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Chapter 1

Introduction

1.1 Background

The Curry-Howard correspondence

The Curry-Howard correspondence is a close relationship between computation and formal

logic, which was first observed by Curry and Feys [10] and Howard [30]. Computation

means the procedure that a computer follows according to its program, especially programs

described by functional programming languages. Under the Curry-Howard correspondence,

a formula of the logic is regarded as a type of a program, a proof is regarded as a program,

and a normalization procedure of a proof is regarded as a computational procedure of a

program. Therefore Howard called this correspondence ‘formulas-as-types’.

This correspondence plays the role of a bridge between theoretical computer science and

proof theory. From the computer science point of view, the Curry-Howard correspondence

gives the theoretical foundation of programming languages. This correspondence enables

us to see a logical proof as a program with the proof of its correctness. Therefore it gives

us a method ‘program extraction’ to verify a program, and obtain a correct one from a

logical proof. On the other hand, from the proof theoretic point of view, this correspondence

gives the interpretation of logical systems as programming languages. Logical systems that

have such a property are called constructive logic; a typical example of such a logic is

intuitionistic logic.

Although some mathematical models of computation have been proposed, the lambda

calculus introduced by Church [7] is widely used today. This calculus has powerful expres-

sive power though its simple grammar. The typed lambda calculus was also introduced by
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Church, and is a foundation of functional programming languages. Gentzen introduced the

two most widely used formulations of logic: natural deduction and sequent calculus, in both

intuitionistic logic and classical logic. One of the most simple and essential formulation of

the Curry-Howard correspondence given by Howard is the interpretation between proofs of

propositional intuitionistic logic and terms of simply typed lambda calculus. For example,

a derivation of simply typed lambda calculus

x : A→ B, v : A→ C ` v : A→ C z : A ` z : A
x : A→ B, v : A→ C, z : A ` vz : C

(application)

v : A→ C, z : A ` λx.vz : (A→ B)→ C
(abstraction)

corresponds to the following proof of intuitionistic logic

A→ B,A→ C ` A→ C A ` A
A→ B,A→ C,A ` C

(→ Elim)

A→ C,A ` (A→ B)→ C
(→ Intro)

.

A lot of works has been done to extend the Curry-Howard correspondence. Girard [20]

introduced systemF, which corresponds to second-order propositional logic, and Reynolds

[43] independently invented this system in his study of polymorphism in typed functional

programming languages. Girard [20] extended this correspondence to higher-order intu-

tionistic propositional logic. Coquand and Huet [8] proposed the Calculus of Constructions,

and extended it to higher-order intuitionistic predicate logic. Moggi [37; 38] observed real

programming language features such as non-termination, non-determinism and side-effects,

and proposed the computational lambda calculus. Benton, Bierman and Paiva [6] extended

the Curry-Howard correspondence to intutionistic modal propositional logic using Moggi’s

calculus.

Continuations and theλµ-calculus

In the recent years, extensions of the Curry-Howard correspondence that handle classical

logic have been formulated. Felleisen [16] introduced theC operator to modelcall/cc,

which is found in practical programming languages such as Scheme and SML/NJ.call/cc

means ‘call-with-current-continuation’, and it is one of the most typical examples of the

operators that provide explicit handling of the current control continuation,i.e., the current

control context. This operator makes functional languages more expressive, for instance,

exception handling and global jump, and allows us to describe more complicated programs.
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Griffin [25] observed the type of Felleisen’sC operator, and showed thatcall/cc cor-

responds to Peirce’s Law, and extended Curry-Howard correspondence to classical logic.

Here we give an informal explanation ofcall/cc operator. It is modelled by call-by-name

simply typed lambda calculus with the following constants:

call/ccA,B : ((A→ B)→ A)→ A

abortA : ⊥ → A

whereA, B are types and⊥means the result type. Reduction rules about these constants are

defined as follows.

E
[
call/ccA,B M

] −→ E
[
M(λzA.abortB E[z])

]

E
[
abortA M

] −→ M

whereE[−] is an evaluation context accepting a term of typeA. Intuitively thecall/cc

operator carries the current context into its argument, and theabort operator aborts the

current context. The following is an example of Scheme programs usingcall/cc.

(define multlist

(lambda (inputlist)

(call/cc

(lambda (cc)

(letrec ((ls*

(lambda (list)

(if (null? list)

1

(let ((x (car list)))

(if (= 0 x)

(cc 0)

(* x (ls* (cdr list)))))))))

(ls* inputlist))))))

Whenmultlist receives an integer list as its argument, it recursively multiplies the list

elements. However, if it encounters an element equal to0 during the calculation,multlist

immediatelyreturns 0.

In this line of works, theλµ-calculus introduced by Parigot [40] is well known. It cor-

responds to classical natural deduction, has a simple structure, and enjoys confluency and
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strong normalization. Theλµ-calculus is as expressive as other popular functional pro-

gramming languages with control operators. For example, abovecall/cc andabort are

expressed by the following encodings:

(call/ccA,B M)∗ = µαA.[α]M∗(λxAµβB.[α]x)

(abortA M)∗ = µαA.M∗

Later, a call-by-value variant of theλµ-calculus was proposed by Ong and Stewart [39].

Computational duality and logical duality

Call-by-name strategy and call-by-value strategy have been well studied as evaluation strate-

gies of programming languages. Filinsky [17] suggested that duality between call-by-name

and call-by-value is clarified by the two notions of programs and continuations. Selinger

[45] gave categorical semantics of the call-by-nameλµ-calculus and the call-by-value one,

and explained Filinski’s duality in terms of categorical duality.

It is well known that the cut-elimination and normalization procedure of classical sys-

tems are non-deterministic. For example, if we consider the usual cut-elimination procedure

of LK, then we can rewrite in the following two ways.

A ` A
A ` A,C Wk B ` B

C, B ` B Wk

A, B ` A, B cut
=⇒

A ` A
A, B ` A, B and

B ` B
A, B ` A, B

This phenomenon does not depend on the formulation of classical logic, but depends on the

duality of classical logic. There are numerous attempts to clarify the computational content

of this duality of classical logic. Barbanera and Berardi [4] proposed the symmetricλ-

calculus, which corresponds to natural deduction style of classical logic with a clear notion

of duality. Curien and Herbelin [9] introduced theλµµ̃-calculus based on Gentzen’s classical

sequent calculus LK, and Wadler [48] proposedthe dual calculus, which also corresponds

to LK.

The feature of the dual calculus is that it has both of terms and continuations as primi-

tives. The computational meaning of the duality of classical logic is expressed in the dual

calculus by the duality of terms and continuations. In the dual calculus, the call-by-name and

call-by-value strategies become dual strategies. Wadler [49] gave both directions of trans-

lation between theλµ-calculus and the dual calculus, and showed that these translations

preserve the call-by-value and call-by-name strategies of each systems. In other words, he
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explained Filinski’s duality in a purely syntactical way. However, theλµ-calculus and the

dual calculus adopted in his paper are the equational systems, and he showed only preser-

vation property of the equality rules. This is because some rules are problematic to be

introduced as reduction rules, such as (η)-rules. However, when we discuss his results from

the point of view of correspondence between cut elimination procedure of sequent calculus

and normalization procedure of natural deduction, we should consider reduction rules. In

fact, Wadler noted an open question in his paper: whether one can replace the equations of

his paper by reductions, and extend the properties for equations to those for reductions.

Constructive aspect of classical logic

There is also a proof-theoretical approach to extract computational content from classical

proofs. The aim of this approach is to find a constructive classical system, which is complete

w.r.t. classical provability and has a deterministic normalization procedure. There is a lot of

works following this approach; FD and theλµ-calculus [40] by Parigot, LC by Girard [23],

LKT and LKQ by Danos-Joinet-Schellinx [11], andpolarized linear logic(LLP) by Laurent

[33]. LLP is a variant of linear logic with a good denotational semantics in terms of coherent

spaces. The most fundamental feature of LLP is that it has a clear distinction between

negativeformulas, for which structural rules can be freely used, andpositiveformulas, for

which structural rules are forbidden. LLP is useful for understanding the constructive aspect

of classical logic. In particular, LLP suggests some close relationships between the call-by-

value/ call-by-name computational duality and positive/ negative logical duality.

Laurent defined two translations from the call-by-name and the call-by-valueλµ-calculi

into LLP, and showed their soundness,i.e. these translations preserve reductions. The call-

by-name translation (−)◦ translates a classical formula into a negative one, in particular

a classical implicationA → B into a negative formula !A◦ ( B◦. Therefore we call it

“negative-translation” in this paper. On the other hand, the call-by-value translation (−)•

translates a classical formula into a positive one, in particular a classical implicationA→ B

into a positive formula !(A• ( ?B•). Therefore we call it “positive-translation” in this

paper. Furthermore, Laurent showed fullness of the negative-translation,i.e., every proof of

A◦ is equivalent to an image of a proof ofA in classical logic via the negative-translation in

[34]. However, Laurent did not give a direct proof of the fullness of the positive-translation.

Another work to be done is to give a term syntax for LLP. Although the formulations of LLP

are given by the sequent calculus style and the proof-net style, proof-nets are mainly used
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to study LLP. However, it is natural and worth introducing a term syntax which corresponds

to the sequent calculus style of LLP. Using such a term calculus, LLP will be understood

better by comparing the proof-net style with the sequent calculus style, and by considering

the relation to standard programming languages.

1.2 Contributions

The main theme of this thesis is to investigate the relationship between the computational

duality and the logical duality. We will discuss this theme in the following two ways.

First, we will discuss the relationship between the computational duality of call-by-value

/ call-by-name and the logical duality of Gentzen’s sequent calculus in chapter 2. Though the

research in this approach has already been done by Wadler [49] using theλµ-calculus and

the dual calculus, he did not consider these systems as reduction systems but as equational

systems. However, when we discuss his results from a point of view of correspondence

between computational procedure and cut elimination procedure of sequent calculus, we

should consider reduction rules. So we refine the call-by-value and the call-by-name systems

of theλµ-calculus and the dual calculus given in Wadler’s paper. These systems are defined

as reduction systems, and the main results of this chapter are Theorem 2.16, Theorem 2.21,

Theorem 2.28, Theorem 2.34, Proposition 2.35, Proposition 2.36, and Theorem 2.40. The

results of this chapter give the best possible answer to Wadler’s open question: whether

one can replace the equations of his paper by reductions, and extend the properties with

equations to properties with reductions.

Second, we discuss the relationship between the computational duality call-by-value/

call-by-name and the logical duality of positive/ negative in chapter 3. We introduce a term

calculus for (a sufficiently large fragment of) Laurent’s polarized linear logic (LLP), called

polarized dual calculus (DCP−) which is based on the idea of the dual calculus. Laurent

gave the two kinds of formulations for LLP: the sequent calculus style and the proof-net

style. Proof-net is a well-known tool to observe computational properties of LLP, but there

is no term syntax corresponding to the sequent style formulation of LLP. Hence it is natural

to introduce a term syntax, which is compact and moreover well-related to standard func-

tional programming languages. Then we define two translations from the call-by-name/

the call-by-valueλµ-calculi into DCP−, and show their soundness (Theorem 3.4 and The-

orem 3.7). These translations are almost straightforward adaptions of Laurent’s, but the

positive translation is slightly different. Finally, we prove the fullness of these translations
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in a way similar to the logical predicate method used by Hasegawa [27] (Theorem 3.19 and

Theorem 3.27).

1.3 Overview of this thesis

In chapter 2, we give the best possible answer to Wadler’s question. First, we analyze

Wadler’s results, and specify the problematic rules to solve his open question. Second, we

refine theλµ-calculus and the dual calculus by the following steps. We adopt essential rules

in the point of view of computation and normalization of proofs, and exclude the problematic

and not essential rules. Then we give natural directions in the sense of computation and

normalization of proofs. Third, we give a translation from the call-by-nameλµ-calculus and

the call-by-name dual calculus, and its inverse translation. We show that these translations

preserve derivations and reductions. Further, we show the reloading properties of the call-

by-name translations: the composition of the call-by-name translation become identity maps

up to the call-by-name reductions. We also give call-by-value translations, and show the

preservation and reloading properties for the call-by-value translations. Finally, we obtain

our duality translations between the call-by-valueλµ-calculus and the call-by-name one by

composing our translations with duality on the dual calculus. Our results correspond to

Wadler’s, but they are based on reductions.

In chapter 3, we introduce a term calculus for a sufficiently large fragment of LLP,

called polarized dual calculus (DCP−), which is based on the idea of Wadler’s dual calculus.

Then we define two translations from the call-by-name/ the call-by-valueλµ-calculi into

DCP−, and show their soundness. These translations are almost straightforward adaptions

of Laurent’s, but the positive translation is slightly different. Finally, we prove the fullness

of these translations in a way similar to the logical predicate method used by Hasegawa

[27]. The notion of logical predicate (unary logical relation) is a well-established tool for

studying the semantics of various typed lambda calculi. In particular, logical predicates for

intuitionistic linear logic were introduced by Hasegawa [26] for category-theoretic models

of linear logic, and applied to prove full completeness of Girard translation from the simply

typed lambda calculus to the linear lambda calculus [27]. We adopt this method to show the

fullness of Laurent’s translations. The use of logical predicates allows us to give auniform

proof to the fullness of the two translations. In particular, single Basic Lemma is sufficient

for both the positive- and the negative-translations.
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Chapter 2

Duality Between Call-by-value

Reductions and Call-by-name

Reductions

2.1 Introduction

The Curry-Howard correspondence for classical logic

In the last twenty years, a lot of work has been done to extend the Curry-Howard corre-

spondence to classical logic. Felleisen[16] introduced theC operator to modelcall/cc,

Griffin[25] observed that the type ofcall/cc corresponds to Peirce’s Law and extended

the Curry-Howard correspondence to classical logic. In this line, theλµ-calculus introduced

by Parigot[40] is well known. This calculus corresponds to classical natural deduction and

has a simple structure, sufficient expressive power, and nice computational properties such

as confluency and strong normalization. Later, a call-by-value (CBV) variant of theλµ-

calculus was proposed by Ong and Stewart [39].

Duality

The call-by-name and call-by-value strategies have been well studied as evaluation strate-

gies of programming languages. Filinski [17] suggested that duality between call-by-name

and call-by-value is clarified by two notions of programs and continuations. Selinger [45]

gave categorical semantics of the call-by-name and call-by-valueλµ-calculi and explained
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Filinski’s duality in terms of categorical duality.

The dual calculus and Wadler’s open question

Wadler[48; 49] proposedthe dual calculus, which corresponds to Gentzen’s classical se-

quent calculus LK. LK is an appropriate formulation of classical logic that clearly expresses

the duality that exists inside classical logic. The main feature of the dual calculus is that it

has both terms and continuations as primitives. The computational meaning of the duality

of classical logic is expressed in the dual calculus by the duality of terms and continuations.

In the dual calculus, call-by-name and call-by-value strategies become dual strategies.

Wadler [49] introduced the translation from theλµ-calculus into the dual calculus, and its

inverse translation from the dual calculus into theλµ-calculus. He showed that these transla-

tions form an equational correspondence, as defined by Sabry and Felleisen [44]. Moreover,

he gave the translation from theλµ-calculus into itself by composing the above translations

with duality on the dual calculus. This translation satisfies the following properties.

– It takes call-by-value equalities into call-by-value equalities, and vice versa.

– It is an involution up to call-by-value/call-by-name equality.

In other words, he explained Filinski’s duality in a purely syntactical way. However, theλµ-

calculus and the dual calculus adopted in his paper were equational systems, and his results

are based on equalities. This is because some rules of theλµ-calculus are not simulated by

reductions of the dual calculus, and it is also problematic to introduce some rules, such as

(η)-rules, as reductions. But when we discuss whether duality between call-by-value and

call-by-name also holds as a computational procedure, we should consider reductions. In

fact, Wadler noted an open question in his paper whether one can replace the equations of his

paper with reductions and extend the properties with equations to properties with reductions.

Our purpose, problems, and solutions

Our purpose in this paper is to answer his question. We encounter problems when we try

to obtain refined results by replacing the equations of his paper with reductions. These

problems are grouped in the following three cases.
Problem 1 (ζ)-rules of theλµ-calculus
To simulate (ζ)-rule under Wadler’s translation (−)∗, we need (βR)-reductions of the dual
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calculus in both directions. We give a typical example of this problem.

(
(µα.[γ]λx.[α]y)z

)∗ ≡
(([

x.(y • α)
]
not• γ).α • (z@β)

)

=n
(βR)-red

([
x.
(
(y • (z@β))

)]
not• γ

)
.β

=n
(βR)-exp

([
x.
(
(y • (z@δ)).δ • β)]not• γ

)
.β

≡ (
µβ.[γ]λx.[β](yz)

)∗

Problem 2 (η∨)-rule of theλµ-calculus:M =n µ(α, β).[α, β]M
To simulate (η∨)-rule under Wadler’s translation (−)∗, we need both of (η∨)-reductionand
(η∨)-expansionof the dual calculus.

(µ(α, β).[α, β]M)∗ ≡
(〈(〈(M∗ • [α, β]).α〉inl • γ).β

〉
inr • γ

)
.γ

=n
(η∨)-exp

(〈(〈(M∗ • [α, β]).α〉inl • γ).β
〉
inr • [

x.(〈x〉inl • γ), y.(〈y〉inr • γ)
])
.γ

=n
(β∨)

((〈(M∗ • [α, β]).α〉inl • γ).β • y.(〈y〉inr • γ)
)
.γ

=n
(βR)

(
〈(M∗ • [

α, y.(〈y〉inr • γ)
]
).α〉inl • γ

)
.γ

=n
(η∨)-exp

(〈(
M∗ • [

α, y.(〈y〉inr • γ)
])
.α

〉
inl • [

x.(〈x〉inl • γ), y.(〈y〉inr • γ)
])
.γ

=n
(β∨)

((
M∗ • [

α, y.(〈y〉inr • γ)
])
.α • x.(〈x〉inl • γ)

)
.γ

=n
(βR)

(
M∗ • [

x.(〈x〉inl • γ), y.(〈y〉inr • γ)
]
).γ

=n
(η∨)-red

(
M∗ • γ).γ

=n
(ηR) M∗

However, if we simply omit (η∨)-rule to avoid this problem, then we meet another problem.
If we want to obtain the equational correspondence formed by (−)∗ and (−)∗, which is one
of Wadler’s main results, then we should to show ((µ(α, β).S)∗)∗ =n µ(α, β).(S∗)∗. We need
(η∨)-rule to show this claim.

(
(µ(α, β).S)∗

)
∗ ≡

( 〈(〈S∗.α〉inl • γ).β〉inr • γ
)
.γ

)
∗

≡ µγ.[γ]µ(α′, β′).[β′]µβ.[γ]µ(α′′, β′′).[α′′]µα.(S∗)∗

=
(η∨)-exp
n µ(α′′′, β′′′).[α′′′, β′′′]µγ.[γ]µ(α′, β′).[β′]µβ.[γ]µ(α′′, β′′).[α′′]µα.(S∗)∗

=
(ζ∨)
n µ(α′′′, β′′′).[α′′′, β′′′]µ(α′, β′).[β′]µβ.[α′′′, β′′′]µ(α′′, β′′).[α′′]µα.(S∗)∗

=
(β∨)
n µ(α′′′, β′′′).[β′′′]µβ.[α′′′]µα.(S∗)∗

=
(βµ)
n µ(α′′′, β′′′).(S∗)∗[α

′′′
/α,

β′′′ /β]

≡ µ(α, β).(S∗)∗

Problem 3 (η¬)-rule of theλµ-calculus:M =n λx.Mx

To simulate (η¬)-rule under Wadler’s translation (−)∗, we need both (η¬)-reductionand (η¬)-
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expansionof the dual calculus.

(λx.Mx)∗ ≡ [
x.(M∗ • not〈x〉) ]not

=n
(ηR)

([
x.(M∗ • not〈x〉) ]not• γ).γ

=n
(η¬)-exp

([
x.(M∗ • not〈x〉) ]not• not

〈
([α]not • γ).α

〉)
.γ

=n
(β¬)

(
([α]not • γ).α • x.(M∗ • not〈x〉)).γ

=n
(βL)

(
M∗ • not〈 ([α]not • γ).α 〉).γ

=n
(η¬)-red (M∗ • γ).γ

=n
(ηR) M∗

However, we need (η¬)-rule to simulatex(µα.S) =v S[x{−}/[α]{−}], which is defined in the

call-by-valueλµ-calculus as a part of (ζ)-rule. For example,

(x(µα.[β]λz.[α]y))∗ ≡ x • not
〈(

[z.(y • α)]not • β).α
〉

=v
(η¬)-exp

[
y′.(x • not〈y′〉)]not• not

〈(
[z.(y • α)]not • β).α

〉

=v
(β¬)

(
[z.(y • α)]not • β).α • y′.

(
x • not〈y′〉)

=v
(βL)

[
z.(y • y′.

(
x • not〈y′〉))]not• β

=v
(βR)

[
z.(x • not〈y〉)]not• β

≡ (
[β]λz.(xy)

)∗

For (η⊃)-rule of theλµ-calculus, we also encounter a problem similar to this one.

Problem 1 is due to the so-called administrative redexes, and can be solved by modi-

fying Wadler’s translations. The idea of this modification is similar to the modified CPS

translation introduced by de Groote [13; 14]. However, we need different modifications for

call-by-value and call-by-name calculi.

Problem 2 is caused by the difference in how sums are formulated in theλµ-calculus and

the dual calculus. Wadler added sum types to theλµ-calculus following Selinger [45]. This

formulation is based on multiple-conclusioned sequents as follows.

Γ | S |−λµ ∆, α : A, β : B

Γ |−λµ ∆ | µ(α, β).S : A∨ B

Γ |−λµ ∆ | M : A∨ B

Γ | [α, β]M |−λµ ∆, α : A, β : B

The formulation of sums in the dual calculus, on the other hand, is based on single-concluded
sequents :

Γ |−dc ∆ | M : A
Γ |−dc ∆ | 〈M〉inl : A∨ B

Γ |−dc ∆ | N : B
Γ |−dc ∆ | 〈N〉inr : A∨ B

Γ |−dc ∆ | N : B
[K, L] : A∨ B | Γ |−dc ∆ | 〈N〉inr : A∨ B
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Our solution to this problem is to refine the formulation of sums in theλµ-calculus, and

omit (η∨)-rule. We introduce sums of theλµ-calculus by using usual injections and case-

expressions.

To avoid Problem 3, we remove (η¬) and (η⊃)-rules, and restrict the call-by-valueλµ-

calculus by omitting some rules that cannot be simulated without (η¬) and (η⊃)-rules.

We also encounter problems when we consider the inverse translation from the dual cal-

culus into theλµ-calculus. Since they are similar to the above Problem 1, we can solve them

by modifying Wadler’s original translation. However, we also need different modifications

for call-by-value and call-by-name.

Overview

In section 2, we present the detailed formulation of our call-by-value and call-by-name

λµ-calculi, and compare them with theλµ-calculi given by Wadler (2005). In section 3,

we present the dual calculus as a reduction system. In section 4, we define the call-by-name

translation from the call-by-nameλµ-calculus into the call-by-name dual calculus, and show

that this translation preserve call-by-name reductions (Theorem 2.16). We also define the

call-by-value translation, and show that it also preserves call-by-value reductions. In section

5, we give the inverse translations from the dual calculus into theλµ-calculus for each of

call-by-name and call-by-value, and show that they preserves reductions (Theorem 2.28,

2.34). We also show that the compositions of the call-by-name translations become identity

maps up to the call-by-name reductions, and show the similar property for the call-by-value

translations (Proposition 2.35, 2.36). In section 6, we introduce translations between the

call-by-value and call-by-nameλµ-calculi by composing the above translations with duality

on the dual calculus. We finally obtain results corresponding to Wadler’s (Theorem 2.40),

but our results are based on reductions.

2.2 Theλµ-calculus

In this paper, we consider the two variants of theλµ-calculus, call-by-value and call-by-

name, as reduction systems.

In this paper, we follow Wadler for the types of theλµ-calculus,i.e.. let A andB range

over types, then a type is atomic X, a conjunctionA∧B, a disjunctionA∨B, a negation¬A,

or an implicationA ⊃ B.
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Types of theλµ-calculus

A, BF X | A∧ B | A∨ B | A ⊃ B | ¬A

Two disjoint countable sets of variables for theλµ-calculus are given, one is calledvari-

ables(denoted byx, y, z, . . .) and the other is calledcovariables(denoted byα, β, γ, . . .).

We also follow Wadler for the expressions. The expressions consist ofterms(denoted by

M,N, . . .) andstatements(denoted byS,T, . . .). A term is a variablex, aλ-abstractionλx.M

or λx.S, an implication applicationOM (whereO : A ⊃ B), a projection fst(M) or snd(M),

a pairing〈M,N〉, aµ-abstractionµα.S, or a term for sums. A statement is a covariable ap-

plication [α]M, a negation applicationOM (whereO : ¬A), or a statement for sums. Any

free occurrence ofx in M andS is bound in the termsλx.M andλx.S respectively. Any free

occurrence ofα in S is bound in the termµα.S.

Our formulation of sums is different from Selinger’s [45]. A term for sums is a left

injection inl(M), a right injection inr(M), and caseδ(O, x.M, y.N), and a statement for sums

is a caseδ(O, x.S, y.T). Any free occurrences ofx in M andy in N are bound in the term

δ(O, x.M, y.N). Similarly, any free occurrences ofx in S andy in T are bound in the term

δ(O, x.S, y.T).

Terms and statements of theλµ-calculus

M,N,OF x | λx.M | λx.S | MN | µα.S | fst(M) | snd(N) | 〈M,N〉
| inl(M) | inr(N) | δ(O, x.M, y.N)

S,T F [α]M | MN | δ(O, x.S, y.T)

We consider the term moduloα-conversion of variables and covariables. The sets offree

variablesof M andS (denoted by FV(M) and FV(S)), and the sets offree covariablesof

M andS (denoted by FCV(M) and FCV(S)) are defined as usual. Atyping judgmentof the

λµ-calculus takes the formΓ |−λµ ∆ | M : A or Γ | S |−λµ ∆, whereΓ denotes aλ-context, i.e.

x1 : A1, . . . , xn : An, and∆ denotes aµ-context, i.e.α1 : B1, . . . , αm : Bm. We note that|−λµ is

sometimes written as|−. Thetyping rulesfor theλµ-calculus are defined in figure 2.1.

We use two kinds of substitution for theλµ-calculus. The firstM[N/x] and S[N/x] are

the usual substitutions of a termN for all free occurrences of the variablex in M andS. The

secondM[T {−}/[α]{−}] andS[T {−}/[α]{−}] are substitutions of a statement contextT {−} (i.e. a

statement with a single hole accepting a term) for a covariableα. This second substitution

is defined by induction onM andS using the following clause.

([α]M)[T {−}/[α]{−}] ≡ T {M[T {−}/[α]{−}] }
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Γ, x : A |−λµ ∆ | x : A Ax

Γ, x : A |−λµ ∆ | M : B

Γ |−λµ ∆ | λx.M : A ⊃ B ⊃ I
Γ |−λµ ∆ | M : A ⊃ B Γ |−λµ ∆ | N : A

Γ |−λµ ∆ | MN : B ⊃ E

Γ |−λµ ∆ | M : A∧ B

Γ |−λµ ∆ | fst(M) : A
∧E1

Γ |−λµ ∆ | M : A∧ B

Γ |−λµ ∆ | snd(M) : B
∧E2

Γ |−λµ ∆ | M : A

Γ |−λµ ∆ | inl(M) : A∨ B
∨I1

Γ |−λµ ∆ | M : A

Γ |−λµ ∆ | inr(M) : A∨ B
∨I2

Γ |−λµ ∆ | M : A Γ |−λµ ∆ | N : B

Γ |−λµ ∆ | 〈M,N〉 : A∧ B ∧I

Γ |−λµ ∆ | O : A∨ B Γ, x : A |−λµ ∆ | M : C Γ, y : B |−λµ ∆ | N : C

Γ |−λµ ∆ | δ(O, x.M, y.N) : C ∨E

Γ |−λµ ∆ | O : A∨ B Γ, x : A | S |−λµ ∆ Γ, y : B | T |−λµ ∆

Γ | δ(O, x.S, y.T) |−λµ ∆
∨E

Γ, x : A | S |−λµ ∆

Γ |−λµ ∆ | λx.S : ¬A ¬I
Γ |−λµ ∆ | M : ¬A Γ |−λµ ∆ | N : A

Γ | MN |−λµ ∆
¬E

Γ | S |−λµ ∆, α : A

Γ |−λµ ∆ | µα.S : A Act
Γ |−λµ ∆ | M : A

Γ | [α]M |−λµ ∆, α : A Pass

Figure 2.1: Typing rules of theλµ-calculus

The other clauses are defined homomorphically like

(MN)[T (−)/[α](−)] ≡ M[T (−)/[α](−)]N[T (−)/[α](−)].

Note thatM[[β](−)/[α](−)] andS[[β](−)/[α](−)] are sometimes written asM[β/α] and S[β/α] re-

spectively.

2.2.1 The call-by-nameλµ-calculus

We need a notion of call-by-name evaluation and statement contexts to introduce the call-by-

nameλµ-calculus, which is equivalent as an equational theory to the one given by Wadler.

A call-by-name evaluation term context(denoted byEn,E′n, . . .) is a term context with a

hole, and acall-by-name evaluation statement context(denoted byDn,D′n, . . .) is a statement

context with a hole. We write{−} for a hole, and the results of filling a termM in an

evaluation contextEn and a statement contextDn are writtenEn{M} andDn{M}, respectively.

Call-by-name evaluation term and statement contexts

En,E
′
n,E

′′
n F {−} | EnM | fst(En) | snd(En) | δ(En, x.E

′
n{x}, y.E′′n {y})
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(β⊃) (λx.M)N −→n M[N/x]

(β∧) fst〈M,N〉 −→n M

snd〈M,N〉 −→n N

(β∨) δ(inl(O), x.En{x}, y.E′n{y}) −→n En{O}
δ(inr(O), x.En{x}, y.E′n{y}) −→n E′n{O}
δ(inl(O), x.Dn{x}, y.D′n{y}) −→n Dn{O}
δ(inr(O), x.Dn{x}, y.D′n{y}) −→n D′n{O}

(β¬) (λx.S)N −→n S[N/x]

(ζ) En{µα.S} −→n µβ.S[[β]En{−}/[α]{−}] (whereEn is not{−})
Dn{µα.S} −→n S[Dn{−}/[α]{−}]

(ηµ) M −→n µα.[α]M (whereα < FCV(M))

(π) En{δ(O, x.M, y.N)} −→n δ(O, x.En{M}, y.En{N}) (whereEn is not{−})
Dn{δ(O, x.M, y.N)} −→n δ(O, x.Dn{M}, y.Dn{N})

(ν) δ(O, x.S, y.T) −→n (λy.T) µβ.δ(O, x.S, y.[β]y)

(if T is not a simple form w.r.t.y)

δ(O, x.S, y.Dn{y}) −→n (λx.S) µα.δ(O, x.[α]x, y.Dn{y})
(if S is not a simple form w.r.t.x)

Figure 2.2: Reduction rules of the call-by-nameλµ-calculus

Dn,D
′
n F [α]En | EnM | δ(En, x.Dn{x}, y.D′n{y})

In the following, we say a termM is asimple form with respect tox if there is a call-by-

name evaluation term contextE such thatM ≡ E{x} andx is not free inE, and a statement

S is asimple form with respect tox if there is a call-by-name evaluation statement context

D such thatS ≡ D{x} andx is not free inD.

The one-stepcall-by-name reductionrelation for theλµ-calculus, denoted by−→n, is

defined as the compatible closure of the rules in figure 2.2. We write−→n
∗ for the reflexive

transitive closure of−→n. Similarly, we write−→n
+ and=n for the transitive closure and the

reflexive symmetric transitive closure of−→n respectively.

In the following, when expressionsX andY are in a relationR of systemS, we write

S ` XRY. For example, we writeλµ ` M −→n N if a term M of theλµ-calculus reduces a

termN by the one-step call-by-name reduction of theλµ-calculus.

(β)-rules reduce a deconstructor applied to a constructor. Note that (β∨)-rule has an

unusual and restricted form using the call-by-name evaluation and statement contexts. This

restriction is needed to obtain sums equivalent to ones formulated in Wadler’s call-by-name
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system, (ζ)-rules substitute an evaluation context and a statement context for a covalue, and

(ηµ)-rule introduces aµ-abstraction applied to a covariable application. (π)-rules correspond

to the permutative conversions, and (ν)-rules expand a case statementδ(M, x.S, y.T) whenS

or T is not a simple form, and introduce new bindings. These rules are also needed to obtain

sums equivalent to sums formulated in Wadler’s system.

We write theλµ-calculus given by Wadler byλµwad and write the call-by-name and call-

by-value variants ofλµwad by λµwad
n andλµwad

v respectively. Detailed definitions of these

systems can be found in appendix. We compare our call-by-name system with theλµwad
n -

calculus. The differences between them are summarized in the following three points:

• Our system is based on reduction relations whileλµwad
n is based on equations,

• the formulation of sums in our system is different from that inλµwad
n , and

• our system does not have (η)-rules related to implications, negations, pairs, and sums

while his system does have them.

We give two translations,
�−�

and
〈〈 − 〉〉

, between ourλµ andλµwad that interpret sums as

follows.

Translation
�−�

: fromλµwad into ourλµ

�
µ(α, β).S

� ≡ µγ.�S
�
[[γ]inl {−}/[α]{−},[γ]inr{−} /[β]{−}]

�
[α, β]M

� ≡ δ(�
M

�
, x.[α]x, y.[β]y)

The other clauses are defined homomorphically like
�
MN

� ≡ �
M

��
N

�
.

Translation
〈〈 − 〉〉

: from ourλµ into λµwad

〈〈
inl(M)

〉〉 ≡ µ(α, β).[α]
〈〈

M
〉〉

〈〈
inr(N)

〉〉 ≡ µ(α, β).[β]
〈〈

N
〉〉

〈〈
δ(O, x.M, y.N)

〉〉 ≡ µγ.
(
λy.[γ]

〈〈
N
〉〉)(

µβ.(λx.[γ]
〈〈

M
〉〉

)(µα.[α, β]
〈〈

O
〉〉

)
)

〈〈
δ(O, x.S, y.T)

〉〉 ≡
(
λy.

〈〈
T
〉〉)(

µβ.(λx.
〈〈

S
〉〉

)(µα.[α, β]
〈〈

O
〉〉

)
)

The other clauses are defined homomorphically like
〈〈

MN
〉〉 ≡ 〈〈

M
〉〉〈〈

N
〉〉

.

We define the call-by-name systemλµηn as the one generated by the rules in figure 2.2

and the following (η)-rules,

(η⊃) M −→n λx.Mx (whereM : A ⊃ B)
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(η∧) M −→n 〈fst(M), snd(M)〉 (whereM : A∧ B)

(η∨) M −→n δ(M, x.inl(x), y.inr(y)) (whereM : A∨ B)

(η¬) M −→n λx.Mx (whereM : ¬A)

λµ
η
n is equivalent to Wadler’s call-by-name systemλµwad

n as an equational system. To

show this, we need some preparations. LetEn andDn be the call-by-name evaluation con-

texts of theλµηn-calculus. Then, we define the call-by-name contextsEn and Dn of the

λµwad
n -calculus as follows.

{−} ≡ {−} EnN ≡ En
〈〈

N
〉〉

fst(En) ≡ fst(En) snd(En) ≡ snd(En)

δ(En, x.E′n{x}, y.E′′n {y}) ≡ µγ.[γ]E′′n
{
µβ.[γ]E′n

{
µα.[α, β]En

}}

[α]En ≡ [α]En EnN ≡ En
〈〈

N
〉〉

δ(En, x.Dn{x}, y.D′n{y}) ≡ D′n
{
µβ.Dn

{
µα.[α, β]En

}}

For the call-by-name contextsEn andDn defined above, the following lemma holds.

Lemma 2.1

(1) λµwad
n ` 〈〈

En{M}〉〉 =n En{〈〈M
〉〉} andλµwad

n ` 〈〈
Dn{M}〉〉 =n Dn{〈〈M

〉〉} hold for any

termM of ourλµ-calculus.

(2) λµwad
n ` 〈〈

M
〉〉

[Dn{−}/[α]{−}] =n
〈〈

M[Dn{−}/[α]{−}]
〉〉

and λµwad
n ` 〈〈

S
〉〉

[Dn{−}/[α]{−}] =n〈〈
S[Dn{−}/[α]{−}]

〉〉
hold.

(3) λµwad
n ` En

{
µα.S

}
=n µβ.S[[β]En{−}/[α]{−}] andλµwad

n ` Dn
{
µα.S

}
=n S[Dn{−}/[α]{−}] hold.

Proof. (1) is easily shown by induction onEn andDn. (2) is shown by induction onM and

S using (1). We give the key case.

〈〈
[α]M

〉〉
[Dn{−}/[α]{−}] ≡ (

[α]
〈〈

M
〉〉)

[Dn{−}/[α]{−}] ≡ Dn
{ 〈〈

M
〉〉

[Dn{−}/[α]{−}]
}

I .H.
=n Dn

{〈〈
M[Dn{−}/[α]{−}]

〉〉} (1)
=n

〈〈
Dn

{
M[Dn{−}/[α]{−}]

}〉〉 ≡ 〈〈
([α]M)[Dn{−}/[α]{−}]

〉〉

(3) is also shown by induction onEn andDn. For example, the case of

δ(En, x.Dn{x}, y.D′n{y}) can be proved as follows.

δ(En, x.Dn{x}, y.D′n{y}){µα.S} ≡ D′n
{
µβ.Dn

{
µα.[α, β]En{µα.S}}

}

I .H.
=n D′n

{
µβ.Dn

{
µα.[α, β]µα′.S[[α′]En{−}/[α]{−}]

}}

=ζ∨ D′n
{
µβ.Dn

{
µα.S[[α,β]En{−}/[α]{−}]

}}
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I .H.
=n D′n

{
µβ.S[[α,β]En{−}/[α]{−}][ Dn{−}/[α]{−}]

}

I .H.
=n S[[α,β]En{−}/[α]{−}][ Dn{−}/[α]{−}][ D′n{−}/[β]{−}]

≡ S[([α,β]En{−})[Dn{−}/[α]{−}][ D′n{−}/[β]{−}]/[α]{−}]
(∗)≡ S[D′n{µβ.Dn{µα.[α,β]En{−}}}/[α]{−}]

≡ S[δ(En,x.Dn{x},y.D′n{y}){−}/[α]{−}]

where I.H. means the induction hypothesis, and (∗) is by the definition of the substitution

for a covariable. �

Proposition 2.2

(1) If λµηn ` M =n N, thenλµwad
n ` 〈〈

M
〉〉

=n
〈〈

N
〉〉

, and if λµηn ` S =n T, thenλµwad
n `

〈〈
S
〉〉

=n
〈〈

T
〉〉

.

(2) If λµwad
n ` M =n N, thenλµηn `

�
M

�
=n

�
N

�
, and if λµwad

n ` S =n T, thenλµηn `�
S

�
=n

�
T

�
.

(3) λµηn `
�〈〈

M
〉〉�

=n M andλµηn `
�〈〈

S
〉〉�

=n S.

(4) λµwad
n ` 〈〈�

M
�〉〉

=n M andλµwad
n ` 〈〈�

S
�〉〉

=n S.

Proof. (1) We can show this by induction on the call-by-name equation of theλµ
η
n-calculus.

We consider only the rules about sums,i.e., (β∨), (ζ), (π), (ν), and (η∨)-rules.

Case of (β∨)-rule :

〈〈
δ(inl(O), x.E′n{x}, y.E′′n {y})

〉〉

≡ µγ.
(
λy.[γ]

〈〈
E′′n {y}

〉〉)(
µβ.(λx.[γ]

〈〈
E′n{x}

〉〉
)(µα.[α, β]

〈〈
inl(O)

〉〉
)
)

≡ µγ.
(
λy.[γ]

〈〈
E′′n {y}

〉〉)(
µβ.(λx.[γ]

〈〈
E′n{x}

〉〉
)(µα.[α, β]µ(α′, β′).[α′]

〈〈
O
〉〉

)
)

=β∨ µγ.
(
λy.[γ]

〈〈
E′′n {y}

〉〉)(
µβ.(λx.[γ]

〈〈
E′n{x}

〉〉
)(µα.[α]

〈〈
O
〉〉

)
)

=ηµ µγ.
(
λy.[γ]

〈〈
E′′n {y}

〉〉)(
µβ.(λx.[γ]

〈〈
E′n{x}

〉〉
)
〈〈

O
〉〉)

=n µγ.
(
λy.[γ]E′′n {y}

)(
µβ.(λx.[γ]E′n{x})

〈〈
O
〉〉)

(by Lem 2.1 (1))

=β¬ µγ.[γ]E′′n
{
µβ.[γ]E′n{

〈〈
O
〉〉}

}

=n µγ.[γ]E′n{
〈〈

O
〉〉} (by Lem 2.1 (3))

=ηµ E′n{
〈〈

O
〉〉}

=n
〈〈

E′n{O}
〉〉

(by Lem 2.1 (1))
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The other rules of the (β∨)-rule can also be shown similarly.

Case of (ζ)-rule :

〈〈
En{µα.S}〉〉 =n En{〈〈µα.S〉〉} (by Lem 2.1 (1))

≡ En{µα.〈〈S〉〉} =n µβ.
〈〈

S
〉〉

[[β]En{−}/[α]{−}] (by Lem 2.1 (3))

=n
〈〈
µβ.S[[β]En{−}/[α]{−}]

〉〉
(by Lem 2.1 (2))

〈〈
Dn{µα.S}〉〉 =n Dn{〈〈µα.S〉〉} =n Dn{µα.〈〈S〉〉}

=n S[Dn{−}/[α]{−}] =n
〈〈

S[Dn{−}/[α]{−}]
〉〉

Case of (π)-rule :

〈〈
En{δ(O, x.M, y.N}〉〉 =n En

{〈〈
δ(O, x.M, y.N)

〉〉}
(by Lem 2.1 (1))

≡ En

{
µγ.

(
λy.[γ]

〈〈
N
〉〉)(

µβ.(λx.[γ]
〈〈

M
〉〉

)(µα.[α, β]
〈〈

O
〉〉

)
)}

=n µγ
′.
(
λy.[γ′]En

{〈〈
N
〉〉})(

µβ.(λx.[γ′]En
{〈〈

M
〉〉}

)(µα.[α, β]
〈〈

O
〉〉

)
)

(by Lem 2.1 (3))

=n µγ
′.
(
λy.[γ′]

〈〈
En{N}〉〉

)(
µβ.(λx.[γ′]

〈〈
En{M}〉〉})(µα.[α, β]

〈〈
O
〉〉

)
)

(by Lem 2.1 (1))

≡ 〈〈
δ(O, x.En{M}, y.En{N})〉〉

The other rule of the (π)-rule can also be shown similarly.
Case of (ν)-rule :

〈〈
δ(O, x.S, y.T)

〉〉 ≡
(
λy.

〈〈
T
〉〉)(

µβ.(λx.
〈〈

S
〉〉

)(µα.[α, β]
〈〈

O
〉〉

)
)

=n

(
λy.

〈〈
T
〉〉)(

µβ.
(
λy′.[β]y′

)(
µβ′.(λx.

〈〈
S
〉〉

)(µα.[α, β′]
〈〈

O
〉〉

)
))

≡
(
λy.

〈〈
T
〉〉)(

µβ.
(
λy′.

〈〈
[β]y′

〉〉)(
µβ′.(λx.

〈〈
S
〉〉

)(µα.[α, β′]
〈〈

O
〉〉

)
))

≡ 〈〈
(λy.T) µβ.δ(O, x.S, y.[β]y)

〉〉
〈〈
δ(O, x.S, y.Dn{y})〉〉 ≡

(
λy.

〈〈
Dn{y}〉〉

)(
µβ.(λx.

〈〈
S
〉〉

)(µα.[α, β]
〈〈

O
〉〉

)
)

=n

(
λy.Dn{y}

)(
µβ.(λx.

〈〈
S
〉〉

)(µα.[α, β]
〈〈

O
〉〉

)
)

=n Dn

{
µβ.(λx.

〈〈
S
〉〉

)(µα.[α, β]
〈〈

O
〉〉

)
}

=n Dn

{
µβ.

(
λx.

〈〈
S
〉〉)(

µα.(λy.[β]y)(µβ′.(λx.[α]x)(µα′.[α′, β′]
〈〈

O
〉〉

)
)}

=n

(
λx.

〈〈
S
〉〉)(

µα.(λy.Dn{y})(µβ′.(λx.[α]x)(µα′.[α′, β′]
〈〈

O
〉〉

)
)

=n

(
λx.

〈〈
S
〉〉)(

µα.(λy.
〈〈

Dn{y}〉〉)(µβ′.(λx.
〈〈

[α]x
〉〉

)(µα′.[α′, β′]
〈〈

O
〉〉

))
)

≡
(
λx.

〈〈
S
〉〉)(

µα.
〈〈
δ(O, x.[α]x, y.Dn{y})〉〉

)

≡ 〈〈
(λx.S) (µα.δ(O, x.[α]x, y.Dn{y}))〉〉

Case of (η∨)-rule :

〈〈
δ(M, x.inl(x), y.inr(y))

〉〉 ≡ µγ.
(
λy.[γ]

〈〈
inr(y)

〉〉)(
µβ.(λx.[γ]

〈〈
inr(x)

〉〉
)(µα.[α, β]

〈〈
M

〉〉
)
)
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≡ µγ.
(
λy.[γ]µ(α′′, β′′).[β′′]y

)(
µβ.(λx.[γ]µ(α′, β′).[α′]x)(µα.[α, β]

〈〈
M

〉〉
)
)

=η∨ µ(α1, β1).[α1, β1]µγ.
(
λy.[γ]µ(α′′, β′′).[β′′]y

)(
µβ.(λx.[γ]µ(α′, β′).[α′]x)(µα.[α, β]

〈〈
M

〉〉
)
)

=ζ∨ µ(α1, β1).
(
λy.[α1, β1]µ(α′′, β′′).[β′′]y

)(
µβ.(λx.[α1, β1]µ(α′, β′).[α′]x)(µα.[α, β]

〈〈
M

〉〉
)
)

=β∨ µ(α1, β1).
(
λy.[β1]y

)(
µβ.(λx.[α1]x)(µα.[α, β]

〈〈
M

〉〉
)
)

=(β¬) µ(α1, β1).[β1]µβ.[α1]µα.[α, β]
〈〈

M
〉〉

=βµ µ(α1, β1).[α1, β1]
〈〈

M
〉〉

=η∨
〈〈

M
〉〉

(2) We can show this by induction on the call-by-name equation of theλµwad
n -calculus. We

consider only the rules about sums,i.e., (β∨), (ζ∨), (η∨)-rules.

(β∨)-rule :

�
[α′, β′]µ(α, β).S

� ≡ δ
(�
µ(α, β).S

�
, x.[α′]x, y.[β′]y

)

≡ δ
(
µγ.

�
S

�
[[γ]inl {−}/[α]{−},[γ]inr{−} /[β]{−}], x.[α′]x, y.[β′]y

)

=ζ

�
S

�
[δ(inl{−},x.[α′]x,y.[β′]y)/[α]{−},δ(inr{−},x.[α′]x,y.[β′]y) /[β]{−}]

=β∨
�
S

�
[[α′]{−}/[α]{−},[β

′]{−} /[β]{−}] ≡ �
S[α

′
/α,

β′ /β]
�

(ζ∨)-rule :

�
[α, β]µγ.S

� ≡ δ(�
µγ.S

�
, x.[α]x, y.[β]y) ≡ δ(µγ.�S

�
, x.[α]x, y.[β]y)

=ζ

�
S

�
[δ({−},x.[α]x,y.[β]y)/[γ]{−}]

(∗)≡ �
S[[α,β]{−}/[γ]{−}]

�

(∗) is shown by induction on terms and statements. The key case is as follows.

�
[γ]M

�
[δ({−},x.[α]x,y.[β]y)/[γ]{−}] ≡ (

[γ]
�
M

�)
[δ({−},x.[α]x,y.[β]y)/[γ]{−}]

≡ δ
(�

M
�
[δ({−},x.[α]x,y.[β]y)/[γ]{−}], x.[α]x, y.[β]y

)

I .H.≡ δ
(�

M[[α,β]{−}/[γ]{−}]
�
, x.[α]x, y.[β]y

)

≡ �
[α, β](M[[α,β]{−}/[γ]{−}])

� ≡ �
([γ]M)[[α,β]{−}/[γ]{−}]

�

(η∨)-rule :

�
µ(α, β).[α, β]M

� ≡ µγ.�[α, β]M
�
[[γ]inl {−}/[α]{−},[γ]inr{−} /[β]{−}]

≡ µγ.δ(�
M

�
, x.[α]x, y.[β]y)[[γ]inl {−}/[α]{−},[γ]inr{−} /[β]{−}]

≡ µγ.δ(�
M

�
, x.[γ]inl( x), y.[γ]inr(y))

=π µγ.[γ]δ(
�
M

�
, x.inl(x), y.inr(y))
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=ηµ δ(
�
M

�
, x.inl(x), y.inr(y))

=η∨
�
M

�

(3) We can show this by induction on termM and statementS of the λµηn-calculus. We

consider the cases of inl(M), inr(M), δ(O, x.M, y.N) andδ(O, x.S, y.T).

Case of inl(M):

�〈〈
inl(M)

〉〉� ≡ �
µ(α, β).[α]

〈〈
M

〉〉� ≡ µγ.
(
[α]

�〈〈
M

〉〉�)
[[γ]inl {−}/[α]{−},[γ]inr{−} /[β]{−}]

≡ µγ.[γ]inl
(�〈〈

M
〉〉�) I .H.

=n µγ.[γ]inl( M) =ηµ inl(M)

The case of inr(M) can also be shown similarly.

Case ofδ(O, x.M, y.N):

�〈〈
δ(O, x.M, y.N)

〉〉� ≡ �
µγ.

(
λy.[γ]

〈〈
N
〉〉)(

µβ.(λx.[γ]
〈〈

M
〉〉

)(µα.[α, β]
〈〈

O
〉〉

)
)〉〉

≡ µγ.
(
λy.[γ]

�〈〈
N
〉〉�)(

µβ.(λx.[γ]
�〈〈

M
〉〉�

)(µα.
�

[α, β]
〈〈

O
〉〉 �

)
)

≡ µγ.
(
λy.[γ]

�〈〈
N
〉〉�)(

µβ.(λx.[γ]
�〈〈

M
〉〉�

)(µα.δ(
�〈〈

O
〉〉�
, x.[α]x, y.[β]y))

)

I .H.
=n µγ.

(
λy.[γ]N

)(
µβ.(λx.[γ]M)(µα.δ(O, x.[α]x, y.[β]y))

)

(∗)
=n µγ.δ(O, x.[γ]M, y.[γ]N)

=(π) µγ.[γ]δ(O, x.M, y.N)

=(ηµ) δ(O, x.M, y.N)

(∗) is shown by case analysis ofM andN. If M andN are not simple forms w.r.t.x andy

respectively, then we have

µγ.δ(O, x.[γ]M, y.[γ]N) =(ν) µγ.(λy.[γ]N)(µβ.δ(O, x.[γ]M, y.[β]y))

=(ν) µγ.
(
(λy.[γ]N)(µβ.(λx.[γ]M)(µα.δ(O, x.[α]x, y.[β]y))

)

If M is En{x} andN is not a simple form w.r.t.y, then we have

µγ.δ(O, x.[γ]En{x}, y.[γ]N) =(ν) µγ.(λy.[γ]N)(µβ.δ(O, x.[γ]En{x}, y.[β]y))

=(ζ) µγ.
(
(λy.[γ]N)(µβ.[γ]En

{
µα.δ(O, x.[α]x, y.[β]y)

}
)
)

=(β⊃) µγ.
(
(λy.[γ]N)(µβ.(λx.[γ]En{x})(µα.δ(O, x.[α]x, y.[β]y)))

)

The rest of the cases are shown similarly.

Case ofδ(O, x.S, y.T): this case is similar to the above case.

– 21 –



(4) We can show this by induction on termM and statementS of theλµwad
n -calculus. We

consider onlyµ(α, β).S and [α, β]M.

Case ofµ(α, β).S:

〈〈�
µ(α, β).S

�〉〉 ≡ 〈〈
µγ.

�
S

�
[[γ]inl {−}/[α]{−},[γ]inr{−} /[β]{−}]

〉〉

≡ µγ.〈〈�
S

�
[[γ]inl {−}/[α]{−},[γ]inr{−} /[β]{−}]

〉〉

≡ µγ.〈〈�
S

�〉〉
[[γ]〈〈inl{−}〉〉/[α]{−},[γ]〈〈inr{−}〉〉 /[β]{−}]

≡ µγ.〈〈�
S

�〉〉
[[γ]µ(α′,β′).[α′]{−}/[α]{−},[γ]µ(α′′,β′′).[β′′]{−} /[β]{−}]

=(η∨) µ(α1, β1).[α1, β1]µγ.
〈〈�

S
�〉〉

[[γ]µ(α′,β′).[α′]{−}/[α]{−},[γ]µ(α′′,β′′).[β′′]{−} /[β]{−}]

=(ζ∨) µ(α1, β1).
〈〈�

S
�〉〉

[[α1,β1]µ(α′,β′).[α′]{−}/[α]{−},[α1,β1]µ(α′′,β′′).[β′′]{−} /[β]{−}]

=(β∨) µ(α, β).
〈〈�

S
�〉〉

[[α1]{−}/[α]{−},[β1]{−} /[β]{−}]

≡ µ(α, β).
〈〈�

S
�〉〉

I .H.
=n µ(α, β).S

Case of [α, β]M:

〈〈�
[α, β]M

�〉〉 ≡ 〈〈
δ(

�
M

�
, x.[α]x, y.[β]y)

〉〉

≡
(
(λy.[β]y)(µβ′.(λx.[α]x)(µα′.[α′, β′]

〈〈�
M

�〉〉
))
)

=(β⊃) [β]µβ′.[α]µα′.[α′, β′]
〈〈�

M
�〉〉

=(βµ) [α, β]
〈〈�

M
�〉〉

I .H.
=n [α, β]M

�

2.2.2 The call-by-valueλµ-calculus

For the call-by-value calculus, we need a notion of values. Avalue(denoted byV, W,. . . )

is a variable, aλ-abstraction, a pair of values, or an injection of a value.

Values of the call-by-valueλµ-calculus

V,W Fx | λx.M | 〈V,W〉 | inl(V) | inr(W) | λx.S

We also use a notion of the call-by-value evaluation and statement contexts to introduce

the call-by-value calculus. However, in this case, it is useful to give the evaluation contexts
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as singular contexts. The call-by-value evaluation singular contexts (denoted byEv,E′v, . . .)

are grouped into theelimination contexts(denoted byEe,E′e, . . .), which are obtained from

an elimination rule. Theintroduction contexts(denoted byEi ,E′i , . . .), which are constructed

by an introduction rule, and the contexts which have a hole as the argument of a lambda ab-

straction,i.e., (λx.M){−}. The call-by-value evaluation singular statement contexts (denoted

by Dv,D′v, . . .) are grouped into theelimination contexts(denoted byDe,D′e, . . .) and the

contexts which have a hole as the argument of a lambda abstraction,i.e., (λx.S){−}.
Call-by-value evaluation term and statement contexts

Ev F(λx.M){−} | Ee | Ei

Ee F{−}M | fst({−}) | snd({−}) | δ({−}, x.M, y.N)

Ei Finl({−}) | inr({−}) | 〈{−},M〉 | 〈V, {−}〉
Dv F(λx.S){−} | De

De F[α]{−} | {−}M | δ({−}, x.S, y.T)

The one-stepcall-by-value reductionrelation for theλµ-calculus, denoted by−→v, is

defined as the compatible closure of the rules in figure 2.3. We write−→v
∗ and−→v

+

for the reflexive transitive closure and the transitive closure of−→v respectively. (β)-rules

reduce the deconstructor applied to a constructor with call-by-value restrictions, (ζ)-rules

substitute a call-by-value evaluation context and a statement context for a covalue, (ηµ)-rule

introduces aµ-abstraction applied to a covariable application, and (π)-rules correspond to

the permutative conversions. The (name)-rules push the next term to be evaluated out as an

argument of the function. These rules correspond to the (name)-rule of theλµwad
v -calculus.

The (comp)-rules are associativity rules, which correspond to the (comp)-rule of theλµwad
v -

calculus.

We now compare our call-by-value system with Wadler’s call-by-value system. The

differences between them are summarized in the following four points:

• Our system is based on reduction relations while his system is based on equations,

• the formulation of sums in our system is different from that inλµwad
v ,

• we defined values differently: a projection from a value is not a value in our system,

and

• our system does not have (η)-rules related to implications, negations, pairs, and sums

while his system does have them.
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(β⊃) (λx.M)V −→v M[V/x]

(β∧) fst〈V,W〉 −→v V

snd〈V,W〉 −→v W

(β∨) δ(inl(V), x.M, y.N) −→v M[V/x]

δ(inr(V), x.M, y.N) −→v N[V/x]

δ(inl(V), x.S, y.T) −→v S[V/x]

δ(inr(V), x.S, y.T) −→v T[V/x]

(β¬) (λx.S)V −→v S[V/x]

(ζ) Eeλ{µα.S} −→v µβ.S[[β]Eeλ{−}/[α]{−}] (whereEeλ is Ee or (λx.M){−})
Dv{µα.S} −→v S[Dv{−}/[α]{−}]

(comp) Eeλ{(λx.M)N} −→v (λx.Eeλ{M})N
Dv{(λx.M)N} −→v (λx.Dv{M})N

(π) Eeλ{δ(O, x.M, y.N)} −→v δ(O, x.Eeλ{M}, y.Eeλ{N})
Dv{δ(O, x.M, y.N)} −→v δ(O, x.Dv{M}, y.Dv{N})

(ηµ) M −→v µα.[α]M (whereα < FCV(M))

(name) Eie{O} −→v (λx.Eie{x})O (whereO is not a value,Eie is Ei or Ee)

De{O} −→v (λx.De{x})O (whereO is not a value)

Figure 2.3: Reduction rules of the call-by-valueλµ-calculus

– 24 –



We introduce the call-by-value calculusλµηv as the system generated by the rules in figure 2.3

and the following (η)-rules.

(η⊃) V −→n λx.Vx (V : A ⊃ B)

(η∧) V −→n 〈fst(V), snd(V)〉 (V : A∧ B)

(η∨) M −→n δ(M, x.inl(x), y.inr(y)) (M : A∨ B)

(η¬) V −→n λx.Vx (V : ¬A)

We define theλµwad−
v -calculus as the restricted system of theλµwad

v -calculus obtained by

excluding a projection from a value from definition of values. We again consider translations
〈〈− 〉〉

and
�−�

given in the previous subsection. Our call-by-value systemλµ
η
v with (η)-rules

is equivalent to theλµwad−
v -calculus as the equational systems.

Proposition 2.3

(1) If λµηv ` M =v N, thenλµwad−
v ` 〈〈

M
〉〉

=v
〈〈

N
〉〉

, and ifλµηv ` S =n T, thenλµwad−
v `

〈〈
S
〉〉

=v
〈〈

T
〉〉

.

(2) If λµwad−
v ` M =v N, thenλµηv `

�
M

�
=v

�
N

�
, and if λµwad−

v ` S =v T, then

λµ
η
v `

�
S

�
=v

�
T

�
.

(3) λµηv `
�〈〈

M
〉〉�

=v M andλµηv `
�〈〈

S
〉〉�

=v S.

(4) λµwad−
v ` 〈〈�

M
�〉〉

=v M andλµwad−
v ` 〈〈�

S
�〉〉

=v S.

Proof. (1) We can show this by induction on the call-by-value equation of theλµ
η
v-calculus.

We consider only the rules about sums,i.e., (β∨), (ζ), (π), (comp), (name), and (η∨)-rules.
Case of (β∨)-rule :

〈〈
δ(inl(V),x.M, y.N)

〉〉 ≡ µγ.
(
λy.[γ]

〈〈
N
〉〉)(

µβ.(λx.[γ]
〈〈

M
〉〉

)(µα.[α, β]
〈〈

inl(V)
〉〉

)
)

≡ µγ.
(
λy.[γ]

〈〈
N
〉〉)(

µβ.(λx.[γ]
〈〈

M
〉〉

)(µα.[α, β]µ(α′, β′).[α′]
〈〈

V
〉〉

)
)

=(β∨) µγ.
(
λy.[γ]

〈〈
N
〉〉)(

µβ.(λx.[γ]
〈〈

M
〉〉

)(µα.[α]
〈〈

V
〉〉

)
)

=(ηµ) µγ.
(
λy.[γ]

〈〈
N
〉〉)(

µβ.(λx.[γ]
〈〈

M
〉〉

)
〈〈

V
〉〉)

=(ζ) µγ.(λx.[γ]
〈〈

M
〉〉

)
〈〈

V
〉〉

=(β¬) µγ.[γ]
〈〈

M
〉〉

[〈〈V〉〉/x]

(∗)≡ µγ.[γ]
〈〈

M[V/x]
〉〉

=ηµ

〈〈
M[V/x]

〉〉
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(∗) comes from the claim:
〈〈

M
〉〉

[〈〈V〉〉/x] ≡ 〈〈
M[V/x]

〉〉
and

〈〈
S
〉〉

[〈〈V〉〉/x] ≡ 〈〈
S[V/x]

〉〉
. This

claim is shown by a straightforward induction onM andS. The other rules of the (β∨)-rule

can also be shown similarly.

Case of (ζ)-rule : This case can be shown by a case analysis of the evaluation contexts. The

key case is whenEe is δ({−}, x.M, y.N) andDe is δ({−}, x.S, y.T).
Subcase ofEe is δ({−}, x.M, y.N) :

〈〈
δ(µα.S, x.M, y.N)

〉〉 ≡ µγ.
(
λy.[γ]

〈〈
N
〉〉)(

µβ′.
(
λx.[γ]

〈〈
M

〉〉)
µα′.[α′, β′]µα.

〈〈
S
〉〉)

=(ζ) µγ.
(
λy.[γ]

〈〈
N
〉〉)(

µβ′.
(
λx.[γ]

〈〈
M

〉〉)
µα′.

〈〈
S
〉〉

[[α′,β′]{−}/[α]{−}]
)

=(ζ) µγ.
〈〈

S
〉〉

[[α′,β′]{−}/[α]{−}][ (λx.[γ]〈〈M〉〉){−}/[α′]{−}][ (λy.[γ]
〈〈

N
〉〉

){−}/[β′]{−}]

≡ µγ.〈〈S〉〉
[([α′,β′]{−})[(λx.[γ]〈〈M〉〉){−}/[α′ ]{−}][ (λy.[γ]〈〈N〉〉){−}/[β′ ]{−}]/[α]{−}]

≡ µγ.〈〈S〉〉
[(λy.[γ]〈〈N〉〉)(µβ′.(λx.[γ]〈〈M〉〉)(µα′.[α′,β′]{−}))/[α]{−}]

=(βµ) µγ.
〈〈

S
〉〉

[[γ]µγ′.(λy.[γ′]〈〈N〉〉)(µβ′.(λx.[γ′]〈〈M〉〉)(µα′.[α′,β′]{−}))/[α]{−}]
(∗)≡ µγ.〈〈S[[γ]δ({−},x.M,y.N)/[α]{−}]

〉〉 ≡ 〈〈
µγ.S[[γ]δ({−},x.M,y.N)/[α]{−}]

〉〉

(*) is shown by a straightforward induction on terms and statements. We abbreviate

M[[γ]µγ′.(λy.[γ′]〈〈N〉〉)(µβ′.(λx.[γ′]〈〈M〉〉)(µα′.[α′,β′]{−}))/[α]{−}] and

S[[γ]µγ′.(λy.[γ′]〈〈N〉〉)(µβ′.(λx.[γ′]〈〈M〉〉)(µα′.[α′,β′]{−}))/[α]{−}] in M̃ and S̃ respectively. The key case is

proved in this way.

˜〈〈
[α]O

〉〉 ≡ ˜[α]
〈〈

O
〉〉 ≡ [γ]µγ′.(λy.[γ′]〈〈N〉〉)(µβ′.(λx.[γ′]〈〈M〉〉)(µα′.[α′, β′]〈̃〈O〉〉

))

I .H.≡ [γ]µγ′.(λy.[γ′]
〈〈

N
〉〉

)(µβ′.(λx.[γ′]
〈〈

M
〉〉

)(µα′.[α′, β′]
〈〈

O[[γ]δ({−},x.M,y.N)/[α]{−}]
〉〉

))

≡ 〈〈
[γ]δ(O[[γ]δ({−},x.M,y.N)/[α]{−}], x.M, y.N)

〉〉

≡ 〈〈
([α]O)[[γ]δ({−},x.M,y.N)/[α]{−}]

〉〉

Case of (π)-rule : We can obtain=(π) from [α]δ(O, x.M, y.N) =v δ(O, x.[α]M, y.[α]N) with

(ηµ)-rule and (ζ)-rule in the following way. LetE beEe or (λx.M){−}, then

E{δ(O, x.M, y.N)} =(ηµ) E{µα.[α]δ(O, x.M, y.N)} =v E{µα.δ(O, x.[α]M, y.[α]N)}
=(ζ) µβ.δ(O, x.[β]E{M}, y.[β]E{N})} =v µβ.[β]δ(O, x.E{M}, y.E{N})}
=(ηµ) δ(O, x.E{M}, y.E{N})}.

We can obtainDv{δ(O, x.M, y.N)} =v δ(O, x.Dv{M}, y.Dv{N}) in a similar way. Therefore, it

is sufficient to prove
〈〈

[α]δ(O, x.M, y.N)
〉〉

=v
〈〈
δ(O, x.[α]M, y.[α]N)

〉〉
.

〈〈
[α]δ(O, x.M, y.N)

〉〉 ≡ [α]µγ.(λy.[γ]
〈〈

N
〉〉

)(µβ′.(λx.[γ]
〈〈

M
〉〉

)µα′.[α′, β′]
〈〈

O
〉〉

)

=(βµ) (λy.[α]
〈〈

N
〉〉

)(µβ′.(λx.[α]
〈〈

M
〉〉

)µα′.[α′, β′]
〈〈

O
〉〉

)
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≡ 〈〈
δ(O, x.[α]M, y.[α]N)

〉〉

Case of (comp)-rule : To show this case, it is sufficient to have
〈〈

[α]((λx.M)N)
〉〉

=v
〈〈

(λx.[α]M)N
〉〉

by the discussion similar to that for (π)-rule.

〈〈
[α]((λx.M)N)

〉〉
=v [α]((λx.

〈〈
M

〉〉
)
〈〈

N
〉〉

=(comp) (λx.[α]
〈〈

M
〉〉

)
〈〈

N
〉〉 ≡ 〈〈

(λx.[α]M)N
〉〉

Case of (name)-rule : We can easily showλµwad−
v ` 〈〈

Ei{O}〉〉 =v
〈〈

(λx.Ei{x})O〉〉
by a case

analysis ofEi. On the other hand, we have

〈〈
[α]O

〉〉 ≡ [α]
〈〈

O
〉〉

=(comp) (λx.[α]x)
〈〈

O
〉〉 ≡ 〈〈

(λx.[α]x)O
〉〉
,

therefore we obtainλµwad−
v ` 〈〈

Ee{O}〉〉 =v
〈〈

(λx.Ee{x})O〉〉
, sinceλµv ` Ee{O} =v (λx.Ee{x})O

can be shown fromλµ ` [α]O =v (λx.[α]x)O with (ζ), (ηµ) and (comp)-rules as follows.

Ee{O} =(ηµ) Ee{µα.[α]O} =v Ee{µα.(λx.[α]x)O} =(ζ) µβ.((λx.[β]Ee{x})O)

=(name) µβ.[β]((λx.Ee{x})O) =(ηµ) (λx.Ee{x})O

Case of (η∨)-rule :

〈〈
δ(M, x.inl(x), y.inr(y))

〉〉 ≡ µγ.
(
λy.[γ]

〈〈
inr(y)

〉〉)(
µβ.(λx.[γ]

〈〈
inr(x)

〉〉
)(µα.[α, β]

〈〈
M

〉〉
)
)

≡ µγ.
(
λy.[γ]µ(α′′, β′′).[β′′]y

)(
µβ.(λx.[γ]µ(α′, β′).[α′]x)(µα.[α, β]

〈〈
M

〉〉
)
)

=(η∨) µ(α1, β1).[α1, β1]µγ.
(
λy.[γ]µ(α′′, β′′).[β′′]y

)(
µβ.(λx.[γ]µ(α′, β′).[α′]x)(µα.[α, β]

〈〈
M

〉〉
)
)

=(ζ∨) µ(α1, β1).
(
λy.[α1, β1]µ(α′′, β′′).[β′′]y

)(
µβ.(λx.[α1, β1]µ(α′, β′).[α′]x)(µα.[α, β]

〈〈
M

〉〉
)
)

=(β∨) µ(α1, β1).
(
λy.[β1]y

)(
µβ.(λx.[α1]x)(µα.[α, β]

〈〈
M

〉〉
)
)

=(name) µ(α1, β1).[β1]µβ.[α1]µα.[α, β]
〈〈

M
〉〉

=(βµ) µ(α1, β1).[α1, β1]
〈〈

M
〉〉

=(η∨)
〈〈

M
〉〉

(2) We can show this by induction on the call-by-name equation of theλµwad
n -calculus. We

consider only the rules about sums,i.e., (β∨), (ζ), (η∨), (name), and (comp)-rules.

Case of (β∨)-rule :

�
[α′, β′]µ(α, β).S

� ≡ δ
(�
µ(α, β).S

�
, x.[α′]x, y.[β′]y

)

≡ δ
(
µγ.

�
S

�
[[γ]inl {−}/[α]{−},[γ]inr{−} /[β]{−}], x.[α′]x, y.[β′]y

)

=(ζ)
�
S

�
[δ(inl{−},x.[α′]x,y.[β′]y)/[α]{−},δ(inr{−},x.[α′]x,y.[β′]y) /[β]{−}]

(∗)
=v

�
S

�
[[α′]{−}/[α]{−},[β

′]{−} /[β]{−}] ≡ �
S[α

′
/α,

β′ /β]
�
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(∗) can be shown by the following claim:δ(inl(M), x.[α]x, y.[β]y) =v [α]M for any M. We

show this. IfM is a value, then the claim is obtained by (β∨)-rule. If M is not a value, then

δ(inl(M), x.[α]x, y.[β]y) =(name) (λz.δ(z, x.[α]x, y.[β]y))inl(M)

=(name)

(
λz.δ(z, x.[α]x, y.[β]y)

)
((λz′.inl(z′))M)

=(comp)

(
λz′.

(
λz.δ(z, x.[α]x, y.[β]y)

)
inl(z′)

)
M

=(β⊃)
(
λz′.δ(inl(z′), x.[α]x, y.[β]y)

)
M

=(β∨)
(
λz′.[α]z′

)
M =(name) [α]M

Case of (ζ)-rule : to show this case, we introduce evaluation singular contextEw and singular

statement contextDw of theλµwad−
v -calculus.

Ew F {−}N | V{−} | 〈V, {−}〉 | 〈{−},M〉 | fst({−}) | snd({−})
Dw F [α]{−} | [α, β]{−} | {−}M | V{−}

It is easily shown that if we have the following claims:

�
Ew{µα.S}� =v

�
µβ.S[[β]Ew/[α]{−}]

�
and

�
Dw{µα.S}� =v

�
S[Dw{−}/[α]{−}]

�
,

then we can show this case. We can prove the claim by a case analysis ofEw andDw. We

consider the key cases:

- Ew is x{−}:
�
xµα.S

� ≡ xµα.
�
S

�
=(η⊃) (λz.xz)µα.

�
S

�
=(ζ) µβ.

�
S

�
[[β](λz.xz){−}/[α]{−}]

=(η⊃) µβ.
�
S

�
[[β]x{−}/[α]{−}]

(∗)≡ µβ.�S[[β]x{−}/[α]{−}]
�

(∗) can be shown by induction on terms and statements. The key case is proved as follows.

�
[α]M

�
[[β]x{−}/[α]{−}] ≡ (

[α]
�
M

�)
[[β]x{−}/[α]{−}] ≡ [β]x(

�
M

�[[β]x{−}
/[α]{−}])

I .H.≡ [β]x(
�
M[[β]x{−}/[α]{−}]

� ≡ �
([α]M)[[β]x{−}/[α]{−}]

�

- Dw is x{−}: this can be shown in a way similar to the above case.

- Dw is [α, β]{−}:
�
[α, β]µγ.S

� ≡ δ(�
µγ.S

�
, x.[α]x, y.[β]y) ≡ δ(µγ.�S

�
, x.[α]x, y.[β]y)

=(ζ)
�
S

�
[δ({−},x.[α]x,y.[β]y)/[γ]{−}]

(∗)≡ �
S[[α,β]{−}/[γ]{−}]

�
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(∗) is already shown in the proof of Proposition 2.2.

Case of (η∨)-rule :

�
µ(α, β).[α, β]M

� ≡ µγ.�[α, β]M
�
[[γ]inl {−}/[α]{−},[γ]inr{−} /[β]{−}]

≡ µγ.δ(�
M

�
, x.[α]x, y.[β]y)[[γ]inl {−}/[α]{−},[γ]inr{−} /[β]{−}]

≡ µγ.δ(�
M

�
, x.[γ]inl( x), y.[γ]inr(y))

=(π) µγ.[γ]δ(
�
M

�
, x.inl(x), y.inr(y))

=(ηµ) δ(
�
M

�
, x.inl(x), y.inr(y))

=(η∨)
�
M

�

Case of (name)-rule : Let D be a statement context of theλµwad−
v -calculus, then we can

obtain (name)-rule of theλµwad−
v -calculus fromλµwad−

v ` (λx.[α]x)M =v [α]M with (ηµ),

and (ζ)-rule in the following way.

D{M} =(ηµ) D{µα.[α]M} =v D{µα.(λx.[α]x)M} =(ζ) (λx.D{x})M

Therefore, it is sufficient to prove (λx.[α]x)M
�

=v
�
[α]M

�
in our call-by-valueλµ-calculus.

�
(λx.[α]x)M

� ≡ (λx.[α]x)
�
M

�
=(name)

�
[α]M

�

Case of (comp)-rule : Let D be a statement context of theλµwad−
v -calculus, then we can

obtain (comp)-rule of theλµwad−
v -calculus from [α]((λx.M)N) =v (λx.[α]M)N, (ηµ), and

(ζ)-rule in the following way.

D{(λx.M)N} =(ηµ) D{µα.[α](λx.M)N} =v D{µα.(λx.[α]M)N} =(ζ) λx.D{M})N

Therefore, it is sufficient to prove
�
[α]((λx.M)N)

�
=v

�
λx.[α]N

�
.

�
[α]((λx.M)N)

� ≡ [α]((λx.
�
M

�
)
�
N

�
) =(comp) (λx.[α]

�
M

�
)
�
N

� ≡ �
(λx.[α]M)N

�

(3) We can show this by induction on termM and statementS of the λµηv-calculus. We

consider inl(M), inr(M), δ(O, x.M, y.N) andδ(O, x.S, y.T).

Case of inl(M):

�〈〈
inl(M)

〉〉� ≡ �
µ(α, β).[α]

〈〈
M

〉〉� ≡ µγ.
(
[α]

�〈〈
M

〉〉�)
[[γ]inl {−}/[α]{−},[γ]inr{−} /[β]{−}]

≡ µγ.[γ]inl
(�〈〈

M
〉〉�) I .H.

=v µγ.[γ]inl( M) =ηµ inl(M)

inr(M) can be shown similarly.
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Case ofδ(O, x.M, y.N):

�〈〈
δ(O, x.M, y.N)

〉〉� ≡ �
µγ.

(
λy.[γ]

〈〈
N
〉〉)(

µβ.(λx.[γ]
〈〈

M
〉〉

)(µα.[α, β]
〈〈

O
〉〉

)
)〉〉

≡ µγ.
(
λy.[γ]

�〈〈
N
〉〉�)(

µβ.(λx.[γ]
�〈〈

M
〉〉�

)(µα.
�

[α, β]
〈〈

O
〉〉 �

)
)

≡ µγ.
(
λy.[γ]

�〈〈
N
〉〉�)(

µβ.(λx.[γ]
�〈〈

M
〉〉�

)(µα.δ(
�〈〈

O
〉〉�
, x.[α]x, y.[β]y))

)

I .H.
=v µγ.

(
λy.[γ]N

)(
µβ.(λx.[γ]M)(µα.δ(O, x.[α]x, y.[β]y))

)

=(ζ) µγ.δ(O, x.(λx.[γ]M)x, y.(λy.[γ]N)y)

=(β¬) µγ.δ(O, x.[γ]M, y.[γ]N)

=(π) µγ.[γ]δ(O, x.M, y.N)

=(ηµ) δ(O, x.M, y.N)

The other cases are shown similarly.

Case ofδ(O, x.S, y.T): this case is similar to the above case.

(4) We can show this by induction on termM and statementS of theλµwad−
v -calculus. We

consider onlyµ(α, β).S and [α, β]M.

Case ofµ(α, β).S:

〈〈�
µ(α, β).S

�〉〉 ≡ 〈〈
µγ.

�
S

�
[[γ]inl {−}/[α]{−},[γ]inr{−} /[β]{−}]

〉〉

≡ µγ.〈〈�
S

�
[[γ]inl {−}/[α]{−},[γ]inr{−} /[β]{−}]

〉〉

≡ µγ.〈〈�
S

�〉〉
[[γ][[inl {−}]]/[α]{−},[γ][[inr {−}]] /[β]{−}]

≡ µγ.〈〈�
S

�〉〉
[[γ]µ(α′,β′).[α′]{−}/[α]{−},[γ]µ(α′′,β′′).[β′′]{−} /[β]{−}]

=(η∨) µ(α1, β1).[α1, β1]µγ.
〈〈�

S
�〉〉

[[γ]µ(α′,β′).[α′]{−}/[α]{−},[γ]µ(α′′,β′′).[β′′]{−} /[β]{−}]

=(ζ∨) µ(α1, β1).
〈〈�

S
�〉〉

[[α1,β1]µ(α′,β′).[α′]{−}/[α]{−},[α1,β1]µ(α′′,β′′).[β′′]{−} /[β]{−}]

=(β∨) µ(α, β).
〈〈�

S
�〉〉

[[α1]{−}/[α]{−},[β1]{−} /[β]{−}]

≡ µ(α, β).
〈〈�

S
�〉〉

I .H.
=v µ(α, β).S

Case of [α, β]M:

〈〈�
[α, β]M

�〉〉 ≡ 〈〈
δ(

�
M

�
, x.[α]x, y.[β]y)

〉〉

≡
(
(λy.[β]y)(µβ′.(λx.[α]x)(µα′.[α′, β′]

〈〈�
M

�〉〉
))
)

=(name) [β]µβ′.[α]µα′.[α′, β′]
〈〈�

M
�〉〉

=(βµ) [α, β]
〈〈�

M
�〉〉
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I .H.
=v [α, β]M

�

We mention some basic properties of theλµ-calculus at the end of this section.

Lemma 2.4 (Substitution lemma for theλµ-calculus)

Let M andN be terms, andS andT be statements of theλµ-calculus.

(1) SupposeΓ |−λµ ∆ | M : A .

If Γ, x : A |−λµ ∆ | N : B , thenΓ |−λµ ∆ | N[M/x] : B , and

if Γ, x : A | S |−λµ ∆ , thenΓ | S[M/x] |−λµ ∆ .

(2) Let T {−} be a statement context, that is, a statement with a single hole, and suppose

Γ, x : A | T {x} |−λµ ∆ ,then

if Γ |−λµ ∆, α : A | N : B , thenΓ |−λµ ∆ | N[T {−}/[α]{−}] : B , and

if Γ, | S |−λµ ∆, α : A , thenΓ | S[T {−}/[α]{−}] |−λµ ∆ .

Proof. (1) is shown by a straightforward induction onN andS. (2) can be shown by an

induction onM andS using (1). The key case of (2) isS ≡ [α]M. SupposeΓ | [α]M |−λµ
∆, α : A is derived. Since the last rule to obtain this sequent is (pass), we obtainΓ |−λµ ∆, α :

A | M : A. Hence we haveΓ |−λµ ∆ | M[T {−}/[α]{−}] : A by the induction hypothesis, and then

Γ | T {
M[T {−}/[α]{−}]

} |−λµ ∆ by (1). This meansΓ | ([α]M)[T {−}/[α]{−}] |−λµ ∆. �

Proposition 2.5 (Subject reduction for theλµ-calculus)

Let M andN be terms, andS andT be statements of theλµ-calculus.

(1) If Γ |−λµ ∆ | M : A andλµ ` M −→n N , thenΓ |−λµ ∆ | N : A,

If Γ | S |−λµ ∆ andλµ ` S −→n T , thenΓ | T |−λµ ∆.

(2) If Γ |−λµ ∆ | M : A andλµ ` M −→v N , thenΓ |−λµ ∆ | N : A,

If Γ | S |−λµ ∆ andλµ ` S −→v T , thenΓ | T |−λµ ∆.

Proof. Using the substitution lemma, (1) and (2) are shown by an induction on−→n and

−→v respectively. �

The call-by-name and call-by-valueλµ-calculi given in this paper are confluent. This is

proved as a corollary of the results in Section 2.4 and 2.5 (see Proposition 2.37).
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2.3 The dual calculus

The dual calculus was proposed by Wadler [48; 49] as a term calculus that corresponds to

the classical sequent calculus LK. Wadler [48] first gave the dual calculus as a reduction

system, and introduced it as an equation system in his later paper [49]. Detailed definitions

of the later version can be found in appendix. Since we want to consider the system based

on reduction relations, we will give the reduction system of the dual calculus referring to

the system in his first paper.

Types, variables, and covariables of the dual calculus are the same as those of theλµ-

calculus.

Types of the dual calculus

A, BF X | A∧ B | A∨ B | A ⊃ B | ¬A

whereX is an atomic type.

The expressions of the dual calculus consist ofterms(denoted byM,N, . . .), coterms

(denoted byK, L, . . .), andstatements(denoted byS,T, . . .). A term is either a variablex,

a pair〈M,N〉, a left injection〈M〉inl or a right injection〈N〉inr, a complement of a coterm

[K]not, a function abstractionλx.M, with x bound inM, or a covariable abstractionS.αwith

α bound inS. A coterm is either a covariableα, a case [K, L]; a projection from the left of

a product fst[K] or a projection from the right of a product snd[L], a complement of a term

not〈M〉, a function applicationM@K, or a variable abstractionx.S with x bound inS. A

statement is a cut of a term against a cotermM • K.

Expressions of the dual calculus

M, N Fx | 〈M,N〉 | 〈M〉inl | 〈M〉inr | [K]not | λx.M | S.α (terms)

K, L Fα | [K, L] | fst[K] | snd[L] | not〈M〉 | M@K | x.S (coterms)

S, T FM • K (statements)

The set of free variables and covariables occurring inM, K, and S are denoted by

FV(M), FV(K), and FV(S) respectively. We identify the two expressions in theα-equivalence

relation and will use≡ for the syntactic identity on the expressions. The expressionsM[N/x],

K[N/x], andS[N/x] denote the expressions obtained by substitutingN for every free occur-

rence of the variablex in M, K, andS. The expressionsM[L/α], K[L/α] and S[L/α] are

similarly defined.
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Γ, x : A |−dc ∆ | x : A AxR
α : A | Γ |−dc ∆, α : A AxL

Γ |−dc ∆ | M : A K : A | Γ |−dc ∆

Γ | M • K |−dc ∆
Cut

Γ |−dc ∆ | M : A Γ |−dc ∆ | N : B
Γ |−dc ∆ | 〈M,N〉 : A∧ B ∧R

K : A | Γ |−dc ∆

fst[K] : A∧ B | Γ |−dc ∆
∧L

L : B | Γ |−dc ∆

snd[L] : A∧ B | Γ |−dc ∆
∧L

Γ |−dc ∆ | M : A
Γ |−dc ∆ | 〈M〉inl : A∨ B ∨R

Γ |−dc ∆ | N : B
Γ |−dc ∆ | 〈N〉inr : A∨ B ∨R

K : A | Γ |−dc ∆ L : B | Γ |−dc ∆

[K, L] : A∨ B | Γ |−dc ∆
∨L

Γ |−dc ∆ | M : A
not〈M〉 : ¬A | Γ |−dc ∆

¬L
K : A | Γ |−dc ∆

Γ |−dc ∆ | [K]not : ¬A ¬R

Γ |−dc ∆ | M : A K : B | Γ |−dc ∆

M@K : A ⊃ B | Γ |−dc ∆
⊃ L

Γ, x : A |−dc ∆ | M : B
Γ |−dc ∆ | λx.M : A ⊃ B ⊃ R

x : A,Γ | S |−dc ∆

x.S : A | Γ |−dc ∆
LI

Γ | S |−dc ∆, α : A
Γ |−dc ∆ | S.α : A RI

Figure 2.4: Typing rules of the dual calculus

A contextof the dual calculus (denoted byΓ, Σ, . . .) is a finite set of term variables

annotated with types (denoted byx1 : A1, . . . xm : Am), in which each variable occurs once

at the most. Similarly, acocontextof the dual calculus (denoted by∆, Λ, . . .) is defined as

a finite set of covariables with types (denoted byα1 : B1, . . . αm : Bm). A typing judgment

of the dual calculus takes either the formΓ |−dc ∆ | M : A, the formK : A | Γ |−dc ∆, or the

form Γ | S |−dc ∆. We note that|−dc is sometimes written as|−. The typing rules of the dual

calculus are shown in figure 2.4. These rules are the same as those in Wadler’s later paper

[49].

A valueof the dual calculus, denoted byV, W . . ., is a variablex, a pair of values〈V,W〉,
an injection of a value〈V〉inl or 〈W〉inr, a complement of a coterm [K]not, or a function

λx.M.

Values of the dual calculus

V,W F x | 〈V,W〉 | 〈V〉inl | 〈W〉inr | [K]not | λx.M

A covalueof the dual calculus is denoted byP, Q . . .. A covalue is a covariableα, a case

over a pair of covalues [K, L], a projection of a covalue fst[P] or snd[Q], a complement of a
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term not〈M〉, or a function application over a covalueM@Q.

Covalues of the dual calculus

P,QF α | [P,Q] | fst[P] | snd[Q] | not〈M〉 | M@Q

These definitions of the values and covalues are same as those in Wadler (2003) but

different from those in Wadler (2005). Note that if we adopt the definitions in Wadler (2005),

then terms containing beta redexes at the top level may also be values. For example, a term

(〈x, y〉 • fst[α]).α includes a beta redex at the top level even though it is a value according to

the definition in Wadler (2005).

A term contextfor the dual calculus (denoted byE) is a term that contains a hole that

accepts a term, and acoterm context(denoted byF) is a coterm that contains a hole that

accepts a coterm. The hole is written{−}, and the result of filling the hole in the term

contextE with a termM is written E{M}. Similarly, the result of filling the hole in the

coterm contextF with a cotermK is writtenF{K}.
Term contexts and coterm contexts

E F 〈{−},N〉 | 〈V, {−}〉 | 〈{−}〉inl | 〈{−}〉inr

F F [K, {−}] | [{−},P] | fst[{−}] | snd[{−}] | M@{−}
Note that the context of the form ofM@{−} is defined as a coterm context in this paper

though it was not defined in Wadler (2003). This means the reduction rule

N • (M@K) −→n (N • (M@α)).α • K

is permitted as (name)-rule in our call-by-name calculus. This seems to have added a new

rule to Wadler’s original system. However, this rule is not an essentially new rule, because

this rule is justified when implication is defined in terms of conjunction, disjunction and

negation (see Proposition 2.7).

Thecall-by-name reduction relation−→n and thecall-by-value reduction relation−→v

of the dual calculus are defined to be the compatible closure of rules in figure 2.5. In the

sequel, we use−→n∗, −→n+, and=n as the reflexive transitive closure, the transitive closure,

and the symmetric reflexive transitive closure of−→n respectively.−→v∗, −→v+, and=v are

defined similarly.

Some of our reduction rules are slightly different from those in Wadler (2003), but the

differences are not essential. (β⊃)-rules given here are justified in Proposition 2.6. (name)-

rules correspond to (ς)-rules of the dual calculus in Wadler (2003), though these rules are
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Call-by-name reduction Call-by-value reduction

(β∧) 〈M,N〉 • fst[P] −→n M • P 〈V,W〉 • fst[K] −→v V • K

〈M,N〉 • snd[Q] −→n N • Q 〈V,W〉 • snd[L] −→v W • L

(β∨) 〈M〉inl • [P,Q] −→n M • P 〈V〉inl • [K, L] −→v V • K

〈N〉inr • [P,Q] −→n N • Q 〈W〉inr • [K, L] −→v W • L

(β¬) [K]not • not〈M〉 −→n M • K [K]not • not〈M〉 −→v M • K

(β⊃) λx.M • (N@P) −→n M[N/x] • P λx.M • (N@K) −→v N • x.(M • K)

(βL) M • x.S −→n S[M/x] V • x.S −→v S[V/x]

(βR) S.α • P −→n S[P/α] S.α • K −→v S[K/α]

(ηR) M −→n (M • α).α M −→v (M • α).α

(ηL) K −→n x.(x • K) K −→v x.(x • K)

(name) M • F{K} −→n (M • F{α}).α • K E{M} • K −→v M • z.(E{z} • K)

Figure 2.5: Reduction rules of the call-by-value and call-by-name dual calculus

not included in his system. Indeed, we can easily show (name)-rules from (ς)-rules using

(βL) and (βR)-rules in both the call-by-name and call-by-value systems. Conversely, we can

obtain (ς)-rules from (name)-rules using (ηL) and (ηR)-rules.

When a termM of the dual calculus reduces a termN by the one-step call-by-name

reduction, we writeDC ` M −→n N. We also writeDC ` K −→n L, DC ` S −→n T,

DC ` M−→n∗N, DC ` K−→n∗L, DC ` S−→n∗T, DC ` M =n N, DC ` K =n L, and

DC ` S =n T. For call-by-value calculus, we also define these notations similarly.

As in Wadler’s original dual calculus, implication can be defined in terms of the other

connectives,i.e., the following propositions hold.

Proposition 2.6

Under call-by-value, an implication can be defined by

A ⊃ B ≡ ¬(A∧ ¬B)

λx.M ≡ [z.(z• fst[x.(z• snd[not〈M〉])])]not

N@K ≡ not〈 〈N, [K]not〉 〉 .

The translation of a function abstraction is a value, and the typing and reduction rules for

implication can be derived from the typing rules for the other connectives.

Proof. The call-by-value (β⊃)-rule is validated as follows.
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(a) If N is a valueV, then

(λx.M) • (V@K) ≡ [z.(z• fst[x.(z• snd[not〈M〉])])]not • not〈 〈V, [K]not〉 〉
−→v

(β¬) 〈V, [K]not〉 • z.(z• fst[x.(z• snd[not〈M〉])])
−→v

(βL) 〈V, [K]not〉 • fst[x.(〈V, [K]not〉 • snd[not〈M〉])]
−→v∗

(β∧) V • x.([K]not • not〈M〉)
−→v

(β¬) V • x.(M • K).

(b) If N is not a value, we need (name)-rule:

(λx.M) • (N@K) ≡ [z.(z• fst[x.(z• snd[not〈M〉])])]not • not〈 〈N, [K]not〉 〉
−→v

(β¬) 〈N, [K]not〉 • z.(z• fst[x.(z• snd[not〈M〉])])
−→v

(name) N • y.
(
〈y, [K]not〉 • z.(z• fst[x.(z• snd[not〈M〉])])

)

−→v
(βL) N • y.

(〈y, [K]not〉 • fst[x.(〈y, [K]not〉 • snd[not〈M〉])] )

−→v
(β∧) N • y.

(
y • x.([K]not • not〈M〉))

−→v
(βL) N • x.([K]not • not〈M〉) −→v

(β¬) N • x.(M • K).

�

Proposition 2.7

Under call-by-name, an implication can be defined by

A ⊃ B ≡ ¬A∨ B

λx.M ≡ (〈[x.(〈M〉inr • γ)]not〉inl • γ).γ

N@K ≡ [not〈N〉, L] .

The translation of a function application with covalue is a covalue, and the typing and re-

duction rules for implication can be derived from the typing rules for the other connectives.

Proof. The call-by-name (β⊃) and (name)-rules are validated as follows.

(λx.M) • (N@P) ≡ (〈[x.(〈M〉inr • γ)]not〉inl • γ).γ • [not〈N〉,P]

−→n
(βR) (〈[x.(〈M〉inr • [not〈N〉,P])]not〉inl • [not〈N〉,P]

−→n∗
β∨ [x.(M • P)]not • not〈N〉

−→n
(β¬) N • x.(M • P)

−→n
(βL) M[N/x] • P
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N • (M@K) ≡ N • [not〈M〉,K]

−→n
(name) (N • [not〈M〉, α]).α • K

≡ (N • (M@α)).α • K

�

We now mention some basic properties of the dual calculus.

Lemma 2.8 (Substitution lemma for the dual calculus)

Let M andN be terms,K andL be coterms, andS andT be statements of the dual calculus.

(1) SupposeΓ |− ∆ | M : A, then

if Γ, x : A |− ∆ | N : B, thenΓ |− ∆ | N[M/x] : B;

if L : B | Γ, x : A |− ∆, thenL[M/x] : B | Γ |− ∆; and

if Γ, x : A | S |− ∆, thenΓ | S[M/x] |− ∆.

(2) SupposeK : A | Γ |− ∆, then

if Γ |− ∆, α : A | N : B, thenΓ |− ∆ | N[K/α] : B;

if L : B | Γ |− ∆, α : A, thenL[K/α] : B | Γ |− ∆; and

if Γ | S |− ∆, α : A, thenΓ | S[K/α] |− ∆.

Proof. (1) and (2) are shown by a straightforward induction onM, K, andS. �

Proposition 2.9 (Subject reduction for the dual calculus)

Let M andN be terms,K andL be coterms, andS andT be statements of the dual calculus.

(1) If Γ |− ∆ | M : A andDC ` M −→n N , thenΓ |− ∆ | N : A,

If K : A | Γ |− ∆ andDC ` K −→n L , thenL : A | Γ |− ∆,

If Γ | S |− ∆ andDC ` S −→n T , thenΓ | T |− ∆.

(2) If Γ |− ∆ | M : A andDC ` M −→v N , thenΓ |− ∆ | N : A,

If K : A | Γ |− ∆ andDC ` K −→v L , thenL : A | Γ |− ∆,

If Γ | S |− ∆ andDC ` S −→v T , thenΓ | T |− ∆.

Proof. Using the substitution lemma, (1) and (2) are shown by an induction on−→n and

−→v respectively. �

– 37 –



As Wadler mentioned in his paper, the reductions of his dual calculus are confluent.

Moreover, if (ηL), (ηR), and (ς)-rules are omitted, then the remaining reductions are strongly

normalizing for typed terms. Our systems enjoy similar properties. However, since (ηL) and

(ηR)-rules are expansions, the full reductions are not strongly normalizing. Moreover, the

full reductions of our systems, like Wadler’s original systems, include looping terms even

for typed terms. For example,〈x, y〉 • α is a typable statement, and this statement loops in

the call-by-value calculus.

〈x, y〉 • α −→v
(ηR) 〈(x • β).β, y〉 • α −→v

(name) (x • β).β • z.(〈z, y〉 • α)

−→v
(βR) x • z.(〈z, y〉 • α) −→v

(βL) 〈x, y〉 • α

We can give a similar example for the call-by-name calculus.

We now consider the two versions of the dual calculus; one given in Wadler (2003) and

the other given in Wadler (2005). For the latter version, we writeDCη=
n as the call-by-name

system andDCη=
v as the call-by-value system. The differences between the two versions of

the dual calculus are summarized in the following three points:

• The first version is based on reduction relations while the second one is based on

equations,

• the first version does not have (η)-rules related to implications, negations, pairs, and

sums while the second one does contain them, and

• the second version contains terms of the forms (V • fst[α]).α and (V • snd[β]).β as

values and coterms of the formsx.(〈x〉inl • P) andy.(〈y〉inr • Q) as covalues.

2.4 Translations from theλµ-calculus into the dual calcu-

lus

In this section, we give the translations from theλµ-calculus into the dual calculus. We con-

sequently introduce two different translations for the call-by-name and call-by-value calculi,

and show that these translations preserve typing and reductions.

2.4.1 The naive translation

In this subsection, we give the naive translation from theλµ-calculus into the dual calculus.

This translation preserves equalities, but does not preserves reductions.
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Definition 2.1 (The naive translation from λµ into DC)

The naive translation (−)◦ from theλµ-calculus into the dual calculus is defined as follows.

This translation maps a termM and a statementS of our λµ-calculus to a termM◦ and a

statementS◦ of the dual calculus respectively.

(x)◦ ≡ x (〈M,N〉)◦ ≡ 〈M◦,N◦〉
(δ(O, x.M, y.N))◦ ≡ (

O◦ • [x.(M◦ • α), y.(N◦ • α)]
)
.α

(δ(O, x.S, y.T))◦ ≡ O◦ • [x.S◦, y.T◦]

(fst(O))◦ ≡ (O◦ • fst[α]).α (inl(O))◦ ≡ 〈O◦〉inl

(snd(O))◦ ≡ (O◦ • snd[α]).α (inr(O))◦ ≡ 〈O◦〉inr

(λx.S)◦ ≡ [x.S◦]not (OM)◦ ≡ O◦ • not〈M◦〉
(µα.S)◦ ≡ S◦.α ([α]M)◦ ≡ M◦ • α
(λx.M)◦ ≡ λx.M◦ (OM)◦ ≡ (

O◦ • (M◦@α)
)
.α

This naive translation is defined by changing the part of sums of the original translation (−)∗

given in Wadler (2005). The naive translation is consistent with Wadler’s translation in the

sense of the following lemma.

Lemma 2.10

Let M be a term, andS be a statement of ourλµ-calculus, then

(1) DCη= ` 〈〈
M

〉〉∗
=n M◦ andDCη= ` 〈〈

S
〉〉∗

=n S◦;

(2) DCη= ` 〈〈
M

〉〉∗
=v M◦ andDCη= ` 〈〈

S
〉〉∗

=v S◦ hold.

Proof. (1) is proved by induction onM and S. We give the sums,i.e., inl(O), inr(O),

δ(O, x.M, y.N), andδ(O, x.S, y.T).

Case of inl(O) :

〈〈
inl(O)

〉〉∗ ≡ (µ(α, β).[α]
〈〈

O
〉〉

)∗ ≡
(〈

(
〈
(
〈〈

O
〉〉∗ • α).β

〉
inr • γ).α

〉
inr • γ

)
.γ

I .H.
=n

(〈
(
〈
(O◦ • α).β

〉
inr • γ).α

〉
inr • γ

)
.γ

=n
(η∨)

(〈
(
〈
(O◦ • α).β

〉
inr • γ).α

〉
inr • [x.(〈x〉inl • γ), y.(〈y〉inr • γ)]

)
.γ

=n
(β∨)

(〈
((O◦ • α).β

〉
inr • γ).α • y.(〈y〉inr • γ)

)
.γ

=n
(η∨)

(〈
((O◦ • α).β

〉
inr • [x.(〈x〉inl • γ), y.(〈y〉inr • γ)]).α • y.(〈y〉inr • γ)

)
.γ

=n
(β∨)

(
(O◦ • α).β • x.(〈x〉inl • γ)).α • y.(〈y〉inr • γ)

)
.γ

=n
(βR)

(
O◦ • y.(〈y〉inr • γ)

)
.γ

=n
(βL)

(〈O◦〉inr • γ).γ
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=n
(ηL) 〈O◦〉inr

Note that these equations are theDCη= equation, that is, Wadler’s system (2005).

Case of inr(O) : this case is proved in a way similar to the above case.

Case ofδ(O, x.M, y.N) :

〈〈
δ(O, x.M, y.N)

〉〉∗ ≡
(
µγ.

(
λy.[γ]

〈〈
N
〉〉)(

µβ.
(
λx.[γ]

〈〈
M

〉〉)
µα.[α, β]

〈〈
O
〉〉))∗

≡
([

y.
(〈〈

N
〉〉∗ • γ)

]
not• not

〈([
x.
(〈〈

M
〉〉∗ • γ)]not• not

〈(〈〈
O
〉〉∗ • [α, β]

)
.α

〉)
.β
〉)
.γ

I .H.
=n

([
y.
(
N◦ • γ)

]
not• not

〈([
x.
(
M◦ • γ)]not• not

〈(
O◦ • [α, β]

)
.α

〉)
.β
〉)
.γ

=n
β¬

([
y.
(
N◦ • γ)

]
not• not

〈((
O◦ • [α, β]

)
.α • x.

(
M◦ • γ)

)
.β
〉)
.γ

=n
β¬

(((
O◦ • [α, β]

)
.α • x.

(
M◦ • γ)

)
.β • y.

(
N◦ • γ)

)
.γ

=n
(name)

((
O◦ •

[
x.
(
M◦ • γ), β

])
.β • y.

(
N◦ • γ)

)
.γ

=n
(name)

(
O◦ •

[
x.
(
M◦ • γ), y.(N◦ • γ)

])
.γ

≡ (
δ(O, x.M, y.N)

)◦

Case ofδ(O, x.S, y.T) : this case is proved similar to the above case.

(2) is also proved by induction onM andS. The key cases are terms and statements for

sums, and these cases are shown similar to (1). �

The naive translation preserves typing rules and equalities.

Proposition 2.11

(1) If Γ |−λµ ∆ | M : A, thenΓ |− ∆ | M◦ : A.

If Γ | S |−λµ ∆, thenΓ | S◦ |− ∆.

(2) If λµ ` M =n N, thenDC ` M◦ =n N◦.

If λµ ` S =n T, thenDC ` S◦ =n T◦.

(3) If λµ ` M =v N, thenDC ` M◦ =v N◦.

If λµ ` S =v T, thenDC ` S◦ =v T◦.

Proof. (1) We can prove this claim by a straight forward induction on|−λµ.
(2) This claim can be shown directly by an induction on=n. Even if we do not adopt this

approach, we can show this claim as a corollary of Theorem 2.16 using Lemma 2.12.

(3) As with (2), we can show this claim directly, or as a corollary of Theorem 2.21 using
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Lemma 2.17. �

In general, this naive translation, as well as Wadler’s translation, does not preserve re-

ductions. This is because of the so-called administrative redexes. A typical example is

(ζ)-reduction : (µα.[β]λx.[α]x)y −→n µγ.[β]λx.[γ](xy)

(
(µα.[β]λx.[α]x)y

)◦ ≡
(([

x.(x • α)
]
not• β).α • (y@γ)

)
.γ

−→n
(βR)

([
x.(x • (y@γ))

]
not• β

)
.γ

←−n
(βR)

([
x.
((

x • (y@γ′)
)
.γ′ • γ)]not• β

)
.γ

≡
(
µγ.[β]λx.[γ](xy)

)◦

To solve this problem, we modify the naive translation. The idea of modification is similar

to the modified CPS translation by de Groote [13; 14]. In the following two subsections, we

give different translations for the call-by-name and call-by-value calculi. This is because the

administrative redexes of these two calculi are slightly different.

2.4.2 The translation from CBNλµ-calculus into CBN dual calculus

The call-by-name translation consists of the following two translations.

• (−)] maps any termM and statementS of theλµ-calculus to a termM] and statement

S] of the dual calculus, respectively.

• ((−) :n K) is a translation given by cotermK and maps any termM of theλµ-calculus

to a statementM :n K of the dual calculus.

Definition 2.2 ((−)] : CBN λµ-calculus−→ CBN dual calculus)

Let M be a term of theλµ-calculus, (M)] is defined as

(M)] ≡ (M :n α).α (whereα is a fresh covariable)

and letS be a statement of theλµ-calculus, (S)] is defined as

([α]M)] ≡ M :n α

(MN)] ≡ M :n not〈N]〉 (whereM is not aλ-abstraction)

((λx.S)N)] ≡ N] • x.S]

(δ(O, x.S, y.T))] ≡ O] • [x.S], y.T]]
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where the infix operator “:n” translates a pair of a termM of theλµ-calculus and a coterm

K of the dual calculus into a statementM :n K of the dual calculus. This operator is defined

as follows:

x :n K ≡ x • K 〈M,N〉 :n K ≡ 〈M],N]〉 • K

fst(M) :n K ≡ M :n fst[K] inl( M) :n K ≡ 〈M]〉inl • K

snd(M) :n K ≡ M :n snd[K] inr(M) :n K ≡ 〈M]〉inr • K

(λx.S) :n K ≡ [
x.S]]not• K µα.S :n K ≡ S].α • K

(λx.M) :n K ≡ (λx.M]) • K

(MN) :n K ≡ M :n (N]@K) (whereM is not aλ-abstraction)

((λx.M)N) :n K ≡ (
N] • x.(M :n α)

)
.α • K

δ(O, x.M, y.N) :n K ≡
(
O] • [

x.(M :n α), y.(N :n α)
])
.α • K

whereS.α • K meansS[K/α] if K is a covalue, otherwise it meansS.α • K.

This translation is consistent with the naive translation, that is, the following lemma

holds.

Lemma 2.12

Let M andS be a term and a statement of theλµ-calculus, then

(1) DC ` M◦ • P −→n∗ M :n P for any covalueP ,

(2) DC ` M◦ −→n∗ M] , and

(3) DC ` S◦ −→n∗ S].

Proof. We prove (1), (2), and (3) by a simultaneous induction onM, S. If (1) is shown for

some termM, (2) of M is easily shown by

M◦ −→n
ηR

(M◦ • α).α
(1)

−→n∗ (M :n α).α ≡ M].

Therefore we prove (1) and (3).

Case ofx : this case is immediate.

Case ofλx.M, 〈M,N〉, inl(O), and inr(O) : these cases are easily shown by the induction

hypothesis of (2).

Case ofMN (MN is a term,M is not aλ-abstraction) : this case is also easily shown by the

induction hypotheses of (1) and (2).

Case ofλx.S : this case is easily shown by the induction hypothesis of (3).
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Case ofMN (MN is a statement,M is not aλ-abstraction) : this case is also easily shown

by the induction hypotheses of (1) and (2).

Case ofδ(O, x.S, y.T) : this case is also easily shown by the induction hypotheses of (2) and

(3).

Case of [α]M : this case is also easily shown by the induction hypothesis of (1).

Case of (λx.M)N :

(
(λx.M)N

)◦ • P ≡ ((λx.M◦) • (N◦@α)).α • P −→n
(βL) (λx.M◦) • (N◦@P)

−→n
(β⊃) N◦ • x.(M◦ • P)

I .H.(1)

−→n∗ N] • x.(M◦ • P)
I .H.(2)

−→n∗ N] • x.(M :n P) ≡ ((λx.M)N) :n P

Case of fst(O) :

fst(O)◦ • P ≡ (O◦ • fst[α]).α • P −→n
(βL) O◦ • fst[P]

I .H.(1)
−→n∗ O :n fst[P] ≡ fst(O) :n P

Case of snd(O) : this case is shown in a way similar to the above case.

Case ofδ(O, x.M, y.N) :

δ(O, x.M, y.N)◦ • P ≡ (
O◦ • [

x.(M◦ • α), y.(N◦ • α)
])
.α • P

−→n
(βL) O◦ • [

x.(M◦ • P), y.(N◦ • P)
] I .H.(1)

−→n∗ O◦ • [
x.(M :n P), y.(N :n P)

]
I .H.(2)

−→n∗ O] • [
x.(M :n P), y.(N :n P)

] ≡ δ(O, x.M, y.N) :n P

Case ofµα.S :

(µα.S)◦ • P ≡ S◦.α • P
I .H.(3)

−→n∗ S].α • P −→n
(βL) S][P/α] ≡ µα.S :n P

Case of (λx.S)N :

(
(λx.S)N

)◦ ≡ [x.S◦]not • not〈N◦〉 −→n
(β¬) N◦ • x.S◦

I .H.(2),(3)

−→n∗ N] • x.S] ≡ (
(λx.S)N

)]

�

This translation preserves the typing derivation, that is, the following proposition holds.

Proposition 2.13

(1) If Γ |−λµ ∆ | M : A, thenΓ |−dc ∆ | M] : A.
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(2) If Γ | S |−λµ ∆, thenΓ | S] |−dc ∆.

Proof. This proposition can be shown by the subject reduction property for the dual calculus

using Proposition 2.11 and Lemma 2.12. �

Lemma 2.14

(1) Let M andN be terms, andS be a statement of theλµ-calculus, then

DC ` (M :n P)[N]
/x] −→n∗ M[N/x] :n P[N]

/x], and

DC ` S][N]
/x] −→n∗ (S[N/x])] hold for any covalueP.

(2) Let P andQ be covalues andM be a term of the dual calculus, then

DC ` M • [x.(x • P), y.(y • Q)] −→n∗ M • [P,Q]

(3) If K is not a covalue, thenDC ` O :n K −→n∗ O]•K for any termO of theλµ-calculus.

(4) DC ` (M :n N]@P) −→n∗ (MN :n P) andDC ` (M :n not〈N]〉) −→n∗ (MN :n P) for

any termsM andN of theλµ-calculus, and covalueP.

Proof. (1) we can prove this claim by a straightforward induction onM andS. The key case

is :

(x :n P)[N]

/x] ≡ (x • P)[N]

/x] ≡ N] • P[N]

/x] ≡ (N :n α).α • P[N]

/x] −→n N :n P[N]

/x]

(2) M • [x.(x • P), y.(y • Q)] −→n
(name) (M • [x.(x • P), β]).β • y.(y • Q)

−→n
(βL) (M • [x.(x • P), β]).β • Q −→n

(βR) M • [x.(x • P),Q]

−→n
(name) (M • [α,Q]).α • x.(x • P) −→n

(βL) (M • [α,Q]).α • P −→n
(βR) M • [P,Q]

(3) this claim can be shown by induction on termO.

Cases ofx, λx.M, λx.S, µα.S, 〈M,N〉, inl(M), and inr(M) : these are easily shown by the

definition.

Case ofMN (MN is a term,M is not aλ-abstraction) :

MN :n K ≡ M :n N]@K
I .H.
−→n∗ M] • (N]@K) −→n

(name)

(
M] • (N]@α)

)
.α • K

−→n (
M :n N]@α

)
.α • K ≡ (

MN :n α
)
.α • K ≡ (MN)] • K

Case of (λx.M)N :

(λx.M)N :n K ≡ (
N] • x.(M :n α)

)
.α • K ≡ (

(λx.M)N :n α
)
.α • K ≡ ((λx.M)N)] • K
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Case of fst(O) :

fst(O) :n K ≡ O :n fst[K]
I .H.
−→n∗ O] • fst[K] −→n

(name)

(
O] • fst[α]

)
.α • K

−→n (
M :n fst[α]

)
.α • K ≡ (

fst(O) :n α
)
.α • K ≡ fst(O)] • K

Case of snd(O) : this case is shown in a way similar to the above case.

Case ofδ(O, x.M, y.N) :

δ(O, x.M, y.N) :n K ≡ (
O],

[
x.(M :n α), y.(N :n α)

])
.α • K

≡ (δ(O, x.M, y.N) :n α).α • K ≡ δ(O, x.M, y.N)] • K

(4) If M is not aλ-abstraction, then the claim is immediately shown. We consider the

remaining cases.

(λx.M) : (N]@P) ≡ (λx.M]) • (N]@P) −→n
β⊃ N] • x.(M] • P)

−→n
βL

N] • x.(M :n P) ≡ (λx.M)N :n P

(λx.S) : not〈N]〉 ≡ [x.S]]not • not〈N]〉 −→n
β¬ N] • x.S] ≡ ((λx.S)N)]

�

Let En andDn be a call-by-name evaluation term context and statement context of the

λµ-calculus, andP be a covalue of the dual calculus, then we define covaluesΦ(En,P) and

Φ(Dn) as follows:

Φ({−},P) ≡ P Φ(EnN,P) ≡ Φ(En,N]@P)

Φ(fst(En),P) ≡ Φ(En, fst[P]) Φ(snd(En),P) ≡ Φ(En, snd[P])

Φ(δ(En, x.E′n{x}, y.E′′n {y}),P) ≡ Φ(En, [Φ(E′n,P),Φ(E′′n ,P)])

Φ([α]En) ≡ Φ(En, α) Φ(EnN) ≡ Φ(En,not〈N]〉)
Φ(δ(En, x.Dn{x}, y.D′n{y}),P) ≡ Φ(En, [Φ(Dn),Φ(D′n)])

Then the following properties hold.

Lemma 2.15

(1) If M is not aλ-abstraction, thenDC ` (En{M} :n P) −→n∗ (M :n Φ(En,P)) and

DC ` (Dn{M})] −→n∗ (M :n Φ(Dn)) hold.

(2) For any termM of theλµ-calculus,DC ` (M :n Φ(En,P)) −→n∗ (En{M} :n P) and

DC ` (M :n Φ(Dn)) −→n∗ (Dn{M})] hold.
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(3) Let M be a term andS be a statement of theλµ-calculus, then

DC ` (M :n P)[Φ(Dn)/α] −→n∗ M[Dn{−}/[α]{−}] :n P[Φ(Dn)/α], and

DC ` S][Φ(Dn)/α] −→n∗ (S[Dn{−}/[α]{−}])] hold for any covalueP.

Proof. (1) is proved by induction onEn andDn. For EnN, we can prove the claim by the

induction hypothesis, sinceEn{M} is not aλ-abstraction by the assumption ofM.

We now considerδ(En, x.E′n{x}, y.E′′n {y}) andδ(En, x.Dn{x}, y.D′n{y}).
Case ofδ(En, x.E′n{x}, y.E′′n {y}) :

δ(En{M}, x.E′n{x}, y.E′′n {y}) :n P ≡ En{M}] • [
x.(E′n{x} :n P), y.(E′′n {y} :n P)

]
I .H.
−→n∗ En{M}] • [

x.(x • Φ(E′n,P)), y.(y • Φ(E′′n ,P))
]

Lem 2.14(2)

−→n∗ En{M}] • [
Φ(E′n,P),Φ(E′′n ,P)

]

≡ (En{M} :n α).α • [
Φ(E′n,P),Φ(E′′n ,P)

]

−→n (En{M} :n
[
Φ(E′n,P),Φ(E′′n ,P)

]
I .H.
−→n∗ M :n Φ

(
En,

[
Φ(E′n,P),Φ(E′′n ,P)

])

≡ M :n Φ(δ(En, x.E
′
n{x}, y.E′′n {y}),P)

Case ofδ(En, x.Dn{x}, y.D′n{y}) : this case is proved in a way similar to the above case.

The other cases are easily shown using the induction hypothesis.

(2) is proved by induction onEn andDn. If En is EnN, then

M :n Φ(EnN,P) ≡ M :n Φ(En,N
]@P)

I .H.
−→n∗ En{M} :n (N]@P)

Lem 2.14(4)

−→n∗ En{M}N :n P

If Dn is EnN, this case is also proved by the induction hypothesis and Lemma 2.14(4). IfEn

is δ(En, x.E′n{x}, y.E′′n {y}), then

M :nΦ(δ(En, x.E
′
n{x}, y.E′′n {y}),P) ≡ M :n Φ(En, [Φ(E′n,P),Φ(E′′n ,P)])

I .H.
−→n∗ En{M} :n [Φ(E′n,P),Φ(E′′n ,P)]

−→n∗
ηL

En{M} :n [x.(x • Φ(E′n,P)), y.(y • Φ(E′′n ,P))]
I .H.
−→n∗ En{M} :n [x.(E′n{x} :n P), y.(E′′n {y} :n P)]
Lem 2.14(3)

−→n∗ (En{M})] • [x.(E′n{x} :n P), y.(E′′n {y} :n P)]

≡ δ(En{M}, x.E′n{x}, y.E′′n {y}) :n P
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If Dn is δ(En, x.Dn{x}, y.D′n{y}), this case can be shown in a way similar to the above case.

The remaining cases are proved easily using the the induction hypothesis.

(3) is proved by induction onM andS. The key case is [α]M.

([α]M)][Φ(Dn)/α] ≡ (M :n α)[Φ(Dn)/α]
I .H.
−→n∗ (M[Dn{−}/[α]{−}] :n Φ(Dn)

)
(2)

−→n∗ (Dn
{
M[Dn{−}/[α]{−}]

})] ≡
(
([α]M)[Dn{−}/[α]{−}]

)]

The other cases are proved easily using the the induction hypothesis. �

Then, we prove that the call-by-name modified translation (−)] preserves reductions.

Theorem 2.16 (Soundness of(−)])

(1) If λµ ` M −→n N, thenDC ` (M :n P) −→n∗ (N :n P) for any covalueP, especially

DC ` M] −→n∗ N].

(2) If λµ ` S −→n T, thenDC ` S] −→n∗ T].

Moreover, if−→n is (β⊃), (β∧), (β∨) or (β¬), then−→n∗ can be replaced by−→n+.

Proof. The claims are proved by simultaneous induction on−→n.

- Base cases are shown as follows.

Case of (β⊃) :

((λx.M)N :n P) ≡ N] • x.(M :n P) −→n
(βL) (M :n P)[N]

/x]
Lem 2.14(1)

−→n∗ (M[N/x] :n P)

Case of (β∧) :

(
fst〈M,N〉 :n P

) ≡ 〈M,N〉 :n fst[P] ≡ 〈M],N]〉 • fst[P]

−→n
(β∨) M] • P −→n

(βR)

(
M :n P

)

The other rule of (β∧) can be proved similarly.

Case of (β∨) :

(
δ(inl(O), x.En{x}, y.E′n{y}) :n P

) Lem2.15(1)
−→n∗ (

inl(O) :n Φ(δ({−}, x.En{x}, y.E′n{y}),P)
)

≡ (
inl(O) :n Φ

({−}, [Φ(En,P),Φ(E′n,P)
])) ≡ (

inl(O) :n
[
Φ(En,P),Φ(E′n,P)

])

≡ (〈O]〉inl • [
Φ(En,P),Φ(E′n,P)

]) −→n
(β∨) O] • Φ(En,P) −→n

(βR) O :n Φ(En,P)

Lem2.15(2)
−→n∗ (

En{O} :n P
)
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The other rules of (β∨) can be proved similarly.

Case of (β¬) :

(
(λx.S)N

)] ≡ N] • x.S] −→n
(βL) S][N]

/x]
Lem 2.14(1)

−→n∗ (
S[N/x]

)]

Case of (ζ) :

(
En

{
µα.S

}
:n P

) Lem 2.15(1)

−→n∗ (
µα.S :n Φ(En,P)

) ≡ S][Φ(En,P)/α] ≡ S][Φ(En,β)/α][
P/β]

≡ S][Φ([β]En)/α][
P/β]

Lem 2.15(3)

−→n∗ (
S[[β]En{−}/[α]{−}]

)][P/β]

≡ (
µβ.S[[β]En{−}/[α]{−}] :n P

)

The other rule of (ζ) can be proved similarly.

Case of (ηµ) :

(
µα.[α]M :n P

) ≡ (
[α]M

)][P/α] ≡ (M :n α)[P/α] ≡ M :n P

Case of (π) :

(
En

{
δ(O, x.M, y.N)

}
:n P

) Lem 2.15(1)

−→n∗ (
δ(O, x.M, y.N) :n Φ(En,P)

)

≡ (
O] • [

x.(M :n Φ(En,P)), y.(N :n Φ(En,P))
])

Lem 2.15(2)

−→n∗ (
O] • [

x.(En{M} :n P), y.(En{N} :n P)
])

≡ (
δ(O, x.En{M}, y.En{N}) :n P

)

The other rules of (π) can be proved similarly.

Case of (ν) : Let T not be a simple form. Then

(
δ(O, x.S, y.T)

)] ≡ O] • [x.S], y.T]] −→n
(name)

(
O] • [x.S], β]

)
.β • y.T]

−→n
(ηL)

(
O] • [x.S], y′.(y′ • β)]

)
.β • y.T] ≡ δ(O, x.S, y′.[β]y′)].β • y.T]

≡ (
(λy.T)µβ.δ(O, x.S, y′.[β]y′)

)]
.

The other rule of (ν) can be proved similarly.

- Induction cases of (1) and (2).

We can easily show these cases by the induction hypothesis. We consider the less than

obvious case:ON −→n (λx.M)N is obtained fromO −→n λx.M andO is not aλ-abstraction.

(
ON :n P

) ≡ (
O :n (N]@P)

) I .H.
−→n∗ (λx.M :n (N]@P)

) ≡ λx.M] • (N]@P)

−→n
(β⊃) N] • x.(M] • P) −→n

(βR) N] • x.(M :n P) ≡ (
(λx.M)N :n P

)

�
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2.4.3 The translation from CBV λµ-calculus into CBV dual calculus

In this subsection, we introduce the call-by-value translation from theλµ-calculus into the

dual calculus by modifying the naive translation (−)◦. The call-by-name translation also

consists of the two translations: (−)† and (−) :v K.

Definition 2.3 ((−)† : CBV λµ-calculus−→ CBV dual calculus)

Let M be a term of theλµ-calculus, (M)† is defined as

(M)† ≡ (M :v α).α (whereα is a fresh covariable)

and letS be a statement of theλµ-calculus, (S)† is defined as

([α]M)† ≡ M :v α

(MN)† ≡ M :v not〈N†〉 (whereM is not aλ-abstraction)

((λx.S)N)† ≡ N :v x.S†

(δ(O, x.S, y.T))† ≡ M :v [x.S†, y.T†]

where the infix operator “:v” translates a pair of termsM of theλµ-calculus and a cotermK

of the dual calculus into a statementM :v K of the dual calculus. This operator is defined as

follows:

x :v K ≡ x • K 〈M,N〉 :v K ≡ 〈M†,N†〉 • K

fst(M) :v K ≡ M :v fst[K] inl( M) :v K ≡ 〈M†〉inl • K

snd(M) :v K ≡ M :v snd[K] inr(M) :v K ≡ 〈M†〉inr • K

(λx.S) :v K ≡ [
x.S†

]
not• K µα.S :v K ≡ S†[K/α]

(λx.M) :v K ≡ (λx.M†) • K

(MN) :v K ≡ M :v (N†@K) (whereM is not aλ-abstraction)

((λx.M)N) :v K ≡ N :v x.(M :v K)

δ(O, x.M, y.N) :v K ≡ O :v
[
x.(M :v K), y.(N :v K)

]

When we compare the CBV translation given here with the CBN translation, the defini-

tions of
(
µα.S :v K

)
,
(
(λx.M)N :v K

)
,
(
δ(O, x.M, y.N) :v K

)
,
(
(λx.S)N

)†, andδ(O, x.S, y.T)†

are different. This is because the administrative redexes differ according to the difference of

(ζ)-rules of the call-by-name and call-by-value systems.

Like the call-by-name translation, the call-by-value translation is also consistent with

the naive translation in the sense of the following lemma.

Lemma 2.17

Let M andS be a term and a statement of theλµ-calculus, then
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(1) DC ` M◦ • K −→v∗ M :v K for any cotermK ,

(2) DC ` M◦ −→v∗ M† , and

(3) DC ` S◦ −→v∗ S†.

Proof. We prove (1), (2), and (3) by a simultaneous induction onM andS. Most parts of

this proof are similar to the one in Lemma 2.12. For example,

Case of (λx.M)N :

(
(λx.M)N

)◦ • K ≡ ((λx.M◦) • (N◦@α)).α • K −→v
(βL) (λx.M◦) • (N◦@K)

−→v
(β⊃) N◦ • x.(M◦ • K)

I .H.(1)

−→v∗ N :v x.(M :v K) ≡ ((λx.M)N) :v K

�

This call-by-value translation also preserves the typing derivation.

Proposition 2.18

(1) If Γ |−λµ ∆ | M : A, thenΓ |−dc ∆ | M† : A.

(2) If Γ | S |−λµ ∆, thenΓ | S† |−dc ∆.

Proof. This proposition can be shown by the subject reduction property for the dual calculus

using Proposition 2.11 and Lemma 2.17. �

Definition 2.4

For each valueV in theλµ-calculus, we define a value (V)v in the dual calculus as follows.

(x)v ≡ x, (〈V,W〉)v ≡ 〈Vv,Wv〉
(inl(V))v ≡ 〈Vv〉inl (λx.M)v ≡ λx.M†

(inr(W))v ≡ 〈Wv〉inr (λx.S)v ≡ [x.S†]not

Using this notation, we can show the following lemma.

Lemma 2.19

(1) DC ` Vv • K −→v∗ (V :v K) for any cotermK, especiallyVv −→v∗ V†.

(2) DC ` (V :v K) −→v∗ Vv •K for any cotermK. That is, the statement (V :v K) loops in

the call-by-value dual calculus.
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(3) Let M be a term,S be a statement, andV be a value of theλµ-calculus, then

DC ` (M :v K)[Vv
/x] −→v∗ (M[V/x] :v K[Vv

/x]
)
, and

DC ` S†[Vv
/x] −→v∗ (S[V/x]

)† for any cotermK.

Proof. (1) is proved by a straightforward induction onV. For example, we consider the case

of 〈V,W〉: (〈V,W〉v • K
) ≡ 〈Vv,Wv〉 • K

I .H.
−→v∗ 〈V†,W†〉 • K ≡ 〈V,W〉† • K

(2) is also proved by an induction onV. We consider the key cases.

Case of〈V,W〉:
(〈V,W〉 :v K

) ≡ 〈V†,W†〉 • K −→v
(name) V† • x.

(〈x,W†〉 • K
)

−→v
(βR) V :v x.

(〈x,W†〉 • K
) I .H.
−→v∗ Vv • x.

(〈x,W†〉 • K
) −→v

(βL) 〈Vv,W†〉 • K

−→v
(name) W† • y.

(〈Vv, y〉 • K
) −→v

(βR) W :v y.
(〈Vv, y〉 • K

) I .H.
−→v∗ Wv • y.

(〈Vv, y〉 • K
)

−→v
(βL) 〈Vv,Wv〉 • K ≡ 〈V,W〉v • K

Cases of〈V〉inl and〈W〉inr: this case can be proved in a way similar to the above case using

the induction hypothesis and (name)-rule.

(3) is proved by a straightforward induction onM andS. The key case is:

(x :v K)[Vv
/x] ≡ (x • K)[Vv

/x] ≡ Vv • K[Vv
/x]

(1)

−→v∗ (V :v K[Vv
/x]

)

�

Definition 2.5

Let Ev be a call-by-value evaluation singular term context, andK be a coterm of the dual

calculus. Then we define cotermΨ(Ev,K) as follows.

Ψ({−}N,K) ≡ N†@K Ψ((λx.M){−},K) ≡ x.(M :v K)

Ψ(fst(−),K) ≡ fst[K] Ψ(inl(−),K) ≡ x.
(〈x〉inl • K

)

Ψ(snd{−},K) ≡ snd[K] Ψ(inr(−),K) ≡ y.
(〈y〉inr • K

)

Ψ(〈{−},M〉,K) ≡ x.
(〈x,M†〉 • K

)
Ψ(〈V, {−}〉,K) ≡ y.

(〈Vv, y〉 • K
)

Ψ(δ({−}, x.M, y.N),K) ≡ [
x.(M :v K), y.(N :v K)

]

and for every singular statement contextDv, we define cotermΨ(Dv) as follows.

Ψ([α]{−}) ≡ α Ψ(δ({−}, x.S, y.T)) ≡ [
x.S†, y.T†

]

Ψ({−}N) ≡ not〈N†〉 Ψ((λx.S){−}) ≡ x.S†

About this notation, the following properties hold.
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Lemma 2.20

(1) Let M not be aλ-abstraction, thenDC ` (Ev{M} :v K) −→v∗ (M :v Ψ(Ev,K)) and

DC ` (
Dv{M})† −→v∗ (M :v Ψ(Dv)) hold.

(2) Let E be an elimination context or (λx.M){−}, andDv be an evaluation singular state-

ment context. ThenDC ` (M :v Ψ(E,K)) −→v∗ (E{M} :v K) and DC ` (M :v

Ψ(Dv)) −→v∗ (Dv{M})† hold for any termM of theλµ-calculus.

(3) Let Ei be an introduction context of theλµ-calculus. ThenDC ` (M :v Ψ(Ei ,K)) −→v∗
(
(λx.Ei{x})M :v K

)
for any termM.

(4) Let E be an elimination context or (λx.M){−} of the call-by-valueλµ-calculus. Then

DC ` (M :v K)[Ψ(E,β)/α] −→v∗ M[[β]E{−}/[α]{−}] :v K[Ψ(E,β)/α], and

DC ` S†[Ψ(E,β)/α] −→v∗ (S[[β]E{−}/[α]{−}]
)† hold for any cotermK.

(5) Let Dv be an evaluation singular statement context of the call-by-valueλµ-calculus.

ThenDC ` (M :v K)[Ψ(Dv)/α] −→v∗ M[Dv{−}/[α]{−}] :v K[Ψ(Dv)/α], and

DC ` S†[Ψ(Dv)/α] −→v∗ (S[Dv{−}/[α]{−}])† hold for any cotermK.

Proof. (1) SinceM is not aλ-abstraction, we can immediately show (Dv{M} :v K) ≡
(M :v Ψ(Dv)) by the definition. IfEv is an elimination context or (λx.M){−}, then we have

(Ev{M} :v K) ≡ (M :v Ψ(Ev,K)). For the introduction contexts, the claim is proved by a

case analysis ofEv.

Case of〈{−},N〉:

〈M,N〉 :v K ≡ 〈M†,N†〉 • K −→v
(name) M† • x.

(〈x,N†〉 • K
)

−→v
(βR)

(
M :v x.(〈x,N†〉 • K)

) ≡ (
M :v Ψ(〈{−},N〉,K)

)

Case of〈V, {−}〉:

〈V,M〉 :v K ≡ 〈V†,M†〉 • K −→v
(name) V† • x.

(〈x,M†〉 • K
) −→v

(βR) V :v x.
(〈x,M†〉 • K

)
Lem2.19(2)
−→v Vv • x.

(〈x,M†〉 • K
) −→v

(βL) 〈Vv,M†〉 • K −→v
(name) M† • y.

(〈Vv, y〉 • K
)

−→v
(βR)

(
M :v y.

(〈Vv, y〉 • K
)) ≡ (

M :v Ψ(〈V, {−}〉,K)
)

Case of inl(−):

inl(M) :v K ≡ 〈M†〉inl • K −→v
(name) M† • x.

(〈x〉inl • K
)

−→v
(βR) M :v x.

(〈x〉inl • K
) ≡ M :v Ψ(inl(−),K)
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Case of inr(−): this case is proved in a way similar to the above case.

(2) can be shown by a case analysis ofE andDv. We give the key case ofDv as follows:

λx.S :v Ψ({−}N) ≡ λx.S :v not〈N†〉 ≡ [x.S†]not • not〈N†〉
−→v

(β¬) N† • x.S† −→v
(βR) N :v x.S† ≡ (

(λx.S)N
)†

For E, the key case is:M is λx.M andE is {−}N. This case is shown in a way similar to the

key case ofDv.

(3) can be shown by a case analysis ofEi.

Case of〈{−},N〉:
(
M :v Ψ(〈{−},N〉,K)

) ≡ M :v x.(〈x,N†〉 • K) −→v
(ηR) M :v x.

(〈x†,N†〉 • K
)

≡ M :v x.
(〈x,N〉 :v K

) ≡ (λx.〈x,N〉)M :v K

Case of〈V, {−}〉:

M :v Ψ(〈V, {−}〉,K) ≡ (
M :v y.

(〈Vv, y〉 • K
)) Lem2.19(1)
−→v (

M :v y.
(〈V†, y〉 • K

))

−→v
(ηR)

(
M :v y.

(〈V†, y†〉 • K
)) ≡ (

M :v y.
(〈V, y〉 :v K

)) ≡ (λy.〈V, y〉)M :v K

Case of inl(−):

M :v Ψ(inl(−),K) ≡ M :v x.
(〈x〉inl • K

) ≡ M :v x.
(
inl(x) :v K

) ≡ (λx.inl(x))M :v K

Case of inr(−): this case is proved in a way similar to the above case.

(4) can be shown by induction onM andS. The key case is:

(
[α]M

)
[Ψ(E,β)/α] ≡ (

M :v α
)
[Ψ(E,β)/α]

I .H.
−→v∗ M[[β]E{−}/[α]{−}] :v Ψ(E, β)

(2)

−→v∗ E
{
M[[β]E{−}/[α]{−}]

}
:v β ≡ (

[β]E
{
M[[β]E{−}/[α]{−}]

})†

≡ (
([α]M)[[β]E{−}/[α]{−}]

)†

(5) can be shown by induction onM andS. The key case is:

(
[α]M

)
[Ψ(Dv)/α] ≡ (

M :v α
)
[Ψ(Dv)/α]

I .H.
−→v∗ M[Dv{−}/[α]{−}] :v Ψ(Dv)

(2)

−→v∗ (Dv
{
M[Dv{−}/[α]{−}]

})† ≡ (
([α]M)[Dv{−}/[α]{−}]

)†

�

Then we prove that the call-by-value modified translation (−)† preserves reductions.
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Theorem 2.21 (Soundness of(−)†)

(1) If λµ ` M −→v N, thenDC ` (M :v K) −→v∗ (N :v K) for any cotermK, especially

DC ` M† −→v∗ N†.

(2) If λµ ` S −→v T, thenDC ` S† −→v∗ T†.

Moreover, if−→v is (β⊃), (β∧), (β∨) or (β¬), then−→v∗ can be replaced by−→v+.

Proof. (1) and (2) are proved by simultaneous induction on−→v. Base cases are shown as

follows.

Case of (β⊃):

(λx.M)V :v K ≡ V :v x.(M :v K)
Lem 2.19(2)

−→v∗ Vv • x.(M :v K)

−→v
(βL) (M :v K)[Vv

/x]
Lem 2.19(3)

−→v∗ M[V/x] :v K

Case of (β∧):

fst〈V,W〉 :v K ≡ 〈V,W〉 :v fst[K]
Lem 2.19(2)

−→v∗ 〈V,W〉v • fst[K]

≡ 〈Vv,Wv〉 • fst[K] −→v
(β∧) Vv • K

Lem 2.19(1)

−→v∗ V :v K

The other rule of (β∧) is proved similarly.

Case of (β∨):

δ(inl(V), x.M, y.N) :v K ≡ inl(V) :v
[
x.(M :v K), y.(N :v K)

]
Lem 2.19(2)

−→v∗ 〈Vv〉inl • [
x.(M :v K), y.(N :v K)

]

−→v
(β∨) Vv • x.(M :v K) −→v

(βL) (M :v K)[Vv
/x]

Lem 2.19(3)

−→v∗ M[V/x] :v K

The other rules of (β∨) are proved similarly.

Case of (β¬):

(
(λx.S)V

)† ≡ V :v x.S†
Lem 2.19(2)

−→v∗ Vv •v x.S† −→v
(βL) S†[Vv

/x]
Lem 2.19(3)

−→v∗ (S[V/x])
†

Case of (ζ): Let Eeλ be an elimination context of (λx.M){−}, then

Eeλ
{
µα.S

}
:v K

Lem 2.20(1)

−→v∗ µα.S :v Ψ(Eeλ,K) ≡ S†[Ψ(Eeλ,K)/α] ≡ S†[Ψ(Eeλ,β)/α][
K/β]

Lem 2.20(4)

−→v∗ (
S[[β]Eeλ{−}/[α]{−}]

)†[K/β] ≡ µβ.S[[β]Eeλ{−}/[α]{−}] :V K
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The other rule of (ζ) is proved similarly.

Case of (comp):

Eeλ
{
(λx.M)N

}
:v K

Lem 2.20(1)

−→v∗ (λx.M)N :v Ψ(Eeλ,K) ≡ N :v x.(M :v Ψ(Eeλ,K))
Lem 2.20(2)

−→v∗ N :v x.(Eeλ{M} :v K) ≡ (λx.Eeλ{M})N :v K

The other rule of (ζ) is proved similarly.

Case of (π):

Eeλ
{
δ(O, x.M, y.N)

}
:v K

Lem 2.20(1)

−→v∗ δ(O, x.M, y.N) :v Ψ(Eeλ,K)

≡ O :v
[
x.(M :v Ψ(Eeλ,K)), y.(N :v Ψ(Eeλ,K))

]
Lem 2.20(2)

−→v∗ O :v
[
x.(Eeλ{M} :v K), y.(Eeλ{N} :v K)

]

≡ δ(O, x.Eeλ{M}, y.Eeλ{N}) :v K

The other rule of (ζ) is proved similarly.

Case of (ηµ):

µα.[α]M :v K ≡ (
[α]M

)†[K/α] ≡ (M :v α)[K/α] ≡ M :v K

Case of (name): Let O not be a value. Then

Ei{O} :v K
Lem 2.20(1)

−→v∗ O :v Ψ(Ei ,K)
Lem 2.20(3)

−→v∗ (λx.Ei{x})O :v K, and

Ee{O} :v K
Lem 2.20(1)

−→v∗ O :v Ψ(Ee,K) −→v
ηL

O :v x.(x • Ψ(Ee,K))
Lem 2.20(2)

−→v∗ O :v x.(Ee{x} :v K) ≡ (λx.Ee{x})O :v K .

Induction cases (1) and (2) : These cases are in a way similar to the proof for induction cases

of call-by-name. �

2.5 Translation from the dual calculus into theλµ-calculus

In this section, we introduce the translations from the dual calculus into theλµ-calculus. As

in the previous section, we give two different translations for the call-by-name and call-by-

value calculi.
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2.5.1 The naive translation

In this subsection, we give the naive translation from the dual calculus into theλµ-calculus

This translation preserves equalities but does not preserve reductions.

Definition 2.6 (The naive translation from DC into λµ)

The naive translation from the dual calculus into theλµ-calculus is defined as follows. This

translation (−)◦ maps a termM and a statementS of the dual calculus to a termM◦ and

a statementS◦ of theλµ-calculus respectively, and maps a cotermK with a termO of the

λµ-calculus to a statementK◦{O} of theλµ-calculus.

(x)◦ ≡ x α◦{O} ≡ [α]O

(〈M,N〉)◦ ≡ 〈M◦,N◦〉 [K, L]◦{O} ≡ δ(O, x.K◦{x}, y.L◦{y})
(〈M〉inl)◦ ≡ inl(M◦) (fst[K])◦{O} ≡ K◦{fst(O)}
(〈N〉inr)◦ ≡ inr(N◦) (snd[L])◦{O} ≡ L◦{snd(O)}
([K]not)◦ ≡ λx.K◦{x} not〈M〉◦{O} ≡ OM◦

(λx.M)◦ ≡ λx.M◦ (M@K)◦{O} ≡ K◦{OM◦}
(S.α)◦ ≡ µα.S◦ (x.S)◦{O} ≡ (λx.S◦)O

(M • K)◦ ≡ K◦{M◦}

This naive translation is given by changing the part of sums of the original translation

(−)∗ given by Wadler (2005). The naive translation is consistent with Wadler’s translation

in the sense of the following lemma.

Lemma 2.22

Let M be a term,K be a coterm,S be a statement of the dual calculus, andO be a term of

theλµwad-calculus. Then

(1) λµ ` �
M∗

�
=n M◦, λµ ` �

K∗{O}� =n K◦{�O
�}, andλµ ` �

S∗
�

=n S◦;

(2) λµ ` �
M∗

�
=v M◦, λµ ` �

K∗{O}� =v K◦{�O
�}, andλµ ` �

S∗
�

=v S◦ .

Proof. (1) is proved by induction onM, K, andS. We give the cases of sums,i.e., 〈M〉inl,

〈N〉inl, and [K, L].

Case of〈M〉inl :

�〈M〉inl∗
� ≡ �

µ(α, β).[α]M∗
� ≡ µγ.([α]

�
M∗

�
)[[γ]inl(−)/[α]{−},[γ]inr(−) /[β]{−}]

≡ µγ.[γ]inl(
�
M∗

�
)

I .H.
=n µγ.[γ]inl( M◦) =n inl(M◦) ≡ (〈M〉inl)◦
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Case of〈N〉inr : this case is proved in a way similar to the above case.

Case of [K, L] :

�
[K, L]∗{O}� ≡ �

L∗
{
µβ.K∗{µα.[α, β]O}}�

I .H.
=n L◦

{�
µβ.K∗{µα.[α, β]O}�} ≡ L◦

{
µβ.

�
K∗{µα.[α, β]O}�}

I .H.
=n L◦

{
µβ.K◦{�µα.[α, β]O

�}} ≡ L◦
{
µβ.K◦{µα.δ(�

O
�
, x.[α]x, y.[β]y)}}

(∗)
=n δ(

�
O

�
, x.K◦{x}, y.L◦{y}) ≡ [K, L]◦{�O

�}

(∗) comes from the claim:K◦{µα.S} =n S[K◦{−}/[α]{−}]. This claim is proved by a straightfor-

ward induction onK.

(2) is proved by induction onM andS. The key cases are terms and statements for sums,

and these cases are shown in a way similar to (1). �

The naive translation preserves typing rules and equalities.

Proposition 2.23

(1) If Γ |− ∆ | M : A, thenΓ |−λµ ∆ | M◦ : A;

if K : A | Γ |− ∆ andΓ |−λµ ∆ | O : A, thenΓ | K◦{O} |−λµ ∆; and

if Γ | S |− ∆, thenΓ | S◦ |−λµ ∆.

(2) If DC ` M =n N, thenλµ ` M◦ =n N◦;

if DC ` K =n L, thenλµ ` K◦{O} =n L◦{O}; and

if DC ` S =n T, thenλµ ` S◦ =n T◦.

(3) If DC ` M =v N, thenλµ ` M◦ =v N◦;

if DC ` K =v L, thenλµ ` K◦{O} =v L◦{O}; and

if DC ` S =v T, thenλµ ` S◦ =v T◦.

Proof. (1) We can prove this claim by a straightforward induction on|−.

(2) This claim can be shown directly by an induction on=n. Even if we do not adopt this

approach, we can show this claim as a corollary of Theorem 2.28 using Lemma 2.24.

(3) As in (2), we can show this claim directly, or as a corollary of Theorem 2.34 using

Lemma 2.30. �

In general, this naive translation does not preserve reductions as well as Wadler’s trans-

lation. (ηL)-rule is a counter-example for the call-by-name system:

α◦{O} ≡ [α]O←−n (λx.[α]x)O ≡ (x.(x • α))◦{O}
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On the other hand, (β¬)-rule is a counter-example for the call-by-value system:

([α]not • not〈(x • β).γ〉)◦ ≡ (not〈(x • β).γ〉)◦{[α]not◦
} ≡ (λx.[α]x)µγ.[β]x

←−(name) [α]µγ.[β]x ≡ α◦{((x • β).γ)◦} ≡ (
(x • β).γ • α)◦

We also need to modify this naive translation. In the following two subsections, we give

different translations for the call-by-name and call-by-value calculi.

2.5.2 The translation from CBN dual calculus into CBNλµ-calculus

To solve the problem for the call-by-name calculus displayed at the end of the previous

subsection, we need to modify the translation of the cotermx.S.

Definition 2.7 ((−)] : CBN dual calculus−→ CBN λµ-calculus)

We introduce the new translation (−)] by modifying the definition of (−)◦ as follows.

(x)] ≡ x α]{O} ≡ [α]O

(〈M,N〉)] ≡ 〈M],N]〉 [K, L]]{O} ≡ δ(O, x.K]{x}, y.L]{y})
(〈M〉inl)] ≡ inl(M]) (fst[K])]{O} ≡ K]{fst(O)}
(〈N〉inr)] ≡ inr(N]) (snd[L])]{O} ≡ L]{snd(O)}
([K]not)] ≡ λx.K]{x} not〈M〉]{O} ≡ OM]

(λx.M)] ≡ λx.M] (M@K)]{O} ≡ K]{OM]}
(S.α)] ≡ µα.S] (x.S)]{O} ≡ S][O/x]

(M • K)] ≡ K]{M]}
The following lemma means that the call-by-name translation (−)] is consistent with the

naive translation.

Lemma 2.24

Let M be a term,K be a coterm, andS be a statement of the dual calculus. Then

(1) λµ ` M◦ −→∗n M];

(2) λµ ` K◦{O} −→∗n K]{O} for any termO of theλµ-calculus; and

(3) λµ ` S◦ −→∗n S] .

Proposition 2.25

(1) If Γ |−dc ∆ | M : A, thenΓ |−λµ ∆ | M] : A.

(2) If K : A | Γ |−dc ∆ andΓ |−λµ ∆ | O : A, thenΓ |−λµ ∆ | K]{O}.
(3) If Γ | S |−dc ∆, thenΓ |−λµ ∆ | S].
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Proof. These claims can be shown by the subject reduction property for theλµ-calculus

using Proposition 2.23 (1) and Lemma 2.24. �

Lemma 2.26

(1) If λµ ` O −→n O′, thenλµ ` K]{O} −→∗n K]{O′} for any cotermK.

(2) M][N]/x] ≡ (
M[N/x]

)
], K]{O}[N]/x] ≡ (

K[N/x]
)
]

{
O[N]/x]

}
andS][N]/x] ≡ (

S[N/x]
)
].

(3) If P is a covalue, thenP]{−} is a call-by-name evaluation context of theλµ-calculus.

(4) M][L]{−}/[α]{−}] ≡ (
M[L/α]

)
],

(
K]{O})[L]{−}/[α]{−}] ≡ (

K[L/α]
)
]

{
O[L]{−}/[α]{−}]

}
, and

S][L]{−}/[α]{−}] ≡ (
S[L/α]

)
] for any cotermL.

Proof. (1) The claim is proved by induction onK.

(2) The claim is proved by induction onM, K, andS.

(3) The claim is proved by induction onP.

(4) The claim is proved by induction onM, K, andS. We give the key case:

(
α]{O})[L]{−}/[α]{−}] ≡ ([α]O)[L]{−}/[α]{−}] ≡ L]{O[L]{−}/[α]{−}]}

�

Let F be a coterm context of the dual calculus, andO be a term of theλµ-calculus. Then

we define termF]{O} of theλµ-calculus as follows:

({−})]{O} ≡ O (M@{−})]{O} ≡ OM]

(fst[−])]{O} ≡ fst(O) ([−,P])]{O} ≡ µα.δ(O, x.[α]x, y.P]{y})
(snd[−])]{O} ≡ snd(O) ([K,−])]{O} ≡ µβ.δ(O, x.K]{x}, y.[β]y)

This notation satisfies the following property.

Lemma 2.27

Let cotermL not be a covalue, andP be a covalue. Then

(1) λµ ` F{L}]{O} −→∗n L]
{
F]{O}}, and

(2) λµ ` P]

{
F]{O}} −→∗n F{P}]{O}

for any termO of theλµ-calculus.
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Proof. (1) is proved by a case analysis ofF. We give the key cases.

Case of [−,P]:

[L,P]]{O} ≡ δ(O, x.L]{x}, y.P]{y}) −→(ν) (λx.L]{x})µα.δ(O, x.[α]x, y.P]{y})
−→(β¬) L]

{
µα.δ(O, x.[α]x, y.P]{y}) } ≡ L]

{
[−,P]]{O} }

Case of [K,−]:

[K, L]]{O} ≡ δ(O, x.K]{x}, y.L]{y}) −→(ν) (λy.L]{y})µβ.δ(O, x.K]{x}, y.[β]y)

−→(β¬) L]
{
µβ.δ(O, x.K]{x}, y.[β]y)

} ≡ L]
{
[K,−]]{O} }

(2) is also proved by a case analysis ofF. We give the key cases.

Case of [−,Q]:

P]

{
[−,Q]]{O} } ≡ P]

{
µα.δ(O, x.[α]x, y.Q]{y}) }

−→(ζ) δ(O, x.P]{x}, y.Q]{y}) ≡ [P,Q]]{O}

Case of [K,−]:

P]

{
[K,−]]{O} } ≡ P]

{
µβ.δ(O, x.K]{x}, y.[β]y)

}

−→(ζ) δ(O, x.K]{x}, y.P]{y}) ≡ [K,P]]{O}

�

We now prove that the call-by-name translation (−)] preserves reductions.

Theorem 2.28 (Soundness of(−)])

(1) If DC ` M −→n N, thenλµ ` M] −→∗n N].

(2) If DC ` K −→n L, thenλµ ` K]{O} −→∗n L]{O}.
(3) If DC ` S −→n T, thenλµ ` S] −→∗n T].

Moreover, in (1), (2) and (3), if−→n is (β⊃), (β∧), (β∨) or (β¬), then−→∗n can be replaced by

−→+
n .

Proof. The claims are proved by simultaneous induction on the reduction relation−→n.

Base cases are shown as follows.

Case of (β⊃):

(
(λx.M) • (N@P)

)
] ≡ (N@P)]

{
λx.M]

} ≡ P]

{
(λx.M])N]

}
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−→(β⊃) P]

{
M][

N]/x]
} ≡ (

P]{M]})[N]/x] ≡ (M • P)][
N]/x]

≡ (
x.(M • P)

)
]{N]} ≡ (

N • x.(M • P)
)
]

Case of (β∧):

(〈M,N〉 • fst[P]
)
] ≡ fst[P]]

{〈M],N]〉} ≡ P]

{
fst〈M],N]〉}

−→(β∧) P]

{
M]

} ≡ (
M • P

)
]

The other (β∧) case can be shown similarly.

Case of (β∨):

(〈M〉inl • [P,Q]
)
] ≡ [P,Q]]

{
inl(M])

}
a ≡ δ(inl(M]), x.P]{x}, y.Q]{y})

−→(β∨) P]{M]} ≡ (M • P)]

The other (β∧) case can be shown similarly.

Case of (β¬):

(
[K]not • not〈M〉)] ≡ (not〈M〉)]{λx.K]{x}} ≡ (λx.K]{x})M]

−→(β¬) K]

{
M]

} ≡ (M • K)]

Case of (βR):

(
S.α • P

)
] ≡ P]

{
µα.S]

} −→(ζ) S][
P]{−}/[α](−)]

Lem 2.26(4)≡ (
S[P/α]

)
]

Case of (βL):

(
M • x.S

)
] ≡ (x.S)]{M]} ≡ S][

M]/x]
Lem 2.26(2)≡ (

S[M/x]
)
]

Case of (ηR):

M] −→(ηµ) µα.[α]M] ≡ (
(M • α).α

)
]

Case of (ηL):

K]{O} ≡ (K]{x})[O/x] ≡ (x • K)][
O/x] ≡ (

x.(x • K)
)
]{O}

Case of (name): Note thatK is not a covalue.

(
M • F{K} )] ≡ F{K}]{M]

} Lem 2.27(1)

−→∗n K]

{
F]{M]}} −→(ηµ) K]

{
µα.[α]F]{M]}}

≡ K]

{
µα.α]{ F]{M]} }}

Lem 2.27(2)

−→∗n K]

{
µα.F{α}]{M]}}

≡ ((
M • F{α}).α • K

)
]

Induction cases can be shown easily. �
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2.5.3 The translation from CBV dual calculus into CBVλµ-calculus

Now we introduce the modified translation (−)† for the call-by-value calculus. The prob-

lematic cases of the naive translation were (ηL) and (β¬)-rules. To solve these problems, we

introduce a notation: (λvx.S)O. This meansS[O/x] if O is a value, otherwise (λx.S)O. Our

idea for solving the latter case is to modify the definition of (M • K)◦ to (λvx.K◦{x})M◦.
Definition 2.8 ((−)† : CBV dual calculus−→ CBV λµ-calculus)

We define the translation (−)† as follows.

(x)† ≡ x α†{O} ≡ [α]O

(〈M,N〉)† ≡ 〈M†,N†〉 [K, L]†{O} ≡ δ(O, x.K†{x}, y.L†{y})
(〈M〉inl)† ≡ inl(M†) (fst[K])†{O} ≡ K†

[
fst(O)

]

(〈N〉inr)† ≡ inr(N†) (snd[L])†{O} ≡ L†
[
snd(O)

]

([K]not)† ≡ λx.K†{x} not〈M〉†{O} ≡ OM†

(λx.M)† ≡ λx.M† (M@K)†{O} ≡ K†
[
OM†

]

(S.α)† ≡ µα.S† (x.S)†{O} ≡ (
λvx.S†

)
O

(M • K)† ≡ K†
[
M†

]
K†

[
O
] ≡ (

λvx.K†{x})O

For the call-by-value translation, we use the two notationsK†{O} andK†
[
O
]
. The relation

between these two notations is as follows.

Lemma 2.29

Let O be a term of theλµ-calculus, andK be a coterm, then

(1) K†{V} ≡ K†[V] for any valueV; and

(2) λµ ` K†{O} −→∗v K†[O].

Proof. (1) is immediately shown. We show (2) whenO is not a value by a case analysis of

K.

Case ofα: α†{O} ≡ [α]O −→(name) (λz.[α]z)O ≡ α†[O]

Case of [K, L]:

[K, L]†{O} ≡ δ(O, x.K†{x}, y.L†{y}) −→(name) (λz.δ(z, x.K†{x}, y.L†{y}))O ≡ [K, L]†[O]

Case of fst[K]:

fst[K]†{O} ≡ K†
[
fst(O)

] ≡ (
λz.K†{z})fst(O) −→(name)

(
λz.K†{z})((λx.fst(x))O

)

−→(comp)
(
λx.

(
λz.K†{z})fst(x)

)
O ≡ (

λx.
(
K†

[
fst(x)

])
O

– 62 –



≡ (
λx.

(
fst[K]†{x})O ≡ fst[K]†

[
O
]

Case of snd[K]: This case can be shown in a way similar to the above case.

Case of not〈M〉:

not〈M〉†{O} ≡ OM† −→(name) (λz.zM†)O ≡ (
λz.not〈M〉†{z})O ≡ not〈M〉†[O]

Case ofM@K:

(M@K)†{O} ≡ K†
[
OM†

] ≡ (
λz.K†{z})OM† −→(name)

(
λz.K†{z})((λx.xM†)O

)

−→(comp)
(
λx.

(
λz.K†{z})(xM†)

)
O ≡ (

λx.
(
K†

[
xM†

])
O

≡ (
λx.(M@K)†{x})O ≡ (M@K)†

[
O
]

Case ofx.S:

(x.S)†{O} ≡ (λx.S†)O ≡ (
λz.S†[z/x]

)
O ≡ (

λz.(x.S)†{z})O ≡ (x.S)†
[
O
]

�

The call-by-value translation, (−)†, is consistent with the naive translation as well as the

call-by-name translation.

Lemma 2.30

Let M be a term,K be a coterm, andS be a statement of the dual calculus, then

(1) λµ ` M◦ −→∗v M† ,

(2) λµ ` K◦{O} −→∗v K†{O} for any termO of theλµ-calculus , and

(3) λµ ` S◦ −→∗v S† .

Proof. The claims are shown by a simultaneous induction onM, K, andS. We consider the

key cases.

Case of fst[K]:

fst[K]◦{O} ≡ K◦
{
fst(O)

} I .H.
−→∗v K†

{
fst(O)

} Lem 2.29
−→∗v K†

[
fst(O)

] ≡ fst[K]†
[
O
]

Case of snd[K]: This case is proved similarly.

Case ofM@K:

(M@K)◦{O} ≡ K◦
{
OM◦

} I .H.
−→∗v K†

{
OM†

} Lem 2.29
−→∗v K†

[
OM†

] ≡ (M@K)†
{
O
}
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Case ofx.S: (x.S)◦{O} ≡ (λx.S◦)O
I .H.
−→∗v (λx.S†)O −→∗v (λvx.S†)O ≡ (x.S)†{O}

Case ofM • K: (M • K)◦ ≡ K◦
{
M◦

} I .H.
−→∗v K†

{
M†

} Lem 2.29
−→∗v K†

[
M†

] ≡ (M • K)† �

The translation (−)† is compatible with the type system.

Proposition 2.31

(1) If Γ |−dc ∆ | M : A, thenΓ |−λµ ∆ | M† : A.

(2) If K : A | Γ |−dc ∆ andΓ |−λµ ∆ | O : A, thenΓ |−λµ ∆ | K†{O}.
(3) If Γ | S |−dc ∆, thenΓ |−λµ ∆ | S†.

Proof. These claims can be shown by the subject reduction property for theλµ-calculus

using Proposition 2.23 (1) and Lemma 2.30. �

Lemma 2.32

Let O andO′ be terms of theλµ-calculus,M andN be terms,V be a value,K andL be

coterms, andS be a statement of the dual calculus.

(1) If λµ ` O −→v O′, thenλµ ` K†{O} −→∗v K†{O′} andλµ ` K†
[
O
] −→∗v K†

[
O′

]
.

(2) M†[V†/x] ≡ (
M[V/x]

)
†, (K†{O})[V†/x] ≡ (

K[V/x]
)
†
{
O[V†/x]

}
,

(K†[O])[V†/x] ≡ (
K[V/x]

)
†
[
O[V†/x]

]
, andS†[V†/x] ≡ (

S[V/x]
)
†.

Proof. (1) The claim is proved by induction onK.

(2) We claim that if we have (K†{O})[V†/x] ≡ (
K[V/x]

)
†
{
O[V†/x]

}
, then we can derive (K†[O])[V†/x] ≡(

K[V/x]
)
†
[
O[V†/x]

]
. We show this claim. AssumeO is a value, thenO[V/x] is also a value.

Hence we have

(K†[O])[V†/x] ≡ (K†{O})[V†/x] ≡ (K[V/x])†{O[V†/x]} ≡ (K[V/x])†
[
O[V†/x]

]
.

If O is not a value, thenO[V/x] is also not a value, so we have

(K†[O])[V†/x] ≡ (
(λz.K†{z})O)

[V†/x] ≡ (
λz.(K†{z})[V†/x]

)
(O[V†/x])

)

≡ (
λz.(K[V/x])†{z})(O[V†/x])

) ≡ (K[V/x])†
[
O[V†/x]

]
.

Therefore we show the other claims by induction onM, K, andS. We give the key case:

x†[V†/x] ≡ x[V†/x] ≡ V†. �
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Lemma 2.33

Let O be a term of theλµ-calculus,M be a term,K andL be coterms, andS be a statement

of the dual calculus. Then

λµ ` M†[(λy.L†{y}){−}/[α]{−}] −→∗v
(
M[L/α]

)
†,

λµ ` (K†
{
O
}
)[(λy.L†{y}){−}/[α]{−}] −→∗v

(
K[L/α]

)
†
[
O[(λy.L†{y}){−}/[α]{−}]

]
,

λµ ` (K†[O])[ (λy.L†{y}){−}/[α]{−}] −→∗v
(
K[L/α]

)
†
[
O[(λy.L†{y}){−}/[α]{−}]

]
, and

λµ ` S†[(λy.L†{y}){−}/[α]{−}] −→∗v
(
S[L/α]

)
†.

Proof. We can prove this lemma by a simultaneous induction onM, K, andS. We give two

cases.

Case ofα:

(
α†{O})[(λy.L†{y}){−}/[α]{−}] ≡ ([α]O)[(λy.L†{y}){−}/[α]{−}]

≡ (λy.L†{y})(O[(λy.L†{y}){−}/[α]{−}]
)

−→∗v (λvy.L†{y})(O[(λy.L†{y}){−}/[α]{−}]
) ≡ L†

[
O[(λy.L†{y}){−}/[α]{−}]

]

Case of fst[K]:

(
(fst[K])†{O})[(λy.L†{y}){−}/[α]{−}] ≡ (

K†
[
fst(O)

])
[(λy.L†{y}){−}/[α]{−}]

I .H.
−→∗v (K[L/α])†

[
fst(O)[(λy.L†{y}){−}/[α]{−}]

]

≡ (
K[L/α])†

[
fst

(
O[(λy.L†{y}){−}/[α]{−}]

)]

≡ (
fst(K[L/α])

)
†
{
fst

(
O[(λy.L†{y}){−}/[α]{−}]

)}

Lem 2.29(2)

−→∗v
(
fst(K[L/α])

)
†
[
fst

(
O[(λy.L†{y}){−}/[α]{−}]

)]

�

We now prove that the call-by-name translation (−)† preserves reductions.

Theorem 2.34 (Soundness of(−)†)

(1) If DC ` M −→v N , thenλµ ` M† −→∗v N† .

(2) If DC ` K −→v L , thenλµ ` K†{O} −→∗v L†{O} andλµ ` K†[O] −→∗v L†[O] .

(3) If DC ` S −→v T , thenλµ ` S† −→∗v T† .

Moreover, in (1), (2), and (3), if−→v is (β⊃), (β∧), (β∨) or (β¬), then−→∗v can be replaced by

−→+
v .
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Proof. (1)–(3) are proved by simultaneous induction on the reduction relation−→v. We

claim that if K†{O} −→∗v L†{O}, then K†[O] −→∗v L†[O]. We first show this claim. If

O is a value, the claim is immediately shown. Otherwise,K†[O] ≡ (λx.K†{x})O −→∗v
(λx.L†{x})O ≡ L†[O].

We often use the following shortcuts:

(a) (V • K)† ≡ K†[V†] ≡ K†{V†}
(b) (λx.K†{x})M† −→∗v (λvx.K†{x})M† ≡ K†

[
M†

] ≡ (M • K)†

(c) (λx.S†)M† −→∗v (λvx.S†)M† ≡ (x.S)†{M†}
Lem 2.29
−→∗v (x.S)†

[
M†

] ≡ (M • x.S)†

Base cases are shown as follows.

Case of (β⊃):

(
(λx.M) • (N@K)

)
†

(a)≡ (N@K)†
{
(λx.M)†

} ≡ K†
[
(λx.M†)N†

]

≡ (λz.K†{z})((λx.M†)N†
) −→(comp)

(
λx.(λz.K†{z})M†)N†

(b)

−→∗v
(
λx.(M • K)†

)
N†

(c)

−→∗v
(
N • x.(M • K)

)
†

Case of (β∧):

(〈V,W〉 • fst[K]
)
†

(a)≡ fst[K]†
{
(〈V,W〉)†} ≡ K†

[
fst〈V†,W†〉 ] −→(β∧) K†

[
V†

] ≡ (
V • K

)
†

The other case of (β∧) can be shown similarly.

Case of (β∨):

(〈V〉inl • [K, L]
)
†

(a)≡ [K, L]†
{ 〈V〉inl†

} ≡ δ(inl(V†), x.K†{x}, y.L†{y})
−→(β∨) K†{V†} (a)≡ (V • K)†

The other case of (β∧) can be shown similarly.

Case of (β¬):

(
[K]not • not〈M〉)†

(a)≡ (not〈M〉)†{ [K]not†
} ≡ (λx.K†{x})M†

(b)

−→∗v (M • K)†

Case of (βR):

(
S.α • K

)
† ≡ K†

[
(S.α)†

] ≡ (λx.K†{x})µα.S†
−→(ζ) S†[(λx.K†{x}){−}/[α](−)]

Lem 2.33≡ (
S[K/α]

)
†

Case of (βL):

(
V • x.S

)
†

(a)≡ (x.S)†{V†} ≡ S†[V†/x]
Lem 2.32(2)≡ (

S[V/x]
)
†
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Case of (ηR):

M† −→(ηµ) µα.[α]M† ≡ µα.α†{M}
Lem 2.29(2)

−→∗v µα.α†[M]

≡ µα.(M • α)† ≡ (
(M • α).α

)
†

Case of (ηL): If O is a valueV, then

K†{V} ≡ (K†{x})[V/x]
(a)≡ (x • K)†[V/x] ≡ (

x.(x • K)
)
†{V} .

If O is not a value, then

K†{O}
Lem 2.29(2)

−→∗v K†[O] ≡ (
λx.K†{x})O (a)≡ (

λx.(x • K)†
)
O ≡ (

x.(x • K)
)
†{O} .

Case of (name): Note thatM† is not a value becauseM is not a value.

( 〈M,N〉 • K
)
† ≡ K†

[ 〈M,N〉† ] ≡ (λz.K†{z})〈M†,N†〉
−→(name) (λz.K†{z})((λx.〈x,N†〉)M†) −→(comp)

(
λx.(λz.K†{z})〈x,N†〉)M†

(b)

−→∗v
(
λx.(〈x,N〉 • K)†

)
M†

(c)

−→∗v
(
M • x.(〈x,N〉 • K)

)
†

( 〈V,M〉 • K
)
† ≡ K†

[ 〈V,M〉† ] ≡ (λz.K†{z})〈V†,M†〉
−→(name) (λz.K†{z})((λx.〈V†, x〉)M†) −→(comp)

(
λx.(λz.K†{z})〈V†, x〉)M†

(b)

−→∗v
(
λx.(〈V, x〉 • K)†

)
M†

(c)

−→∗v
(
M • x.(〈V, x〉 • K)

)
†

( 〈M〉inl • K
)
† ≡ K†

[ 〈M〉inl†
] ≡ (λz.K†{z})inl(M†)

−→(name) (λz.K†{z})((λx.inl(x))M†
) −→(comp)

(
λx.(λz.K†{z})inl(x)

)
M†

(b)

−→∗v
(
λx.(〈x〉inl • K)†

)
M†

(c)

−→∗v
(
M • x.(〈x〉inl • K)

)
†

The last case,〈M〉inr • K −→v M • x.(〈x〉inr • K), is also shown similarly.

Induction cases can be easily shown. �

2.5.4 Reloading property

Wadler (2005) showed that the compositions of his translationsλµ → dual → λµ and

dual → λµ → dual reload into theλµ-calculus and the dual calculus respectively. That

is, they become identity maps up to the call-by-name/call-by-value equalities. When we

consider the composition of our translations, we can obtain corresponding results as follows:
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- a reloaded term by the call-by-name modified translations is reduced from the original

term by the call-by-name reductions (Proposition 2.35 (1), 2.36 (1)), and

- a reloaded term by the call-by-value modified translations is reduced from the original

term by the call-by-value reductions (Proposition 2.35 (2), 2.36 (2)).

Proposition 2.35 (Reloading property:λµ→ dual→ λµ)

Let O be a term andS be a statement of theλµ-calculus. Then

(1) λµ ` S −→∗n (S])],

λµ ` P]{O} −→∗n (O :n P)] for any covalueP, especiallyλµ ` O −→∗n (O])].

(2) λµ ` S −→∗v (S†)†,

λµ ` K†[O] −→∗v (O :v K)† for any cotermK, especiallyλµ ` O −→∗v (O†)†.

Proof. (1) If we haveP]{O} −→∗n (O :n P)] for any covalueP, then we can obtainO −→(ηµ)

µα.[α]O ≡ µα.α]{O} −→∗n µα.(O :n α)] ≡ (
(O :n α).α

)
] ≡

(
O])

]. We prove the rest of (1) by

a simultaneous induction onO andS.

Case ofx : P]{x} ≡ (x • P)] ≡ (x :n P)]

Case of〈M,N〉 : P]
{〈M,N〉}

I .H.
−→∗n P]

{〈
(M])], (N

])]
〉} ≡ P]

{〈
M],N]〉

]

}

≡ (〈M,N〉] • P
)
] −→∗n

(〈M,N〉 :n P
)
]

Case of fst(O) : P]
{
fst(O)

} ≡ fst[P]]
{
O
} I .H.
−→∗n fst[P]]

{
(O])]

} ≡ (
O] • fst[P]

)
]

−→∗n
(
O :n fst[P]

)
] ≡

(
fst(O) :n P

)
]

The case of snd(O) is shown similarly.

Case of inl(O) :

P]
{
inl(O)

} I .H.
−→∗n P]

{
inl((O])])

} ≡ P]
{〈O]〉inl]

} ≡ (〈O]〉inl • P
)
] ≡

(
inl(O) :n P

)
]

The case of inr(O) is shown similarly.

Case ofδ(O, x.M, y.N) :

P]
{
δ(O, x.M, y.N)

} −→(π) δ
(
O, x.P]{M}, y.P]{N}

)
I .H.
−→∗n δ

(
O, x.

(
M :n P

)
, y.

(
N :n P

)) ≡ δ
(
O, x′.

(
x.(M :n P)

)
]{x′}, y′.

(
y.(N :n P)

)
]{y′}

)

≡ [
x.(M :n P), y.(N :n P)

]
]{O}

I .H.
−→∗n

[
x.(M :n P), y.(N :n P)

]
]

{
(O])]

}

≡
(
O] • [

x.(M :n P), y.(N :n P)
])
]
≡ (

δ(O, x.M, y.N) :n P
)
]
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Case ofλx.M : P]
{
λx.M

} I .H.
−→∗n P]

{
λx.(M])]

} ≡ (
(λx.M]) • P

)
] ≡

(
λx.M :n P

)
]

Case ofMN (MN is a term,M is not aλ-abstraction) :

P]
{
MN

} I .H.
−→∗n P]

{
M(N])]

} ≡ (N]@P)]
{
M

} I .H.
−→∗n

(
M] :n (N]@P)

)
] ≡

(
MN :n P

)
]

Case of (λx.M)N :

P]
{
(λx.M)N

} −→(β⊃) P]
{
M[N/x]

} ≡ (
x.
(
P]{M}

))
]{N}

I .H.
−→∗n

(
x.(M :n P)

)
]{N}

I .H.
−→∗n

(
x.(M :n P)

)
]

{
(N])]

} ≡ (
N] • x.(M :n P)

)
] ≡

(
(λx.M)N :n P

)
]

Case ofλx.S :

P]
{
λx.S

} I .H.
−→∗n P]

{
λx.(S])]

} ≡ P]
{
λy.

(
x.S])

]{y}
}
≡

([
x.S]]not• P

)
]
≡ (

λx.S :n P
)
]

Case ofµα.S :

P]
{
µα.S

} I .H.
−→∗n P]

{
µα.(S])]

} −→(ζ) (S])][
P]{−}/[α]{−}] −→∗n

(
S][P/α]

)
] ≡

(
µα.S :n P

)
]

Case of [α]O : [α]O ≡ α]{O}
I .H.
−→∗n

(
O :n α

)
] ≡

(
([α]O)]

)
]

Case ofδ(O, x.S, y.T) :

δ(O, x.S, y.T)
I .H.
−→∗n δ

(
O, x.(S])], y.(T

])]
)
≡ δ

(
O, x′.

(
(x.S])]{x′}

)
, y′.

(
(y.T])]{y′}

))

≡ [
x.S], y.T]]

]

{
O
} I .H.
−→∗n

[
x.S], y.T]]

]

{
(O])]

} ≡
(
O] • [

x.S], y.T]])
]
≡ (

δ(O, x.S, y.T)]
)
]

Case ofMN (MN is a statement,M is not aλ-abstraction) :

MN
I .H.
−→∗n M(N])] ≡ not〈N]〉]{M}

I .H.
−→∗n

(
M :n not〈N]〉)] ≡

(
(MN)]

)
]

Case of (λx.S)N :

(λx.S)N
I .H.
−→∗n

(
λx.(S])]

)
N −→(β¬) (S])][

N/x] ≡ (
x.S])

]{N}
I .H.
−→∗n

(
x.S])

]

{
(N])]

} ≡
(
N] • x.S]

)
]
≡

((
(λx.S)N

)])
]
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(2) We can easily showO −→∗v (O†)† from K†[O] −→∗v (O :v K)† in a way similar to the

proof in (1). In the following, we prove the rest of (2) by a simultaneous induction onO and

S.

Case ofx : K†[x] ≡ (x • K)† ≡ (x :v K)†
Case of〈M,N〉 :

K†
[〈M,N〉]

I .H.
−→∗v K†

[〈
(M†)†, (N†)†

〉] ≡ K†
[ 〈

M†,N†
〉
†
] ≡ (〈M,N〉† • K

)
†

−→∗v
(〈M,N〉 :v K

)
†

Case of fst(O) :

K†
[
fst(O)

] ≡ fst[K]†
{
O
} I .H.
−→∗v fst[K]†

{
(O†)†

} Lem2.29
−→∗v fst[K]†

[
(O†)†

] ≡ (
O† • fst[K]

)
†

−→∗v
(
O :v fst[K]

)
† ≡

(
fst(O) :v K

)
†

The case of snd(O) is shown similarly.

Case of inl(O) :

K†
[
inl(O)

] I .H.
−→∗v K†

[
inl((O†)†)

] ≡ K†
[〈O†〉inl†

] ≡ (〈O†〉inl • K
)
† ≡

(
inl(O) :v K

)
†

The case of inr(O) is shown similarly.

Case ofδ(O, x.M, y.N) :

K†
[
δ(O, x.M, y.N)

] ≡ (λz.K†{z})δ(O, x.M, y.N) −→(π) δ
(
O, x.(λz.K†{z})M, y.(λz.K†{z})N

)

−→∗v δ
(
O, x.K†[M], y.K†[N]

) I .H.
−→∗v δ

(
O, x.

(
M :v K

)
, y.

(
N :v K

))

≡ δ
(
O, x′.

(
x.(M :v K)

)
†{x′}, y′.

(
y.(N :v K)

)
†{y′}

)
≡ [

x.(M :v K), y.(N :v K)
]
†{O}

Lem2.29
−→∗v

[
x.(M :v K), y.(N :v K)

]
†
[
O
] I .H.
−→∗v

(
O :v

[
x.(M :v K), y.(N :v K)

])
†

≡ (
δ(O, x.M, y.N) :v K

)
†

Case ofλx.M : K†
[
λx.M

] I .H.
−→∗v K†

[
λx.(M†)†

] ≡ (
(λx.M†) • K

)
† ≡

(
λx.M :v K

)
†

Case ofMN (MN is a term,M is not aλ-abstraction) :

K†
[
MN

] I .H.
−→∗v K†

[
M(N†)†

] ≡ (N†@K)†
{
M

} Lem2.29
−→∗v (N†@K)†

[
M

]
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I .H.
−→∗v

(
M :v (N†@K)

)
† ≡

(
MN :v K

)
†

Case of (λx.M)N :

K†
[
(λx.M)N

] ≡ (λz.K†{z})((λx.M)N
) −→(comp) (λx.(λz.K†{z})M)N

−→∗v
(
λx.K†[M]

)
N

I .H.
−→∗v

(
λx.(M :v K)†

)
N −→∗v

(
x.(M :v K)

)
†{N}

I .H.
−→∗v

(
N :v x.(M :v K)

)
† ≡

(
(λx.M)N :v K

)
†

Case ofλx.S :

K†
[
λx.S

] I .H.
−→∗v K†

[
λx.(S†)†

] ≡ K†
[
λy.

(
x.S†

)
†{y}

]
≡

([
x.S†

]
not• K

)
† ≡

(
λx.S :v K

)
†

Case ofµα.S :

K†
[
µα.S

] I .H.
−→∗v K†

[
µα.(S†)†

] ≡ (λz.K†{z})µα.(S†)† −→(ζ) (S†)†[(λz.K†{z}){−}/[α]{−}]
Lem2.33
−→∗v

(
S†[K/α]

)
† ≡

(
µα.S :v K

)
†

Case of [α]O : [α]O ≡ α†{O}
Lem2.29
−→∗v α†[O]

I .H.
−→∗v

(
O :v α

)
† ≡

(
([α]O)†

)
†

Case ofδ(O, x.S, y.T) :

δ(O, x.S, y.T)
I .H.
−→∗v δ

(
O, x.(S†)†, y.(T†)†

)
≡ δ

(
O, x′.

(
(x.S†)†{x′}), y′.

(
(y.T†)†{y′})

)

≡ [
x.S†, y.T†

]
†
{
O
} Lem2.29
−→∗v

[
x.S†, y.T†

]
†
[
O
] I .H.
−→∗v

(
O :v

[
x.S†, y.T†

])
† ≡

(
δ(O, x.S, y.T)†

)
†

Case ofMN (MN is a statement,M is not aλ-abstraction) :

MN
I .H.
−→∗v M(N†)† ≡ not〈N†〉†{M}

I .H.
−→∗v

(
M :v not〈N†〉)† ≡

(
(MN)†

)
†

Case of (λx.S)N :

(λx.S)N
I .H.
−→∗v

(
λx.(S†)†

)
N −→∗v (x.S†)†[N]

I .H.
−→∗v

(
N :v x.S†

)
† ≡

((
(λx.S)N

)†)
†

�
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Proposition 2.36 (Reloading property:dual→ λµ→ dual)

Let M be a term,K be a coterm, andS be a statement of the dual calculus. Then

(1) DC ` M −→n∗ (M])],

DC ` O] • K −→n∗ (K]{O})] for any termO of theλµ-calculus, and

DC ` S −→n∗ (S])];

(2) DC ` M −→v∗ (M†)†,

DC ` O† • K −→v∗ (K†{O})† for any termO of theλµ-calculus, and

DC ` S −→v∗ (S†)† .

Proof. (1) If we establish the following claims: (a)M •Q −→n∗ (M] :n Q); (b) O] •K −→n∗

K]{O} if K is not a covalue; (c) (O :n P) −→n∗ (P]{O})]; and (d)S −→n∗ (S])], we can easily

obtain (1). Therefore, we show these claims by a simultaneous induction onM, K, P, and

S.

Case ofx: x • Q ≡ x :n P

Case of〈M〉inl: 〈M〉inl • Q
I .H.(a)
−→n∗ 〈

(M])
]〉inl • Q ≡ inl

(
M]

)
:n Q ≡ 〈M〉inl] :n Q

The case of〈M〉inr is shown similarly.

Case of〈M,N〉: 〈M,N〉 • Q
I .H.(a)
−→n∗ 〈

(M])
], (N])

]〉 • Q ≡ (
〈
M], N]

〉
:n Q) ≡ (〈M, N〉] :n Q)

Case of [K]not:

[K]not • Q −→n
(ηL)

[
x.(x • K)

]
not• Q −→n

(ηR)
[
x.(x] • K)

]
not• Q

I .H.(b)
−→n∗ [

x.
(
K]{x}

)]]not• Q ≡ (λx.
(
K]{x}

)
:n Q) ≡ ([K]not] :n Q)

Case ofλx.M: (λx.M) • P
I .H.(a)
−→n∗ (λx.(M])

]) • P ≡ (
λx.M] :n P

) ≡ (
(λx.M)] :n P

)

Case ofS.α:

S.α • Q
I .H.(d)
−→n∗ (S])

].α • Q −→n
(βR) (S])

][Q/α] ≡ (µα.S] :n Q) ≡ (
(S.α)] :n Q

)

Case ofα: (O :n α) ≡ ([α]O)] ≡ (α]{O})]
Case of [P,Q]:

(
O :n[P,Q]

) −→n∗
(ηL)

(
O :n

[
x.(x • P), y.(y • Q)

]) I .H.(c)
−→n∗ (

O :n
[
x.(P]{x})], y.(Q]{y})]

])

−→n∗ O] • [
x.(P]{x})], y.(Q]{y})]

] ≡ δ(O, x.P]{x}, y.Q]{y}
)] ≡ (

[P,Q]]{O}
)]
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Case of fst[P]: (O :n fst[P]) ≡ (fst(O) :n P)
I .H.(c)
−→n∗ (

P]
{
fst(O)

}
)] ≡ (

fst[P]]
{
O
}
)]

The case of snd[P] can be shown similarly.

Case of not〈M〉:
(
O :n not〈M〉)

I .H.(a)
−→n∗ (

O :n not
〈
(M])

]〉) −→n∗ (
OM]

)] ≡ (
not〈M〉]{O}

)]

Case ofM@P:

(
O :n (M@P)

) I .H.(a)
−→n∗ (

O :n
(
(M])

]@P
)) −→n∗ (

OM] :n P
) I .H.(c)
−→n∗ (

P]
{
OM]

})]

≡ (
(M@P)]{O}

)]

Case of [K,Q] (where [K,Q] is not a covalue):

(O] • [K, L]) −→n∗
(ηL) O] • [

x.(x • K), y.(y • L)
] I .H.(b)
−→n∗ O] • [

x.(K]{x})], y.(L]{y})]
]

≡ δ(O, x.K]{x}, y.L]{y}
) ≡ (

[K, L]]{O}
)]

Case of fst[K] (whereK is not a covalue):

(O] • fst[K]) −→n
(name)

(
O] • fst[α]

)
.α • K −→n∗ (

O :n fst[α]
)
.α • K

≡ (
fst(O) :n α

)
.α • K ≡ (fst(O))] • K

I .H.(b)
−→n∗ (

K]
{
fst(O)

})] ≡
(
fst[K]]

{
O
})]

The case of snd[K] can be shown similarly.

Case ofM@K (whereK is not a covalue):

(
O] • (M@K)

) −→n
(name)

(
O] • (M@α)

)
.α • K −→n∗ (

O :n (M@α)
)
.α • K

I .H.(a)
−→n∗ (

O :n
(
(M])

]@α
) )
.α • K −→n∗ (

OM] :n α
)
.α • K

≡ (
OM]

)] • K
I .H.(b)
−→n∗ (

K]
{
OM]

} )] ≡ (
(M@K)]{O}

)]

Case ofx.S:

(O] • x.S)
I .H.(d)
−→n∗ (

O] • x.(S])
]) −→n

(βL) (S])
][O]

/x
] Lem2.14(1)
−→n∗ (S][

O/x])
] ≡ (

(x.S)]{O}
)]
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Case ofM • K: (M • K)
I .H.(a)
−→n∗ (M])

] • K
I .H.
−→n∗ (

K]{M]}
)] ≡ (

(M • K)]
)]

(2) We show these claims by a simultaneous induction onM, K, andS. If we establish

(O :v K) −→v∗ (
K†{O})†, then we can easily obtain (O† • K) −→v∗ (

K†{O})†. Therefore, we

show this claim instead of the second clause of (2).

Case ofx: x −→v
(ηR) (x • α).α ≡ (x :v α).α ≡ x† ≡ (x†)†

Case of〈M〉inl:

〈M〉inl
I .H.
−→v∗ 〈

(M†)†
〉
inl −→v

(ηR)
(〈

(M†)†
〉
inl • α).α ≡ (

inl(M†) :v α
)
.α

≡ (
inl(M†)

)† ≡ (〈M〉inl†)†

〈M〉inr is shown similarly.

Case of〈M,N〉:

〈M,N〉
I .H.
−→v∗ 〈

(M†)†, (N†)†
〉 −→v

(ηR)
(〈

(M†)†, (N†)†
〉 • α).α

≡ (〈
M†, N†

〉
:v α

)
.α ≡ 〈

M†, N†
〉† ≡ (〈M, N〉†)†

Case of [K]not:

[K]not −→v
(ηL)

[
x.(x • K)

]
not

I .H.
−→v∗ [

x.(K†{x})†]not−→v
(ηR)

([
x.(K†{x})†]not• α

)
.α

≡ (
λx.K†{x} :v α

)
.α ≡ (

λx.K†{x})† ≡ (
[K]not†

)†

Case ofλx.M:

λx.M
I .H.
−→v∗ λx.(M†)† −→v

(ηR)
(
λx.(M†)† • α )

.α ≡ (
λx.M† :v α

)
.α

≡ (
λx.M†

)† ≡ (
(λx.M)†

)†

Case ofS.α:

S.α
I .H.
−→v∗ (S†)†.α ≡ (S†)†[β/α].β ≡ (

µα.S† :v β
)
.β ≡ (

µα.S†
)† ≡ (

(S.α)†
)†

Case ofα: (O :v α) ≡ (
[α]O

)† ≡ (
α†{O})†

Case of [K, L]:

(
O :v[K, L]

) −→v∗
(ηL)

(
O :v

[
x.(x • K), y.(y • L)

]) I .H.
−→v∗ (

O :v
[
x.(K†{x})†, y.(L†{y})†])
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≡ δ(O, x.K†{x}, y.L†{y})† ≡ (
[K, L]†{O})†

Case of fst[K]:

(O :v fst[K]) ≡ (fst(O) :v K)
I .H.
−→v∗ (

K†
{
fst(O)

}
)†

Lem2.29
−→v∗ (

K†
[
fst(O)

]
)† ≡ (

fst[K]†
{
O
}
)†

snd[K] can be shown similarly.

Case of not〈M〉:
(
O :v not〈M〉)

I .H.
−→v∗ (

O :v not
〈
(M†)†

〉) −→v∗ (
OM†

)† ≡ (
not〈M〉†{O})†

Case ofM@K:

(
O :v (M@K)

) I .H.
−→v∗ (

O :v
(
(M†)†@K

)) −→v∗ (
OM† :v K

) I .H.
−→v∗ (

K†
{
OM†

})†
Lem2.29
−→v∗ (

K†
[
OM†

])† ≡ (
(M@K)†{O} )†

Case ofx.S: (O :v •x.S)
I .H.
−→v∗ (

O :v x.(S†)†
) ≡ (

(λx.S†)O
)† −→v∗ (

(x.S)†{O})†
Case ofM • K:

(M • K)
I .H.
−→v∗ (M†)† • K −→v

(βL) (M† :v K)
I .H.
−→v∗ (

K†
{
M†

} )†
Lem2.29
−→v∗ (

K†
[
M†

] )† ≡ (
(M • K)†

)†

�

We can obtain the Church-Rosser property for theλµ-calculus by using the Church-

Rosser property for the dual calculus and the results in Section 2.4 and 2.5.

Proposition 2.37 (Church-Rosser property for theλµ-calculus)

(1) If λµ ` O −→∗n M and λµ ` O −→∗n M′ , then there exists a termO′ such that

λµ ` M −→∗n O′ andλµ ` M′ −→∗n O′ .

If λµ ` S −→∗n T andλµ ` S −→∗n T′ , then there exists a termS′ such thatλµ `
T −→∗n S′ andλµ ` T′ −→∗n S′ .

(2) If λµ ` O −→∗v M and λµ ` O −→∗v M′ , then there exists a termO′ such that

λµ ` M −→∗v O′ andλµ ` M′ −→∗v O′ .

If λµ ` S −→∗v T andλµ ` S −→∗v T′ , then there exists a termS′ such thatλµ `
T −→∗v S′ andλµ ` T′ −→∗v S′ .
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Proof. (1) We show the first line of (1). Supposeλµ ` O −→∗n M andλµ ` O −→∗n M′ ,

thenDC ` (O)] −→n∗ (M)] andDC ` (O)] −→n∗ (M′)] by Theorem 2.16. By the Church-

Rosser property of the dual calculus, there is a termN of the dual calculus such thatDC `
(M)] −→n∗ N and DC ` (M′)] −→n∗ N. Hence we haveλµ ` ((M)])] −→∗n (N)] and

λµ ` ((M′)])] −→∗n (N)] by Theorem 2.28. Therefore we obtainλµ ` M −→∗n (N)] and

λµ ` M′ −→∗n (N)] by Proposition 2.35. The second line of (1) is shown similarly. (2) is

also shown in a way similar to (1). �

2.6 Duality of call-by-name and call-by-value

Duality is the essential feature of the dual calculus. The dual calculus corresponds to

Gentzen’s sequent calculus and has explicit duality of classical logic at each level.

- Types: disjunction is dual to conjunction, and negation is self-dual,

- Expressions: terms are dual to coterms, and statements are self-dual,

- Typing rules: right rules are dual to left rules, and cut is self-dual, and

- Evaluation strategies: call-by-value is dual to call-by-name.

In this section, following Wadler’s approach, we discuss the systems that do not involve

implication, since duality is not defined for implication.

The duality translation from the dual calculus to itself is given as follows.

Duality for the dual calculus

(X)◦ ≡ X (¬A)◦ ≡ ¬A◦

(A∧ B)◦ ≡ B◦ ∨ A◦ (A∨ B)◦ ≡ B◦ ∧ A◦

(x)◦ ≡ x (α)◦ ≡ α
(〈M,N〉)◦ ≡ [

N◦,M◦
]

([K, L])◦ ≡ 〈L◦,K◦〉
(〈M〉inl)◦ ≡ snd[M◦] (fst[K])◦ ≡ 〈K◦〉inr

(〈N〉inr)◦ ≡ fst[N◦] (snd[L])◦ ≡ 〈L◦〉inl

(S.α)◦ ≡ x.S◦ (x.S)◦ ≡ S◦.x

(M • K)◦ ≡ K◦ • M◦

Proposition 2.38 (Duality for the dual calculus)

(Involution) Duality is an involution, that is,

A◦◦ ≡ A, M◦◦ ≡ M, K◦◦ ≡ K, andS◦◦ ≡ S.

(Expressions and typing rules)

– 76 –



(a) For any termM of the dual calculus,M◦ is a coterm.

If M has typeA, thenM◦ also has typeA, i.e.,

Γ |− ∆ | M : A impliesM◦ : A | ∆◦ |− Γ◦ .

whereΓ◦ is xm : A◦m, . . . , x1 : A◦1 for Γ ≡ x1 : A1, . . . , xm : Am, and ∆◦ is αn :

B◦n, . . . , α1 : B◦1 for ∆ ≡ α1 : B1, . . . , αn : Bn.

(b) For any cotermK of the dual calculus,K◦ is a term.

If K has typeA, thenK◦ also has typeA, i.e.,

K : A | Γ |− ∆ implies∆◦ |− Γ◦ | K◦ : A .

(c) For any statementS of the dual calculus,S◦ is also a statement, and

Γ | S |− ∆ implies∆◦ | S◦ |− Γ◦ .

(Evaluation strategies)

(a) If DC ` M −→n N, thenDC ` M◦ −→v N◦.

If DC ` K −→n L, thenDC ` K◦ −→v L◦.

If DC ` S −→n T, thenDC ` S◦ −→v T◦.

(b) If DC ` M −→v N, thenDC ` M◦ −→n N◦.

If DC ` K −→v L, thenDC ` K◦ −→n L◦.

If DC ` S −→v T, thenDC ` S◦ −→n T◦.

Wadler (2005) gave a translation between the call-by-name and call-by-valueλµ-calculi

by composing the translation, (−)◦, and his translations between the dual calculus and the

λµ-calculus. He explained duality between the call-by-nameλµ-calculus and the call-by-

valueλµ-calculus by purely syntactic techniques. We follow his approach. Since we gave

the different translations for call-by-name and call-by-value in the previous sections, we

introduce two distinct translations between the call-by-name and call-by-valueλµ-calculi.

Definition 2.9 (The translation from the CBN λµ into the CBV λµ)

Let A be a type,M andO be terms, andS be a statement of theλµ-calculus. Then we define

the translation (−)◦ as follows.

(A)◦ ≡ A◦

M◦{O} ≡ (
(M])◦

)
†{O}

S◦ ≡ (
(S])◦

)
†
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Definition 2.10 (The translation from the CBV λµ into the CBN λµ)

Let A be a type,M andO be terms, andS be a statement of theλµ-calculus. Then we define

the translation (−)• as follows.

(A)• ≡ A◦

M•{O} ≡ (
(M†)◦

)
]{O}

S• ≡ (
(S†)◦

)
]

The following properties of these translations are easily shown.

Proposition 2.39

(1) For any termM of the λµ-calculus, M◦{O} and M•{O} are statements of theλµ-

calculus. For any statementS of the λµ-calculus,S◦ andS• are statements of the

λµ-calculus.

(2) If Γ |−λµ ∆ | M : A and∆◦ |−λµ Γ◦ | O : A◦ , thenΓ | M◦{O} |−λµ ∆ .

If Γ | S |−λµ ∆ , thenΓ | S◦ |−λµ ∆ .

(3) If Γ |−λµ ∆ | M : A and∆• |−λµ Γ• | O : A• , thenΓ | M•{O} |−λµ ∆ .

If Γ | S |−λµ ∆ , thenΓ | S• |−λµ ∆ .

Then, we obtain our final results.

Theorem 2.40

Let M, N, andO be terms, andS andT be statements. Then the following hold.

(1) The translation (−)◦ preserves reductions.

λµ ` M −→n N impliesλµ ` M◦{O} −→v N◦{O}
λµ ` S −→n T impliesλµ ` S◦ −→v T◦

(2) The translation (−)• preserves reductions.

λµ ` M −→v N impliesλµ ` M•{O} −→n N•{O}
λµ ` S −→v T impliesλµ ` S• −→n T•

(3) The composition of translations obtained by applying (−)• after (−)◦ is identity up to

the call-by-name reductions.

λµ ` M −→n µα.(M◦{α})•
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λµ ` O•{M} −→n (M◦{O})•
λµ ` S −→n (S◦)•

(4) The composition of translations obtained by applying (−)◦ after (−)• is identity up to

the call-by-value reductions.

λµ ` M −→v µα.(M•{α})◦
λµ ` O◦{M} −→v (M•{O})◦

λµ ` S −→v (S•)◦

Proof. (1) is shown by using Theorem 2.16, Theorem 2.34, and Proposition 2.38.

(2) is shown by using Theorem 2.21, Theorem 2.28, and Proposition 2.38.

(3) follows from Proposition 2.35, 2.36, and 2.38. We show the third line first.

S
Prop 2.35(1)

−→∗n (S])] ≡ (S]◦◦)]
Prop 2.36(2)

−→∗n
(
((S]◦)†)†◦

)
] ≡ (S◦)•

The second line is shown as follows.

O•{M} ≡ (O†◦)]{M}
Prop 2.35(1)

−→∗n (O†◦)]
{
(M])]

} ≡ (
M] •O†◦

)
]

≡ (
M]◦◦ •O†◦

)
] ≡

((
O† • M]◦)◦)

]

Prop 2.36(2)

−→∗n
((

(M]◦)†{O})†◦)] ≡
(
M◦{O})•

The first line follows from the second line.

M −→(ηµ) µα.[α]M
(∗)≡ µα.α•{M} −→∗n µα.(M◦{α})•

(∗) is shown by

α•{M} ≡ (α†◦)]{M} ≡ ((α • β).β)◦)]{M}
≡ (β.(β • α))]{M} ≡ ([α]β)[M/β] ≡ [α]M .

(4) can be shown in a way similar to (3). �

Although Wadler gave the same translation which goes back and forth between the call-

by-name and call-by-valueλµ-calculi, we needed two different translations. However, al-

though Wadler’s translation preserved onlyequations, our translations preservereductions.

This is the greatest advantage of our results.
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2.7 Appendix: Wadler’s systems and translations

Types A, B F X | A∧ B | A∨ B | ¬A | A ⊃ B
Terms O, M, N F x | 〈M,N〉 | fst(M) | snd(N) | µ(α, β).S

| λx.M | OM | µα.S | λx.S
Statements S, T F [α]M | [α, β]M | OM
Typing rules

Γ | S |−λµ ∆, α : A, β : B

Γ |−λµ ∆ | µ(α, β).S : A∨ B ∨I
Γ |−λµ ∆ | M : A∨ B

Γ | [α, β]M |−λµ ∆, α : A, β : B ∨E

The other typing rules (Ax), (⊃ I ), (⊃ E), (∧I ), (∧E1), (∧E2), (¬I ), (¬E), (Act), and (Pass)
are same as our system.

Syntax and typing rules of theλµ-calculus given in Wadler (2005)

Types A, B F X | A∧ B | A∨ B | ¬A | A ⊃ B
Terms M, N F x | 〈M,N〉 | 〈M〉inl | 〈N〉inr | [K]not | λx.M | S.α
Coterms K, L F α | [K, L] | fst[K] | snd[L] | not〈M〉 | M@K | x.S
Statements S, T F M • K

The typing rules of the dual calculus (Wadler (2005)) are same as our system.

Syntax and typing rules of the dual calculus given in Wadler (2005)
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Values V, W F x | 〈V,W〉 | fst(V) | snd(W) | λx.S | λx.M
| µ(α, β).[α]V | µ(α, β).[β]W

Evaluation context E F {−} | 〈E,N〉 | 〈V,E〉 | fst(E) | snd(E) | EM | VE
Statement context D F [α]E | [α, β]E | EM | VE

(β&1) fst〈V,W〉 =v V
(β&2) snd〈V,W〉 =v W
(β∨) [α′, β′]µ(α, β).S =v S[α′/α, β′/β]
(β¬) (λx.S)V =v S[V/x]
(β ⊃) (λx.M)V =v M[V/x]
(βµ) [α′]µα.S =v S[α′/α]
(η&) V : A & B =v 〈fstV, sndV〉
(η∨) M : A∨ B =v µ(α, β).[α, β]M (α, β: fresh)
(η¬) V : ¬A =v λx.Vx (x: fresh)
(η ⊃) V : A & B =v λx.Vx (x: fresh)
(ηµ) M =v µα.[α]M (α: fresh)
(name) D{M} =v (λx.D{x})M (x: fresh)
(comp) D{(λx.N)M} =v (λx.D{N})M
(ς) D{µα.S} =v S[D{−}/[α]{−}]

Equality axioms of theλµwad
v -calculus

(β&1) fst〈M,N〉 =n M
(β&2) snd〈M,N〉 =n N
(β∨) [α′, β′]µ(α, β).S =n S[α′/α, β′/β]
(β¬) (λx.S)N =n S[N/x]
(β ⊃) (λx.M)N =n M[N/x]
(βµ) [α′]µα.S =n S[α′/α]
(η&) M : A & B =n 〈fstM, sndM〉
(η∨) M : A∨ B =n µ(α, β).[α, β]M (α, β: fresh)
(η¬) M : ¬A =n λx.Mx (x: fresh)
(η ⊃) M : A & B =n λx.Mx (x: fresh)
(ηµ) M =n µα.[α]M (α: fresh)
(ς&1) fst(µα.S) =n µβ.S[[β]fst{−[α]{−}]
(ς&2) snd(µα.S) =n µβ.S[[β]snd{−}/[α]{−}]
(ς∨) [β, γ]µα.S =n S[[β, γ]{−}/[α]{−}]
(ς¬) (µα.S)M =n S[{−}M/[α]{−}]
(ς ⊃) (µα.S)M =n µβ.S[[β]{−}M/[α]{−}]

Equality axioms of theλµwad
n -calculus
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Values V, W F x | 〈V,W〉 | (V • fst[α]).α | (W • snd[β]).β
| 〈V〉inl | 〈W〉inr | λx.M | [K]not

Evaluation context E F {−} | 〈E,N〉 | 〈V,E〉 | 〈E〉inl | 〈E〉inr
(β&1) 〈V,W〉 • fst[K] =v V • K
(β&2) 〈V,W〉 • snd[L] =v W • L
(β∨1) 〈V〉inl • [K, L] =v V • K
(β∨2) 〈W〉inr • [K, L] =v W • L
(β¬) [K]not • not〈M〉 =v M • K
(β ⊃) λx.N • (M@K) =v M • x.(N • K)
(βR) (S).α • K =v S[K/α]
(βL) V • x.(S) =v S[V/x]
(η&) V : A & B =v 〈(V • fst[α]).α, (V • snd[β]).β〉 (α, β: fresh)
(η∨) K : A∨ B =v [x.(〈x〉inl • K), y.(〈y〉inr • K)] (x, y: fresh)
(η¬) V : ¬A =v [x.(V • not〈x〉)]not (x: fresh)
(η ⊃) V : A ⊃ B =v λx.((V • (x@β)).β) (x: fresh)
(ηR) M =v (M • α).α (α: fresh)
(ηL) K =v x.(x • K) (x: fresh)
(name) E{M} • K =v M • x.(E{x} • K) (x: fresh)

Equality axioms of Wadler’s call-by-value dual calculus (DCη=
v )

Covalues P, Q F α | [P,Q] | x.(〈x〉inl • P) | y.(〈y〉inr • Q)
| fst[P] | snd[Q] | M@Q | not〈M〉

Coevaluation context F F {−} | [K, F] | [F,P] | fst[F] | snd[F]
(β&1) 〈M,N〉 • fst[P] =n M • P
(β&2) 〈M,N〉 • snd[Q] =n N • Q
(β∨1) 〈M〉inl • [P,Q] =n M • P
(β∨2) 〈Q〉inr • [P,Q] =n N • Q
(β¬) [K]not • not〈M〉 =n M • K
(β ⊃) λx.N • (M@K) =n M • x.(N • K)
(βR) (S).α • P =n S[P/α]
(βL) M • x.(S) =n S[M/x]
(η&) M : A & B =n 〈(M • fst[α]).α, (M • snd[β]).β〉 (α, β: fresh)
(η∨) P : A∨ B =n [x.(〈x〉inl • P), y.(〈y〉inr • P)] (x, y: fresh)
(η¬) P : ¬A =n not〈([α]not • P).α〉 (α: fresh)
(η ⊃) M : A ⊃ B =n λx.((M • (x@β)).β)) (x: fresh)
(ηR) M =n (M • α).α (α: fresh)
(ηL) K =n x.(x • K) (x: fresh)
(name) M • F{K} =n (M • F{α}).α • K (α: fresh)

Equality axioms of Wadler’s call-by-name dual calculus (DCη=
n )
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(x)∗ ≡ x (〈M,N〉)∗ ≡ 〈M∗,N∗〉
(fst(O))∗ ≡ (O∗ • fst[α]).α (snd(O))∗ ≡ (O∗ • snd[β]).β
(λx.S)∗ ≡ [x.(S)∗]not (OM)∗ ≡ O∗ • not〈M∗〉
(µα.S)∗ ≡ (S∗).α ([α]M)∗ ≡ M∗ • α
(µ(α, β).S)∗ ≡ (〈(〈(S)∗.β〉inr • γ).α〉inl • γ).γ
([α, β]M)∗ ≡ M∗ • [α, β]
(λx.M)∗ ≡ λx.M∗ (OM)∗ ≡ (O∗ • (M∗@β)).β

Wadler’s translation from theλµ-calculus into the dual calculus

(x)∗ ≡ x (α)∗{O} ≡ [α]O
(〈M,N〉)∗ ≡ 〈M∗,N∗〉 ([K, L])∗{O} ≡ L∗{ µβ.K∗{µα.[α, β]O} }
(〈M〉inl)∗ ≡ µ(α, β).[α]M∗ (fst[K])∗{O} ≡ K∗{fst(O)}
(〈N〉inr)∗ ≡ µ(α, β).[β]N∗ (snd[L])∗{O} ≡ L∗{snd(O)}
([K]not)∗ ≡ λx.K∗{x} (not〈M〉)∗{O} ≡ OM∗
(λx.M)∗ ≡ λx.M∗ (M@K)∗{O} ≡ K∗{OM∗}
(S.α)∗ ≡ µα.S∗ (x.S)∗{O} ≡ (λx.S∗)O

(M • K)∗ ≡ K∗{M∗}

Wadler’s translation from the dual calculus into theλµ-calculus
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Chapter 3

Polarized dual calculus and logical

predicates for polarized linear logic

3.1 Introduction

Much work has been done in order to extend Curry-Howard correspondence to classical

logic in the last ten years. The first step was taken by Griffin [25] who observed that

call/cc corresponded to Peirce’s Law. Since then, a number of term calculi for classical

logic have been introduced. Among those, Parigot [40] introduced a particularly nice one,

theλµ-calculus. This calculus corresponds to classical natural deduction in just the same

way that theλ-calculus corresponds intuitionistic natural deduction. In the meantime, it has

been known since Filinski [17] that there is a computational duality between call-by-value

and call-by-name in the presence of continuations. Selinger [45] investigated the duality by

giving categorical semantics to the call-by-value and the call-by-nameλµ-calculus. Wadler

[48] introduced the dual calculus to show this duality in a purely syntactical way. This cal-

culus is a term syntax for classical sequent calculus, and explains the computational duality

of call-by-name/ call-by-value by the logical duality, namely the duality of the left-hand

side/ the right-hand side in sequent calculus.

Another approach to understand the duality between call-by-value and call-by-name is

polarized linear logic(LLP) of Laurent [33]. It is a variant of linear logic with a good seman-

tics in terms of coherent spaces. The most fundamental feature of LLP is that it has a clear

distinction betweennegativeformulas, for which structural rules can be freely used, and

positiveformulas, for which structural rules are forbidden. LLP is useful in understanding

the constructive aspect of classical logic. In particular, LLP suggests a close relationship
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between the call-by-value/ call-by-name duality and positive/ negative duality. Laurent

defined two translations from the call-by-name and the call-by-valueλµ-calculi into LLP,

and showed their soundness,i.e. these translations preserve reductions. The call-by-name

translation (−)◦ translates a classical formula into a negative one, in particular a classical im-

plicationA→ B into a negative formula !A◦ ( B◦ (so, we call this the negative-translation

in this paper). On the other hand, the call-by-value translation (−)• translates a classical for-

mula into a positive one, in particular a classical implicationA→ B into a positive formula

!(A• ( ?B•) (so, we call this the positive-translation in this paper). Furthermore, Laurent

showed fullness of the negative-translation (i.e. every proof ofA◦ is (equivalent to) an im-

age of a proof ofA in classical logic via the negative-translation) in [34]. However, it is

not proved (at least explicitly) that the positive-translation is also full. Another work to be

done is to give a term syntax for LLP. Although proof-nets provide a nice parallel syntax,

it is sometimes space-consuming, and complicated, especially in the presence of additives.

Hence it is natural to introduce a term syntax, that is compact and moreover well-related to

standard functional programming languages.

In this paper, we first give a term calculus for (a sufficiently large fragment of) LLP,

called polarized dual calculus (DCP−) which is based on the idea of Wadler’s dual calculus.

We then define two translations from the call-by-name/ the call-by-valueλµ-calculi into

DCP−, and show their soundness. These translations are almost straightforward adaptions

of Laurent’s (but the positive translation is slightly different). Finally, we prove fullness of

these translations in the similar way to the logical predicate method used in Hasegawa [27].

The notion of logical predicate (unary logical relation) is a well-established tool for

studying the semantics of various typed lambda calculi. In particular, logical predicates for

intuitionistic linear logic were introduced in Hasegawa [26] for category-theoretic models

of linear logic, and applied to prove full completeness of Girard translation from the simply

typed lambda calculus to the linear lambda calculus in [27]. We adopt this method to show

fullness of Laurent’s translations. The use of logical predicates allows us to give auniform

proof to the fullness of two translations. In particular, just one Basic Lemma is sufficient for

both the positive- and the negative-translations.

The rest of this paper is structured as follows. In Section 2, we introduce the system

LLP− as a fragment of LLP. In Section 3, we give a term calculus DCP− for LLP−. In Section

4, we review the call-by-name and the call-by-valueλµ-calculus, define the positive- and the

negative-translations from theλµ-calculi into DCP−, and then show their soundness. From

Section 5 to 7, we prove fullness of these translations by the logical predicate method.
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` P⊥,P
(Ax) ` Σ,P ` Λ,P⊥

` Σ,Λ
(Cut)

` Σ,P ` Λ,Q
` Σ,Λ,P⊗ Q

⊗ ` Σ,N,M
` Σ,NM M M

` Σ,P
` Σ,P⊕ Q

⊕1
` Σ,Q
` Σ,P⊕ Q

⊕2
` Σ,N ` Σ,M
` Σ,N & M &

` Σ,P
` Σ,?P ?

` Σ,N
` Σ, !N !

` Σ
` Σ,N

(Weakening)
` Σ, N,N
` Σ, N

(Contraction)

Figure 3.1: Inference rules of LLP

3.2 LLP and LLP −

Definition 3.1 (Formulas of LLP)

Theformulasof LLP are defined as follows:

P,QF X | P⊗ Q | P⊕ Q | !N (positive formulas)

N,M F X⊥ | NM M | N & M | ?P (negative formulas)

whereX andX⊥ are atomic formulas. Thenegationof formulaA (denoted byA⊥) is defined

as in linear logic.

Definition 3.2 (Sequents and inference rules of LLP)

The sequentsof LLP have the form̀ Σ whereΣ is a finite multi-set of formulas among

which there isat most onepositive formula. Theinference rulesof LLP are defined as in

figure 3.1.

To give a simple term syntax later, we impose a restriction on LLP.

Definition 3.3 (LLP−)

The system LLP− is obtained by restrictingM-rule, &-rule and (Cut)-rule of LLP to those

sequents which haveno positive formulas(other thanP, in the case of (Cut)-rule).

Remark 1

The restriction forces some sequents derivable in LLP to be non-derivable in LLP−. For

example,̀ X⊥ M Y⊥,X is derivable in LLP by the following derivation, but not in LLP−,
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because one cannot applyM-rule in the presence of the positive formulaX.

` X⊥,X
` X⊥,Y⊥,X
` X⊥ M Y⊥,X M

However, we are mainly interested in proofs ofnegative sequents(i.e. those consisting of

only negative formulas), and our restriction is quite harmless for them. In fact, we have:

Theorem 3.1

Let Σ be a negative sequent. IfΣ has a derivation in LLP, then it also has a derivation in

LLP−.

In fact, the latter derivation can be obtained by simply permuting some inference rules in the

former derivation, and the permutations needed are invisible in terms of proof-nets. Hence

one could say that LLP and LLP− have the same proof-nets for negative conclusions.

3.3 The system DCP−

In this section, we will define a term calculus DCP− for LLP−. The types of DCP− are

formulas of LLP−. Thevariablesof DCP− are denoted byx, y, z, . . ..

Definition 3.4 (Terms and Sequents of DCP−)

The terms of DCP− consist ofpositive terms(denoted byt,u, . . .), negative terms(denoted

by k, l, . . .), andneutral terms(denoted byτ, σ, . . .) which are defined as follows:

t, uF x | t ⊗ u | inl(t) | inr(u) | !k (positive terms)

k, l F x.τ | [k, l] | (x, y)τ | ?t (negative terms)

τ, σF t • k (neutral terms)

x.τ and (x, y)τ are abstractions withx (andy) bound inτ. The set offree variablesoccurring

in t, k andτ are denoted by FV(t), FV(k) and FV(τ) respectively. We identify two terms

in theα-equivalence relation, and we will use≡ for the syntactic identity on terms. The

expressiont[u/x] denotes a term obtained by substitutingu for each free occurrence of a

variablex in t (the expressionsk[u/x] andτ[u/x] are used similarly). These are defined in

such a way that they do not cause free variable captures.

A contextof DCP− (ranged overΣ, Λ, Ξ, Θ, . . .) is a finite set of variables annotated with

negativetypes (denoted byx1 : N1, . . . xm : Nm), in which each variable occurs at most once.
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` x : P⊥ ; x : P
(Ax) ` Σ ; t : P ` Λ ; k : P⊥

` Σ,Λ ; t • k
(Cut)

` Σ ; t : P ` Λ ; u : Q
` Σ,Λ ; t ⊗ u : P⊗ Q

⊗ ` Σ, x : N, y : M ; τ
` Σ ; (x, y)τ : NM M M

` Σ ; t : P
` Σ ; inl(t) : P⊕ Q

⊕1
` Σ ; u : Q

` Σ ; inr(u) : P⊕ Q
⊕2

` Σ ; k : N ` Σ ; l : M
` Σ ; [k, l] : N & M &

` Σ ; t : P
` Σ ; ?t : ?Pb ?

` Σ ; k : N
` Σ ; !k : !N !

` Σ ; Π

` Σ, x : N ; Π
(Weakening)

` Σ, x : N, y : N ; Π

` Σ, z : N ; Π[z/x, z/y]
(Contraction)

` Σ, x : N ; τ
` Σ ; x.τ : N

(Focus)
` Σ ; k : N

` Σ, x : N ; x • k
(Unfocus)

Figure 3.2: Types and the typing rules for DCP−

A typing judgementof DCP− takes either of the following forms:

` Σ ; t : P, ` Σ ; k : N or ` Σ ; τ .

When it is not necessary to distinguisht : P, k : N andτ, we writeΠ to denote one of them.

In this case,Π[u/x] meanst[u/x] : P, k[u/x] : N or τ[u/x].

Definition 3.5 (The typing Rules)

The typing rulesof DCP− are displayed in figure 3.2, where the (Cut)-rule and the⊗-rule

are defined only when the contextsΣ andΛ have no common element, and the variablex

occurring in (Weakening)-rule and (Unfocus)-rule is a fresh (i.e.new) variable.

Remark 2

(Unfocus)-rule and (Cut)-rule overlap. In fact, (Unfocus)-rule can be derived from (Cut)-

rule and (Ax)-rule. However, the correspondence with proofs of LLP− and derivations of

DCP− becomes more closely by the presence of (Unfocus)-rule. (This is also mentioned by

Wadler [48] in the paragraph starting with “Rules Cut, Id, RE, and LE overlap;” of Section 3)

Remark 3

The restriction we imposed on LLP− simplifies the term syntax a lot. For instance, &-rule

andM-rule would be much more complicated without the restriction, and moreover (Focus)-

rule and (Unfocus)-rule would be required for positive types too.
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Definition 3.6 (Reduction Rules)

Thereduction relation−→ of DCP− is defined to be the compatible closure of the following

rules.
(β) t ⊗ u • (x, y)τ −→β u • y.(t • x.τ)

inl(t) • [k, l] −→β t • k

inr(u) • [k, l] −→β u • l

!k • ?t −→β t • k

(ε) t • x.τ −→ε τ[t/x]

(η) x.(x • k) −→η k wherex < FV(k)

(x, y)(x⊗ y • k) −→η k wherex, y < FV(k)

!x.(t • ?x) −→η t wherex < FV(t)

In the following, we use−→∗, −→+ and= as the reflexive transitive closure, the transitive

closure and the reflexive symmetric transitive closure of−→ respectively.

The (β)-rules and the (ε)-rule are intended to capture a natural cut-elimination procedure
for LLP−. More specifically, each of the (β)-rules corresponds to a logical reduction step for
⊗/M, ⊕i/& ( i = 1,2) and !/?. The (ε)-rule roughly corresponds to the following structural
reduction step.

.... π
` Σ,P

` P⊥,P
(Ax)

....
` Ξ

` P⊥,Ξ

.... ρ
` P⊥,Θ

. . .
... . .

.

` P⊥,Λ
` Σ,Λ

(Cut) =⇒

.... π
` Σ,P

....
` Ξ

` Σ,Ξ

.... π
` Σ,P

.... ρ
` Θ,P⊥

` Σ,Θ
(Cut)

. . .
... . .

.

` Σ,Λ

In the left proof, ancestors of the negative formulaP⊥ are indicated. It must be introduced

as an axiom̀ P⊥,P , by (Weakening)-rule
` Ξ

` P⊥,Ξ , or by a logical inference rule

.... ρ
` P⊥,Θ

with P⊥ being the main formula. The above reduction step replaces an axiom by the proof

π, and a (Weakening)-rule
` Ξ

` P⊥,Ξ by
` Ξ

` Σ,Ξ
, and

.... ρ
` P⊥,Θ by

.... π
` Σ,P

.... ρ
` Θ,P⊥

` Σ,Θ
(Cut) . Since

Θ consists of only negative formulas by the restriction of LLP−, this (Cut)-rule is certainly

LLP−’s. The (η)-rules correspond to the simplification procedure of LLP− proofs.

We now mention some properties of DCP−. Firstly, this system has subject reduction

property: if ` Σ; t : P (resp.` Σ; k: N, ` Σ; τ) and t −→ t′ (resp.k −→ k′, τ −→ τ′) then

` Σ; t′ : P (resp.` Σ; k′ : N, ` Σ; τ′). Secondly, it has substitution property: if` Σ, x: P⊥; Π

and` Λ; t : P then` Σ,Λ; Π[t/x]. Finally, it is strongly normalizing. However, it does not

enjoy Church-Rosser property. For example, (x, x′)((x⊗ x′) • z.(y • ?z)) reduces toz.(y• ?z)
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by (η)-rule, (x, x′)(y • ?(x⊗ x′)) by (ε)-rule, and these are normal. This example reflects the

fact that LLP− with simplification rules is not confluent as follows :

` P,P⊥ ` Q,Q⊥

` P⊗ Q,P⊥,Q⊥
` P⊗ Q,P⊥ M Q⊥

` ?(P⊗ Q),P⊥ M Q⊥

` ?(P⊗ Q),P⊥,Q⊥
Cut

` ?(P⊗ Q),P⊥ M Q⊥
reduces to

` P,P⊥ ` Q,Q⊥

` P⊗ Q,P⊥,Q⊥

` ?(P⊗ Q),P⊥,Q⊥

` ?(P⊗ Q),P⊥ M Q⊥
and ` P⊗ Q,P⊥ M Q⊥

` ?(P⊗ Q),P⊥ M Q⊥ .

But this is not so problematic; in fact, if (η)-rules are omitted, then the remaining reductions

of DCP− (i.e. (ε)- and (β)-rules) enjoy Church-Rosser.

3.4 Theλµ-calculus and the translations into DCP−

3.4.1 Theλµ-calculus

We consider two variants of theλµ-calculus, call-by-name and call-by-value, and interpret

them in DCP−. First of all, we review the syntax of theλµ-calculus.

Definition 3.7 (λµ-types)

Let X,Y, . . . range over the set of base types. Thetypesof the λµ-calculus (denoted by

A, B, . . .) is generated by the following grammar.

A, BF X | A→ B

Definition 3.8 (λµ-terms)

Given two disjoint countable sets of variables, one is calledλ-variables(denoted byx, y, z, . . .)

and the other is calledµ-names(denoted byα, β, γ, . . .). The(unnamed) terms, ranged over

w, v, . . ., andnamed-terms, ranged overτ, σ, . . ., of theλµ-calculus are defined by:

w, vF x | λx.w | wv | µα.τ (terms)

τ, σF [α]w (named-terms)

We consider terms moduloα-conversion onλ-variables andµ-names. The sets offree vari-

ablesandfree namesof a λµ-term w (resp.τ), denoted by FV(w) and FN(w) (resp. FV(τ)

and FN(τ)) respectively, are defined as usual.

Definition 3.9 (λµ-typing rules)

A typing judgementof theλµ-calculus takes the formΓ ` ∆ | u : A or Γ ` ∆ | τ, whereΓ

denotes aλ-context, i.e. x1 : A1, . . . , xn : An, and∆ denotes aµ-context, i.e.α1 : B1, . . . , αm :

Bm. Thetyping rulesfor theλµ-calculus are defined in the figure 3.3.
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Γ, x : A ` ∆ | x : A
var

Γ, x : A ` ∆ | w : B
Γ ` ∆ | λx.w : A→ B λ-abs

Γ ` ∆ | w : A→ B Σ ` Λ | v : A
Γ,Σ ` ∆,Λ | wv : B

app

Γ ` ∆, α : A | w
Γ ` ∆ | µα.w : A

µ-abs
Γ ` ∆ | w : A

Γ ` ∆, α : A | [α]w
naming

Figure 3.3: Typing rules for theλµ-calculus

Definition 3.10 (call-by-name reduction rules)

The one-stepcall-by-name reductionrelation for theλµ-calculus, written by−→n, is defined

as the compatible closure of the following rules.

(β) (λx.w)v −→ w[v/x]

(ζ) (µα.τ)w −→ µβ.τ[[β](−)w/[α](−)]

(µβ) [β](µα.τ) −→ τ[β/α]

(µη) µα.[α]w −→ w (whereα < FN(w))

wherew[v/x] is the standard substitution of theλµ-terms, andτ[β/α] is just renaming of

the free nameα. τ[[β](−)w/[α](−)] is the result of recursively replacing any subterm of the form

[α]v by [β]vw in τ.

Definition 3.11 (call-by-value reduction rules)

A valueis either a variable or aλ-abstraction.

V,W F x | λx.w

Let V, W range over values. The one-stepcall-by-value reductionrelation for theλµ-

calculus, written by−→v, is defined as the compatible closure of the following rules.

(β) (λx.w)V −→ w[V/x]

(ζfun) (µα.τ)w −→ µβ.τ[[β](−)w/[α](−)]

(ζarg) V(µα.τ) −→ µβ.τ[[β]V(−)/[α](−)]

(µη) µα.[α]w −→ w (whereα < FN(w))

(µβ) [β](µα.τ) −→ τ[β/α]

whereτ[[β]V(−)/[α](−)] is the result of recursively replacing any subterm of the form [α]w by

[β]Vw in τ.

We write−→∗n for the reflexive and transitive closure of−→n. Similarly for−→v.
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3.4.2 The negative-translation from theλµ-calculus into DCP−

In this subsection, we give the negative-translation from theλµ-calculus into DCP−, and

show that it preserves the call-by-name reductions. It is called negative because it maps the

λµ-types to the negative DCP−-types. In particular, it mapsA→ B to !A◦ ( B◦.

According to this translation, bothλ-variables andµ-names of theλµ-calculus are inter-

preted by variables of DCP−, so in the sequel we also useα, β, γ, . . . as variables of DCP−.

Definition 3.12 (the negative-translation)

Thenegative-translationconsists of three translations: (−)◦ , ~−�(−) and~−�. The first one

translates a type of theλµ-calculus to a negative type of DCP−, the second one translates a

(unnamed) term of theλµ-calculus together with a positive term of DCP− to a neutral term

of DCP−, and the third one translates a named term to a neutral term of DCP−. They are

defined as follows :

(X)◦ B X⊥ (A→ B)◦ B ?(A◦)⊥ M B◦

~x�t ≡ x • ?t ~λx.w�t ≡ t • ((x, α)~w�α) (whereα is fresh)

~wv�t ≡ ~w�!~v�⊗t ~µα.τ�t ≡ ~τ�[t/α]

~[α]w� ≡ ~w�α

wheret is a positive term of DCP− and~w� is an abbreviation ofβ.~w�β (β is fresh).

Let Γ be aλ-contextx1 : A1, . . . , xn : An and∆ be aµ-contextα1 : B1, . . . , αm : Bm of

theλµ-calculus respectively. We define the contexts ?(Γ◦)⊥ and∆◦ asx1 : ?(A◦1)
⊥, . . . , xn :

?(A◦n)
⊥ andα1 : B◦1, . . . , αm : B◦m.

Proposition 3.2

The negative-translation is sound for derivation, that is

(1) if Γ `λµ ∆ | w : A and`DCP- Σ ; t : (A◦)⊥ then`DCP- ?(Γ◦)⊥,∆◦,Σ ; ~w�t, and

(2) if Γ `λµ ∆ | τ then`DCP- ?(Γ◦)⊥,∆◦ ; ~τ�.

Proof. Simultaneous induction of (1) and (2) on`λµ.
Case of (Ax) : assumeΓ, x : N ` ∆ | x : A and` Σ ; t : (A◦)⊥, then we obtain the

following:

` x : ?(A◦)⊥ ; x : !A◦
` Σ ; t : (A◦)⊥

` Σ ; ?t : ?(A◦)⊥

` x : ?(A◦)⊥,Σ ; x • ?t

` x : ?(A◦)⊥,?(Γ◦)⊥,∆◦,Σ; x • ?t
Wk
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Case of (λ-abs) : we consider the case thatΓ ` ∆ | λx.w : A → B is derived from

Γ, x : A ` ∆ | w : B, and supposè Σ ; t : (?(A◦)⊥ M B◦)⊥. Using the induction hypothesis

to this sequent and̀z : B◦ ; z : (B◦)⊥, we obtaiǹ ?(Γ◦)⊥,∆◦,Σ ; t • (x, z)~w�z. So, we can

derive the conclusion of this case as follows.

` ?(Γ◦)⊥,∆◦, x : ?(A◦)⊥, z : B◦ ; ~w�z

` ?(Γ◦)⊥,∆◦ ; (x, z)~w�z : ?(A◦)⊥ M B◦ ` Σ ; t : (?(A◦)⊥ M B◦)⊥

` ?(Γ◦)⊥,∆◦,Σ ; t • (x, z)~w�z

Case of (app) : we consider the case thatΓ1,Γ2 ` ∆1,∆2 | wv : B is derived from

Γ1 ` ∆1 | w : A→ B andΓ2 ` ∆2 | v : A, and supposè Σ ; t : (B◦)⊥. Using the induction

hypothesis to the latter sequent and` z : A◦ ; z : (A◦)⊥, we obtaiǹ ?(Γ◦2)
⊥,∆◦2, z : A◦ ; ~v�z.

So, we can derivè ?(Γ◦2)
⊥,∆◦2,Σ ; !~v� ⊗ t : !A◦ ⊗ (B◦)⊥ as follows.

` ?(Γ◦2)
⊥,∆◦2, z : A◦ ; ~v�z : A◦

` ?(Γ◦2)
⊥,∆◦2 ; ~v� : A◦

` ?(Γ◦2)
⊥,∆◦2 ; !~v� : !A◦ ` Σ ; t : (B◦)⊥

` ?(Γ◦2)
⊥,∆◦2,Σ ; !~v� ⊗ t : !A◦ ⊗ (B◦)⊥

Now, we apply the induction hypothesis toΓ1 ` ∆1 | w : A→ Band` ?(Γ◦2)
⊥,∆◦2,Σ ; !~v�⊗t :

!A◦ ⊗ (B◦)⊥, then we obtain the conclusion of this case` ?(Γ◦1)
⊥,?(Γ◦2)

⊥,∆◦1,∆
◦
2,Σ ; ~w�!~v�⊗t.

Case of (µ-app) : we consider the case thatΓ ` ∆ | µα.τ : A is derived fromΓ ` ∆, α :

A | τ, and supposè Σ ; t : (A◦)⊥. Apply the induction hypothesis toΓ ` ∆, α : A | τ, then

we havè ?(Γ◦)⊥,∆◦, α : A◦ ; ~τ�. From the substitution lemma, we obtain the conclusion

of this casè ?(Γ◦)⊥,∆◦,Σ ; ~τ�[t/α].

Case of (naming) : we consider the case thatΓ ` ∆, α : A | [α]w is derived fromΓ ` ∆ |
w : A. Now, we apply the induction hypothesis toΓ ` ∆ | w : A and` α : A◦ ; α : (A◦)⊥,

then we obtain the conclusion of this case` ?(Γ◦)⊥,∆nt ; ~w�α. �

From (1),`DCP- β : A◦; β : (A◦)⊥ and (Focus)-rule, it follows that ifΓ `λµ ∆ | w : A then

`DCP- ?(Γ◦)⊥,∆◦ ; ~w� : A◦.

Lemma 3.3

Let w andv beλµ-terms, andt andu be positive terms of DCP−. Then the following hold.

(1) If t −→n u then~w�t −→∗ ~w�u .
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(2) If α < FN(w) then~w�t[u/α] ≡ ~w�t[u/α] .

If α < FN(τ) then~τ�[u/α] ≡ ~τ� .

(3) ~w�t[!~v�/x] −→∗ ~w[v/x]�t[!~v�/x]
, and

~τ�[!~v�/x] −→∗ ~τ[v/x]� .

(4) If β is fresh then

~w�t[!~v�⊗β/α] ≡ ~w[[β](−)v/[α](−)]�t[!~v�⊗β/α], and

~τ�[!~v�⊗β/α] ≡ ~τ[[β](−)v/[α](−)]� .

(5) ~w�t[β/α] ≡ ~w[β/α]�t[β/α], and

~τ�[β/α] ≡ ~τ[β/α]� .

Proof.

(1) By induction onw.

Case ofx : we obtain~x�t ≡ x • ?t −→ x • ?u ≡ ~x�u.

Case ofwv : we obtain~wv�t ≡ ~w�!~v�⊗t −→∗ ~w�!~v�⊗u ≡ ~wv�u by the induction

hypothesis.

Case ofλx.w : we obtain~λx.w�t ≡ t • (x, α)~w�α −→ u • (x, α)~w�α ≡ ~λx.w�u.

Case ofµα.τ : we obtain~µα.τ�t ≡ ~τ�[t/α] −→∗ ~τ�[u/α] ≡ ~µα.τ�u.

(2) By inducion onw andτ.

Case ofx : we obtain~x�t[u/α] ≡ (x • ?t)[u/α] ≡ x • ?(t[u/α]) ≡ ~x�t[u/α].

Case ofwv : we obtain

~wv�t[u/α] ≡ ~w�!~v�⊗t[u/α]
I .H.≡ ~w�(!~v�⊗t)[u/α]

I .H.≡ ~w�!~v�⊗t[u/α] ≡ ~wv�t[u/α] .

Case ofλx.w : we obtain

~λx.w�t[u/α] ≡ (t • (x, β)~w�β)[u/α]
I .H.≡ t[u/α] • (x, β)~w�β ≡ ~λx.w�t[u/α] .

Case ofµβ.τ : we obtain

~µβ.τ�t[u/α] ≡ ~τ�[t/β][u/α] ≡ ~τ�[u/α][ t[u/α]/β]
I .H.≡ ~τ�[t[u/α]/β] ≡ ~µβ.τ�t[u/α] .

Case of [β]w : From the hypothesis,β . α, so we obtain

~[β]w�[u/α] ≡ ~w�β[u/α]
I .H.≡ ~w�β ≡ ~[β]w� .
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(3) By inducion onw andτ.

Case ofx :

~x�t[
!~v�/x] ≡ (x • ?t)[!~v�/x] ≡ !~v� • ?(t[!~v�/x])

−→ (t[!~v�/x]) • β.~v�β −→ ~v�β[t[!~v�/x]/β]
(2)≡ ~v�t[!~v�/x]

Case ofz(. x) :

~z�t[
!~v�/x] ≡ (z• ?t)[!~v�/x] ≡ z• ?(t[!~v�/x]) ≡ ~z�t[!~v�/x]

Case ofw1w2 :

~w1w2�t[
!~v�/x] ≡ ~w1�!~w2�⊗t[

!~v�/x]
I .H.
−→∗ ~w1[v/x]�(!~w2�⊗t)[!~v�/x]

I .H.and(1)

−→∗ ~w1[v/x]�!~w2[v/x]�⊗t[!~v�/x]
≡ ~(w1w2)[v/x]�t[!~v�/x]

Case ofλz.w :

~λz.w�t[
!~v�/x] ≡ (t • (z, β)~w�β)[!~v�/x]

I .H.
−→∗ t[!~v�/x] • (z, β)~w[v/x]�β

≡ ~λz.w[v/x]�t[!~v�/x]
≡ ~(λz.w)[v/x]�t[!~v�/x]

Case ofµα.τ :

~µα.τ�t[
!~v�/x] ≡ ~τ�[t/α][ !~v�/x] ≡ ~τ�[!~v�/x][ t[

!~v�/x]/α]
I .H.
−→∗ ~τ[v/x]�[t[!~v�/x]/α]

≡ ~µα.τ[v/x]�t[!~v�/x]
≡ ~(µα.τ)[v/x]�t[!~v�/x]

Case of [α]w :

~[α]w�[!~v�/x] ≡ ~w�α[!~v�/x]
I .H.
−→∗ ~w[v/x]�α ≡ ~[α](w[v/x])� ≡ ~([α]w)[v/x]�

(4) By inducion onw andτ.

Case ofx :

~x�t[
!~v�⊗β/α] ≡ (x • ?t)[!~v�⊗β/α] ≡ x • ?(t[!~v�⊗β/α]) ≡ ~x�t[!~v�⊗β/α]

Case ofw1w2 :

~w1w2�t[
!~v�⊗β/α] ≡ ~w1�!~w2�⊗t[

!~v�⊗β/α]
I .H.≡ ~w1[

[β](−)v/[α](−)]�(!~w2�⊗t)[!~v�⊗β/α]

I .H.≡ ~w1[
[β](−)v/[α](−)]�!~w2[[β](−)v/[α](−)]�⊗t[!~v�⊗β/α]
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≡ ~w1[
[β](−)v/[α](−)] w2[

[β](−)v/[α](−)]�t[!~v�⊗β/α]

≡ ~(w1w2)[
[β](−)v/[α](−)]�t[!~v�⊗β/α]

Case ofλz.w :

~λz.w�t[
!~v�⊗β/α] ≡ (t • (z, γ)~w�γ)[!~v�⊗β/α]

I .H.≡ t[!~v�⊗β/α] • (z, γ)~w[[β](−)v/[α](−)]�γ

≡ ~λz.w[[β](−)v/[α](−)]�t[!~v�⊗β/α]

≡ ~(λz.w)[[β](−)v/[α](−)]�t[!~v�⊗β/α]

Case ofµγ.τ :

~µγ.τ�t[
!~v�⊗β/α] ≡ ~τ�[t/γ][ !~v�⊗β/α] ≡ ~τ�[!~v�⊗β/α][ t[!~v�⊗β/α]/γ]

I .H.≡ ~τ[[β](−)v/[α](−)]�[t[!~v�⊗β/α]/γ] ≡ ~µγ.τ[[β](−)v/[α](−)]�t[!~v�⊗β/α]

≡ ~(µγ.τ)[[β](−)v/[α](−)]�t[!~v�⊗β/α]

Case of [α]w :

~[α]w�[!~v�⊗β/α] ≡ ~w�α[!~v�⊗β/α]
I .H.≡ ~w[[β](−)v/[α](−)]�!~v�⊗β ≡ ~w[[β](−)v/[α](−)]v�β

≡ ~[β](w[[β](−)v/[α](−)]v)� ≡ ~([α]w)[[β](−)v/[α](−)]�

Case of [γ]w (whereγ . α) :

~[γ]w�[!~v�⊗β/α] ≡ ~w�γ[!~v�⊗β/α]
I .H.≡ ~w[[β](−)v/[α](−)]�γ

≡ ~[γ](w[[β](−)v/[α](−)])� ≡ ~([γ]w)[[β](−)v/[α](−)]�

(5) By induction onw andτ.

Case ofx :

~x�t[β/α] ≡ (x • ?t)[β/α] ≡ x • ?(t[β/α]) ≡ ~x�t[β/α]

Case ofw1w2 :

~w1w2�t[β/α] ≡ ~w1�!~w2�⊗t[β/α]
I .H.≡ ~w1[β/α]�(!~w2�⊗t)[β/α]

I .H.and(1)≡ ~w1[β/α]�!~w2[β/α]�⊗t[β/α] ≡ ~w1[β/α] w2[β/α]�t[β/α]

≡ ~(w1w2)[β/α]�t[β/α]
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Case ofλz.w :

~λz.w�t[β/α] ≡ (t • (z, γ)~w�γ)[β/α]
I .H.≡ t[β/α] • (z, γ)~w[β/α]�γ

≡ ~λz.w[β/α]�t[β/α] ≡ ~(λz.w)[β/α]�t[β/α]

Case ofµγ.τ :

~µγ.τ�t[β/α] ≡ ~τ�[t/γ][β/α] ≡ ~τ�[β/α][ t[β/α]/γ]
I .H.≡ ~τ[β/α]�[t[β/α]/γ] ≡ ~µγ.τ[β/α]�t[β/α]

≡ ~(µγ.τ)[β/α]�t[β/α]

Case of [α]w :

~[α]w�[β/α] ≡ ~w�α[β/α]
I .H.≡ ~w[β/α]�β ≡ ~[β](w[β/α])� ≡ ~([α]w)[β/α]�

Case of [γ]w (whereγ . α) :

~[γ]w�[β/α] ≡ ~w�γ[β/α]
I .H.≡ ~w[β/α]�γ ≡ ~[γ](w[β/α])� ≡ ~([γ]w)[β/α]�

�

Theorem 3.4 (soundness of the negative-translation)

If w −→n v then~w�t −→∗ ~v�t holds for any positive termt.

Proof. By induction on−→n.

Base step :

~(λx.w)v�t ≡ ~λx.w�!~v�⊗t ≡ (!~v� ⊗ t) • (x, α)~w�α −→ t • α.(!~v� • x.~w�α)

−→ t • α.(~w�α[!~v�/x])
Lem 3.3 (1)

−→∗ t • α.(~w[v/x]�α)

−→ ~w[v/x]�α[t/α]
Lem 3.3 (2)≡ ~w[v/x]�t

~(µα.τ)v�t ≡ ~µα.τ�!~v�⊗t ≡ ~τ�[!~v�⊗t/α] ≡ ~τ�[!~v�⊗β/α][ t/β] (β: fresh)
Lem 3.3 (4)≡ ~ τ[[β](−)v/[α](−)] �[t/β] ≡ ~ µβ.τ[[β](−)v/[α](−)] �t

~µα.[α]w�t ≡ ~[α]w�[t/α] ≡ ~w�α[t/α]
Lem 3.3 (2)≡ ~w�t

~[β]µα.τ� ≡ ~µα.τ�β ≡ ~τ�[β/α]
Lem 3.3 (5)≡ ~τ[β/α]�
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Inductive step :

Case ofwv−→n w′v (obtained fromw −→n w′) :

~wv�t ≡ ~w�!~v�⊗t

I .H.
−→∗ ~w′�!~v�⊗t ≡ ~w′v�t

Case ofwv−→n wv′ (obtained fromv −→n v′) :

~wv�t ≡ ~w�!~v�⊗t

I .H.and Lem3.3 (1)

−→∗ ~w�!~v′�⊗t ≡ ~wv′�t

Case ofλx.w −→n λx.w′ (obtained fromw −→n w′) :

~λx.w�t ≡ t • (x, α)~w�α
I .H.
−→∗ t • (x, α)~w′�α ≡ ~λx.w′�t

Case ofµα.τ −→n µα.τ
′ (obtained fromτ −→n τ

′) :

~µα.τ�t ≡ ~τ�[t/α]
I .H.
−→∗ ~τ′�[t/α] ≡ ~µα.τ′�t

Case of [α]w −→n [α]w′ (obtained fromw −→n w′) :

~[α]w� ≡ ~w�α
I .H.
−→∗ ~w′�α ≡ ~[α]w′�

�

The case of (β)-reduction is strict,i.e.one-step (β)-reduction of theλµ-calculus is trans-

lated into at least one step of DCP− reductions. On the other hand, (ζ), (µη) and (µβ)-

reductions are translated into identity.

Remark 4

Our translation does not preserve the call-by-nameη-rule of theλµ-calculus (i.e.λx.wx−→n

w (wherex < FV(w))) as the reduction rule. However, it does preserve it as the equational

rule. Since !~x� ≡ !z.~x�z ≡ !z.(x • ?z) −→ x by the η-rule of DCP−, we can prove

~λx.wx�t = ~w�t as follows.

~λx.wx�t ≡ t • (x, α)~wx�α ≡ t • (x, α)~w�!~x�⊗α −→∗ t • (x, α)~w�x⊗α

= t • (x, α)(x⊗ α • ~w�) −→ t • ~w� −→ ~w�t

3.4.3 The positive-translation from theλµ-calculus into DCP−

In this subsection, we give the positive-translation from theλµ-calculus into DCP−, and

show that it preserves the call-by-value reductions. It is called positive because it maps the

λµ-types to the positive DCP−-types. In particular, it mapsA→ B to !(A• ( ?B•).
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Definition 3.13 (the positive-translation)

The positive-translationconsists of the four translations: (−)•, (−)∗, ~−�(−) and~−�. The

first one translates a type of theλµ-calculus to a positive type of DCP−, the second one

translates a value to a positive term of DCP−, and the third and the last one are similar to

those in the negative-translation. They are defined as follows:

(X)• = X (A→ B)• = !((A•)⊥ M ?B•)

x∗ ≡ x, (λx.w)∗ ≡ !(x, α)~w�α (whereα is fresh),

~V�t ≡ t • ?V∗,

~Vw�t ≡ ~w�!x.(V∗•?(x⊗t)), ~vw�t ≡ ~v�!x.~w�!z.(x•?(z⊗t)) (wherev is not a value)

~[α]w� ≡ ~w�α, ~µα.τ�t ≡ ~τ�[t/α].

In the above definition, we give two kinds of definition for application. This is for the

following reason: to obtain a sound translation for the call-by-value reduction, we need to

have two views on application depending on the situations. For example, “V is applied

to µα.τ from the left-hand side” in the case of (ζarg)-rule, and “w is applied toµα.τ from

the right-hand side” in the case of (ζfun)-rule. To solve this dilemma, we think ofvw as

(λx.xw)v (actually, we use a slightly modified form) whenv is not a value. Then, we can

always assume that an application is of the formVw, becauseλx.xw is a value. Here, if we

abbreviate !x.(V∗ • ?(x⊗ t)) by (V, t)B, and !x.~w�!z.(x•?(z⊗t)) by (w, t)C, then~Vw�t and~vw�t

can be written as~w�(V,t)B and~v�(w,t)C respectively.

Proposition 3.5

The positive-translation is sound for derivation,i.e. the followings hold.

(1) If Γ `λµ ∆ | V : A then`DCP- (Γ•)⊥,?∆• ; V∗ : A•.

(2) If Γ `λµ ∆ | w : A and`DCP- Σ ; t : !(A•)⊥, then`DCP- (Γ•)⊥,?∆•,Σ ; ~w�t.

(3) If Γ `λµ ∆ | τ then`DCP- (Γ•)⊥,?∆• ; ~τ�.

Proof. Simultaneous induction of (1),(2) and (3) on`λµ.
Case of (Ax) : assumeΓ, x : N ` ∆ | x : A. In this case, we can prove (1) as follows:

` x : (A•)⊥ ; x : A•

` (Γ•)⊥,?∆•, x : (A•)⊥ ; x : A•
Wk
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Now, we supposè Σ ; t : !(A•)⊥, then we can obtain (2) as follows:

` Σ ; t : !(A•)⊥

` x : (A•)⊥ ; x : A•

` (Γ•)⊥,?∆•, x : (A•)⊥ ; x : A•
Wk

` (Γ•)⊥,?∆•, x : (A•)⊥ ; ?x : ?A•

` (Γ•)⊥,?∆•, x : (A•)⊥,Σ ; t • ?x

Case of (λ-abs) : we consider the case thatΓ ` ∆ | λx.w : A → B is derived from

Γ, x : A ` ∆ | w : B. So, with` α : ?B• ; α : !(B•)⊥, we obtain` (Γ•)⊥,?∆•, x : (A•)⊥, α :

?B• ; ~w�α by the induction hypothesis (2). Therefore, we can prove (1) as follows:

` (Γ•)⊥,?∆•, x : (A•)⊥, α : ?B• ; ~w�α
` (Γ•)⊥,?∆• ; (x, α)~w�α : (A•)⊥ M ?B•

` (Γ•)⊥,?∆• ; !(x, α)~w�α : !((A•)⊥ M ?B•)

Now, we supposè Σ ; t : !?(A• ⊗ !(B•)⊥), then we obtain (2) as follows:

` Σ ; t : !?(A• ⊗ !(B•)⊥)
` (Γ•)⊥,?∆• ; !(x, α)~w�α : !((A•)⊥ M ?B•)
` (Γ•)⊥,?∆• ; ?!(x, α)~w�α : ?!((A•)⊥ M ?B•)

` (Γ•)⊥,?∆•,Σ ; t • ?!(x, α)~w�α

Case of (app1) : we consider the case thatΓ1,Γ2 ` ∆1,∆2 | Vw : B is derived from

Γ1 ` ∆1 | V : A → B andΓ2 ` ∆2 | w : A, and supposè Σ ; t : !(B•)⊥. By the induction

hypothesis (1), we obtaiǹ(Γ•1)
⊥,?(∆•1) ; V∗ : !((A•)⊥M?B•). Hence, we have the following

derivation.

` (Γ•1)
⊥,?(∆•1) ; V∗ : !((A•)⊥ M ?B•)

` x : (A•)⊥ ; x : A• ` Σ ; t : !(B•)⊥

` Σ, x : (A•)⊥ ; x⊗ t : A• ⊗ !(B•)⊥

` Σ, x : (A•)⊥ ; ?(x⊗ t) : ?(A• ⊗ !(B•)⊥)

` (Γ•1)
⊥,?(∆•1),Σ, x : (A•)⊥ ; V∗ • ?(x⊗ t)

` (Γ•1)
⊥,?(∆•1),Σ ; x.(V∗ • ?(x⊗ t)) : (A•)⊥

` (Γ•1)
⊥,?(∆•1),Σ ; !x.(V∗ • ?(x⊗ t)) : !(A•)⊥

Here, we apply the induction hypothesis (2) toΓ2 ` ∆2 | w : A and above sequent, we obtain

the conclusion of this case:` (Γ•1)
⊥, (Γ•2)

⊥,?(∆•1),?(∆•2),Σ ; ~w�!x.(V∗•?(x⊗t)).

Case of (app2) : in this case, we consider thatΓ1,Γ2 ` ∆1,∆2 | vw : B (wherev is not a

value) is derived fromΓ1 ` ∆1 | v : A→ B andΓ2 ` ∆2 | w : A, and supposè Σ ; t : !(B•)⊥.

Then,

` x : ?(A• ⊗ !(B•)⊥) ; x : !((A•)⊥ M ?B•)

` z : (A•)⊥ ; z : A• ` α : ?B• ; α : !(B•)⊥

` α : ?B•, z : (A•)⊥ ; z⊗ α : A• ⊗ !(B•)⊥

` α : ?B•, z : (A•)⊥ ; ?(z⊗ α) : ?(A• ⊗ !(B•)⊥)
` x : ?(A• ⊗ !(B•)⊥), α : ?B•, z : (A•)⊥ ; x • ?(z⊗ α)
` x : ?(A• ⊗ !(B•)⊥), α : ?B• ; z.(x • ?(z⊗ α)) : (A•)⊥

` x : ?(A• ⊗ !(B•)⊥), α : ?B• ; !z.(x • ?(z⊗ α)) : !(A•)⊥
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and the induction hypothesis (2), we have

` (Γ•2)
⊥,?(∆•2), x : ?(A• ⊗ !(B•)⊥), α : ?B• ; ~v�!z.(x•?(z⊗α)) (≡ ~xv�α)

Therefore, we obtaiǹ (Γ•2)
⊥,?(∆•2), x : ?(A•⊗ !(B•)⊥), α : ?B• ; (λx.xv)∗ : !(?(A•⊗ !(B•)⊥)M

?B•) from the following derivation.

` (Γ•2)
⊥,?(∆•2), x : ?(A• ⊗ !(B•)⊥), α : ?B• ; ~xv�α

` (Γ•2)
⊥,?(∆•2) ; (x, α)~xv�α : (?(A• ⊗ !(B•)⊥)M ?B•)

` (Γ•2)
⊥,?(∆•2) ; !(x, α)~xv�α : !(?(A• ⊗ !(B•)⊥)M ?B•)

So, we can derivè (Γ•2)
⊥,?(∆•2),Σ ; !z.((λx.xv)∗ • ?(z⊗ t)) : !?(A• ⊗ !(B•)⊥) as follows:

` (Γ•2)⊥,?(∆•2) ; (λx.xv)∗ : !(?(A• ⊗ !(B•)⊥)M ?B•)

` z : ?(A• ⊗ !(B•)⊥) ; z : !((A•)⊥ M ?B•) ` Σ, ; t : !(B•)⊥

` Σ, z : ?(A• ⊗ !(B•)⊥) ; z⊗ t : !((A•)⊥ M ?B•) ⊗ !(B•)⊥

` Σ, z : ?(A• ⊗ !(B•)⊥) ; ?(z⊗ t) : ?(!((A•)⊥ M ?B•) ⊗ !(B•)⊥)

` (Γ•2)⊥,?(∆•2),Σ, z : ?(A• ⊗ !(B•)⊥) ; (λx.xv)∗ • ?(z⊗ t)

` (Γ•2)⊥,?(∆•2),Σ ; z.((λx.xv)∗ • ?(z⊗ t)) : ?(A• ⊗ !(B•)⊥)

` (Γ•2)⊥,?(∆•2),Σ ; !z.((λx.xv)∗ • ?(z⊗ t)) : !?(A• ⊗ !(B•)⊥)

Finally, we obtain the conclusion

` (Γ•1)
⊥, (Γ•2)

⊥,?(∆•1),?(∆•2),Σ ; ~w�!z.((λx.xv)∗•?(z⊗t)) (≡ ~vw�t)

from the induction hypothesis.

Case of (µ-app) : we consider the case thatΓ ` ∆ | µα.τ : A is derived fromΓ ` ∆, α : A |
τ, and supposè Σ ; t : !(A•)⊥. Apply the induction hypothesis toΓ ` ∆, α : A | τ, then we

have` (Γ•)⊥,?∆•, α : ?A• ; ~τ�. From the substitution lemma, we obtain the conclusion of

this casè (Γ•)⊥,?∆•,Σ ; ~τ�[t/α].

Case of (naming) : we consider the case thatΓ ` ∆, α : A | [α]w is derived fromΓ ` ∆ |
w: A. Now, we apply the induction hypothesis toΓ ` ∆ | w: A and` α : ?A• ; α : !(A•)⊥,

then we obtain the conclusion of this case` (Γ•)⊥,?∆• ; ~w�α.

�

From (1),`DCP- β : ?A•; β : !(A•)⊥ and (Focus)-rule, it follows that ifΓ `λµ ∆ | w: A then

`DCP- (Γ•)⊥,?∆• ; ~w� : ?A•.

Lemma 3.6

Let w andv beλµ-terms, andt andu be DCP−-positive terms. Then the following hold.

(1) If t −→v u then~w�t −→∗ ~w�u.
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(2) W∗[V∗/x] ≡ (W[V/x])∗,

~w�t[V∗/x] ≡ ~w[V/x]�t[V∗/x], and

~τ�[V∗/x] ≡ ~τ[V/x]�.

(3) If α is not in FN(V), FN(v) and FN(τ), then

V∗[t/α] ≡ V∗,

~v�u[t/α] ≡ ~v�u[t/α], and

~τ�[t/α] ≡ ~τ�.

(4) V∗[(w, β)C/α] −→∗ (V[[β](−)w/[α](−)])∗,

~v�t[(w, β)C/α] −→∗ ~v[[β](−)w/[α](−)]�t[(w,β)C/α], and

~τ�[(w, β)C/α] −→∗ ~τ[[β](−)w/[α](−)]�.

(5) W∗[(V, β)B/α] ≡ (W[[β]V(−)/[α](−)])∗,

~v�t[(V, β)B/α] ≡ ~v[[β]V(−)/[α](−)]�t[(V,β)B/α], and

~τ�[(V, β)B/α] ≡ ~τ[[β]V(−)/[α](−)]�.

(6) V∗[β/α] ≡ (V[β/α])∗,

~w�t[β/α] ≡ ~w[β/α]�t[β/α], and

~τ�[β/α] ≡ ~τ[β/α]�.

Proof. (1) By induction onw.

Case ofx : we obtain~x�t ≡ t • ?x −→ u • ?x ≡ ~x�u.

Case ofVw : we obtain the following by the induction hypothesis:

~Vw�t ≡ ~w�!x.(V∗•?(x⊗t)) −→∗ ~w�!x.(V∗•?(x⊗u)) ≡ ~Vw�u

Case ofvw (wherev is not a value) : we obtain (w, t)C −→∗ (w,u)C by the induction

hypothesis. Again, we apply the induction hypothesis, then we have

~vw�t ≡ ~v�(w,t)C −→∗ ~v�(w,u)C ≡ ~vw�u .

Case ofλx.w : we obtain

~λx.w�t ≡ t • ?(λx.w)∗ −→ u • ?(λx.w)∗ ≡ ~λx.w�u .

Case ofµα.τ : we obtain

~µα.τ�t ≡ ~τ�[t/α] −→∗ ~τ�[u/α] ≡ ~µα.τ�u .
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(2) By inducion onW, w andτ.

Case ofx : we obtain

x∗[V∗/x] ≡ x[V∗/x] ≡ V∗

~x�t[V
∗/x] ≡ (t • ?x∗)[V∗/x] ≡ t[V∗/x] • ?(x∗[V∗/x])

≡ t[V∗/x] • ?V∗ ≡ ~V�t[V∗/x] .

Case ofz(. x) : we obtain

z∗[V∗/x] ≡ z[V∗/x] ≡ z≡ z∗

~z�t[V
∗/x] ≡ (t • ?z∗)[V∗/x] ≡ t[V∗/x] • ?(z∗[V∗/x])

≡ t[V∗/x] • ?z∗ ≡ ~z�t[V∗/x] .

Case ofλz.w : we obtain

(λz.w)∗[V∗/x] ≡ !(z, α)~w�α[V∗/x]
I .H.≡ !(z, α)~w[V/x]�α

≡ (λz.w[V/x])∗ ≡ ((λz.w)[V/x])∗

~λz.w�t[V
∗/x] ≡ (t • ?(λz.w)∗)[V∗/x] ≡ t[V∗/x] • ?(λz.w)∗[V∗/x]

≡ t[V∗/x] • ?(λz.w[V/x])∗ ≡ ~(λz.w)[V/x]�t[V∗/x] .

Case ofWw (whereW is a value): By induction hypothesis, we have (W, t)B[V∗/x] ≡
(W[V/x], t[V∗/x])B. Then we obtain

~Ww�t[V
∗/x] ≡ ~w�(W, t)B [V

∗/x]
I .H.≡ ~w[V/x]�(W, t)B[V∗/x]

≡ ~w[V/x]�(W[V/x], t[V∗/x])B ≡ ~W[V/x]w[V/x]�t[V∗/x]

≡ ~(Ww)[V/x]�t[V∗/x] .

Case ofvw (wherev is not a value): By induction hypothesis, we have (w, t)C[V∗/x] ≡
(w[V/x], t[V∗/x])C. Then we obtain

~vw�t[V
∗/x] ≡ ~v�(w, t)C [V

∗/x]
I .H.≡ ~v[V/x]�(w, t)C[V∗/x]

≡ ~v[V/x]�(w[V/x], t[V∗/x])C ≡ ~v[V/x]w[V/x]�t[V∗/x]

≡ ~(vw)[V/x]�t[V∗/x] .

Case ofµβ.τ : we obtain

~µβ.τ�t[V
∗/x] ≡ ~τ�[t/β][V∗/x] ≡ ~τ�[V∗/x][ t[V∗/x]/β]
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I .H.≡ ~τ[V/x]�[t[V∗/x]/β] ≡ ~µβ.τ[V/x]�t[V∗/x]

≡ ~(µβ.τ)[V/x]�t[V∗/x] .

Case of [β]w : we obtain

~[β]w�[V∗/x] ≡ ~w�β[V∗/x]
I .H.≡ ~w[V/x]�β ≡ ~[β](w[V/x])�

≡ ~([β]w)[V/x]� .

(3) By induction onV, v andτ.

Case ofx : we obtain

x∗[t/α] ≡ x[t/α] ≡ x ≡ x∗

~x�u[t/α] ≡ (u • ?x∗)[t/α] ≡ u[t/α] • ?(x∗[t/α])

≡ u[t/α] • ?x∗ ≡ ~x�u[t/α] .

Case ofλz.w : we obtain

(λz.w)∗[t/α] ≡ !(z, γ)~w�γ[t/α]
I .H.≡ !(z, γ)~w�γ ≡ (λz.w)∗

~λz.w�u [t/α] ≡ (u • ?(λz.w)∗)[t/α] ≡ u[t/α] • ?(λz.w)∗[t/α]

≡ u[t/α] • ?(λz.w)∗ ≡ ~λz.w�u[t/α] .

Case ofWw(whereW is a value): By induction hypothesis, we have

(W, u)B[t/α] ≡ (W, u[t/α])B

Therefore we obtain

~Ww�u[t/α] ≡ ~w�(W,u)B[t/α]
I .H.≡ ~w�(W,u)B[t/α]

≡ ~w�(W,u[t/α])B ≡ ~Ww�u[t/α] .

Case ofw1w2 (wherew1 is not a value): By induction hypothesis, we have

(w2, u)C[t/α] ≡ (w2, u[t/α])C .

Therefore we obtain

~w1w2�u[t/α] ≡ ~w1�(w2,u)C [t/α]
I .H.≡ ~w1�(w2,u)C[t/α]

≡ ~w1�(w2,u[t/α])C ≡ ~w1w2�u[t/α] .
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Case ofµγ.τ : we obtain

~µγ.τ�u[t/α] ≡ ~τ�[u/γ][ t/α] ≡ ~τ� [t/α][u[t/α]/γ]
I .H.≡ ~τ� [u[t/α]/γ] ≡ ~µγ.τ�u[t/α] .

Case of [γ]w (note thatγ . α by the hypothesis): we obtain

~ [γ]w�[t/α] ≡ ~w�γ[t/α]
I .H.≡ ~w�γ ≡ ~ [γ]w� .

(4) By inducion onV, v andτ.

Case ofx : we obtain

x∗[(w, β)C/α] ≡ x[(w, β)C/α] ≡ x ≡ x∗

~x�t[(w, β)C/α] ≡ (t • ?x∗)[(w, β)C/α] ≡ t[(w, β)C/α] • ?(x∗[(w, β)C/α])

≡ t[(w, β)C/α] • ?x∗ ≡ ~x�t[(w, β)C/α] .

Case ofλz.v : we obtain

(λz.v)∗[(w, β)C/α] ≡ !(z, γ)~v�γ[(w, β)C/α]
I .H.
−→∗ !(z, γ)~v[[β](−)w/[α](−)]�γ

≡ (λz.v[[β](−)w/[α](−)])
∗ ≡ ((λz.v)[[β](−)w/[α](−)])

∗

~λz.v�t[(w, β)C/α] ≡ (t • ?(λz.v)∗)[(w, β)C/α]

≡ t[(w, β)C/α] • ?(λz.v)∗[(w, β)C/α]

−→∗ t[(w, β)C/α] • ?(λz.v[[β](−)w/[α](−)])
∗

≡ ~(λz.v)[[β](−)w/[α](−)]�t[(w, β)C/α] .

Case ofWw(whereW is a value): By induction hypothesis, we have

(W, t)B[(w, β)C/α] −→∗ (W[[β](−)w/[α](−)], t[(w, β)C/α])B .

Therefore we obtain

~Ww�t[(w, β)C/α] ≡ ~w�(W, t)B [(w, β)C/α]
I .H.
−→∗ ~w[[β](−)w/[α](−)]�(W, t)B[(w, β)C/α]

I .H.and(1)

−→∗ ~w[[β](−)w/[α](−)]�(W[[β](−)w/[α](−)], t[(w, β)C/α])B

≡ ~W[[β](−)w/[α](−)]w[[β](−)w/[α](−)]�t[(w, β)C/α]

≡ ~(Ww)[[β](−)w/[α](−)]�t[(w, β)C/α] .

Case ofw1w2 (wherew1 is not a value): By induction hypothesis, we have

(w2, t)C[(w, β)C/α] −→∗ (w2[
[β](−)w/[α](−)], t[(w, β)C/α])C .
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Therefore we obtain

~w1w2�t[(w, β)C/α] ≡ ~w1�(w2, t)C[(w, β)C/α]
I .H.
−→∗ ~w1[

[β](−)w/[α](−)]�(w2, t)C[(w, β)C/α]

I .H.and(1)

−→∗ ~w1[
[β](−)w/[α](−)]�(w2[[β](−)w/[α](−)], t[(w, β)C/α])C

≡ ~w1[
[β](−)w/[α](−)]w2[

[β](−)w/[α](−)]�t[(w, β)C/α]

≡ ~(w1w2)[
[β](−)w/[α](−)]�t[(w, β)C/α] .

Case ofµγ.τ : we obtain

~µγ.τ�t[(w, β)C/α] ≡ ~τ�[t/γ][(w, β)C/α] ≡ ~τ�[(w, β)C/α][ t[(w, β)C/α]/γ]
I .H.
−→∗ ~τ[[β](−)w/[α](−)]�[t[(w, β)C/α]/γ]

≡ ~µγ.τ[[β](−)w/[α](−)]�t[(w, β)C/α] ≡ ~(µγ.τ)[[β](−)w/[α](−)]�t[(w, β)C/α] .

Case of [α]v (wherev is not a value): we obtain

~ [α]v�[(w, β)C/α] ≡ ~v�α[(w, β)C/α]
I .H.
−→∗ ~v[[β](−)w/[α](−)]�(w, β)C

≡ ~v[[β](−)w/[α](−)]w�β ≡ ~ [β]v[[β](−)w/[α](−)]w�β ≡ ~ ([α]v)[[β](−)w/[α](−)] � .

Case of [α]V (whereV is a value): we obtain

~ [α]V �[(w, β)C/α] ≡ ~V�α[(w, β)C/α]
I .H.
−→∗ ~V[[β](−)w/[α](−)]�(w, β)C

≡ ~V[[β](−)w/[α](−)]�!x.~w�!z.(x•?(z⊗β)) ≡ !x.~w�!z.(x•?(z⊗β)) • ?(V[[β](−)w/[α](−)])
∗

−→ (V[[β](−)w/[α](−)])
∗ • x.~w�!z.(x•?(z⊗β))

(3)−→ ~w�!z.((V[[β](−)w/[α](−)])∗•?(z⊗β))

≡ ~ [β]V[[β](−)w/[α](−)]w� ≡ ~ ([α]V)[[β](−)w/[α](−)] � .

Case of [γ]v (whereγ . α): we obtain

~ [γ]v�[(w, β)C/α] ≡ ~v�γ[(w, β)C/α]
I .H.
−→∗ ~v[[β](−)w/[α](−)]�γ

≡ ~ [γ](v[[β](−)w/[α](−)]) � ≡ ~ ([γ]v)[[β](−)w/[α](−)] � .

(5) By inducion onW, v andτ.

Case ofx : we obtain

x∗[(V, β)B/α] ≡ x[(V, β)B/α] ≡ x ≡ x∗

~x�t[(V, β)B/α] ≡ (t • ?x∗)[(V, β)B/α] ≡ t[(V, β)B/α] • ?(x∗[(V, β)B/α])

≡ t[(V, β)B/α] • ?x∗ ≡ ~x�t[(V, β)B/α] .

– 106 –



Case ofλz.v : we obtain

(λz.v)∗[(V, β)B/α] ≡ !(z, γ)~v�γ[(V, β)B/α]
I .H.≡ !(z, γ)~v[[β]V(−)/[α](−)]�γ

≡ (λz.v[[β]V(−)/[α](−)])
∗ ≡ ((λz.v)[[β]V(−)/[α](−)])

∗

~λz.v�t[(V, β)B/α] ≡ (t • ?(λz.v)∗)[(V, β)B/α]

≡ t[(V, β)B/α] • ?(λz.v)∗[(V, β)B/α]

≡ t[(V, β)B/α] • ?(λz.v[[β]V(−)/[α](−)])
∗

≡ ~(λz.v)[[β]V(−)/[α](−)]�t[(V, β)B/α] .

Case ofWw(whereW is a value): By induction hypothesis, we have

(W, t)B[(V, β)B/α] ≡ (W[[β]V(−)/[α](−)], t[(V, β)B/α])B .

Therefore we obtain

~Ww�t[(V, β)B/α] ≡ ~w�(W, t)B[(V, β)B/α]
I .H.≡ ~w[[β]V(−)/[α](−)]�(W, t)B[(V, β)B/α]

≡ ~w[[β]V(−)/[α](−)]�(W[[β]V(−)/[α](−)], t[(V, β)B/α])B

≡ ~W[[β]V(−)/[α](−)]w[[β]V(−)/[α](−)]�t[(V, β)B/α]

≡ ~(Ww)[[β]V(−)/[α](−)]�t[(V, β)B/α] .

Case ofw1w2 (wherew1 is not a value): By induction hypothesis, we have

(w2, t)C[(V, β)B/α] ≡ (w2[
[β]V(−)/[α](−)], t[(V, β)B/α])C .

Therefore we obtain

~w1w2�t[(V, β)B/α] ≡ ~w1�(w2, t)C [(V, β)B/α]
I .H.≡ ~w1[

[β]V(−)/[α](−)]�(w2, t)C[(V, β)B/α]

≡ ~w1[
[β]V(−)/[α](−)]�(w2[[β]V(−)/[α](−)], t[(V, β)B/α])C

≡ ~w1[
[β]V(−)/[α](−)]w2[

[β]V(−)/[α](−)]�t[(V, β)B/α]

≡ ~(w1w2)[
[β]V(−)/[α](−)]�t[(V, β)B/α] .

Case ofµγ.τ : we obtain

~µγ.τ�t[(V, β)B/α] ≡ ~τ�[t/γ][(V, β)B/α]
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≡ ~τ�[(V, β)B/α][ t[(V, β)B/α]/γ]
I .H.≡ ~τ[[β]V(−)/[α](−)]�[t[(V, β)B/α]/γ]

≡ ~µγ.τ[[β]V(−)/[α](−)]�t[(V, β)B/α]

≡ ~(µγ.τ)[[β]V(−)/[α](−)]�t[(V, β)B/α] .

Case of [α]w : we obtain

~ [α]w�[(V, β)B/α] ≡ ~w�α[(V, β)B/α]
I .H.≡ ~w[[β]V(−)/[α](−)]�(V, β)B

≡ ~Vw[[β]V(−)/[α](−)]�β ≡ ~ [β]Vw[[β]V(−)/[α](−)] �

≡ ~ ([α]w)[[β]V(−)/[α](−)] � .

Case of [γ]w (whereγ . α): we obtain

~ [γ]w�[(V, β)B/α] ≡ ~w�γ[(V, β)B/α]
I .H.≡ ~w[[β]V(−)/[α](−)]�γ

≡ ~ [γ](w[[β]V(−)/[α](−)]) � ≡ ~ ([γ]w)[[β]V(−)/[α](−)] � .

(6) By induction onV, w andτ.

Case ofx :

x∗[β/α] ≡ x[β/α] ≡ x ≡ x∗

~x�t[β/α] ≡ (t • ?x∗)[β/α] ≡ t[β/α] • ?(x∗[β/α]) ≡ t[β/α] • ?x∗ ≡ ~x�t[β/α]

Case ofλz.w :

(λz.w)∗[β/α] ≡ !(z, γ)~w�γ [β/α]
I .H.≡ !(z, γ)~w[β/α]�γ

≡ (λz.w[β/α])∗ ≡ ((λz.w)[β/α])∗

~λz.w�t[β/α] ≡ (t • ?(λz.w)∗)[β/α]

≡ t[β/α] • ?(λz.w)∗[β/α] ≡ t[β/α] • ?(λz.w[β/α])∗

≡ ~λz.w[β/α]�t[β/α] ≡ ~(λz.w)[β/α]�t[β/α]

Case ofWw(whereW is a value): By induction hypothesis, we have

(W, t)B[β/α] ≡ (W[β/α], t[β/α])B .

Therefore we obtain

~Ww�t[β/α] ≡ ~w�(W, t)B[β/α]
I .H.≡ ~w[β/α]�(W, t)B[β/α] ≡ ~w[β/α]�(W[β/α], t[β/α])B
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≡ ~W[β/α] w[β/α]�t[β/α] ≡ ~(Ww)[β/α]�t[β/α] .

Case ofw1w2 (wherew1 is not a value): By induction hypothesis, we have

(w2, t)C[β/α] ≡ (w2[β/α], t[β/α])C .

Therefore we obtain

~w1w2�t[β/α] ≡ ~w1�(w2, t)C [β/α]
I .H.≡ ~w1[β/α]�(w2, t)C[β/α]

≡ ~w1[β/α]�(w2[β/α], t[β/α])C

≡ ~w1[β/α]w2[β/α]�t[β/α] ≡ ~(w1w2)[β/α]�t[β/α] .

Case ofµγ.τ :

~µγ.τ�t[β/α] ≡ ~τ�[t/γ][β/α] ≡ ~τ�[β/α][ t[β/α]/γ]
I .H.≡ ~τ[β/α]�[t[β/α]/γ]

≡ ~µγ.τ[β/α]�t[β/α] ≡ ~(µγ.τ)[β/α]�t[β/α]

Case of [α]w :

~[α]w�[β/α] ≡ ~w�α[β/α]
I .H.≡ ~w[β/α]�β ≡ ~[β](w[β/α])� ≡ ~([α]w)[β/α]�

Case of [γ]w (whereγ . α) :

~[γ]w�[β/α] ≡ ~w�γ[β/α]
I .H.≡ ~w[β/α]�γ ≡ ~[γ](w[β/α])� ≡ ~([γ]w)[β/α]�

�

Theorem 3.7 (soundness of the positive-translation)

If w −→v v then~w�t −→∗ ~v�t holds for any positive termt.

Proof. By induction on−→v.

Base step :

~(λx.w)V�t ≡ ~V�!z.((λx.w)∗•?(z⊗t)) ≡ !z.((λx.w)∗ • ?(x⊗ t)) • ?V∗

−→ V∗ • z.((λx.w)∗ • ?(z⊗ t))

−→ (λx.w)∗ • ?(V∗ ⊗ t) ≡ !(x, α)~w�α • ?(V∗ ⊗ t)

−→ (V∗ ⊗ t) • (x, α)~w�α
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−→∗ ~w�α[V∗/x, t/α]
Lem 3.6 (1),(3)≡ ~w[V/x]�t

~(µα.τ)w�t ≡ ~µα.τ�(w,t)C ≡ ~τ�[(w, t)C/α] ≡ ~τ�[(w, β)C/α][ t/β] (β is fresh)
Lem 3.6 (4)

−→∗ ~ τ[[β](−)w/[α](−)] �[t/β] ≡ ~ µβ.τ[[β](−)w/[α](−)] �t

~V(µα.τ)�t ≡ ~µα.τ�(V,t)B ≡ ~τ�[(V, t)B/α] ≡ ~τ�[(V, t)B/α][ t/β]
Lem 3.6 (5)≡ ~ τ[[β]V(−)/[α](−)] �[t/β] ≡ ~ µβ.τ[[β]V(−)/[α](−)] �t

~µα.[α]w�t ≡ ~[α]w�[t/α] ≡ ~w�α[t/α]
Lem 3.6 (3)≡ ~w�t

~[β]µα.τ� ≡ ~µα.τ�β ≡ ~τ�[β/α]
Lem 3.6 (6)≡ ~τ[β/α]�

Inductive step :

Case ofλx.w −→v λx.w′ (obtained fromw −→v w′) :

~λx.w�t ≡ t • ?!(x, α)~w�α
I .H.
−→∗ t • ?!(x, α)~w′�α ≡ ~λx.w′�t

Case ofvw−→v v′w (obtained fromv −→v v′, andv is not a value) :

~vw�t ≡ ~v�(w, t)C
I .H.
−→∗ ~v′�(w, t)C ≡ ~v′w�t

Case ofvw −→v vw′ (obtained fromw −→v w′, andv is not a value) : by the induction

hypothesis, we can obtain (w, t)C −→∗ (w′, t)C. Using Lemma 3.6 (1), we obtain the con-

clusion of this case in the following way.

~vw�t ≡ ~v�(w, t)C −→∗ ~v�(w′ t)C ≡ ~vw′�t

Case ofVw−→v V′w (obtained fromV −→v V′, andV is a value) : by the induction hypoth-

esis, we can obtain (V, t)B −→∗ (V′, t)B. Using Lemma 3.6 (1), we obtain the conclusion of

this case in the following way.

~Vw�t ≡ ~w�(V, t)B −→∗ ~w�(V′, t)B ≡ ~V′w�t

Case ofVw−→v Vw′ (obtained fromw −→v w′, andV is a value) :

~Vw�t ≡ ~w�(V, t)B
I .H.
−→∗ ~w′�(V, t)B ≡ ~Vw′�t

Case ofµα.τ −→v µα.τ
′ (obtained fromτ −→v τ

′) :

~µα.τ�t ≡ ~τ�[t/α]
I .H.
−→∗ ~τ′�[t/α] ≡ ~µα.τ′�t
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Case of [α]w −→v [α]w′ (obtained fromw −→v w′) :

~[α]w� ≡ ~w�α
I .H.
−→∗ ~w′�α ≡ ~[α]w′�

�

Remark 5

Similarly to the call-by-name case, our translation does not preserve the call-by-valueη-

rule of theλµ-calculus (i.e. λx.Vx −→v V (wherex < FV(V))) as the reduction rule, but

it does preserve it as the equational rule. Whenx andα are fresh fort, we can prove

!(x, α)(t•?(x⊗α)) = t using theη-rules of DCP− as the following way: !(x, α)(t•?(x⊗α)) =

!(x, α)(!z.(t • ?z) • ?(x⊗ α)) −→ !(x, α)(x⊗ α • z.(t • ?z)) −→ !z.(t • ?z) −→ t. So, we obtain

(λx.Vx)∗ = V∗ by

(λx.Vx)∗ ≡ !(x, α)~Vx�α ≡ !(x, α)~x�!z.(V∗•?(z⊗α)) ≡ !(x, α)(!z.(V∗ • ?(z⊗ α)) • ?x)

−→ !(x, α)(x • z.(V∗ • ?(z⊗ α))) −→ !(x, α)(V∗ • ?(x⊗ α)) = V∗.

3.5 Logical Predicates and Basic Lemma

In the following, we only consider the⊗,M, !,?-fragment of DCP− for simplicity, and still

call this fragment DCP−. In this section, we develop the logical predicate method for

LLP, and then prove the Basic Lemma that works for both the negative- and the positive-

translationsuniformly. We denoteλ- (resp.µ-) contexts of theλµ-calculus byΓ (resp.∆),

and contexts of DCP− by Σ andΛ.

We define [Γ; ∆]◦ by ?(Γ◦)⊥,∆◦, and [Γ; ∆]• by (Γ•)⊥,?(∆•). In the following,† stands

for either◦ or •. Note that [Γ; ∆]† is always a context of DCP−.

Definition 3.14

For any positive typeP and negative typeN, and a special symbol⊥ define

D†P(Γ; ∆) B { t : DCP−-pos.term| ` [Γ; ∆]† ; t : P },
D†N(Γ; ∆) B { k : DCP−-neg.term| ` [Γ; ∆]† ; k : N },and

D†⊥(Γ; ∆) B { τ : DCP−-neut.term| ` [Γ; ∆]† ; τ }.
Definition 3.15

For any contextΓ, ∆ and typeA of theλµ-calculus, define

Λ
µ
A(Γ; ∆) B { w : λµ-term | Γ ` ∆ | w : A },and

– 111 –



Λµ(Γ; ∆) B { τ : λµ-named term| Γ ` ∆ | τ }.

Definition 3.16 (D†-predicate)

Let ξ be a positive type (resp. negative type,⊥), π andπ′ be positive (resp. negative, neutral)

terms. A familyS of sets indexed byλ- andµ-contexts of theλµ-calculus is called aD†-

predicate onξ whenS(Γ; ∆) ⊂ D†ξ(Γ; ∆) and

(monotonicity) if Γ ⊂ Γ′ and∆ ⊂ ∆′ thenS(Γ; ∆) ⊂ S(Γ′; ∆′), and

(equality) if π ∈ S(Γ; ∆), π′ ∈ D†ξ(Γ; ∆) andπ = π′ thenπ′ ∈ S(Γ; ∆).

Let S, T beD†-predicates onξ. The relationS ⊂ T is defined by∀Γ,∆ ( S(Γ; ∆) ⊂
T (Γ; ∆) )

In the sequel, we fix aD†-predicateB on⊥. In terms of thisB, negation is defined as

follows.

Definition 3.17 (negation)

LetS be a family of sets indexed by theλ- andµ-contexts of theλµ-calculus andS(Γ; ∆) ⊂
D†P(Γ; ∆). We define as follows.

S⊥(Γ; ∆) B { k ∈ D†P⊥(Γ; ∆) | ∀Γ′ ⊃ Γ∀∆′ ⊃ ∆∀t ∈ S(Γ′; ∆′) (t • k ∈ B(Γ′; ∆′)) }.

We defineS⊥ for S such thatS(Γ; ∆) ⊂ D†N(Γ; ∆) similarly.

Lemma 3.8

LetS be an indexed family as above andS(Γ; ∆) ⊂ D†ξ(Γ; ∆). ThenS⊥ is aD†-predicate on

ξ⊥.

Proof. We show thatS⊥ satisfies the (monotonicity) and (equality) conditions. Here, we

consider the case thatξ is a negative type (for the positive type case, it is similarly proved

as this case).

(monotonicity): AssumeΓ′ ⊃ Γ, ∆′ ⊃ ∆ andt ∈ S⊥(Γ; ∆), then for anyΓ′′ ⊃ Γ′, ∆′′ ⊃ ∆′

andk ∈ S(Γ′′; ∆′′), we havet•k ∈ B(Γ′′; ∆′′) by the definition of negation. Hence, we obtain

t ∈ S⊥(Γ′; ∆′).

(equality): Assumet ∈ S⊥(Γ; ∆) andt = t′, then for anyΓ′ ⊃ Γ, ∆′ ⊃ ∆ andk ∈ S(Γ′; ∆′),

we havet′ • k = t • k ∈ B(Γ′; ∆′). SinceB satisfies (equality), we obtaint′ • k ∈ B(Γ′′; ∆′′).

Therefore, we concludet′ ∈ S⊥(Γ; ∆). �
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Lemma 3.9

LetS andT beD†-predicates onξ. Then we have

(1) S ⊂ S⊥⊥,

(2) If S ⊂ T thenT ⊥ ⊂ S⊥, and

(3) S⊥ = S⊥⊥⊥.

Proof. We consider the case thatξ is a negative type (for the positive type case, it is similarly

proved as this case).

(1) Supposek ∈ S(Γ; ∆). For anyΓ′ ⊃ Γ, ∆′ ⊃ ∆ and t ∈ S⊥(Γ′; ∆′), we havet • k ∈
B(Γ′; ∆′) sincek ∈ S(Γ′; ∆′). Therefore, we obtaink ∈ S⊥⊥(Γ; ∆).

(2) SupposeS ⊂ T andt ∈ T ⊥(Γ; ∆). For anyΓ′ ⊃ Γ, ∆′ ⊃ ∆ andk ∈ S(Γ′; ∆′), we have

t • k ∈ B(Γ′; ∆′) sincek ∈ T (Γ′; ∆′). Therefore, we obtaint ∈ S⊥(Γ; ∆).

(3) It is immediate from (1) and (2).

�

Definition 3.18

SupposeP,Q areD†-predicates onP, Q, andN ,M areD†-predicates onN, M respectively.

We then define as follows.

〈P,Q〉(Γ; ∆) B { t ⊗ u | t ∈ P(Γ; ∆), u ∈ Q(Γ; ∆) }
P?(Γ; ∆) B {?t | t ∈ P(Γ; ∆) }

P ⊗ Q B 〈P,Q〉⊥⊥, N MM B 〈N⊥,M⊥〉⊥
?P B (P?)⊥⊥, !N B ((N⊥)?)⊥

Lemma 3.10

Let P, Q, N andM beD†-predicates onP, Q, N and M respectively. ThenP ⊗ Q, ?P,

N MM and !N areD†-predicate onP⊗ Q, ?P, NM M and !N respectively.

Proof. It immediately follows from Lemma 3.8. �

Definition 3.19 (logicalD†-predicate)

Let ξ range over the types of DCP− and⊥. A family {Sξ} ofD†-predicates is called alogical

D†-predicatewhen the following conditions hold:

– 113 –



• eachSξ is aD†-predicate onξ.

• SX⊥ = SX
⊥, SX = SX⊥

⊥ andS⊥ = B.

• SP⊗Q = SP ⊗ SQ, SNMM = SN M SM, S!N = !SN, andS?P = ?SP .

Lemma 3.11

If {Sξ} is a logicalD†-predicate, then (Sξ)⊥ = Sξ⊥.

Proof. By induction onξ.

If ξ is a atomic typeX or X⊥, it is immediate.

If ξ is P⊗ Q, we have

(SP⊗Q)⊥ = (SP ⊗ SQ)⊥ = 〈SP,SQ〉⊥⊥⊥ Lem 3.9 (3)
= 〈SP,SQ〉⊥

I .H.
= 〈S⊥P⊥ ,S⊥Q⊥〉⊥ = SP⊥ M SQ⊥ = SP⊥MQ⊥ = S(P⊗Q)⊥ .

If ξ is NM M, we have

(SNMM)⊥ = (SN M SM)⊥ = 〈S⊥N,S⊥M〉⊥⊥ I .H.
= 〈SN⊥ ,SM⊥〉⊥⊥

= SN⊥ ⊗ SM⊥ = SN⊥⊗M⊥ = S(NMM)⊥ .

If ξ is ?P, we have

(S?P)⊥ = (?SP)⊥ = S?⊥⊥⊥
P

Lem 3.9 (3)
= S?⊥

P

I .H.
= S⊥?⊥

P⊥ = !SP⊥ = S!P⊥ = S(?P)⊥ .

If ξ is !N, we have

(S!N)⊥ = (!SN)⊥ = S⊥?⊥⊥
N

I .H.
= S?⊥⊥

N⊥ = ?SN⊥ = S?N⊥ .

�

Lemma 3.12 (Basic Lemma)

Let {Sξ} be a logicalD†-predicate,Σ ≡ x1 : N1, . . . , xn : Nn be a context of DCP−, andΓ, ∆

be contexts of theλµ-calculus. For anysi ∈ SN⊥i (Γ; ∆) (1 ≤ i ≤ n), the following hold.

(1) If ` Σ ; k : N, thenk[s1/x1, . . . , sn/xn] ∈ SN(Γ; ∆).

(2) If ` Σ ; u : P, thenu[s1/x1, . . . , sn/xn] ∈ SP(Γ; ∆).

(3) If ` Σ ; τ, thenτ[s1/x1, . . . , sn/xn] ∈ B(Γ; ∆).
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Proof. By induction on the derivation of DCP−. We consider the last rule of the derivation.

Case of (Ax)-rule: it is immediate from the hypothesis.

Case of (Cut)-rule: Suppose that` Σ,Λ ; t •k is derived from̀ Σ ; t : P and` Λ ; k : P⊥ by

(Cut)-rule. By induction hypothesis, we havet[~s/~x] ∈ SP(Γ; ∆) andk[~s/~x] ∈ SP⊥(Γ; ∆) =

S⊥P(Γ; ∆). Hence we obtain

(t • k)[~s/~x] ≡ t[~s/~x] • k[~s/~x] ∈ B(Γ; ∆) .

Case of⊗-rule: Suppose that̀Σ,Λ ; t⊗u: P⊗Q is derived from̀ Σ ; t : P and` Λ ; u : Q

by ⊗-rule. By induction hypothesis, we havet[~s/~x] ∈ SP(Γ; ∆) and u[~s/~x] ∈ SQ(Γ; ∆).

Hence we obtain

(t ⊗ u)[~s/~x] ≡ t[~s/~x] ⊗ u[~s/~x] ∈ 〈SP,SP〉(Γ; ∆) ⊂ 〈SP,SP〉⊥⊥(Γ; ∆)

= (SP ⊗ SQ)(Γ; ∆) = SP⊗Q(Γ; ∆)

Case ofM-rule: Suppose that̀ Σ ; (y, z)τ : N M M is derived from` Σ, y: N, z : M ; τ

by M-rule Let si ∈ SN⊥i (Γ; ∆) (1 ≤ i ≤ n), andΓ ⊂ Γ′, ∆ ⊂ ∆′ and t ∈ SN⊥(Γ′; ∆′) and

u ∈ SM⊥(Γ′; ∆′). By induction hypothesis,

(t ⊗ u) • ((y, z)τ)[~s/~x] ≡ (t ⊗ u) • (y, z)(τ[~s/~x]) = τ[~s/~x, t/y,u/z] ∈ B(Γ′; ∆′) .

Therefore we obtain

((y, z)τ)[~s/~x] ∈ 〈SN⊥ ,SM⊥〉⊥(Γ; ∆) = 〈S⊥N,S⊥M〉⊥(Γ; ∆) = (SN M SM)(Γ; ∆) = SNMM(Γ; ∆) .

Case of !-rule: Suppose that` Σ ; !k : !N is derived from` Σ ; k : N by !-rule LetΓ ⊂ Γ′,

∆ ⊂ ∆′ and ?t ∈ (S⊥N)?(Γ′; ∆′), i.e., t ∈ (S⊥N)(Γ′; ∆′). Sincek[~s/~x] ∈ SN(Γ; ∆) by induction

hypothesis,

(!k)[~s/~x] • ?t ≡ !(k[~s/~x]) • ?t = t • (k[~s/~x]) ∈ B(Γ; ∆) .

So, we obtain

(!k)[~s/~x] ∈ ((S⊥N)?)⊥(Γ; ∆) ≡ !SN(Γ; ∆) = S!N(Γ; ∆) .

Case of the ?-rule: Suppose that` Σ ; ?t : ?P is derived from` Σ ; t : P by ?-rule Since

t[~s/~x] ∈ SP(Γ; ∆) by induction hypothesis, we obtain

(?t)[~s/~x] ∈ S?
P(Γ; ∆) ⊂ (S?

P)⊥⊥(Γ; ∆) = ?SP(Γ; ∆) = S?P(Γ; ∆) .

Case of (Focus)-rule: Suppose that` Σ ; z.τ : N is derived from` Σ, z : N ; τ by (Focus)-

rule. For anyΓ′ ⊃ Γ, ∆′ ⊃ ∆ andt ∈ S⊥N(Γ′; ∆′),

t • (z.τ)[~s/~x] ≡ t • z.(τ[~s/~x]) = τ[~s/~x, t/z] ∈ B(Γ′; ∆′)
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by induction hypothesis. So, we obtain

(z.τ)[~s/~x] ∈ S⊥⊥N (Γ; ∆) = SN(Γ; ∆) .

Case of (Unfocus)-rule: Suppose that` Σ, z : N ; z • k is derived from` Σ ; k : N by

(Unfocus)-rule. For anyt ∈ S⊥N(Γ; ∆), by induction hypothesis we have

(z• k)[~s/~x, t/z] ≡ t • k[~s/~x] ∈ B(Γ; ∆) .

Case of (Weakening)-rule: We now consider the case of positive terms. Suppose that`
Σ, z: N ; t : P is derived from` Σ ; t : P by (Weakening)-rule. Sincez is a fresh variable,

we have the conclusion of this case by induction hypothesis as follows:

t[~s/~x, s/z] ≡ t[~s/~x] ∈ SP(Γ; ∆) .

It is similarly shown the case of negative and neutral terms as this case.

Case of (Contraction)-rule: We now consider the case of positive terms. Suppose that`
Σ, z: N ; t[z/x, z/y] : P is derived from` Σ, x: N, y: N ; t : P by (Contraction)-rule. Then,

we have the conclusion of this case by induction hypothesis as follows:

(t[z/x, z/y])[~s/~x, s/z] ≡ t[~s/~x, s/x, s/y] ∈ SP(Γ; ∆) .

It is similarly shown the case of negative and neutral terms as this case. �

3.6 Fullness of the negative-translation

In this section, we discuss onlythe negative-translation, therefore we consider~w� and~τ�

as the images ofw andτ by the negative-translation.

Definition 3.20

For a typeA and contextsΓ, ∆ of theλµ-calculus, we define

B◦(Γ; ∆) B {τ ∈ D◦⊥(Γ; ∆) | ∃σ ∈ Λµ(Γ; ∆) (τ = ~σ�)}, and

PA(Γ; ∆) B { k ∈ D◦A◦(Γ; ∆) | ∃w ∈ Λ
µ
A(Γ; ∆) (k = ~w�) }.

Lemma 3.13

B◦ is aD◦-predicate on⊥, andPA is aD◦-predicate onA◦.
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Proof. For each case, we will check the (monotonicity) and (equality) condition ofD◦-

predicate.

(monotonicity): AssumeΓ ⊂ Γ′, ∆ ⊂ ∆′. If τ ∈ B◦(Γ; ∆), then there is aσ ∈ Λµ(Γ; ∆) ⊂
Λµ(Γ′; ∆′) such thatτ = ~σ�. So, we haveτ ∈ B◦(Γ′; ∆′). Suppose we pick ak ∈ PA(Γ; ∆),

then there is aw ∈ Λ
µ
A(Γ; ∆) ⊂ Λ

µ
A(Γ′; ∆′) such thatk = ~w�. Hence we havek ∈ PA(Γ′; ∆′).

(equality): Supposeτ ∈ B◦(Γ; ∆) and τ = τ′, then there is aσ ∈ Λµ(Γ; ∆) such that

τ′ = τ = ~σ�. Therefore, we haveτ′ ∈ B◦(Γ; ∆). And supposek ∈ PA(Γ; ∆) andk = k′.

Then there is aw ∈ Λ
µ
A(Γ; ∆) such thatk′ = k = ~w�. Hence we havek′ ∈ PA(Γ; ∆). �

Lemma 3.14

(i) If α : A ∈ ∆, thenα ∈ P⊥A(Γ; ∆) for anyΓ.

(ii) If x : A ∈ Γ, thenx ∈ ?(P⊥A)⊥(Γ; ∆) for any∆.

Proof. (i) Supposeα : A ∈ ∆ and Γ′ ⊃ Γ and ∆′ ⊃ ∆, k ∈ PA(Γ′; ∆′). There exists

w ∈ Λ
µ
A(Γ′; ∆′) such thatk = ~w�, and thenα • k = α • ~w� = ~w�α ≡ ~[α]w� ∈ B◦(Γ′; ∆′).

Thereforeα ∈ P⊥A(Γ; ∆).

(ii) Supposex : A ∈ Γ. Notice that (?P⊥A)⊥ = ((P⊥A)?)⊥⊥⊥ = ((P⊥A)?)⊥. So, we will prove

x ∈ ((P⊥A)?)⊥(Γ; ∆). For anyΓ′ ⊃ Γ and ∆′ ⊃ ∆, k ∈ (P⊥A)?(Γ′; ∆′). Then there exists

t ∈ P⊥A(Γ′; ∆′) such thatk = ?t. Thereforex • k = x • ?t ≡ ~x�t = t • ~x� ∈ B◦(Γ′; ∆′) and so

x ∈ ((P⊥A)?)⊥(Γ; ∆). �

Lemma 3.15

P⊥⊥A = PA

Proof. It suffices to showP⊥⊥A ⊂ PA. Take anyΓ, ∆ and k ∈ P⊥⊥A (Γ; ∆). We haveα ∈
P⊥A(Γ; ∆, α : A) from the previous lemma, thereforeα • k ∈ B◦(Γ; ∆, α : A). So, there exists

a λµ named-term, sayσ, such thatα • k = ~σ�. Then we obtaink = α.(α • k) = α.~σ� ≡
α.(~σ�[α/α]) ≡ α.~µα.σ�α ≡ ~µα.σ� ∈ PA(Γ; ∆). �

Lemma 3.16

Let Γ, ∆ be contexts of theλµ-calculus andt ∈ (?P⊥A)⊥(Γ; ∆). Then there is aw ∈ Λ
µ
A(Γ; ∆)

such thatt = !~w�.

Proof. Supposet ∈ (?P⊥A)⊥(Γ; ∆), thent is a positive term of type !A◦. So,t is a variable or

there is ak ∈ D◦A◦(Γ; ∆) such thatt ≡ !k. If t is a variable, sayx, thenx : A ∈ Γ andx = !~x�.
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Otherwise letΓ′ ⊃ Γ, ∆′ ⊃ ∆ andu ∈ P⊥A(Γ′; ∆′). Then ?u is in (P⊥A)?(Γ′; ∆′) and sou • k =

!k•?u ∈ B◦(Γ′; ∆′) because of (?P⊥A)⊥ = ((P⊥A)?)⊥. Then we obtaink ∈ P⊥⊥A (Γ; ∆) = PA(Γ; ∆).

So, there is aλµ-termw ∈ Λ
µ
A(Γ; ∆) such thatt ≡ !k = !~w�.

�

Lemma 3.17

?PA
⊥ M PB = PA→B

Proof. (⊂) : We take anyΓ and ∆, and letk ∈ (?P⊥A M PB)(Γ; ∆). Since ?P⊥A M PB =

〈(?P⊥A)⊥,P⊥B〉⊥ and x ∈ (?P⊥A)⊥(Γ, x : A; ∆, α : B) andα ∈ P⊥B(Γ, x : A; ∆, α : B), we have

(x⊗ α) • k ∈ B◦(Γ, x : A; ∆, α : B). Therefore there exists aλµ named-termσ such thatσ ∈
Λµ(Γ, x : A; ∆, α : B) andx⊗α•k = ~σ�. Then we obtaink = (x, α)(x⊗α•k) = (x, α)~σ� ≡
(x, α)~µα.σ�α = z.(z• (x, α)~µα.σ�α) ≡ z.~λxµα.σ�z ≡ ~λxµα.σ� ∈ PA→B(Γ; ∆)

Conversely, if we assumek ∈ PA→B(Γ; ∆) for any Γ and ∆. Then there exists aλµ-

term v ∈ Λ
µ
A→B(Γ; ∆) such thatk = ~v�. On the other hand, assumeΓ ⊂ Γ′, ∆ ⊂ ∆′,

t ∈ (?P⊥A)⊥(Γ′; ∆′) andu ∈ P⊥B(Γ′; ∆′), there is aλµ-termw ∈ Λ
µ
A(Γ′; ∆′) such thatt = !~w�

by the previous lemma. Then (t⊗u)•k = (!~w�⊗u)•~v� = ~v�!~w�⊗u ≡ ~vw�u = u•~vw� ∈
B◦(Γ′; ∆′). Therefore we obtaink ∈ 〈(?P⊥A)⊥,P⊥B〉⊥(Γ; ∆) = (?P⊥A M PB)(Γ; ∆).

�

Proposition 3.18

There is a logicalD◦-predicate{̂Pξ} such that̂PA◦ = PA holds for anyλµ-typeA.

Proof. When we definêPX⊥ B PX, P̂X B PX
⊥ andP̂⊥ B B◦, then the logicalD◦-predicate

{̂Pξ} is defined recursively. Now, we check̂PA◦ = PA holds for anyλµ-typeA. This is shown

by induction onA. WhenA is the basic typeX, it is trivial. For the case of arrow type

A→ B, we have

P̂(A→B)◦ = P̂?(A◦)⊥MB◦ = ?̂PA◦ M P̂B◦
I .H.
= ?PA M PB = PA→B

�

Then we obtain the following theorem immediately by applying the Basic Lemma and

Lemma 3.14 to{̂Pξ}.
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Theorem 3.19 (fullness of the negative-translation)

Let Γ and∆ be contexts of theλµ-calculus, and supposè?(Γ◦)⊥,∆◦ ; k : A◦. Then there

existsw ∈ Λ
µ
A(Γ; ∆) such thatk = ~w�.

Proof. For all x : A ∈ Γ andα : B ∈ ∆, x ∈ ?(P⊥A)⊥(Γ; ∆) = ?(̂P⊥A◦)
⊥(Γ; ∆) = P̂(?(A◦)⊥)⊥(Γ; ∆),

andα ∈ P⊥B◦(Γ; ∆) = P̂⊥B◦(Γ; ∆) = P̂(B◦)⊥(Γ; ∆) hold. So, we now apply the Basic Lemma for

the logicalD◦-predicate{̂Pξ}, then we obtaink ≡ k[~x/~x, ~α/~α] ∈ P̂A◦(Γ; ∆) = PA(Γ; ∆). This

means there is aλµ-termw ∈ Λ
µ
A(Γ; ∆) such thatk = ~w�.

�

3.7 Fullness of the positive-translation

In this section, we discuss onlythe positive-translation, therefore we consider~w� and~τ�

as the images ofw andτ by the positive-translation.

Definition 3.21

For a typeA and contextsΓ, ∆ of theλµ-calculus, we define

B•(Γ; ∆) B {τ ∈ D•⊥(Γ; ∆) | ∃σ ∈ Λµ(Γ; ∆) (τ = ~σ�)}, and

RA(Γ; ∆) B { t ∈ D•A•(Γ; ∆) | ∃V ∈ Λ
µ
A(Γ; ∆) (t = V∗) }.

Lemma 3.20

B• is aD•-predicate on⊥, andRA is aD•-predicate onA•.

Proof. For each case, we will check the (monotonicity) and (equality) condition ofD•-

predicate.

(monotonicity): AssumeΓ ⊂ Γ′ and∆ ⊂ ∆′. If τ ∈ B•(Γ; ∆), then there is aσ ∈ Λµ(Γ; ∆) ⊂
Λµ(Γ′; ∆′) such thatτ = ~σ�. So, we haveτ ∈ B•(Γ′; ∆′). Now, suppose we pick at ∈
RA(Γ; ∆), then there is a valueV ∈ Λ

µ
A(Γ; ∆) ⊂ Λ

µ
A(Γ′; ∆′) such thatt = V∗. Hence we have

t ∈ RA(Γ′; ∆′).

(equality): Supposeτ ∈ B•(Γ; ∆) and τ = τ′, then there is aσ ∈ Λµ(Γ; ∆) such that

τ′ = τ = ~σ�. Therefore, we haveτ′ ∈ B•(Γ; ∆). And supposet ∈ RA(Γ; ∆) andt = t′. Then

there is a valueV ∈ Λ
µ
A(Γ; ∆) such thatt′ = t = V∗. Hence we havet′ ∈ RA(Γ; ∆). �

Lemma 3.21

Let t be a positive term. Thent = !(x, α)(t • ?(x⊗ α)) for anyx, α < FV(t).
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Proof. This can be shown as follows:

!(x, α)(t • ?(x⊗ α)) = !(x, α)(!z.(t • ?z) • ?(x⊗ α))

−→ !(x, α)((x⊗ α) • z.(t • ?z))

−→ !z.(t • ?z) −→ t .

�

Lemma 3.22

R⊥⊥A = RA.

Proof. Firstly, we consider the case when the typeA is an atomic typeX. SinceD•X(Γ; ∆) =

{x | x : X ∈ Γ} (because variables are the only terms of the atomic typeX), RX(Γ; ∆) ⊂
R⊥⊥X (Γ; ∆) ⊂ {x | x : X ∈ Γ}. If x : X is in Γ thenx ∈ RX(Γ; ∆) sincex = x∗ andx ∈ Λ

µ
X(Γ; ∆).

So, we obtainRX(Γ; ∆) = R⊥⊥X (Γ; ∆).

Secondly, we consider the case when the typeA is an arrow typeA → B. We claim

that ?(x ⊗ α) ∈ R⊥A→B(Γ, x : A; ∆, α : B) since for anyΓ′ ⊃ (Γ, x : A), ∆′ ⊃ (∆, α : B) and

t ∈ RA→B(Γ′; ∆′), there exists a valueV such thatV∗ = t and we obtain

t • ?(x⊗ α) = V∗ • ?(x⊗ α) = !z.(V∗ • ?(z⊗ α)) • ?x ≡ ~x�!z.(V∗•?(z⊗α))

≡ ~Vx�α ≡ ~[α]Vx� ∈ B•(Γ′; ∆′).

Now, assumeu ∈ R⊥⊥A→B(Γ; ∆). Sinceu • ?(x⊗ α) ∈ B•(Γ, x : A; ∆, α : B), then there exists

a named-termτ in Λµ(Γ, x : A; ∆, α : B) such that~τ� = u • ?(x⊗ α). By Lemma 3.21, we

haveu = !(x, α)(u • ?(x⊗ α)) = !(x, α)~τ� ≡ !(x, α)~µα.τ�α ≡ (λxµα.τ)∗ ∈ RA→B(Γ; ∆) . �

Lemma 3.23

(i) If x : A ∈ Γ, thenx ∈ RA(Γ; ∆) for any∆.

(ii) If α : A ∈ ∆, thenα ∈ R?⊥
A (Γ; ∆) for anyΓ.

Proof. (i) Supposex: A ∈ Γ, thenx ∈ Λ
µ
A(Γ; ∆) for any ∆. Hence we havex ∈ RA(Γ; ∆)

sincex ≡ x∗.

(ii) Supposeα : A ∈ ∆, Γ ⊂ Γ′, ∆ ⊂ ∆′ andk ∈ R?
A(Γ′; ∆′). Then there is at ∈ RA(Γ′; ∆′)

such thatk ≡ ?t, so there is aV ∈ Λ
µ
A(Γ′; ∆′) such thatt = V∗. Hence we have

α • k ≡ α • ?t = α • ?V∗ ≡ ~V�α ≡ ~[α]V� ∈ B•(Γ′; ∆′) .

Therefore we obtainα ∈ R?⊥
A (Γ; ∆). �
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Lemma 3.24

?RA(Γ; ∆) = { k ∈ D•?A•(Γ; ∆) | ∃w ∈ Λ
µ
A(Γ; ∆) (~w� = k) }

Proof. (⊂): Assumek ∈ ?RA(Γ; ∆) = R?⊥⊥
A (Γ; ∆), there exists a named-termτ ∈ Λµ(Γ; ∆, α :

A) such thatα • k = ~τ� sinceα ∈ R?⊥
A (Γ; ∆, α : A) from the previous lemma. Hence, we

havek = α.(α • k) = α.~τ� ≡ ~µα.τ� ∈ RHS.

(⊃): Assume that there existsw ∈ Λ
µ
A(Γ; ∆) such thatk = ~w�, and supposeΓ′ ⊃ Γ,

∆′ ⊃ ∆ andt ∈ R?⊥(Γ′; ∆′). Sincex ∈ RA(Γ′, x : A; ∆′) from the previous lemma, we have

?x ∈ R?
A(Γ′, x : A; ∆′). Hence there exists a named-termτ ∈ Λµ(Γ′, x : A; ∆′) such that

t • ?x = ~τ� ≡ ~µα.τ�α. So, we have !(x, α)(t • ?x) = !(x, α)~µα.τ�α ≡ (λxµα.τ)∗. Therefore

we obtaint = !x.(t • ?x) = !x.(!(x, α)(t • ?x) • ?(x⊗ α)) = !x.((λxµα.τ)∗ • ?(x⊗ α)). Hence,

t • k = !x.((λxµα.τ)∗ • ?(x⊗ α)) • ~w� = ~w�!x.((λxµα.τ)∗•?(x⊗α))

≡ ~(λxµα.τ)w�α ≡ ~[α](λxµα.τ)w� ∈ B•(Γ′; ∆′).

So, we obtaink ∈ R?⊥⊥
A (Γ; ∆) = ?RA(Γ; ∆). �

Lemma 3.25

RA→B = !(R⊥A M ?RB)

Proof. (⊂): GivenΓ and∆, supposet ∈ RA→B(Γ; ∆). There exists a valueV ∈ Λ
µ
A→B(Γ; ∆)

such thatt = V∗. By Lemma 3.21, we havet = V∗ = !(x, α)(V∗ •?(x⊗α)) for fresh variables

x andα. Let Γ′ ⊃ Γ, ∆′ ⊃ ∆, u ∈ RA(Γ′; ∆′) andu′ ∈ (?RB)⊥(Γ′; ∆′). Then there exists a

valueW ∈ Λ
µ
A(Γ′; ∆′) such thatu = W∗. So we have

(u⊗ u′) • (x, α)(V∗ • ?(x⊗ α)) = (W∗ ⊗ u′) • (x, α)(V∗ • ?(x⊗ α))

= V∗ • ?(W∗ ⊗ u′) = !z.(V∗ • ?(z⊗ u′)) • ?W∗

≡ ~W�!z.(V∗•?(z⊗u′)) ≡ ~VW�u′

≡ u′ • ~VW� ∈ B•(Γ′; ∆′)

since~VW� ∈ ?RB(Γ′; ∆′) from the previous lemma. Hence we obtain (x, α)(V∗ •?(x⊗α)) ∈
〈RA, (?RB)⊥〉⊥(Γ; ∆), and then we have

t = !(x, α)(V∗ • ?(x⊗ α)) ∈ !〈RA, (?RB)⊥〉⊥(Γ; ∆) = !(R⊥A M ?RB)(Γ; ∆) .

(⊃): Assumet ∈ !(R⊥AM?RB)(Γ; ∆) = 〈RA, (?RB)⊥〉⊥⊥?⊥(Γ; ∆). Sincex ∈ RA(Γ, x : A; ∆) and

α ∈ (?RB)⊥(Γ; ∆, α : B) from Lemma 3.23, there exists a named-termτ ∈ Λµ(Γ, x : A; ∆, α :
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B) such thatt • ?(x⊗ α) = ~τ�. Therefore we obtaint = !(x, α)(t • ?(x⊗ α)) = !(x, α)~τ� ≡
!(x, α)~µα.τ�α ≡ (λxµα.τ)∗ ∈ RA→B(Γ; ∆). �

Now, we can prove the following proposition similar to as Proposition 3.18.

Proposition 3.26

Then there is a logicalD•-predicate{R̂ξ} such that̂RA• = RA holds for any typeA of the

λµ-calculus.

Proof. When we definêRX B RX, R̂X⊥ B RX
⊥ andR̂⊥ B B•, then the logicalD•-predicate

{R̂ξ} is defined recursively. Now, we check̂RA• = RA holds for anyλµ-typeA. This is shown

by induction onA. WhenA is the basic typeX, it is trivial. For the case of arrow type

A→ B, we havêR(A→B)• = R̂!((A•)⊥M?B•) = !(R̂⊥A• M ?̂RB•)
I .H.
= !(R⊥A M ?RB)

Lem 3.25
= RA→B �

Therefore we have the following theorem by applying the Basic Lemma and Lemma 3.23

to {R̂ξ}.
Theorem 3.27 (fullness of the positive-translation)

Let Γ and∆ be contexts of theλµ-calculus, then the following hold.

(i) if ` (Γ•)⊥,?∆• ; t : A• then there existsV ∈ Λ
µ
A(Γ; ∆) such thatt = V∗.

(ii) if ` (Γ•)⊥,?∆• ; k : ?A• then there existsw ∈ Λ
µ
A(Γ; ∆) such thatk = ~w� .

Proof. By Lemma 3.23 and Proposition 3.26, we have

x ∈ RA(Γ; ∆) = R̂A•(Γ; ∆) = R̂⊥⊥A• (Γ; ∆) = R̂(A•)⊥⊥(Γ; ∆),and

α ∈ R?⊥
B (Γ; ∆) = R̂?⊥

B• (Γ; ∆) = R̂?⊥⊥⊥
B• (Γ; ∆)

= (?̂RB•)
⊥(Γ; ∆) = R̂(?B•)⊥(Γ; ∆)

for all x : A ∈ Γ andα : B ∈ ∆. So, we now apply the Basic Lemma for the logical

D•-predicate{R̂ξ}, then we obtain:

(i) t ≡ t[~x/~x, ~α/~α] ∈ R̂A•(Γ; ∆) = RA(Γ; ∆). This means there is a valueV ∈ Λ
µ
A(Γ; ∆) such

thatt = V∗, and

(ii) k ≡ k[~x/~x, ~α/~α] ∈ R̂?A•(Γ; ∆) = ?RA(Γ; ∆). By Lemma 3.24, This means there is aλµ-

termw ∈ Λ
µ
A(Γ; ∆) such thatk = ~w�. �
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Chapter 4

Conclusion and Future Work

Conclusion

The main aim of the thesis was to observe the relationship between the computational duality

and the logical duality. The computational duality is the duality between the call-by-name

and call-by-value strategies. The logical duality is the duality of classical logic so-called de

Morgan’s duality. This logical duality of classical logic appears as right and left symmetry

of Gentzen’s sequent calculus LK, and positive and negative duality of Laurent’s polarized

linear logic. Wadler’s dual calculus was a suitable system for researching this logical duality.

Chapter 2 discussed the relationship between the computational duality of call-by-value/

call-by-name and the logical duality of LK. Especially, to study the relationship between the

computational procedure and the cut-elimination procedure of LK, we replaced the equali-

ties in Wadler’s paper with reductions. We first analized Wadler’s results, and specified the

problematic rules of theλµ-calculus that cannot be simulated by the reductions of the dual

calculus. These problematic rules are not essential rules of theλµ-calculus because they are

not the normalization procedures of proofs, and there is no influence even if we remove these

rules from call-by-value system. We refined the call-by-value and the call-by-name systems

of theλµ-calculus and the dual calculus by deleting these problematic rules. These systems

are defined as reduction systems. Then we gave the call-by-name translations between the

call-by-nameλµ-calculus and the call-by-name dual calculus, and showed that these trans-

lations preserve call-by-name reductions and satisfy reloading property. We also gave the

call-by-value translations between the call-by-valueλµ-calculus and the call-by-value dual

calculus, and showed that these translations satisfy the properties similar to the call-by-name

translations. Then we introduced the translation from the call-by-nameλµ-calculus into the
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call-by-value one and its inverse translation by composing the above translations via the

dual translations on the dual calculus. Finally, we proved that these translations preserves

reductions and reloading property from the above results. The results of this chapter showed

duality between the call-by-name and call-by-valueλµ-calculi as reduction systems. This

means that we succeded to give the best possible answer to Wadler’s open question.

Chapter 3 discussed the relationship between the computational duality of call-by-value/

call-by-name and the logical duality of positive/ negative. We introduced a term calculus for

a sufficiently large fragment of Laurent’s polarized linear logic, called polarized dual calcu-

lus DCP−, which is based on the idea of the dual calculus. Then we defined two translations

from the call-by-name/ the call-by-valueλµ-calculi into DCP−, and showed their soundness

of derivations and reductions. Finally, we proved the fullness of these translations in a way

similar to the logical predicate method used by Hasegawa.

Future Work

In Chapter 2, we gave the best possible answer to Wadler’s open question, but theλµ-calculi

and the dual calculi that we had introduced did not enjoy storongly normalization. This

fact does not necessarily mean these systems are meaningless. Actually, Tzevelekos [47]

showed that the dual calculus satisfies strongly normalization and Church-Rosser property

by assuming appropriate side-conditions. There is a possibility that ourλµ-calculi can be

refined to satisfy strongly normalizing and Church-Rosser property if we assume some side-

conditions.

Another work in the future is to extend the results in this thesis. If we want to apply

our results to more practical and powerful programming languages, we should discuss and

extend our results about two important concepts: a fixed-point operator and data types. From

this motivation, Kakutani [32] extended theλµ-calculi by adding a fixed-point operator and

an iteration operator to the call-by-name system and the call-by-value one respectively. He

followed Selinger’s category-theoretic approach, and showed duality between call-by-name

recursion and call-by-value iteration. Therefore we might be able to extend the results in

this thesis via this line, and explain the duality between recursion and iteration by Wadler’s

syntactical approach.
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l’arithmétique d’ordre supérieur. PhD thesis, Univ. Paris VII, 1972.

– 126 –



[21] J.-Y. Girard. The system F of variable types, fifteen years later.Theoretical Computer

Science, 45(2):159–192, 1986.

[22] J.-Y. Girard. Linear logic.Theoretical Compter Science, 50:1–102, 1987.

[23] J.-Y. Girard. A new constructive logic: classical logic.Mathematical Structures in

Computer Science, 1(3):225–296, 1991.

[24] J.-Y. Girard, P. Taylor, and Yves Lafont.Proofs and types. Cambridge University

Press, New York, NY, USA, 1989.

[25] T. G. Griffin. A formulae-as-type notion of control. InPOPL ’90: Proceedings of the

17th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,

pages 47–58, New York, NY, USA, 1990. ACM Press.

[26] M. Hasegawa. Logical Predicates for Intuitionistic Linear Type Theories. InTyped

Lambda Calculi and Applications (TLCA’99), volume 1581 ofLecture Notes in Com-

puter Science, pages 198–212. Springer-Verlag, 1999.

[27] M. Hasegawa. Girard translation and logical predicates.Journal of Funct. Prog., pages

77–89, 2000.

[28] H. Herbelin. A lambda-calculus structure isomorphic to gentzen-style sequent calcu-

lus structure. InCSL ’94: Selected Papers from the 8th International Workshop on

Computer Science Logic, pages 61–75. Springer-Verlag, 1994.

[29] J. Roger Hindley.Basic simple type theory. Cambridge University Press, New York,

NY, USA, 1997.

[30] W. A. Howard. The formulae-as-types notion of construction. In J. P. Seldin and J. R.

Hindley, editors,To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and

Formalism, pages 479–490. Academic Press, Inc., New York, N.Y., 1980.

[31] C. B. Jay and N. Ghani. The virtues of eta-expansion.Journal of Functional Program-

ming, 5(2):135–154, 1995.

[32] Y. Kakutani. Duality between call-by-name recursion and call-by-value iteration. In

CSL ’02: Proceedings of the 16th International Workshop and 11th Annual Confer-

ence of the EACSL on Computer Science Logic, pages 506–521, London, UK, 2002.

Springer-Verlag.

– 127 –



[33] O. Laurent. Étude de la polarisation en logique.PhD thesis, Univ. Aix-Marseille 2,

2002.

[34] O. Laurent. Polarized proof-nets andλµ-calculus. Theoretical Computer Science,

290(1):161–188, 2003.

[35] O. Laurent, M. Quatrini, and Lorenzo T. de Falco. Polarized and focalized linear and

classical proofs.Annals of Pure and Applied Logic, 134(2–3):217–264, 2005.

[36] O. Laurent and L. Regnier. About translations of classical logic into polarized linear

logic. InProceedings of the eighteenth annual IEEE symposium on Logic In Computer

Science, pages 11–20. IEEE Computer Society Press, 2003.

[37] E. Moggi. Computational lambda-calculus and monads. InProceedings 4th Annual

IEEE Symp. on Logic in Computer Science, LICS’89, Pacific Grove, CA, USA, 5–8

June 1989, pages 14–23. IEEE Computer Society Press, Washington, DC, 1989.

[38] E. Moggi. Notions of computation and monads.Information and Computation,

93(1):55–92, 1991.

[39] C-H. L. Ong and C. A. Stewart. A curry-howard foundation for functional computation

with control. InProc. of the Symposium on Principles of Programming Languages,

pages 215–227, 1997.

[40] M. Parigot.λµ-calculus: an algorithmic interpretation of classical natural deduction. In

Proc. of International Conference on Logic Programming and Automated Deduction,

volume 624 ofLecture Notes in Computer Science, pages 190–201. Springer-Verlag,

1992.

[41] Michel Parigot. Free deduction: An analysis of ”computations” in classical logic. In

RCLP, pages 361–380, 1991.

[42] G. D. Plotkin. Call-by-name, call-by-value and the lambda-calculus.Theoretical Com-

puter Science, 1(2):125–159, 1975.

[43] J. C. Reynolds. Towards a theory of type structure. InProgramming Symposium,

Proceedings Colloque sur la Programmation, pages 408–423, London, UK, 1974.

Springer-Verlag.

– 128 –



[44] A. Sabry and M. Felleisen. Reasoning about programs in continuation-passing style.

In Lisp and Symbolic Computation, 6(3/4):289–360, 1993.

[45] P. Selinger. Control categories and duality: on the categorical semantics of the lambda-

mu calculus.Mathematical Structures in Computer Science, pages 207–260, 2001.

[46] A. S. Troelstra and H. Schwichtenberg.Basic proof theory. Cambridge University

Press, New York, NY, USA, 1996.

[47] N. Tzevelekos. Investigations on the dual calculus.Theoretical Computer Science,

360(1):289–326, 2006.

[48] P. Wadler. Call-by-Value is Dual to Call-by-Name. InInternational Conference on

Functional Programming, Uppsala, Sweden, pages 25–29, 2003.

[49] P. Wadler. Call-by-Value is Dual to Call-by-Name – Reloaded. InRewriting Tech-

niques and Applications, Nara, Japan, pages 185–203. Springer, 2005.

[50] Y. Yamagata. Strong normalization of the second order symmetric lambda-mu calcu-

lus. Information and Computation, 193(1):1–20, 2004.

– 129 –


