Springer, 2003. 6

[74] H. Van Dyke Parunak, Sven A. Brueckner, Mitch Fleischer, and James Odell.
A preliminary taxonomy of multi-agent interactions. In Autonomous Agents
and Multi–Agent Systems, pages 1090–1091. ACM Press, 2003. 6

[75] H. Van Dyke Parunak and Danny Weyns, editors. Autonomous Agents and
Multi-Agent Systems, Special Issue on Environment for Multi-Agent Systems,
volume 14, number 1. Springer Netherlands, February 2007. 101, 103

[76] Eric Platon. Artificial intelligence in the environment: Smart environment for
smarter agents in open e-markets. In Proceedings of the Florida Artificial
Intelligence Research Society. AAAI, 2006. 11

[77] Eric Platon, Marco Mamei, Nicolas Sabouret, Shinichi Honiden, and H. Van
Dyke Parunak. Mechanisms of the Environment for Mutli-Agent Systems,
Survey and Opportunities. In Autonomous Agents and Multi-Agent Systems
[75], pages 31–47. 6

[78] Eric Platon, Nicolas Sabouret, and Shinichi Honiden. Overhearing and direct
interactions: Point of view of an active environment. In Weyns et al. [108],
pages 121–138. 6, 90

[79] Eric Platon, Nicolas Sabouret, and Shinichi Honiden. Environment Support
for Tag Interactions. In Environment for Multi–Agent Systems, 2006. 6, 90

[80] Anand S. Rao and Michael P. Georgeff. BDI Agents: From Theory to Practice.
Technical report, Australian Artificial Intelligence Institute, 1995. 33, 64

[81] Mike Reddy and Gregory M.P. O’Hare. Blackboard systems: A survey of
their application. Artificial Intelligence Review, May, 1991. 6

[82] Martin Rehák, Jan Tožička, Michal Pěchouček, Filip Železný, and Milan Rollo.
An abstract architecture for computational reflection in multi-agent systems.
In Andrzej Skowron, Jean-Paul A. Barthès, Lakhmi C. Jain, Ron Sun, Pierre
Morizet-Mahoudeaux, Jiming Liu, and Ning Zhong, editors, Proceedings of
the 2005 IEEE/WIC/ACM International Conference on Intelligent Agent Tech-
nology, pages 128–131. IEEE Computer Society, 2005. 60, 91

[83] Charles Rich and Candace L. Sidner. Collagen: When agents collaborate
with people. In Agents, pages 284–291, 1997. 2

102 BIBLIOGRAPHY

[84] Alexander B. Romanovsky. Exception Handling in Component-Based System
Development. In COMPSAC, pages 580–598. IEEE Computer Society, 2001.
29, 30

[85] Alexander B. Romanovsky, Christophe Dony, Jørgen Lindskov Knudsen, and
Anand Tripathi, editors. Advances in Exception Handling Techniques (the
book grow out of a ECOOP 2000 workshop), volume 2022 of Lecture Notes
in Computer Science. Springer, 2001. 98, 103

[86] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, Edition 2003. 49, 66

[87] Ken Satoh. An Application of Global Abduction to an Information Agent
Which Modifies a Plan Upon Failure - Preliminary Report. In João Alexandre
Leite and Paolo Torroni, editors, CLIMA V, volume 3487 of Lecture Notes in
Computer Science, pages 213–229. Springer, 2004. 32, 94

[88] Ken Satoh and Keiji Yamamoto. Speculative computation with multi-agent
belief revision. In Gini and Ishida [31], pages 897–904. 32, 94

[89] Peter Seibel. Practical Common Lisp. Apress, 2005. 20

[90] Shadows Project: Self-Healing Approach to Designing Complex Software
Systems. https://sysrun.haifa.il.ibm.com/shadows/, Accessed in
October 2006. 3

[91] Nazaraf Shah, Kuo-Ming Chao, Nick Godwin, Muhammad Younas, and
Christopher Laing. Exception Diagnosis in Agent-Based Grid Computing.
In International Conference on Systems, Man and Cybernetics, pages 3213–
3219. IEEE, 2004. 34

[92] Jaime Simão Sichman, Rosaria Conte, Cristiano Castelfranchi, and Yves De-
mazeau. A social reasoning mechanism based on dependence networks. In
European Conference on Artificial Intelligence, pages 188–192, 1994. 8

[93] Jaime Simão Sichman. DEPINT: Dependence-Based Coalition Formation in
an Open Multi-Agent Scenario. Journal of Artificial Societies and Social
Simulation, 1(2), 1998. 7

[94] Munindar P. Singh and Michael N. Huhns. Service–Oriented Computing:
Semantics, Processes, Agents. Wiley, 2005. 1

[95] Reid G. Smith. The contract net protocol: High-level communication and
control in a distributed problem solver. IEEE Trans. Computers, 29(12):1104–
1113, 1980. 12

https://sysrun.haifa.il.ibm.com/shadows/

103

[96] Frédéric Souchon, Christophe Dony, Christelle Urtado, and Sylvain Vauttier.
Improving Exception Handling in Multi-agent Systems. In Carlos José Pereira
de Lucena, Alessandro F. Garcia, Alexander B. Romanovsky, Jaelson Castro,
and Paulo S. C. Alencar, editors, SELMAS, volume 2940 of Lecture Notes in
Computer Science, pages 167–188. Springer, 2003. 37

[97] Squeak website. http://www.squeak.org/, Accessed in October 2006. 44

[98] Kostas Stathis, Wenjin Lu, Antonis C. Kakas, Neophytos Demetriou, Ulle En-
driss, and Andrea Bracciali. PROSOCS: A platform for programming software
agents in computational logic. In From Agent Theory to Agent Implementation,
2004. 49, 92

[99] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, 2000.
20

[100] Clemens Szyperski. Component Software. Addison-Wesley, 2002. 29

[101] Andrew S. Tanenbaum. Distributed Operating Systems. Prentice Hall, 1994.
23, 45, 89

[102] Anand Tripathi and Robert Miller. Exception handling in agent-oriented
systems. In Romanovsky et al. [85], pages 128–146. 22

[103] Maksim Tsvetovatyy, Maria L. Gini, Bamshad Mobasher, and Zbigniew
Wieckowski. Magma: An agent based virtual market for electronic commerce.
Applied Artificial Intelligence, 11(6):501–523, 1997. 7, 11

[104] Unified Modeling Language Specification, UML version 2.0.
http://www.omg.org/docs/formal/05-07-04.pdf, August 2005.
Accessed in December 2006. 12

[105] Javier Vázquez-Salceda. The Role of Norms and Electronic Institutions in
Multi-Agent Systems, The HARMONIA Framework. Whitestein Series in
Software Agent Technologies. Springer, 2004. 45

[106] Gerhard Weiss, editor. Multiagent Systems: A Modern Approach to Dis-
tributed Artificial Intelligence. The MIT Press, 1999. 1, 2

[107] Danny Weyns, Andrea Omicini, and James Odell. Environment, First-Order
Abstraction in Multiagent Systems. In Autonomous Agents and Multi-Agent
Systems [75], pages 5–30. 9, 40

[108] Danny Weyns, H. Van Dyke Parunak, and Fabien Michel, editors. Environ-
ments for Multi-Agent Systems II, Second International Workshop, E4MAS
2005, Utrecht, The Netherlands, July 25, 2005, Selected Revised and Invited
Papers, volume 3830 of Lecture Notes in Computer Science. Springer, 2006.
101

http://www.squeak.org/
http://www.omg.org/docs/formal/05-07-04.pdf

104 BIBLIOGRAPHY

[109] Danny Weyns, Kurt Schelfthout, Tom Holvoet, and Tom Lefever. Decentralized
Control of E’GV Transportation Systems. In Franck Dignum, Sarit Kraus,
and Munindar Singh, editors, Autonomous Agents and Multi–Agent Systems,
pages 67–74. ACM Press, 2005. 5

[110] Danny Weyns, Elke Steegmans, and Tom Holvoet. Towards Active Perception
in Situated Multi-Agent Systems. Special Issue of the Journal on Applied
Artificial Intelligence, 18(8–9), 2004. 63

[111] Peter R. Wurman, Michael P. Wellman, and William E. Walsh. The michigan
internet acutionbot: A configuarable auction server for human and software
agents. In Agents, pages 301–308, 1998. 7, 11

[112] Jie Xu, Alexander B. Romanovsky, and Brian Randell. Coordinated Exception
Handling in Distributed Object Systems: From Model to System Implemen-
tation. In ICDCS, pages 12–21, 1998. v, 4, 25, 26, 29, 46, 91

[113] Franco Zambonelli, Federico Bergenti, and Marie-Pierre Gleizes, editors.
Methodologies and Software Engineering for Agent Systems: The Agent-
Oriented Software Engineering Handbook. Kluwer Academic Publisher, 2004.
5

[114] Franco Zambonelli and H. Van Dyke Parunak. Signs of a Revolution in Com-
puter Science and Software Engineering. In Paolo Petta, Robert Tolksdorf,
and Franco Zambonelli, editors, Engineering Societies in the Agent World,
volume 2577 of Lecture Notes in Computer Science, pages 13–28. Springer,
2002. 8

[115] Roland Zimmermann. Agent-based Supply Network Event Management.
Whitestein Series in Software Agent Technologies. Springer, 2006. 90

Analysis of the agent execution model

The agent execution model has been presented in chapter 4 as a framework that
consists of specific data structures and algorithms. The aim of this appendix is to
analyze properties of the model at a higher abstraction level: The flow of execution
of the different algorithms is studied to verify systemic properties (e.g. liveness
of activities) of the model, which is concretely a cycle of message processing and
production.

Properties of the execution model

Automated tools were utilized to study the properties of the execution model. The
model has been written as a Colored Petri Net and analyzed with CPNTools [47, 17].
The automation provided by this tool allowed to simulate and improve the execution
model, and to exploit a model checker to verify high-level characteristics of the
model, notably for deadlocks, liveness, and fairness issues along its execution. The
development of additional convenience tools allowed to produce the information of
this section.

The choice for the Colored Petri Net (CPN) representation was guided by
several needs. The most important are the model of true concurrency and the con-
venient extension to composable formalisms. Concurrency matters are the subject of
on-going research and do not appear explicitly in this document. CPN represent an
‘investment’ for future research including concurrency2 inside the agent (an agent
can be a multi-threaded application by itself). The composability is a weakness of
standards Colored Petri Nets, but equivalent formalism such as Hierarchical CPN
or Recursive Hierarchical CPN are possible extensions that palliate this weakness
(see [61] for a brief survey and references). The composability is an important prop-
erty of the formal model, in order to compose the execution model with protocols
and handlers represented as CPN as well [61].

2The execution model already manages consistently the concurrent execution of several protocols.
The concurrency in this section refers to having the agent as a multi-threaded process.

105

106 ANALYSIS OF THE AGENT EXECUTION MODEL

Mapping to a Colored Petri Net

Fig. 1 shows the whole execution model as a Colored Petri Net. The simulation
and model checking are executed under some hypothesis to study the properties.
The hypothesis are exposed hereafter as heuristics to optimize the simulation and
verification of the model. They do not diminish the result of the analysis. The
network uses Standard ML expressions for the syntax and execution of variables
and functions.

The transitions of the network use full names and the mapping to the execution
model is straightforward. Places mostly contain abbreviations of the corresponding
states to avoid clutter on the figure. The following table 1 develops the abbrevia-
tions.

The initial marking allows to run the network in an infinite processing loop.
The tokens on Init and Out trigger the agent perception. After firing the perception
transition, a new token is immediately put on Init to prepare the next perception of
the agent. The next input will occur whenever the Out place receives a token, either
when the agent outputs a message or when an input is ignored (this mechanism
allows to simulate a continuous execution). The perception transition produces a
random ‘message’ that represents an ACL message. The messages have a simple
pattern with essential information (sender, receiver, content), expressed in Standard
ML, and extended with random information about the nature of the message. If the
message passes the relevance and expectation filters, the kind of exception is pre-
defined to reduce the complexity of the model, without impairing its semantics. A
message is then defined as a record color set (keyword colset).

colset Msg = record from:STRING * to:STRING * content:STRING *
sel:BOOL * sea:BOOL * eva:BOOL;

The message is a record with similar field names as for the formal model. In
addition, sel is a boolean that, if true, states that the message will have a handler
available, none otherwise. Similarly, sea pre-define the success or failure for
the handler search, and eva for the handler evaluation. The usual fields of the
message are each a single character string to reduce the complexity of the state
space analysis, which is the common abstraction method in model checking [15].

The message is then forwarded to the reception transition, which consumes both
tokens on In and on Ignore. The token on Ignore serves to continue the execution to
the next message when the current message is not relevant. The message is then
tested for relevance on the corresponding transition. The following function was
written to compare the message to the relevance criteria, which is also a single
character string.

fun matchRel(r:RelevanceCriteria,p:Msg):BOOL=
(* init *)
if (#value r = init)
then

PROPERTIES OF THE EXECUTION MODEL 107

Figure 1: Execution model of agent with exception management capabilities: For-
malization in a Colored Petri Net

• Init

Rel

Exp

ME

Act

•

Out

•

Expectation

•

Ignore

•

Relevance

HSea

HSel

DP

In

HPre

HG

HEv

Reception

Relevance

Expectation

Commit

Hand. Search

Hand. Selection

Decide

Known Mode

Expected Mode

Perception

Ignore

Hand. Preparation

Generation Mode

Hand. Evaluation

Evaluate Generation

Generate other

Unknown Mode

true
else

(* if there is any match, it is relevant *)
if(#value r = #dest p orelse #value r = #content p)
then

108 ANALYSIS OF THE AGENT EXECUTION MODEL

Abbreviation Full name

In Input of the execution model (Message from the environment)
Out Output of the execution model (Message to the environment)
Rel Test relevance
Exp Test expectation
ME Message to evaluate

HSel Handler to select
HSea Handler to search
HG Handler to generate
HEv Handler to evaluate
HPre Handler to prepare
DP Decision to process
Act Action to commit

Table 1: Full name of places on the CPN

true
else

false;

The matching relevance algorithm is simply to check whether the recipient of the
message or the content matters to the agent. If any of them matches the relevance
criteria, the function returns true to express the message is relevant, and false
otherwise. If the message is relevant, it is forwarded to the Exp place. Otherwise,
the token on ‘Relevance’ is not consumed by the relevance transition, but by the
ignore transition that puts a new token on the Ignore and Out places to process
the next input.

The expectation matching occurs in the same way as relevance, and the message
is forwarded with an indicator variable, either ‘expected’ or ‘unexpected’. Expected
messages are forwarded to DP and the decide transition to generate the action to
commit in the environment and a pair of new relevance and expectations for the
next cycle. A token is also placed on the ‘Ignore’ place to allow the next input in
this successful process of a message.

Unexpected messages are forwarded upward to Known exception mode. A han-
dler selection is attempted according to the pre-defined information in the message.
Success of the handler selection leads to the preparation and then back to the DP
place. Unsuccessful selection passes the message to handler search. The message
is sent to evaluation along with a handler if the search is successful, and to handler
generation in the contrary case. At the evaluation stage, the message and handler
are sent to the preparation place if the evaluation is positive, or to generation for
a better handler in HG. The generation always succeeds to produce a handler (the
evaluate generation transition is always true to simulate the production of a default
handler at least), so that the execution is guaranteed to reach and pass the eval-

PROPERTIES OF THE EXECUTION MODEL 109

uation eventually. Once the evaluation is positive, the message and handler are
prepared and the execution continues with the DP decision process of the agent.

Analysis of the model.

The analysis of the model has been conducted through simulations and model
checking. The simulation produces log files as traces, but CPNTools also provides
animations of the network to observe the evolution of the marking.

Several runs of the simulation have never ended on either a deadlock or liveness
issue. The simulations do not allow to conclude however that the network is safe
and starvation-free. Model checking is one technique that allows a comprehensive
exploration of the state space. The following reports are the results for deadlock,
liveness, and fairness analysis. A deadlock in the execution model means that the
execution will stop in a state that is not a terminal state, i.e. no transition can
fire anymore. As the model is designed to continue infinitely, it must contain no
deadlock. Deadlocks must be avoided to show that the execution can always evolve
and remain in states decided in the model. Liveness issues occur whenever some
transitions of the model cannot be fired at all or from some point in the execution.
In other words, liveness issues means that parts of the model cannot be used
anymore. Liveness issues must be avoided to guarantee that the agent maintains
all its functionalities, represented by the successive boxes in the execution model.
Fairness is related to a ‘fair choice’ of the agent functionalities, which means
that any functionality is eventually executed if the agent runs infinitely. Fairness
issues occur whenever some transitions execute ‘infinitely more often’ than others.
A practical consequence of fairness issues is that a subset of transitions execute,
whereas others never fire. The difference with liveness issues is that all transitions
can potentially fire when there is a fairness problem, even though the problem
cause partial ones to take all opportunities to fire, thus blocking others.

The results of the property verification presented in Fig. 2 state that the ex-
ecution model has no deadlock or liveness issues. This first result means that
agents implementing the execution model can run infinitely without encountering
problems due to the model, and they can exploit all the model functionalities along
any run. The results also show that most but two transitions are fair. The two
partial transitions are the Perception and Reception at the bottom right of the
network in Fig. 1. As observed during simulations of the network, these two tran-
sitions fire significantly more often than more others. Messages are created as
tokens by the Init and Out places, thus necessarily firing the two transitions. Only
one type of message can however pass the Relevance transition according to the
model. That is, the message token must match the relevance criteria token on the
relevance place to be further processed by the agent. All message tokens that
do not match the relevance criteria are consumed by the Ignore transition and a
new message token is created that immediately enables Perception. The series
Perception-Reception is therefore triggered significantly more often than any
other transition. We could evaluate that they fire twice as often as others on aver-

110 ANALYSIS OF THE AGENT EXECUTION MODEL

CPN Tools state space report for: ExecutionModel.cpn

Liveness Properties
--

Dead Markings
None

Dead Transition Instances
None

Live Transition Instances
All

Fairness Properties
--

Act 1
Fair

EvaluateGeneration 1
Fair

Expectation 1
Fair

GenerationMode 1
Fair

GenerateOther 1
Fair

Hand.Search 1
Fair

Hand.Evaluation 1
Fair

Hand.Preparation 1
Fair

Hand.Selection 1
Fair

Ignore 1
Fair

KnownMode 1
Fair

ExpectedMode 1
Fair

Decide 1
Fair

Perception 1
Impartial

Reception 1
Impartial

Relevance 1
Fair

UnknownMode 1
Fair

Figure 2: Output of the automated verification tools

CONCLUSION 111

age. The probability that the message matches the relevance criteria is 33.3% for
each cycle of the agent due to the simulation settings. The two transitions execute
consequently 66.6% of the cycles, whereas other transitions can run only 33.3% of
the time.

Conclusion

The execution model presented in this section describes how agents can embed
individual mechanisms that are suitable in managing exceptional situations. The
different mechanisms are in place so that agents can automatically leverage han-
dlers provided by the designers. The analysis of the model shows it is deadlock-free
and alive for all its transitions, which proves that the agent can react to any well-
formed input and maintain its functionalities available over time. The fairness issue
shows that the input functionality of the agent filters out a majority of messages and
may prevent the agent to execute. This phenomenon is not an issue in the present
case and becomes a property of the model, since the filtering has been introduced
so that agents process only meaningful messages. In other words, the agent can
focus on messages of interest and execution cycles are saved due to unfair property
of the Perception and Reception transitions. This filtering is indeed essential
when agents are deployed in unknown environments, where relevant information
must be identified to avoid wasting computation time on useless percepts.

The mechanisms introduced in the execution model form the application-
independent part of our exception management approach. The next section is
devoted to consider the execution model in the perspective of architecting agents,
so that development can rely on a predefined architecture of the agent software
and concentrate on the application-dependent part of the code. In particular, han-
dling depends generally on the application at hand (handling differs in managing
a stock of food or furniture), and the next chapter studies the modeling of handlers
to provide the execution model with appropriate functionalities.

Publications

List of publications in relation with the thesis and related work.

1. Eric Platon, Nicolas Sabouret, and Shinichi Honiden. An Architecture for
Exception Management in Multi-Agent Systems. Paolo Giorgini and Brian
Henderson-Sellers, editors. International Journal on Agent-Oriented Soft-
ware Engineering, to appear. Indersciences, 2007.

2. Eric Platon, Nicolas Sabouret, and Shinichi Honiden. A Definition of Ex-
ceptions in Agent-Oriented Computing. Gregory O’Hare, Michael O’Grady,
Oguz Dikenelli, and Alessandro Ricci, editors. Engineering Societies in
the Agent World, Seventh International Workshop, ESAW 2006, Dublin, Ire-
land, September 2006, Selected Revised and Invited Papers, volume 4457 of
Lecture Notes in Computer Science. Springer, 2007.

3. Eric Platon, Marco Mamei, Nicolas Sabouret, Shinichi Honiden, and H. Van
Dyke Parunak. Mechanisms of the Environment for Multi-Agent Systems,
Survey and Opportunities. H. Van Dyke Parunak and Danny Weyns, editors.
Autonomous Agents and Multi-Agent Systems, Special Issue on Environment
for Multi-Agent Systems, volume 14, number 1. Springer Netherlands, Febru-
ary 2007, pages 31–47.

4. Alessandro Garcia, Holger Giese, Alexander Romanovsky, Ricardo Choren,
Ho fung Leung, Carlos Lucena, Florian Klein, and Eric Platon. Software
engineering for large-scale multi-agent systems - SELMAS 2006: Workshop
report. SIGSOFT Softw. Eng. Notes, 31(5):24–32, 2006.

5. Eric Platon, Nicolas Sabouret, and Shinichi Honiden. Challenges in Excep-
tion Handling for Multi-Agent Systems. Ricardo Choren, Alessandro Garcia,
Holger Giese, Ho-fung Leung, Carlos Lucena, and Alexander Romanovsky,
editors. Software Engineering for Large-Scale Multi-Agent Systems, Fifth
International Workshop, SELMAS 2006, Shanghai, China, May 22-23, 2006,
Selected Revised and Invited Papers, Lecture Notes in Computer Science.
Springer, 2007.

6. Eric Platon, Nicolas Sabouret, and Shinichi Honiden. Environment Sup-
port for Tag Interactions. Danny Weyns, H. Van Dyke Parunak, and Fabien

113

114 PUBLICATIONS

Michel, editors. Environments for Multi-Agent Systems III, Third Interna-
tional Workshop, E4MAS 2006, Hakodate, Japan, May 8, 2006, Selected
Revised and Invited Papers, Lecture Notes in Computer Science. Springer,
2007.

7. Eric Platon. Artificial intelligence in the environment: Smart environment for
smarter agents in open e-markets. In Proceedings of the Florida Artificial
Intelligence Research Society. AAAI, 2006.

8. Eric Platon, Nicolas Sabouret, and Shinichi Honiden. Tag Interactions in
Multi-Agent Systems: Environment Support. Marie-Pierre Gleizes, Gal A.
Kaminka, and Sascha Ossowski, editors. European Workshop on Multi-Agent
Systems, EUMAS 2005, Bruxelles, Belgium, December 2005.

9. Eric Platon, Nicolas Sabouret, and Shinichi Honiden. Oversensing with
a softbody in the environment - Another dimension of observation. Gal A.
Kaminka, David V. Pynadath, and Christopher W. Geib, editors. Modeling
Others from Observation, Second International IJCAI Workshop, MOO 2005,
Edinburgh, Scotland, July 30, 2005.

10. Eric Platon, Nicolas Sabouret, and Shinichi Honiden. Overhearing and
direct interactions: Point of view of an active environment. Danny Weyns,
H. Van Dyke Parunak, and Fabien Michel, editors. Environments for Multi-
Agent Systems II, Second International Workshop, E4MAS 2005, Utrecht, The
Netherlands, July 25, 2005, Selected Revised and Invited Papers, volume 3830
of Lecture Notes in Computer Science, pages 121–138. Springer, 2006.

11. Eric Platon, Nicolas Sabouret, and Shinichi Honiden. Modeling Interactions
in Assistant Teams. In Proceedings of the International Conference on Active
Media Technology, AMT 2005, Takamatsu, Japan. IEEE, 2005.

12. Eric Platon, Nicolas Sabouret, and Shinichi Honiden. T-compound: An
Agent-Specific Design Pattern and its Environment. Cesar Gonzalez-Perez
and Brian Henderson-Sellers, editors. Agent-Oriented Methodologies, Third
International OOPSLA Workshop, AOM 2004, Vancouver, Canada, October
2004, COTAR Publications, 2004.

13. Eric Platon, Nicolas Sabouret, and Shinichi Honiden. T-compound Interac-
tion and Overhearing Agents. Marie Pierre Gleizes, Andrea Omicini, and
Franco Zambonelli, editors. Engineering Societies in the Agents World V,
Fifth International Workshop, ESAW 2004, Toulouse, France, October 2004,
Selected Revised and Invited Papers, volume 3451 of Lecture Notes in Com-
puter Science, pages 90–105. Springer, 2004.

14. Eric Platon, Nicolas Sabouret, and Shinichi Honiden. Introducing Partici-
pative Personal Assistant Teams in Negotiation Support Systems. Michael

115

Wayne Barley and Nik Kasabov, editors. Intelligent Agents and Multi-
Agent Systems, Seventh Pacific Rim International Workshop on Multi-Agents,
PRIMA 2004, Auckland, New Zealand, August 2004, Selected Revised and
Invited Papers, volume 3371 of Lecture Notes in Computer Science, pages
178–192. Springer, 2004.

Index

Abductive reasoning, 31, 105
Agency, see MAS 42
Agent, 1, 5
Agent behavior, 5
Agent exception, 40, 41
Agent expectation, 41
Autonomy, 7

Circumscription, 31
Concerted exception, 26
Condition handling (LISP), 21
Cooperation exception handling, 26
Coordinated atomic action, 25
Coordinated exception handling, 24

Decoupling, 8
Default logic, 30
Dependability, 2

Environment, 1
Exception diagnosis, 46
Exception graph, 25
Exception handling, 47
Exception management, 47
Exception propagation, 46
Exception raising, 46
Exception signaling, 46
Exception space, 43
Exception transforming, 46

Global exception, 26
Guardian, 22, 26

Handler, 3, 11
Heterogeneous system, 9

Interaction, 6

Modularity, 8
Multi-agent systems, 1

Open system, 8
Organization, 41

Programming exception, 18, 39, 41
Protocol, 6

Resilience, 2
Resource autonomy, 8
Resumption, 47

SaGE, 36
Sentinel agent, 32
Social autonomy, 8
Syntactic unit, 19, 103

Termination, 47

117

	List of Figures
	List of Tables
	Acknowledgments
	1 Introduction
	2 Exception Management in the Literature
	2.1 Exceptions in programming languages
	2.2 Exceptions in Distributed systems
	2.3 Architecture-level and Component-level exceptions
	2.4 Exception in Logics
	2.5 Exceptions in MAS research
	2.6 Survey conclusion

	3 Definition of Agent Exception
	3.1 Agent exception
	3.2 Programming and agent exceptions
	3.2.1 From programming to agent exceptions.
	3.2.2 From agent to programming exceptions.

	3.3 Exception space in Multi-agent systems
	3.4 Revisiting the terminology on exception management
	3.5 Conclusion

	4 Agent Execution Model and Architecture
	4.1 Agent Execution Model
	4.1.1 Model of Protocols and Handlers
	4.1.2 Structure of Knowledge
	4.1.3 Execution model
	4.1.4 Complexity analysis

	4.2 Agent architecture
	4.2.1 Abstract architecture
	4.2.2 Elements of the architecture
	4.2.3 Correspondence table with the execution model

	4.3 Conclusion

	5 Experiments and Model Validation
	5.1 Experimental settings
	5.1.1 Scope of the EMS implementation
	5.1.2 Experimental protocol
	5.1.3 Technical details

	5.2 Qualitative Analysis and Comparison
	5.2.1 Quality criteria
	5.2.2 Comparison

	5.3 Experimental Results
	5.3.1 Overhead cost of exception management mechanism: Exception-free and EMS versions of the system
	5.3.2 Comparison between the Plain and EMS exception management systems

	5.4 Conclusion

	6 Conclusions
	6.1 General contributions of the present work
	6.2 Contributions to Agent-Oriented Software Engineering
	6.3 Contributions to Distributed Artificial Intelligence
	6.4 Future perspectives

	Bibliography
	Analysis of the agent execution model
	Publications
	Index

