Computation in Classical Logic
and Dual Calculus

Daisuke Kimura

DOCTOR OF PHILOSOPHY

Department of Informatics,
School of Multidisciplinary Sciences,
The Graduate University for Advanced Studies

2006 (School Year)

March 2007

Acknowledgments

| would like to thank my supervisor, Professor Makoto Tatsuta, for his invaluable discus-
sions, helpful advice and encouragement. | would also like to thank him that he gave me the
chance to visit the University of Edinburgh and to discuss with many reseachers including
Philip Wadler.

| would like to thank Kazushige Terui and Makoto Kanazawa for very helpful comments
and discussions on this work.

| would like to thank Philip Wadler for valuable discussions and helpful comments.
Particular, his work on the dual calculus gave me the starting point of my thesis. | am
grateful to him for hosting me at the University of Edinburgh for a month. My visit was
funded by Sokendai student dispatch program. In this time, | had many fruitful discussions
with him about the dual calculus and his open question.

Finally, | wish to thank my family and friends, Kazuo Kimura, Keiko Kimura, Satoshi
Kimura, Haruki Kimura, Tatsuya Abe, Ryo Yoshinaka, Camille Yamada, Takeshi Ozawa,
Sebastien Duval and Atsuko Tanji, for their support and encouragement all along the way.

Contents

1 Introduction 1
L1 BACKGIOUNG ##++ e s et s s essssssst sttt bttt 1
1.2 CONIADULIONS -+ ++# = rereemeseesaeesaeena et et e e et et e et e e et e e e 6 -
1.3 OVEIVIEW Of this thESIG: -+ -+« ++rrrrrrrrermrenmrenarunareartaeartaaeaaeaenss 7-

2 Duality Between Call-by-value Reductions and Call-by-name Reductions 8
D 1 INEFOQUGHIOIT -+ + e =+ wenrerrernenneeneeeen e et a et e e e e et et e e et e ae e e aenes g -
2.2 TREAU-CAICUILS: +++++++ w st s s s sesssseessiits sttt 12

221 The call-by-nam@u-CalCulus: =+ =+ rrsmsessnmrsniesniieniis 14
2.2.2 The call-by-valugu-CalQulUs: -+« «++ - ++s srrsmssessnssesnisssiienis 29
23 THE dUAl CAICUIUS: -+ -+« rrrerrerrrerrerenmenaenaeeneenenareareneeaenaenaeeees 30
2.4 Translations from thgu-calculus into the dual calculug =« «=-====-=-==eeee-2+- 38
241 The NAIVE traNSIAtiOn: -« -+« -« rrrrrrrermrenmrenarenareaeararenns, 38
2.4.2 The translation from CBNu-calculus into CBN dual calculus------ 41
2.4.3 The translation from CB\u-calculus into CBV dual calculus - 49
2.5 Translation from the dual calculus into thya-calculug:-==««=-=xrrerrrmeerreeess 55
251 The NAIVE traNSIAtiOn: -« -+« - - rrrrrrrermrenmmenarenarenaaaaaaenne, 56
2.5.2 The translation from CBN dual calculus into CBM-calculug-------- 58
2.5.3 The translation from CBYV dual calculus into CRB)-calculug----*-- 62
254 Rel0ading PrOPerty -+ «++ - wrts sressmsrstsniittsiiiit 67
2.6 Duality of call-by-name and call-by-valug =+ =+ seeersrremeeeninen. 76
2.7 Appendix: Wadler's systems and translations: ««--««xx=xrrrrrresreeeee 80

3 Polarized dual calculus and logical predicates for polarized linear logic 84
B 1 INEFOQUGHIOIT -+« + e+ er = wenrerrernenneeneeeenaet e et e e e s et et e e e e e e enaees 84
3D LLP QNG LLP *+eererrerrerrenaren ettt 86 -

33 The System DC-P. ... 8.7.

3.4 Thedu-calculus and the translations into DCP -+« -xxxrrerrsrrsreereeeees 90
341 The/l,u-calculus .. 90

3.4.2 The negative-translation from the-calculus into DCP------x-xx--- 92

3.4.3 The positive-translation from thg-calculus into DCP «-----+-xx-ve- 98

3.6 FuIIness of the negative-translation ... 116
3.7 FEullness of the positive-translation .. 119

4 Conclusion and Future Work 123

Chapter 1

Introduction

1.1 Background

The Curry-Howard correspondence

The Curry-Howard correspondence is a close relationship between computation and formal
logic, which was first observed by Curry and Feys [10] and Howard [30]. Computation
means the procedure that a computer follows according to its program, especially programs
described by functional programming languages. Under the Curry-Howard correspondence,
a formula of the logic is regarded as a type of a program, a proof is regarded as a program,
and a normalization procedure of a proof is regarded as a computational procedure of a
program. Therefore Howard called this correspondence ‘formulas-as-types’.

This correspondence plays the role of a bridge between theoretical computer science and
proof theory. From the computer science point of view, the Curry-Howard correspondence
gives the theoretical foundation of programming languages. This correspondence enables
us to see a logical proof as a program with the proof of its correctness. Therefore it gives
us a method ‘program extraction’ to verify a program, and obtain a correct one from a
logical proof. On the other hand, from the proof theoretic point of view, this correspondence
gives the interpretation of logical systems as programming languages. Logical systems that
have such a property are called constructive logic; a typical example of such a logic is
intuitionistic logic.

Although some mathematical models of computation have been proposed, the lambda
calculus introduced by Church [7] is widely used today. This calculus has powerful expres-
sive power though its simple grammar. The typed lambda calculus was also introduced by

—1-

Church, and is a foundation of functional programming languages. Gentzen introduced the
two most widely used formulations of logic: natural deduction and sequent calculus, in both
intuitionistic logic and classical logic. One of the most simple and essential formulation of
the Curry-Howard correspondence given by Howard is the interpretation between proofs of
propositional intuitionistic logic and terms of simply typed lambda calculus. For example,
a derivation of simply typed lambda calculus

X:A-BVvV:A—-Crv:A—>C z:Arz:A
X:A—-BvVvV:A—>C,z: A+rvz:C
V:A->Cz: A+ Axvz: (A—- B) —»

(application
c (abstraction

corresponds to the following proof of intuitionistic logic

A—-BA—->CrA—-C A+A
A—- BA—->CArC
A—-CA+r(A—-B)—

(— Elim)
c (— Intro)

A lot of works has been done to extend the Curry-Howard correspondence. Girard [20]
introduced systerf, which corresponds to second-order propositional logic, and Reynolds
[43] independently invented this system in his study of polymorphism in typed functional
programming languages. Girard [20] extended this correspondence to higher-order intu-
tionistic propositional logic. Coquand and Huet [8] proposed the Calculus of Constructions,
and extended it to higher-order intuitionistic predicate logic. Moggi [37; 38] observed real
programming language features such as non-termination, non-determinism anfilesstie-e

and proposed the computational lambda calculus. Benton, Bierman and Paiva [6] extended
the Curry-Howard correspondence to intutionistic modal propositional logic using Moggi’s
calculus.

Continuations and the Au-calculus

In the recent years, extensions of the Curry-Howard correspondence that handle classical
logic have been formulated. Felleisen [16] introduced@heperator to modetall/cc,

which is found in practical programming languages such as Scheme antNSMhk11/cc

means c¢all-with-current-continuatioh and it is one of the most typical examples of the
operators that provide explicit handling of the current control continuatienthe current
control context. This operator makes functional languages more expressive, for instance,
exception handling and global jump, and allows us to describe more complicated programs.

—2_

Griffin [25] observed the type of Felleiser(s operator, and showed thatll/cc cor-
responds to Peirce’s Law, and extended Curry-Howard correspondence to classical logic.
Here we give an informal explanation ol1/cc operator. It is modelled by call-by-name
simply typed lambda calculus with the following constants:

call/ccpg: (A—=B) - A) = A

abortp: L —> A

whereA, B are types and. means the result type. Reduction rules about these constants are
defined as follows.

E[call/ccag M] — E[M(1Z".abortg E[Z])]
E[aborta M| — M

whereE[-] is an evaluation context accepting a term of tyhelntuitively the call/cc
operator carries the current context into its argument, anchiiboet operator aborts the
current context. The following is an example of Scheme programs ksihty/ cc.

(define multlist
(lambda (inputlist)
(call/cc
(lambda (cc)
(letrec ((1ls*
(lambda (list)
(if (null? list)

1
(let ((x (car list)))
(GAf (=0 x)
(cc ©)

(* x (Is* (cdr 1ist)))))II))
(Is* inputlist))))))

Whenmultlist receives an integer list as its argument, it recursively multiplies the list
elements. However, if it encounters an element equ@ldoring the calculatiomultlist
immediatelyreturns 0.

In this line of works, thetu-calculus introduced by Parigot [40] is well known. It cor-
responds to classical natural deduction, has a simple structure, and enjoys confluency and

—-3-

strong normalization. Thau-calculus is as expressive as other popular functional pro-
gramming languages with control operators. For example, abal/&/cc andabort are
expressed by the following encodings:

(call/ccyg M)* = pa™ [a]M*(Ax" BB [a]X)
(abort, M)* = ua™.M*

Later, a call-by-value variant of thi-calculus was proposed by Ong and Stewart [39].

Computational duality and logical duality

Call-by-name strategy and call-by-value strategy have been well studied as evaluation strate-
gies of programming languages. Filinsky [17] suggested that duality between call-by-name
and call-by-value is clarified by the two notions of programs and continuations. Selinger
[45] gave categorical semantics of the call-by-natnecalculus and the call-by-value one,
and explained Filinski’s duality in terms of categorical duality.

It is well known that the cut-elimination and normalization procedure of classical sys-
tems are non-deterministic. For example, if we consider the usual cut-elimination procedure
of LK, then we can rewrite in the following two ways.

Ar A Br-rB
ArAC WK C,BI—B\é\l/Jt(ArA BrB
ABrAB — ABrAB and ABrAB

This phenomenon does not depend on the formulation of classical logic, but depends on the
duality of classical logic. There are numerous attempts to clarify the computational content
of this duality of classical logic. Barbanera and Berardi [4] proposed the symmietric
calculus, which corresponds to natural deduction style of classical logic with a clear notion
of duality. Curien and Herbelin [9] introduced thga-calculus based on Gentzen’s classical
sequent calculus LK, and Wadler [48] propodkd dual calculuswhich also corresponds

to LK.

The feature of the dual calculus is that it has both of terms and continuations as primi-
tives. The computational meaning of the duality of classical logic is expressed in the dual
calculus by the duality of terms and continuations. In the dual calculus, the call-by-name and
call-by-value strategies become dual strategies. Wadler [49] gave both directions of trans-
lation between thelu-calculus and the dual calculus, and showed that these translations
preserve the call-by-value and call-by-name strategies of each systems. In other words, he

—4—

explained Filinski’s duality in a purely syntactical way. However, fiaecalculus and the

dual calculus adopted in his paper are the equational systems, and he showed only preser-
vation property of the equality rules. This is because some rules are problematic to be
introduced as reduction rules, such asrules. However, when we discuss his results from

the point of view of correspondence between cut elimination procedure of sequent calculus
and normalization procedure of natural deduction, we should consider reduction rules. In
fact, Wadler noted an open question in his paper: whether one can replace the equations of
his paper by reductions, and extend the properties for equations to those for reductions.

Constructive aspect of classical logic

There is also a proof-theoretical approach to extract computational content from classical
proofs. The aim of this approach is to find a constructive classical system, which is complete
w.r.t. classical provability and has a deterministic normalization procedure. There is a lot of
works following this approach; FD and thg-calculus [40] by Parigot, LC by Girard [23],
LKT and LKQ by Danos-Joinet-Schellinx [11], apdlarized linear logiqLLP) by Laurent
[33]. LLP is a variant of linear logic with a good denotational semantics in terms of coherent
spaces. The most fundamental feature of LLP is that it has a clear distinction between
negativeformulas, for which structural rules can be freely used, positiveformulas, for
which structural rules are forbidden. LLP is useful for understanding the constructive aspect
of classical logic. In particular, LLP suggests some close relationships between the call-by-
value/ call-by-name computational duality and positiwgegative logical duality.

Laurent defined two translations from the call-by-name and the call-by-vahealculi
into LLP, and showed their soundness, these translations preserve reductions. The call-
by-name translation<)° translates a classical formula into a negative one, in particular
a classical implicatiol’A — B into a negative formulaA® — B°. Therefore we call it
“negative-translation” in this paper. On the other hand, the call-by-value translatjon (
translates a classical formula into a positive one, in particular a classical implidatioi3
into a positive formula * — ?B*). Therefore we call it “positive-translation” in this
paper. Furthermore, Laurent showed fullness of the negative-transiatipayery proof of
A’ is equivalent to an image of a proof Afin classical logic via the negative-translation in
[34]. However, Laurent did not give a direct proof of the fullness of the positive-translation.
Another work to be done is to give a term syntax for LLP. Although the formulations of LLP
are given by the sequent calculus style and the proof-net style, proof-nets are mainly used

—5_

to study LLP. However, it is natural and worth introducing a term syntax which corresponds
to the sequent calculus style of LLP. Using such a term calculus, LLP will be understood
better by comparing the proof-net style with the sequent calculus style, and by considering
the relation to standard programming languages.

1.2 Contributions

The main theme of this thesis is to investigate the relationship between the computational
duality and the logical duality. We will discuss this theme in the following two ways.

First, we will discuss the relationship between the computational duality of call-by-value
/ call-by-name and the logical duality of Gentzen’s sequent calculus in chapter 2. Though the
research in this approach has already been done by Wadler [49] using-tteculus and
the dual calculus, he did not consider these systems as reduction systems but as equational
systems. However, when we discuss his results from a point of view of correspondence
between computational procedure and cut elimination procedure of sequent calculus, we
should consider reduction rules. So we refine the call-by-value and the call-by-name systems
of the Au-calculus and the dual calculus given in Wadler’s paper. These systems are defined
as reduction systems, and the main results of this chapter are Theorem 2.16, Theorem 2.21,
Theorem 2.28, Theorem 2.34, Proposition 2.35, Proposition 2.36, and Theorem 2.40. The
results of this chapter give the best possible answer to Wadler's open question: whether
one can replace the equations of his paper by reductions, and extend the properties with
eqguations to properties with reductions.

Second, we discuss the relationship between the computational duality call-by-value
call-by-name and the logical duality of positivaegative in chapter 3. We introduce a term
calculus for (a sfiiciently large fragment of) Laurent’s polarized linear logic (LLP), called
polarized dual calculus (DCP which is based on the idea of the dual calculus. Laurent
gave the two kinds of formulations for LLP: the sequent calculus style and the proof-net
style. Proof-net is a well-known tool to observe computational properties of LLP, but there
is no term syntax corresponding to the sequent style formulation of LLP. Hence it is natural
to introduce a term syntax, which is compact and moreover well-related to standard func-
tional programming languages. Then we define two translations from the call-by/name
the call-by-valuelu-calculi into DCP, and show their soundness (Theorem 3.4 and The-
orem 3.7). These translations are almost straightforward adaptions of Laurent’s, but the
positive translation is slightly éierent. Finally, we prove the fullness of these translations

—6—

in a way similar to the logical predicate method used by Hasegawa [27] (Theorem 3.19 and
Theorem 3.27).

1.3 Overview of this thesis

In chapter 2, we give the best possible answer to Wadler’s question. First, we analyze
Wadler’s results, and specify the problematic rules to solve his open question. Second, we
refine thetu-calculus and the dual calculus by the following steps. We adopt essential rules
in the point of view of computation and normalization of proofs, and exclude the problematic
and not essential rules. Then we give natural directions in the sense of computation and
normalization of proofs. Third, we give a translation from the call-by-namealculus and

the call-by-name dual calculus, and its inverse translation. We show that these translations
preserve derivations and reductions. Further, we show the reloading properties of the call-
by-name translations: the composition of the call-by-name translation become identity maps
up to the call-by-name reductions. We also give call-by-value translations, and show the
preservation and reloading properties for the call-by-value translations. Finally, we obtain
our duality translations between the call-by-valigecalculus and the call-by-name one by
composing our translations with duality on the dual calculus. Our results correspond to
Wadler’s, but they are based on reductions.

In chapter 3, we introduce a term calculus for dfisiently large fragment of LLP,
called polarized dual calculus (DCRwhich is based on the idea of Wadler’s dual calculus.
Then we define two translations from the call-by-nahtlee call-by-valueilu-calculi into
DCP-, and show their soundness. These translations are almost straightforward adaptions
of Laurent’s, but the positive translation is slightlhyffdrent. Finally, we prove the fullness
of these translations in a way similar to the logical predicate method used by Hasegawa
[27]. The notion of logical predicate (unary logical relation) is a well-established tool for
studying the semantics of various typed lambda calculi. In particular, logical predicates for
intuitionistic linear logic were introduced by Hasegawa [26] for category-theoretic models
of linear logic, and applied to prove full completeness of Girard translation from the simply
typed lambda calculus to the linear lambda calculus [27]. We adopt this method to show the
fullness of Laurent’s translations. The use of logical predicates allows us to giviécam
proof to the fullness of the two translations. In particular, single Basic Lemmdiisient
for both the positive- and the negative-translations.

Chapter 2

Duality Between Call-by-value
Reductions and Call-by-name
Reductions

2.1 Introduction

The Curry-Howard correspondence for classical logic

In the last twenty years, a lot of work has been done to extend the Curry-Howard corre-
spondence to classical logic. Felleisen[16] introducedGhaperator to modetall/cc,
Griffin[25] observed that the type ahll/cc corresponds to Peirce’s Law and extended
the Curry-Howard correspondence to classical logic. In this linejjhealculus introduced

by Parigot[40] is well known. This calculus corresponds to classical natural deduction and
has a simple structure, ficient expressive power, and nice computational properties such
as confluency and strong normalization. Later, a call-by-value (CBV) variant ofithe
calculus was proposed by Ong and Stewart [39].

Duality

The call-by-name and call-by-value strategies have been well studied as evaluation strate-
gies of programming languages. Filinski [17] suggested that duality between call-by-name
and call-by-value is clarified by two notions of programs and continuations. Selinger [45]
gave categorical semantics of the call-by-name and call-by-valemalculi and explained

—-8—

Filinski's duality in terms of categorical duality.

The dual calculus and Wadler’s open question

Wadler[48; 49] proposethe dual calculuswhich corresponds to Gentzen’s classical se-
guent calculus LK. LK is an appropriate formulation of classical logic that clearly expresses
the duality that exists inside classical logic. The main feature of the dual calculus is that it
has both terms and continuations as primitives. The computational meaning of the duality
of classical logic is expressed in the dual calculus by the duality of terms and continuations.
In the dual calculus, call-by-name and call-by-value strategies become dual strategies.

Wadler [49] introduced the translation from the-calculus into the dual calculus, and its
inverse translation from the dual calculus into flaecalculus. He showed that these transla-
tions form an equational correspondence, as defined by Sabry and Felleisen [44]. Moreover,
he gave the translation from thg-calculus into itself by composing the above translations
with duality on the dual calculus. This translation satisfies the following properties.

— It takes call-by-value equalities into call-by-value equalities, and vice versa.
— Itis an involution up to call-by-valyeall-by-name equality.

In other words, he explained Filinski’s duality in a purely syntactical way. Howeventhe
calculus and the dual calculus adopted in his paper were equational systems, and his results
are based on equalities. This is because some rules dfithalculus are not simulated by
reductions of the dual calculus, and it is also problematic to introduce some rules, such as
(m)-rules, as reductions. But when we discuss whether duality between call-by-value and
call-by-name also holds as a computational procedure, we should consider reductions. In
fact, Wadler noted an open question in his paper whether one can replace the equations of his
paper with reductions and extend the properties with equations to properties with reductions.

Our purpose, problems, and solutions

Our purpose in this paper is to answer his question. We encounter problems when we try
to obtain refined results by replacing the equations of his paper with reductions. These

problems are grouped in the following three cases.
Problem 1 (¢)-rules of thetu-calculus
To simulate {)-rule under Wadler’s translationr-J*, we need §r)-reductions of the dual

calculus in both directions. We give a typical example of this problem.

(ua.[y)Ax[ly)2)" = (([x(y » @)]note y).cr o (2@8))
=(b)-red ([x.((y * (z@p)))Inot e 'y),ﬁ
=0 y-oxp ([X((® (2@6)).6 » B)note y).8
= (uB.[y1ax[B)(yd)

Problem 2 (n,)-rule of thedu-calculus: M =, u(a, B).[a, BIM
To simulate #,)-rule under Wadler’s translation-J*, we need both ofrf,)-reductionand
(nv)-expansiorof the dual calculus.

(u(e. B). [BIM) = (((((M” @ [, B]).adinl @ 7) B)inr @ 7).y

=0 y-exp (((((M* ¢ [, B]).a)inl @) B)inr & [x.((0inl e 7). y.(¢y)inr e y)]).y

=0 (M o [a. B]).a)inl e) B e y.(y)inr o 7))y

=l (((M” @ [@, y.((Dinr e y)]).c)inl o 7).y

=0 yexp (((M* @ [a, y.(Cy)inr e y)]).a)inl [x.(()inl e). y.(yinr e y)]).y

=05 ((M” o [a,y.(y)inr e y)]).c @ x.((x)inl @).y

=0y (M™ @ [x.((0inl @), y.((yinr o y)]).y

=(r)-red (M* °y)y

=l M”
However, if we simply omitx,)-rule to avoid this problem, then we meet another problem.
If we want to obtain the equational correspondence formed-bygnd)., which is one

of Wadler’s main results, then we should to show(€(3).S)*). =n u(a,B).(S*).. We need
(nv)-rule to show this claim.

((u(@.B).S)"). = ((((S".ainl e y) B)inr e 7).y).
= py [ylu(@ . B).18' 1B [ylu(a” . B”) [Jua.(S7).
=0 @, B B My (e B) B B I B7) [a Tua.(SY).
=) u@” B o B e BB B L B Tl B7) o e (S,
=0 @ B)18 Nl e (S,
=8 @ Y (S) 1o B 1]
= (@, B)-(S°)-

Problem 3 (n-)-rule of theAu-calculus: M =, AX.MX
To simulate §-)-rule under Wadler’s translatior-|*, we need bothr(.)-reductionand 7-)-

—-10-

expansiorof the dual calculus.

(AXMx)* = [x.(M* e nOKx)) not
= ([X.(M" e NOKX)) [nOte 7).y
=0)-exp ([X-(M" @ n0Kx)) [note nok ([a]not e y).a }).y
=) ([@]not e y).cx @ X.(M" & NOKX))).y
=) (M" e not ([a]not e y).a)).y
=try-red (M" @ 7).y
= M’

However, we needn()-rule to simulatex(ue.S) =, S[*7/[4-)], which is defined in the
call-by-valuedu-calculus as a part of}J-rule. For example,

(X(ue.[B]1z[aly))" = x o no{([z(y » a)]not e B).a')
={, 1-exp [Y -(x ® NOKY')) Inote not(([z(y ® @)Inot e B).')
=ls) ([z(y ® @)Inot e B).r e y'.(X @ NOKY'))
=ls) [2(y e y.(x e nOKY')))note 8
=g [2(X ® NOKy))|note 3
= ([Blaz(xy))’

For (75)-rule of theAu-calculus, we also encounter a problem similar to this one.

Problem 1 is due to the so-called administrative redexes, and can be solved by modi-
fying Wadler’s translations. The idea of this modification is similar to the modified CPS
translation introduced by de Groote [13; 14]. However, we neffdrént modifications for
call-by-value and call-by-name calculi.

Problem 2 is caused by thefidirence in how sums are formulated in thecalculus and
the dual calculus. Wadler added sum types totiirealculus following Selinger [45]. This
formulation is based on multiple-conclusioned sequents as follows.

[SkyAa:AB:B ' AIMIAVB
Iy Alp(a,p).S:AvB I'[a.fIMFy Aa:Ap:B

The formulation of sums in the dual calculus, on the other hand, is based on single-concluded
sequents :

ThecAIM:A TheAIN:B T AIN:B
TFacA[(MYN: AVB ThgAl(N)nr:AVB [K L]:AVB|T FacA [(NYinr: AV B

—-11 -

Our solution to this problem is to refine the formulation of sums in.thealculus, and
omit (,)-rule. We introduce sums of th&-calculus by using usual injections and case-
expressions.

To avoid Problem 3, we remove.() and ¢-)-rules, and restrict the call-by-valuig:-
calculus by omitting some rules that cannot be simulated withpgtand ¢-)-rules.

We also encounter problems when we consider the inverse translation from the dual cal-
culus into thelu-calculus. Since they are similar to the above Problem 1, we can solve them
by modifying Wadler’s original translation. However, we also nedtedent modifications
for call-by-value and call-by-name.

Overview

In section 2, we present the detailed formulation of our call-by-value and call-by-name
Au-calculi, and compare them with thi-calculi given by Wadler (2005). In section 3,

we present the dual calculus as a reduction system. In section 4, we define the call-by-name
translation from the call-by-namig:-calculus into the call-by-name dual calculus, and show
that this translation preserve call-by-name reductions (Theorem 2.16). We also define the
call-by-value translation, and show that it also preserves call-by-value reductions. In section
5, we give the inverse translations from the dual calculus intotthealculus for each of
call-by-name and call-by-value, and show that they preserves reductions (Theorem 2.28,
2.34). We also show that the compositions of the call-by-name translations become identity
maps up to the call-by-name reductions, and show the similar property for the call-by-value
translations (Proposition 2.35, 2.36). In section 6, we introduce translations between the
call-by-value and call-by-nam#u-calculi by composing the above translations with duality

on the dual calculus. We finally obtain results corresponding to Wadler’'s (Theorem 2.40),
but our results are based on reductions.

2.2 TheAu-calculus

In this paper, we consider the two variants of thecalculus, call-by-value and call-by-
name, as reduction systems.

In this paper, we follow Wadler for the types of thg-calculus,i.e.. let AandB range
over types, then a type is atomic X, a conjunctin B, a disjunctiorA Vv B, a negation-A,
or an implicationA > B.

—12 —

Types of thelu-calculus
AB:=X|AAB|AVB|ADB|-A

Two disjoint countable sets of variables for the-calculus are given, one is calledri-
ables(denoted byx,y,z...) and the other is calledovariables(denoted bya,3,v,...).
We also follow Wadler for the expressions. The expressions consistro(denoted by
M, N, ...) andstatementgdenoted by5, T, ...). A term is a variable, a1-abstractionmx.M
or Ax.S, an implication applicatio®M (whereO : A > B), a projection fsti1) or sndM),

a pairing(M, N), au-abstractiorua.S, or a term for sums. A statement is a covariable ap-
plication [o] M, a negation applicatio®@M (whereO : -A), or a statement for sums. Any
free occurrence afin M andS is bound in the termgx.M andAx.S respectively. Any free
occurrence of in S is bound in the terma.S.

Our formulation of sums is éierent from Selinger’s [45]. A term for sums is a left
injection inl(M), a right injection inrM), and casé(O, x.M, y.N), and a statement for sums
is a cas&)(O, x.S,y.T). Any free occurrences ofin M andy in N are bound in the term
6(0, x.M,y.N). Similarly, any free occurrences a&fin S andy in T are bound in the term
0(0, x.S,y.T).

Terms and statements of the-calculus

M, N, O = X| AXM | AX.S | MN | ua.S | fst(M) | snd(N) | (M, N)
[inl(M) | inr(N) | 6(O, x.M, y.N)
S, T :=[e]M | MN | 6(O, x.S,V.T)

We consider the term moduéa conversion of variables and covariables. The setseef
variablesof M andS (denoted by FVI1) and FV()), and the sets diee covariableof
M andS (denoted by FCUW/) and FCVE)) are defined as usual. #ping judgmenbf the
Au-calculus takes the forif-,, A| M : AorI' | S|, A, wherel” denotes al-contexfi.e.
X1 o Ag,..., % Ay, andA denotes a-contexti.e.a; : By,...,am : Bn. We note that-, is
sometimes written gs. Thetyping rulesfor the Au-calculus are defined in figure 2.1.

We use two kinds of substitution for thi-calculus. The firsM[N/,] and S[N/,] are
the usual substitutions of a temfor all free occurrences of the variabtén M andS. The
secondM[” 7 /(,1-)] @and S[”7}/5,-] are substitutions of a statement cont@xt-} (i.e. a
statement with a single hole accepting a term) for a covari@abl€his second substitution
is defined by induction oM andS using the following clause.

[IM[™ /03]

TAMI]}

-13-—

TX:AF, Alx:A ™M

I,X: Al AIM:B ThuAIMIASB Thy, AIN:A
Ty AlAXM:ASB > T, AIMN:B ~E
Ty AIM:AAB Tk AIM:AAB
— NE1 — NE2
TF oy A TS(M) : A TFy, AlsndM) : B
Ty AIM:A | Ty AIM:A |
TFy AlNI(M):AVB "' TFy, AlN(M): AVE * 2

T AIM:A Th,AIN:B
T, A(M.N):AAB

H, AlOAVB Ix:ARy,A[M:C Ty:BF,, AIN:C

['Fap A16(O,xM,y.N) : C

FH, AIOAVB ILX:A|SE,A TLy:B|[THy, A

[16(0.XxS.yT) Fy A VE

[LXTAISE A FFypAIMI=A TH, AINZA
TFyAlAXS:-A TIMNF,, A
TSk, Aa:A ThuAIM:A

TFy A paS: A A Tl[a]MF, Aa:A

VE

—_

Pass

Figure 2.1: Typing rules of théu-calculus

The other clauses are defined homomorphically like

(MN)" /101 = M7/ INT O /o]

Note thatM[¥1) /1,;y] and S[P1) /1,y-)] are sometimes written ad[#/,] and S[?/,] re-
spectively.

2.2.1 The call-by-namelu-calculus

We need a notion of call-by-name evaluation and statement contexts to introduce the call-by-
nameAu-calculus, which is equivalent as an equational theory to the one given by Wadler.
A call-by-name evaluation term contefdenoted byE,, E/,...) is a term context with a

hole, and &all-by-name evaluation statement cont@ednoted byD,, D, .. .) is a statement
context with a hole. We writ¢—} for a hole, and the results of filling a teri in an
evaluation context, and a statement conteRt, are writtenE,{M} andD,{M}, respectively.
Call-by-name evaluation term and statement contexts

En, Er"p E;{ i={=} | EnM | fst(E,) | sSndEn) | 6(En, X-EG{X}’Y-E;{{Y})

—14 —

(B5) (AXM)N —n M[N/y]

Br) fstUM,N) —, M
sndM,N) —, N

(Bv) o(inl(O), X.En{X}, y.Ef{y}) —n En{O}
6(inr(0), x.En{x}, y.Ef{yl) —n ER{O}
6(inl(O), x.Dn{x}, y.Dy{y}) —n Dn{O}
6(inr(0), x.Dn{x}, y.Dp{y}) —n Dp{O}

(B-) (AxS)N —n S[N/x]

() Enfua.S} —n uB.S[PIE 110 (whereE, is not{-})
Dnfua.S} —n S[°"™/ja1i)]

(7)) M —puala]M (wherea ¢ FCV(M))

(m) En{o(O, x.M,y.N)} —p, 6(O, X.En{M}, y.En{N}) (whereEy, is not{-})

Dn{6(0, x.M,y.N)} —p, 6(O, x.Dp{M}, y.Dn{N})
v) 0O, xS,y.T) —n (AY.T) uB.6(0, x.S,y.[6]Y)
(if T is not a simple form w.r.ty)
(0, X.S,y.Dn{y}) —n (AX.S) ua.6(O, X.[a] X, y.Dniy})
(if Sis not a simple form w.r.tx)

Figure 2.2: Reduction rules of the call-by-namecalculus

Dn, D}, = [@]En | EnM | 6(En, X.Dn{x}, y.DL{y})

In the following, we say a terrvl is asimple form with respect teif there is a call-by-
name evaluation term contektsuch thatMl = E{x} andx is not free inE, and a statement
S is asimple form with respect tr if there is a call-by-name evaluation statement context
D such thatS = D{x} andx is not free inD.

The one-steall-by-name reductiomelation for theAu-calculus, denoted by—,, is
defined as the compatible closure of the rules in figure 2.2. We w#itg for the reflexive
transitive closure of—,. Similarly, we write—,* and=,, for the transitive closure and the
reflexive symmetric transitive closure e, respectively.

In the following, when expressions andY are in a relatiorR of systemS, we write
S+ XRY. For example, we writdu + M —,, N if a term M of the Au-calculus reduces a
termN by the one-step call-by-name reduction of thecalculus.

(8)-rules reduce a deconstructor applied to a constructor. Note ghptule has an
unusual and restricted form using the call-by-name evaluation and statement contexts. This
restriction is needed to obtain sums equivalent to ones formulated in Wadler’s call-by-name

—-15—

system, {)-rules substitute an evaluation context and a statement context for a covalue, and
(n.)-rule introduces @-abstraction applied to a covariable applicatior)-tules correspond

to the permutative conversions, amt(ules expand a case statemé&il, x.S,y.T) whenS

or T is not a simple form, and introduce new bindings. These rules are also needed to obtain
sums equivalent to sums formulated in Wadler’s system.

We write thedu-calculus given by Wadler by"2@ and write the call-by-name and call-
by-value variants oftu"2 by "2 and Au¥3 respectively. Detailed definitions of these
systems can be found in appendix. We compare our call-by-name system withfide
calculus. The dferences between them are summarized in the following three points:

e Our system is based on reduction relations whil¥2 is based on equations,
e the formulation of sums in our system igférent from that imu¥29, and

e our system does not havg){rules related to implications, negations, pairs, and sums
while his system does have them.

We give two translationg-] and{ —), between ounu and "3 that interpret sums as
follows.

Translation[-] : from x4 into our Au
[[/J(Q’IB)S]] = /’l’y'[[s]][[),]inl{_}/[a]{—}a[)/]inr{_} /[ﬁ]{—}]
[[e. BIM] = 6([M]], x.[a]x. y.[BlY)

The other clauses are defined homomorphically [ikiN] = [M][N].
Translation{(-) : from our A into A2

inl(M)) = (e, B).[a] (M)

inr(N)) = (e, B).[BIENY)
€0(0, XM, y.N)Y = sy (Ay.[y]ENY) (1B.-(AX [YI K MP) (e[, BICON))
€6(0, xS, y.T)) = (Ay-LTH)(1B-(AXKSH) (e [, BICON))

The other clauses are defined homomorphically k&N) = {MM(N)).
We define the call-by-name system;, as the one generated by the rules in figure 2.2
and the following §)-rules,

() M —p AXMX (whereM : A > B)

—-16—

(7,) M —, (fst(M), sndM)) (whereM : AA B)
(nv) M —, 6(M, x.inl(x), y.inr(y)) (whereM : Av B)
(n-) M —p AX.MX (whereM : -A)

Aup is equivalent to Wadler’s call-by-name systept'®® as an equational system. To
show this, we need some preparations. EgandD,, be the call-by-name evaluation con-
texts of thedu!-calculus. Then, we define the call-by-name cont&tsand D, of the
Aul@-calculus as follows.

- ={-} E.N = E{N)
fst(E,) = fst(E,) sndE,) = sndE.,)
5(En, X ER{XLY.EZ YY) = uy. VB {uB.[y] Eplue.[a. B]E,)}
[]E, = [0]E, E.N = E.(N)

6(En, x-Dnfx,y.Dy{y}) = Dy{uB.Dofua [, AIE,)]
For the call-by-name contexi, andD,, defined above, the following lemma holds.

Lemma 2.1
(1) 4+ (Ea{M}) =n Enf{ M)} and 4} = {Dn{M}) =n Dnf{ M)} hold for any
termM of our Au-calculus.

(2) 4w - MM 5] =AM 1) and 4 E (SHP] =n
«S[P /a1 hold.

(3) At Enfpua.S) =n uB.SIPE) f1y1] and 4™ - Dafua.S) =p S[/1] hold.

Proof. (1) is easily shown by induction d&, andD,. (2) is shown by induction oM and
S using (1). We give the key case.

CLAMHP /1] = [l dMMIP /1ag1] = Dof MY /111)
L Bl M /i) S (DM /a1 = €M) 1)

(3) is also shown by induction da, andD,. For example, the case of
6(En, X.Dn{x}, y.D;{y}) can be proved as follows.

5(En, X Dnfx, Y. Dilyh{ua.S} = Dy{u.Dnluce[a, B Eqiua.S))|
=1 DB Dalpuer. [, flue’ S5 /13

= ﬁF\{,U,B-D_n{lla’ S[tAE) [o](-] }}

17 -

=5 DB S5 iy)P g 1]}
= SR /g P a1]
= S[([a,ﬁ]gn{—})[in(_)/[(v](*)][DT‘(_)/[ﬁ](*}]/[a]{_}]

Y SO DrluarlaslEat-iy 1

— [6(En.XDn{xLy.DAiyD{-
= S[(X.Dn{x}Ly.Da{y)f }/[a]{—}]

where I.H. means the induction hypothesis, afdig by the definition of the substitution
for a covariable. |

Proposition 2.2
(1) If Aup v M =, N, thenAu2d + (M) =, {N), and if Ju} + S =, T, thenau"
«SH =n (T).
(2) If Au™d + M =, N, theniu] + [M] =, [N], and if 42 + S =, T, thenu;] +
[S]=n[T].
(3) un + [{MPH] =n M andiuy + [{SH] =n S.

(@) Pk (IM]) =0 M andduy® k ([S]) =n S.

Proof. (1) We can show this by induction on the call-by-name equation aihealculus.
We consider only the rules about sums,, (8,), (£), (7), (v), and @.)-rules.
Case of 8,)-rule :

«o(nI(0), X Exfx, y.Extyh)
= py.(Ay.[] <<E" W)(B-(AX[YICEMXIN) (uer[e, B INI(O)Y))
= 1y (AY.[ICE Y) (1B- (X [YICERXIN (e [, Blu(e’ . B) [’ 1KON))
=3, 1y (Y IYICE (YD) (B (X [YICERXIN) (uer.[2] (O))
=, 1y-(AY.YICEL YD) (1B-(AX [YIKER{XI))COY)

=n uy.(AY.[YIEF Y} (1B (X [YIERX)KOY) (by Lem 2.1 (1))
=5 1y IVEF{uB.IYIER(ON)]

=n uy.[YIER(ON) (by Lem 2.1 (3))
=,, En{(OM)

= {EL{O}) (by Lem 2.1 (1))

—-18—

The other rules of thes())-rule can also be shown similarly.
Case of {)-rule :

(En{ua.S})) =n Eqf¢ua.S)H) (by Lem 2.1 (1))
= Enfua(SH} = uBASHPE 1y] (by Lem 2.1 (3))
=n €uB.S[PE /1331 (by Lem 2.1 (2))

«Dn{,ua’-s}» =n D_n{«,ua’s»} =n ﬁn{,ua'«s»}
=0 SI®tagia] =n 4SIP /ag])

Case of f)-rule :

(Ento(0. .M. Y.N}) =n En{(5(0. x.M.y.N))} (by Lem 2.1 (1))
= Enfuy-(ay. 1N)(1B.- (X [Y]EMP) (e[, BIKON))}
=n 1y’ (Ay.[y TEL{ND}) (1B-(AX [y TEA{d MM (e[, SICON)) (by Lem 2.1 (3))

=n 1y’ (V.Y 1CEnIND) (18- (X [y 1€ EntMID]) (e[, BICON)) (by Lem 2.1 (1)
= (6(0, x.En{M}, y.En{N})}

The other rule of then))-rule can also be shown similarly.
Case of {)-rule :

(3(0,x8,y.T)) = (Ay.LTH)(1B-LAx(SH) (e[, SIKON))

=n (AY.LTH)(B.(1y [BlY)(WB (A (SN (ua-la, B1(ON)))
= (Ay.LTH)(1B.(AY KIBY MHB (AX.(SH)(a-[a. B1KON))
= ((y.T) uB.o(O, xS, y.[BlY)»

6(0. x.S.y.DalyD) = (Ay-LDnfy!))(uB. (X (SH) (e[B1OY))
=n (Ay.Daly})(uB.(AX(SH) (e[B1(ON))
=n DafpB.(AX(SY)(ua [, BI(ON)]
=n DofuB.(AX(S)(uer-(Ay[BY) B’ (Ax [e]) (e’ [, B1KON))}
=n (AX(S))(uer-(dy.Daly) 8’ (Ax [a]X) (e’ [o B 1KOY))
=n (1X(S)) (- (dyLDnlyIN) @B - (1% ([a] Y (e’ [o”. S1(ON)))
= (x(SP)(ue-¢3(0. x[a]x. y.Dniy))
= ((AxS) (.60, . [a]% Y.Daly)))

Case of fp,)-rule :

€M, x.inl(x), y.inr(y))) = py.(dy.[yIGINr)Y) (8. (Ax 1IN)) (e [a, BIEMM))

-19—

= py (Ay.[ylute”, B7).1B"1Y)(1B-(Ax [Ylu(@ . B).[' 1) (ua[a, BIEM)))

=, uar, Br).lera, Brluy (Ay.[Ylu(e”, B).[B"1Y)(1B.-(x[Ylu(@’, B).[e' 1) (ua[a, BIEMY))
=, (o, Br).(AyLan, Brlu(e”, B7).18"1y)(up. (X [ar, Balu(e . B') [/ 1X) (e[, BIEMM))
=g, u(e1, B1)-(AY.[B1lY)(1B.(Ax[@]) (uar[a, BIEMN))

=) a1, B1).[Brlup [aa]pa.[a, BIEM))

=p, u(a1, B1)-Laz, 1]{M))

=, M)

(2) We can show this by induction on the call-by-name equation ofi##&*-calculus. We
consider only the rules about sums,, (8,), ({), (7v)-rules.

(By)-rule:

[le’. 81u(e. B)-S] = §([u(e. B).S]. x[@]1% y.[8y)
= 5y ISIM™ /g7 Jigy], %[1% Y.[BTY)
= [[S]][6(inl{—},x.[a’]x,y-[ﬂ’]y)/[a]{_},ﬁ(inr{—},x.[a/]x,y-[ﬂ’]y) /[ﬁ]{_}]
=g, [SI“T /1y P17 gyl = [S1 /o’ 111
(&y)-rule :

[[a. Bluy-S1 = 6([[y-SI. x[a]x y.[Bly) = 6(uy.[S], x[]X.y.[8]Y)

- @ A (_*) a,B{—
= |[S]][‘5({ L[]x,y[ﬁ]y)/m{_}] s [[S[[Bl }/[7]{—}]]]

(%) is shown by induction on terms and statements. The key case is as follows.

[LyIMIEO A 1)] = ([MDDy]
= S([MIP P 11, x] %, Y. [8lY)
£ 5(IMI 11 x[alx. Y. [B]Y)
= [[[ee, BIMI /3D 1 = [/1411

(pv)-rule :

[k(@. B[, SIM] = py.[la. M /130) /]
= uy-6(IM], x[a]x Y.LBIN™ /oy P]
= py-6([M]. x.[¥]inl(X), y.[y]inr(y))
=r uy-[y16([M], xinl(x), y.inr(y))

—-20—

=y, O([M]], x.inl(x), y.inr(y))
:Uv [[M]]
(3) We can show this by induction on term and statemen$ of the Au;-calculus. We

consider the cases of ifl), inr(M), (O, x.M, y.N) andd(O, x.S,y.T).
Case of inlM):

LMY = [B).Le MW = ey ([l [EMM)™) /1oy . 237]
= oy [ylinl (TEMMT) =5 ey ylinl(M) =, ini(M)

The case of inf{1) can also be shown similarly.
Case ob(O, x.M, y.N):

[€6(0, x.M,y.N)DT = [y (Ay.YIENY) (B (X [Y]EMW) (e[, BICON)))
= 1y (Y [ATENDT) (8- (X [ITEMY T (e [[, B1KON T))
= 11y (AY. TN (- (X [T MM T (- S([KON . X [e]x. y.[81Y)))
= 1y (A YIN)(B.(AX [YIM)(ua.6(0, x[a] X, V.[6]Y))
£} 17.6(0. x[YIM.y.[yIN)

=m Hy-[¥16(0, x:M,y.N)
=@ (0, X.M,y.N)

(%) is shown by case analysis b andN. If M andN are not simple forms w.r.tx andy
respectively, then we have

wy-6(0, x[yIM, y.[yIN) =¢) py.(Ay.[YIN)(uB.6(O, x[y]IM, y.[5]y))
=0y (Y. [YIN) (uB.(AX[YIM) (u.6(O, x[] X, y.[8]Y)))

If M is E,{x} andN is not a simple form w.r.ty, then we have

py-0(0, X.[Y]En{X}, Y.[YIN) =¢) py.(2y.[yIN)(1B-0(O, x.[y]Eni{x}, y.[BlY))
= 1y-((y-LYIN)B.[Y] Enfuua.5(0, x[a] %, Y.[8]y)}))
=) 17-((AY.[YIN) B.(AX [y EnlX}) (ue.5(O, x[a] x. Y.[B]))))

The rest of the cases are shown similarly.
Case ob(0, x.S,y.T): this case is similar to the above case.

—21 -

(4) We can show this by induction on terlt and statemer® of the Au/2-calculus. We
consider onlyu(a, 8).S and [, B]M.
Case ofu(a,B).S:

(. B)-SI = €y IST™ i, ™ gy 1)

= py QIS /gy, ™ /i)

= m,'<<[[S]]>>[[7]<<inl{—}>>/[a]{_}’[vl«inr{—})) /[ﬁ]{_}]

=y ([SIHIOH M | D BB 0

=) H(@, Br).Lag, Bulpy (ISIN[PHFHNR /g) DI EVBT)

=) ulas, Bl)_<<[[s]]»[[alﬂﬂﬂ(a’ﬂ’)-[a’]{—} /el {_},[al,ﬂﬂﬂ(a”ﬁ”)-[ﬁ”]{—} /[ﬂ]{_}]

=) (e, B)-LISIN /1y, Ji]

= pu(e. B)-KISTH

=5 w(@.B)S

Case of §, S]M:
(. BIMI) = C5(IM], x[a]x.y.[BlY))

= (.18 B - (x[a] X [« BIKIMIN))
=) 118 Lelua’ [0’ BICIMIY

=@, L@, BIKIM])
2 (@, BIM

2.2.2 The call-by-valuetu-calculus

For the call-by-value calculus, we need a notion of valuesale (denoted by, W,...)
is a variable, al-abstraction, a pair of values, or an injection of a value.
Values of the call-by-valugu-calculus

V,W =X | AXM | (V, W) | inl(V) | inr(W) | Ax.S

We also use a notion of the call-by-value evaluation and statement contexts to introduce
the call-by-value calculus. However, in this case, it is useful to give the evaluation contexts

— 22 —

as singular contexts. The call-by-value evaluation singular contexts (denot&dHy. . .)

are grouped into thelimination context¢denoted byEe, E, . ..), which are obtained from

an elimination rule. Thentroduction contextédenoted byE;, E/, .. .), which are constructed

by an introduction rule, and the contexts which have a hole as the argument of a lambda ab-
stractionj.e., (Ax.M){-}. The call-by-value evaluation singular statement contexts (denoted
by Dy, D], ...) are grouped into thelimination contextgdenoted byDe, D;,...) and the
contexts which have a hole as the argument of a lambda abstraetjgax.S){-}.

Call-by-value evaluation term and statement contexts

E, :=(AxM)({-} | E¢ | E,

Ee z={~)M | fst({-}) | snd(-}) | 6({-}, x. M, y.N)
E; ==ini({=)) [inr({=)) | (=), M) | V. {=))

Dy :=(1x.S){~} | De

De i=[a{~} | {-}M | 6({-}, xS, y.T)

The one-stegall-by-value reductiomrelation for thedu-calculus, denoted by—,, is
defined as the compatible closure of the rules in figure 2.3. We wsitg" and —,"
for the reflexive transitive closure and the transitive closure-ef respectively. g)-rules
reduce the deconstructor applied to a constructor with call-by-value restrictigrsilés
substitute a call-by-value evaluation context and a statement context for a coyglre)¢
introduces au-abstraction applied to a covariable application, andrgles correspond to
the permutative conversions. Theafme-rules push the next term to be evaluated out as an
argument of the function. These rules correspond toriaen@-rule of theu¥%-calculus.
The comp-rules are associativity rules, which correspond to twer(p-rule of theu2%-
calculus.

We now compare our call-by-value system with Wadler’s call-by-value system. The
differences between them are summarized in the following four points:

e Our system is based on reduction relations while his system is based on equations,

e the formulation of sums in our system idfdrent from that inu¥a9,

¢ we defined values fferently: a projection from a value is not a value in our system,
and

e our system does not have){rules related to implications, negations, pairs, and sums
while his system does have them.

—23—

(8-)
(B1)

Bv)

)

(comp

(7)

(77#)

(nameg

(AXM)V —y M[V/4]

fst(V, W) —, V

sndV,W) — W

s@inl(V), x.M, y.N) —, M[V /4]

s@inr(V), x.M,y.N) —sy N[V/4]

s@inl(V), x.S,y.T) — S[V/«]

s@inr(V), x.S,y.T) —y T[V/«]

(AXS)V —y S[Y/x]

Eerlua.S} —y pB.S[PIE /1] (WhereEg, is Ee or (AX.M){-})
Dy{ua.S} —vy S[P7/11-1]

Ecl{(AX.M)N} —>y (AX.Ee{M})N

Dy{(AX.M)N} —y (AX.Dy{M}N

Eer{6(O, x.M, y.N)} —>y 6(O, X.Ee1{M}, y.Ear{N})
Dy{6(O, x.M,y.N)} —, 6(O, x.Dy{M}, y.D\{N})

M —y uafa]M (wherea ¢ FCV(M))
Eie{O} —y (AX.Eie{x})O (whereQ is not a valueEje is E;j or Eg)
De{O} —y (AX.De{X)O (whereQ is not a value)

Figure 2.3: Reduction rules of the call-by-valyye-calculus

—24—

We introduce the call-by-value calculag, as the system generated by the rules in figure 2.3
and the following §)-rules.

(1-) V —n AXVX (V:A>B)
() V —, (st(V), sndy)) (V:AAB)
(nv) M —, 6(M, x.inl(x), y.inr(y)) (M:AvB)
(n-) V —, AX VX (V:-A

We define theluYa* -calculus as the restricted system of thé@%-calculus obtained by
excluding a projection from a value from definition of values. We again consider translations
« - Y and[[-] given in the previous subsection. Our call-by-value systafrwith (r)-rules

is equivalent to tha"2%-calculus as the equational systems.

Proposition 2.3
(1) If Au) + M =, N, thenaula® + (M) =, {N), and if 4u + S =, T, thenaua*+
«SH = (T

(2) If AuM@+ r M =, N, thenAu] + [M] =, [N], and if u’?% + S =, T, then
Ay +[S]=v [T].

(3) Ay F [{MP] =v M andauy + [{SH] =v S.
(4) 4yt (IMI) = M andaw®* + ([S]) =v S.

Proof. (1) We can show this by induction on the call-by-value equation ofithjecalculus.

We consider only the rules about sums,, (8,), (), (7), (comp, (hamg, and ¢)-rules.
Case of 8,)-rule :

€OGNICV), XM, Y.N)Y = sy (2y.LyTEND)(1B-(AX [YIEMM) (uer.[a, BICINI(V)))
= 1y (Ay.LIENY) (B (X [Y LMW e [, Blu(e’, B) [1KV)
=) 17 (AY.LIENY) (8. (X [YIEMM) (e [e] (V)
=) 17-(AY.LTANY (1B (X [YIEMMKVY)
=) Hy-(AX[YIEMMLEV)
=) Ly IEMMY /4]
Q Ly MY 1)
=, M[Y /)

— 25—

(x) comes from the claimMM /] = (M[Y/]) and(SHY” /] = (S[V/x]). This
claim is shown by a straightforward induction dhandS. The other rules of the3()-rule
can also be shown similarly.
Case of {)-rule : This case can be shown by a case analysis of the evaluation contexts. The
key case is whek, is 6({—}, x.M,y.N) andDe is 6({—}, X.S, y.T).
Subcase oE. is 6({—}, x.M,y.N) :

(8(uar.S, X M, Y.N)) = oy (Ay.LYIANY (1B (AX [T MPaar’ [, B |- { S))

= 1y (ALY (B - (X I EMMpa’ SHI 1 f1a3])

=) 1y LS PN Jpgq AN TGN]
! B =) [@xDICMN- (Ay.LICNDN=)
= py. (SYH[Le AU Ny qr 1«—»]/[0“7}]

= ,uy.«S»[(Ay-[*/]<<N>>)(uﬁ’-(ﬂ><-[7]<<M>>)(pa’-[a’,ﬁ’]{—l)) /1] {—h]
=) uy.«s»[[y]uy’~(/ly-[y’]<<N>>)(/4ﬁ’-(AX-[y’]<<M>>)(urr’~[a’,ﬁ’]lf})) /o] o]

2 4oy (SN 3 T = Gy SIXMIN 1y
(*) is shown by a straightforward induction on terms and statements. We abbreviate
|\/|[[7]#7'-(/ly-[)"]((N)))(ﬂﬁ'.(/lx‘[)"]((l\/l>>)(lla’.[a'ﬁ']{—}))/[a]{_}] and

S[[)’]HY’-(/1Y~[7']((N>>)(ﬂ,3,-(/1X~[7']((M>>)(lla/~[@'aﬁ']{—}))/[a]{_}] in M and§ respecti\/e|y_ The key case is
proved in this way.

([eIO) = [1€O) = [yluy’-(y.Ly TN (B - (X [y 1M (e’ [/ . B 1(ON))

L ey Ay Ly TN @B - (XY TMM) e [, B1(OIIIIXMN 1 1y

= ([y]6(O[IUXMYN) 7 n 1], XM, y.N))

= (([QO)PPXMIN 1 T
Case of f)-rule : We can obtair=(; from [a]6(O, x.M,y.N) =, 6(O, x.[@]M, y.[@]N) with
(m,)-rule and ¢{)-rule in the following way. LeE be E¢ or (Ax.M){-}, then

E{6(O, xM,y.N)} =(;,) E{pe.[2]6(O, x M, y.N)} =y E{ua.0(O, X.[a]M, y.[e]N)}
=) #B-0(0, X.[BIE{M}, y.[BIE{N})} =y uB.[8]6(O, X E{M}, y.E{N})}

=(,) 0(O, X E{M}, y.E{N})}.

We can obtaiD,{6(O, x.M, y.N)} =, 6(O, x.D,{M},y.D\{N}) in a similar way. Therefore, it
is suficient to prove{[a]5(O, x.M,y.N)) =, {6(O, x.[a]M, y.[a]N))).

([a]6(0, xM,y.N))) = [a]uy.(Ay.[yYJAND) B (X [YIAMPD)pa’ [/, BTCON)
=) (AY-L[] AN @B .(AX [a] M)’ [, BTCOP)

- 26—

= (6(0, x[a]M, y.[a]N))

Case of omp-rule : To show this case, it is ficient to have
([a]((Ax.M)N)) =y {(Ax[a]M)N)) by the discussion similar to that far)-rule.

(La((XM)N)) = [a]((AxLMMLEN))
=(comp (AX[]AMPICN)) = L (Ax[a]M)N)

Case of fam@-rule : We can easily showu2* + {E{O}) =, {(Ax.Ei{x})O) by a case
analysis ofg;. On the other hand, we have

([]O) = [a]€O)) =omp (AX[a]X)(O) = L (Ax[]X)O),

therefore we obtainu!% + {E¢{O}) =, {(AX.Ec{X})O)Y, sinceduy + Ee{O} =, (AX.Ee{x})O
can be shown fromy + [@]O =, (Ax.[a]X)O with (), (17,) and Comp-rules as follows.

EelO} =(;,) Eelpa.[@]O} =y Eelua.(Ax[a]X)O} =(;) uB.(AX.[B]E(x})O)
=(namg UB-[BI((AX.EefX})O) =(;,) (AX.E&{X})O

Case of p,)-rule :

€M, x.inl(x), y.inr(y))) = py.(Ay.LyIGinr(y)) (B (Ax [y)) (e [a, BIEMM))
= py.(Ay.ylute”, B7).18"1y) (B (X [Ylu(@ . B) [1) (e[, BIEMY))
=) 1n, Br)-[an, Buly-(Ay.[ylu(e”, B7).[8"1Y) (1B (X [Ylu(e . B) [/ 1) (e[, BIEMY))
=) tles, B).(Ay[an, Bulu(e”, B).1B"1Y) (uB-(Ax [e1, Bl B') [1X) (e [, BIEMN))
=) ar, Br)-(Ay.[Baly) (B (X [ar]) (ua [, BIEMY))
=(namg M(a1,B1).[BluB.[as]ua.[a, BIEM))
=@,) tlax, f1)-Lar, f1IEM)
=@.) KMY

(2) We can show this by induction on the call-by-name equation ofi#f&"-calculus. We
consider only the rules about sums,, (8,), (), (nv), (hamg, and comp-rules.
Case of 8,)-rule :

[le/. B 1u(e. B).-S] = 6([u(e. B)-S], x['1% y.[B1Y)

— inl{— inr{— ’ ’
= o(uy- [ST™ /1y, g1, x[@1% Y. [BTY)
— o [SIE X IBWY SIS]

E ST 1 B Jii] = ISI7 10 1411

27—

() can be shown by the following claina(inl(M), x.[a] X, y.[8]Y) =y [@]M for any M. We
show this. IfM is a value, then the claim is obtained Igy J-rule. If M is not a value, then

5(inl(M), x.[a]x. Y.[BlY) =mams (126(z x.[a]x. y.[8ly))inl(M)
=(namg (AZ6(2 X [a]% Y.[8]y))((AZ inl(Z))M)
=(comp (AZ-(AZ6(z x[a]x.y.[Bly))inl(Z))M

=) (AZ.8(inl(2), x[]x, Y.[BlY))M
=) (AZ.[2]ZIM =(ramg [2]M

Case of {)-rule : to show this case, we introduce evaluation singular coigand singular
statement contex®,, of the 1Y% -calculus.

Ew i= {=IN [V{=} [V =D (=1 M) [st(-)) | snd(-))
Dw == [al{-} | [a. Bl{-} | {=}M | V{-}

It is easily shown that if we have the following claims:

[Ewipa.S}] =y [1B.S[P® /1] @and[Dwiue.S)] =y [S[P/fay- 11,

then we can show this case. We can prove the claim by a case analigjsotiD,,. We
consider the key cases:
- Ewis X{-}:
[xua.S] = xua.[S] =) (ZxQua[S] =@ #B[SIPZP /)]
- O -
=(-) IUIB[[S]][W]X{ }/[(l]{—}] = :uﬁ[[s[[ﬂ]x{ }/[w]{—}]]]

(*) can be shown by induction on terms and statements. The key case is proved as follows.
[lIMI] = [AIMDIP /] = BIXAMIT /D)
£ BXAMI g 11 =[]]1]

- Dy is x{-}: this can be shown in a way similar to the above case.
- DW IS [a/,ﬁ]{_}

[[a. Bluy-S1 = 6([ly-SI. x[a]x y.[Bly) = 6(uy.[S], x[]X.y.[8]Y)

-}, x[a]xy.) a.Sl{—
= [SECPPH B /1= [S[A 00T

—-28—

(x) is already shown in the proof of Proposition 2.2.
Case of p,)-rule :

[u(e.B).la. AIMI = py.[[a, AIMIIDT™ /10y DT /]
=y S(IMT. [, Y. LBV ™ /109 I gy,
= wy (M1, x[y]inl(x), y.[y]inr(y))
=y y-[Y]6([M], xinl(x), y.inr(y))
=) S([M], x.inl(X), y.inr(y))
=u.) [M]

Case of fam@-rule : LetD be a statement context of thga-calculus, then we can
obtain fflamé-rule of the Auf@® -calculus fromAu¥a® + (Ax[a]X)M =, [@]M with (,),
and ¢)-rule in the following way.

D{M} =(,) Diua.[a]M} =, Diua.(Ax[a])M} =) (Ax.D{x})M
Therefore, it is sfficient to prove {x.[a]X)M] =, [[[e]M] in our call-by-valuelu-calculus.
[(Ax[a]¥)M] = (Ax.[e]X)[M] =(name [[a]M]

Case of ¢omp-rule : LetD be a statement context of thg2%-calculus, then we can
obtain comp-rule of the 42+ -calculus from §]((AX.M)N) =, (Ax[e]M)N, (3,), and
(£)-rule in the following way.

D{(Ax.M)N} =,y D{ua.[a](Ax.M)N} =, D{ua.(Ax[a] M)N} =¢) Ax.D{M})N
Therefore, it is sfiicient to prove[]((AX.M)N)] =, [Ax.[a]N].
[[a]((AxMN)] = [e]((AX[MIDINI) =comp (Ax[e][MIDIN] = [(Ax.[a]M)N]

(3) We can show this by induction on term and statemen$ of the Au-calculus. We
consider inlM), inr(M), 6(O, x.M, y.N) andé(O, x.S,y.T).
Case of inlM):

[€ini(M)NT = [uar. B)-La]MMT = oy ([l LEMM)™ g 2™)
= oy Ilinl (TEMO) =5 ey 1lini(M) =,, inl(M)

inr(M) can be shown similarly.

—29_—

Case ob(O, x.M, y.N):

[€5(0, x:M,y.N)DT = [y (Ay.YIENY) (B (X [YIEMW) (e[, BICOM))
= 1y (Y[TANDT) (8- (X [TEMY T (e [[, B1KON T))
= py (A [y TENDT) (8- DA TEMY D (.6 ([ON . x[e]x, .[B1y)))
2, 1y (Ay.[YIN)(uB.(Ax [YIM) (ue.5(0, x [a] x. y.[BY))
=) 1y-6(O, X.(AX[y]M)X, y.(2y.[YIN)y)
=.) 1y-0(0, x[yIM, y.[y]N)

=@ 1y-[y]6(O, XM, y.N)
=) 6(0, X.M,y.N)

The other cases are shown similarly.

Case ob(0O, x.S,y.T): this case is similar to the above case.

(4) We can show this by induction on teriwh and statemer of the 1u"2% -calculus. We
consider onlyu(a, 8).S and [, 5] M.

Case ofu(a, B).S:

(M. B)-ST) = Ky ISI™ /1y, gy 1)
= 1y LISI™ g P g 1)
= wy CISINEE g0 DT)]
= py (ISP) PWCEFIEN g]
=) (a1, Ba)-[an, Balpy LISIN[PWC PN /) PR]
=) #lare, Br)- (ISPl P g) JoaPe@ FVEN gy]
=) (@ B)-LISIN /10y, i)
= pu(a, B)-LISTH
= w@.f)S

Case of {, B]M:
([, BIMT) = Ko(IM, x[alx y.[B1Y))
= (.18l @B (x[e] ¥ (e [F1KIMI]Y)))

=(namg (BB’ [e]ue’ [/, STKIMID)
=, [BIKIMI)

—-30-

2 [, 8IM

We mention some basic properties of thecalculus at the end of this section.

Lemma 2.4 (Substitution lemma for theAu-calculus)
Let M andN be terms, an® andT be statements of th&u-calculus.

(1) Supposd'}-,, A|M:A.
If I,x: A, AIN: B, thenl' |, A | N[M/,]: B, and
if [,x:A|Sk, A, thenl | SM/], A.

(2) Let 7{-} be a statement context, that is, a statement with a single hole, and suppose
[, X A|T{X} Fa, Athen
if Tk, A, AIN: B, thenl'}-), A | N[""7/5] : B, and
if I, Sty Ava: A thenl | S[75 /] Fa, A

Proof. (1) is shown by a straightforward induction dhandS. (2) can be shown by an
induction onM andS using (1). The key case of (2) & = [a]M. Supposd’ | [a]M |-,
A,a : Ais derived. Since the last rule to obtain this sequenps§, we obtainl'|-,, A, a :

A| M : A Hence we hav€ |-, A | M[""7/,] : Aby the induction hypothesis, and then
| T (M /tagiil} i A by (). This means | ([@IM)[”/iyi-] Fa A. 0

Proposition 2.5 (Subject reduction for theAu-calculus)
Let M andN be terms, an® andT be statements of th&u-calculus.

(1) Ty, AIM:Aandiu - M —s, N, thenT |-, A | N : A
f TSk, Aandiu S —, T, thenl | T |, A.

(2) fFT,, AIM: Aandiu - M —s, N, thenl |, A | N : A,
f T[Sk, Aandiu S —, T, thenl' | T |, A.

Proof. Using the substitution lemma, (1) and (2) are shown by an inductior-enand
—> respectively. m|

The call-by-name and call-by-valug-calculi given in this paper are confluent. This is
proved as a corollary of the results in Section 2.4 and 2.5 (see Proposition 2.37).

-31-

2.3 The dual calculus

The dual calculus was proposed by Wadler [48; 49] as a term calculus that corresponds to
the classical sequent calculus LK. Wadler [48] first gave the dual calculus as a reduction
system, and introduced it as an equation system in his later paper [49]. Detailed definitions
of the later version can be found in appendix. Since we want to consider the system based
on reduction relations, we will give the reduction system of the dual calculus referring to
the system in his first paper.

Types, variables, and covariables of the dual calculus are the same as thosd;6f the
calculus.
Types of the dual calculus

AB:=X|AAB|AVB|ADB|-A

whereX is an atomic type.

The expressions of the dual calculus consistesins(denoted byM, N, ...), coterms
(denoted byK, L,...), andstatementgdenoted byS, T,...). A term is either a variablg,
a pair(M, N), a left injection(Myinl or a right injection(N)inr, a complement of a coterm
[K]not, a function abstractiomx.M, with x bound inM, or a covariable abstractida with
a bound inS. A coterm is either a covariable, a caseK, L]; a projection from the left of
a product fstK] or a projection from the right of a product snd[a complement of a term
not(M), a function applicatiorM@K, or a variable abstractiornS with x bound inS. A
statement is a cut of a term against a cotéim K.
Expressions of the dual calculus

M, N z=x| (M, N) | (Myinl | (Myinr | [K]not | AX.M | S.a (termg
K, L z=a | [K,L] | fst[K] | snd]L] | noKM) | M@K | X.S (coterm3
S T:=MeK (statements

The set of free variables and covariables occurrindMinK, and S are denoted by
FV(M), FV(K), and FVE) respectively. We identify the two expressions indhequivalence
relation and will uses= for the syntactic identity on the expressions. The expres$iiig,],
K[N/4], andS[N/,] denote the expressions obtained by substitukinfpr every free occur-
rence of the variable in M, K, andS. The expression#[-/,], K[*/.] and S[‘/,] are
similarly defined.

—-32—

AXL

F,x:Al—dCAlx:AAXR a AT g Aa: A

TFeAIM:A K:A[TkgeA
T MoKl gA
TFeAIM:A TheAIN:B
TFeA|(M,N): AAB
K:A|T FgA] L:B|T g A
fStK]: AABIT FgeA sndL]: AAB|T Fqc A
TheAlM:A . e AIN:B
TEgA | (Myinl: AVB Y TEgA | (NYinr:AVB ¥
K:AITFeA L:B|TFgA
[K.L]: AVB|T Fg. A
FhaAIM:A K:A|T FgA
not(M) : =A|T g A I A | [K]not : —A
-4 AIM:A K:B|T|gA L IX:AbgAIM:B R
M@K :A>B|T[FgA ~ - TFgA|AXM:ADB"
X:AT|Sk4A ['|SkgcAa: A

XS AT g A TFgA|Sa: A

Cut

AL

R

-R

RI

Figure 2.4: Typing rules of the dual calculus

A contextof the dual calculus (denoted iy X, ...) is a finite set of term variables
annotated with types (denoted &y : Aq,...Xn : Ay), in Which each variable occurs once
at the most. Similarly, @ocontexbf the dual calculus (denoted Iay; A, ...) is defined as
a finite set of covariables with types (denotedday: Bs,...anm : By). A typing judgment
of the dual calculus takes either the fofhir4. A | M : A, the formK : A | T 4. A, or the
formT | S |4, A. We note that-4. is sometimes written ds. The typing rules of the dual
calculus are shown in figure 2.4. These rules are the same as those in Wadler’s later paper
[49].

A valueof the dual calculus, denoted By W . . ., is a variablex, a pair of valuegV, W),
an injection of a valug€V)inl or (W)inr, a complement of a coternK|not, or a function
AX.M.

Values of the dual calculus

V,W = x| (V,W) | (W)inl | (W)inr | [K]not | AX.M

A covalueof the dual calculus is denoted By Q A covalue is a covariable, a case
over a pair of covalued], L], a projection of a covalue f4g or snd[Q], a complement of a

—33-—

term notM), or a function application over a covalle@Q.
Covalues of the dual calculus

P,.Q:=a[[P,Q] [fst[P] | snd[Q] | nokM) | M@Q

These definitions of the values and covalues are same as those in Wadler (2003) but
different from those in Wadler (2005). Note that if we adopt the definitions in Wadler (2005),
then terms containing beta redexes at the top level may also be values. For example, a term
((x,y) o fst[a]).a includes a beta redex at the top level even though it is a value according to
the definition in Wadler (2005).

A term contexfor the dual calculus (denoted) is a term that contains a hole that
accepts a term, and@term contex{denoted byF) is a coterm that contains a hole that
accepts a coterm. The hole is writt¢n}, and the result of filling the hole in the term
contextE with a termM is written E{M}. Similarly, the result of filling the hole in the
coterm contexE with a cotermK is written F{K}.

Term contexts and coterm contexts

E == {=5L N) [V A=D [{=Dinl [({=Dinr
F o= [K A= TH-5 PLHHS{=)] | sndf—1] | M@{-}

Note that the context of the form & @{-} is defined as a coterm context in this paper
though it was not defined in Wadler (2003). This means the reduction rule

Ne (M@K) —" (N e (M@c)).ac ® K

is permitted asr{ame-rule in our call-by-name calculus. This seems to have added a new
rule to Wadler’s original system. However, this rule is not an essentially new rule, because
this rule is justified when implication is defined in terms of conjunction, disjunction and
negation (see Proposition 2.7).

The call-by-name reduction relatior—" and thecall-by-value reduction relatior—"
of the dual calculus are defined to be the compatible closure of rules in figure 2.5. In the
sequel, we use—"", —"* and=" as the reflexive transitive closure, the transitive closure,
and the symmetric reflexive transitive closure-e$" respectively—"*, —V'*, and=" are
defined similarly.

Some of our reduction rules are slightlyfférent from those in Wadler (2003), but the
differences are not essentigh, J-rules given here are justified in Proposition 2.6arfe-
rules correspond tog§-rules of the dual calculus in Wadler (2003), though these rules are

—34—

Call-by-name reduction Call-by-value reduction

(Br) (M,N) o fStfP] —" M e P (V,W) e fst[K] —"V e K
(M,N)esndlQ] —"NeQ (V,W) e sndlL] —YWeL

Bv) (M)inl e [P,Q] —m"M e P (Vyinle [K,L] VYV eK

(N)inre[P,Q] —"NeQ MWhinre [K,L] —YWe L

(B-) [K]note nottM)y —" M e K [K]note not(M) —Y M e K

(8-) AXM e (N@P) —"M[N/y] e P Ax.M ¢ (N@K) —" N e x.(M ¢ K)

(BL) M e xS —"S[M/,] Ve xS —VS[V/]

(Br) SaeP —"S[F/,] Sae K —VS[*/,]

(Rr) M —"(Mea).a M —VY(Mea).a

(m) K —" x.(x e K) K —V x.(x e K)

(nam§ Me F{K} —"(MeF{a}).aeK E{M}eK —" M ez(E{z} ¢ K)

Figure 2.5: Reduction rules of the call-by-value and call-by-name dual calculus

not included in his system. Indeed, we can easily shaamg-rules from ¢)-rules using
(BL) and Bgr)-rules in both the call-by-name and call-by-value systems. Conversely, we can
obtain ¢)-rules from fame-rules using f.) and (r)-rules.

When a termM of the dual calculus reduces a temhby the one-step call-by-name
reduction, we writeDC + M —" N. We also writeDC + K —" L, DC+ S —" T,
DC + M—™N, DC + K—"L,DC + S—™T,DC+ M =" N, DC + K =" L, and
DC+ S ="T. For call-by-value calculus, we also define these notations similarly.

As in Wadler’s original dual calculus, implication can be defined in terms of the other
connectivesi.e., the following propositions hold.

Proposition 2.6
Under call-by-value, an implication can be defined by

A>B = —(AA-B)
AXM = [z(zefst[x.(ze snd[notM)])])]not
N@K = not (N,[K]not)).

The translation of a function abstraction is a value, and the typing and reduction rules for
implication can be derived from the typing rules for the other connectives.

Proof. The call-by-valuef-)-rule is validated as follows.

— 35—

(a) If N is a valueV, then

(AX.M) o (V@QK) = [z(z o fst[x.(ze snd[notM)])])]not e noK (V, [K]not))
—5y (V. [K]not) e z(z e fst[x.(z e snd[notM)])])
— i (Vs [KInot) e fstx.((V, [K]not) e snd[notM)])]
—s,y V @ X([K]not e nokM))
—) V e x(M e K).

(b) If N is not a value, we neechémeg-rule:

(Ax.M) o (N@K) = [z (z o fst[x.(ze snd[notM)])])]not e noK (N, [K]not))
—>‘(}L) (N, [K]not) e z.(z e fst[x.(z e snd[notM)])])
—tnams N @ Y.((y. [KInot) @ z(z e fst]x.(z e snd[notM)))]))
_’\(/m) N e y.(<y, [K]not) e fst[x.((y, [K]not) e snd[notM)])])
—5,y N @ y.(y e X.([K]not e not(M)))
— gy N @ x([K]note noKM)) —; y N e x.(M e K).

Proposition 2.7
Under call-by-name, an implication can be defined by

A>DB = -AvB
AX.M ([x.({(Myinr e y)]not)inl e y).y
N@K [not(N), L] .

The translation of a function application with covalue is a covalue, and the typing and re-
duction rules for implication can be derived from the typing rules for the other connectives.

Proof. The call-by-named;) and fhamg-rules are validated as follows.

(AX.M) o (N@P) = ({([X.((M)inr e y)]not)inl e y).y e [NOKN), P]
— e (X (M)inr e [noKN), P])Inot)inl e [NotN), P]
— 4 [X.(M e P)Inot e noN)
—y Nex(MeP)
—sy M[V/] e P

— 36 —

N e (M@K) = N o [notM), K]
—hame (N @ [NOKM), a]).c ¢ K
= (Ne(M@a)).aeK

We now mention some basic properties of the dual calculus.

Lemma 2.8 (Substitution lemma for the dual calculus)
Let M andN be termsK andL be coterms, an8 andT be statements of the dual calculus.

(1) Supposd' A | M : A, then
if [,x: AFA|N:B,thenl'}-A|N[M/,]: B;
if L:B|T,x: AR A, thenL[M/,]: BIT | A; and
if [,x:A|SF A, thenl | S[M/,] - A.

(2) Suppos«K : A| T} A, then
if TA,a:A|N:B,thenl - A|N[X/,]: B;
if L:B|TFA,e:A thenL[</,]: B|T }-A; and
ifT|SkA a:A thenl'| S[</,] FA.

Proof. (1) and (2) are shown by a straightforward inductionlndyK, andS. O

Proposition 2.9 (Subject reduction for the dual calculus)
Let M andN be termsK andL be coterms, an8 andT be statements of the dual calculus.

Q) fr-A|M:AandDC+M —"N,thenT' A | N : A,
If K: A|[TFAandDC+ K —"L,thenL: A|T } A,
fT|SFAandDC+S —"T,thenl' | T | A.

2) fTFA|M:AandDC+M —Y N, then'FA | N : A,
f K:A|TAandDC+ K —VL,thenL: A|T | A,
fI'|SFAandDC+S —V T, thenl' | T | A.

Proof. Using the substitution lemma, (1) and (2) are shown by an inductior-enand
—>, respectively. m|

—-37-—

As Wadler mentioned in his paper, the reductions of his dual calculus are confluent.
Moreover, if ¢7.), (7r), and §)-rules are omitted, then the remaining reductions are strongly
normalizing for typed terms. Our systems enjoy similar properties. However, sincand
(nr)-rules are expansions, the full reductions are not strongly normalizing. Moreover, the
full reductions of our systems, like Wadler’s original systems, include looping terms even
for typed terms. For exampléx, y) e « is a typable statement, and this statement loops in
the call-by-value calculus.

Xy)ea—((XeB)B.Y) @@ —(amy (XeB)SeZ((ZY) e)
g X0 Z(ZY) 0 @) = (XY e

We can give a similar example for the call-by-name calculus.

We now consider the two versions of the dual calculus; one given in Wadler (2003) and
the other given in Wadler (2005). For the latter version, we Wbt~ as the call-by-name
system andC/~ as the call-by-value system. Thefdrences between the two versions of
the dual calculus are summarized in the following three points:

e The first version is based on reduction relations while the second one is based on
equations,

e the first version does not havg){rules related to implications, negations, pairs, and
sums while the second one does contain them, and

e the second version contains terms of the forvs (fst[a]).a and {/ ¢ sndj3]).8 as
values and coterms of the formg(x)inl ¢ P) andy.({y)inr e Q) as covalues.

2.4 Translations from the Au-calculus into the dual calcu-

lus

In this section, we give the translations from thecalculus into the dual calculus. We con-
sequently introduce two flerent translations for the call-by-name and call-by-value calculi,
and show that these translations preserve typing and reductions.

2.4.1 The naive translation

In this subsection, we give the naive translation fromthealculus into the dual calculus.
This translation preserves equalities, but does not preserves reductions.

— 38 —

Definition 2.1 (The naive translation from Au into DC)

The naive translationH)° from the Au-calculus into the dual calculus is defined as follows.
This translation maps a terid and a statemer$ of our Au-calculus to a ternrM° and a
statemen&° of the dual calculus respectively.

(X)° = x (M, NY)° = (M°, N°)
(6(0, x.M,y.N))° = (O° o [X.(M° @ @), y.(N° @ @)]).cx
(6(0O, x.S,y.T))° = O° ¢ [x.S°,y.T°]

(fst(O))° = (O° e fst[a]).a (inl(O))° = (O°)inl
(snd©))° = (O° e sndr]).a (inr(0))° = (O%inr

(1x.S)° = [x.S°]not (OM)° = O° e NnOKM°)
(ua.S)° = S°.a ([a]M)° = M° e
(AX.M)° = Ax.M° (OM)° = (O° o (M°@0)).x

This naive translation is defined by changing the part of sums of the original translation (
given in Wadler (2005). The naive translation is consistent with Wadler’s translation in the
sense of the following lemma.

Lemma 2.10
Let M be a term, an® be a statement of ouyu-calculus, then

(1) DC™ F (M)* =" M° andDC= r {S)" =" S°;
(2) DC™= + {M)" =V M andDC'~ + (S)" =" S* hold.

Proof. (1) is proved by induction oM andS. We give the sumsi.e., inl(O), inr(O),
6(0,x.M,y.N), ands(O, x.S, y.T).
Case of inlQ) :

(inl(0))” = (u(a-).[a]€ON)" = ((K(KON" ® @).B)inr ¢ y).a)inr o y).y
I ((((© e) p)inr e y).a)inr e).y
=, ({(K(©" o @) pyinr e y).a)inr o [x.(x)inl e 7). y.((yyinr e y)]).y
=ty (((O° e @) B)inr @). 0 y.((PiNN @ 7).y
=t ((((©° & @) B)inr o [x.((0iNl & 7), y.((WINT @ Y)]). @ y.(WiNF 0 7).y
=0 ((0° 0 2).8 & X((Xinl e). o y.((YHiNF ® 7)) y
=05 (O @ y.((Winr e 7))y
= ((OMinrey).y

-39 —

:?UL) (O%inr

Note that these equations are tD€"= equation, that is, Wadler’s system (2005).
Case of inrQ) : this case is proved in a way similar to the above case.
Case ob(O, x.M,y.N) :

(80, X M,y.N)Y" = (v (Ay.Ly]AND) (uB.(AX [V M)pa. [, 1COY))
= ([Y-({NY" @ y)|note not{([x.({M)" e y)Inote no({O)" « [a.8]).a)).B)).y
h (|y-(N° @ y)|note not{([x.(M" e y)note nok(O° e [a. A]).a)).5)).¥
=1 ([y-(N° e y)|note not(((0° e [, A]).- e X(M” # 7)) 5)).¥
= (((O° e [a.p]).a e x(M° 7)) Bey.(N" o))y
:?name) ((O° o [x.(M° o y),ﬂ]).ﬁ oy.(N° e y)).y
=fhama (O° @ [X(M° e 7),y.(N° e)]).y
= (6(0, x.M, y.N))°
Case ob5(0O, x.S,y.T) : this case is proved similar to the above case.

(2) is also proved by induction ol andS. The key cases are terms and statements for

sums, and these cases are shown similar to (1). m|

The naive translation preserves typing rules and equalities.

Proposition 2.11
(1) TR, AIM:AthenT =AM A
If I'| Sk, A, thenl' | S° |- A.

(2) If Au+ M =, N, thenDC + M° =" N°.
If Au+S =, T,thenDC+ S°="T°.

(3) If Au+ M =, N, thenDC + M° =" N°.
If Au+S =, T,thenDC+ S° =Y T".

Proof. (1) We can prove this claim by a straight forward inductiori-gp.

(2) This claim can be shown directly by an induction-gn Even if we do not adopt this
approach, we can show this claim as a corollary of Theorem 2.16 using Lemma 2.12.

(3) As with (2), we can show this claim directly, or as a corollary of Theorem 2.21 using

— 40—

Lemma 2.17. m|

In general, this naive translation, as well as Wadler’s translation, does not preserve re-
ductions. This is because of the so-called administrative redexes. A typical example is

(¢)-reduction : fra.[BIAX.[@]X)Y —n wy. [BlAX.[v](XY)

((ua[Blax[alx)y)” = (([x.(x s a)Inote B).a o (y@)).y
— ((X(xe (y@y))Inote g).y
—0m ([X((x® (y@)).y @ y)Inote B).y
= (uy.[B1AX Y1)
To solve this problem, we modify the naive translation. The idea of modification is similar
to the modified CPS translation by de Groote [13; 14]. In the following two subsections, we

give different translations for the call-by-name and call-by-value calculi. This is because the
administrative redexes of these two calculi are slightijedent.

2.4.2 The translation from CBN Au-calculus into CBN dual calculus
The call-by-name translation consists of the following two translations.

e (=) maps any ternM and statemers of the Au-calculus to a ternM* and statement
S* of the dual calculus, respectively.

¢ ((-) :n K) is a translation given by coteri and maps any teri of the Au-calculus
to a statement :, K of the dual calculus.
Definition 2.2 ((-)* : CBN Au-calculus— CBN dual calculus)
Let M be a term of thelu-calculus, M)? is defined as
(M = (M i @) (wherea is a fresh covariable)

and letS be a statement of thiu-calculus, 8)* is defined as

([a]M)f =M i«
(MN)* = M :, notN¥) (whereM is not al-abstraction)
(Ax.S)N)* = N¥ o x.S*
(6(0, x.S,y.T)) = O o [x.S,y.TF]

—41 -

where the infix operator ¥ translates a pair of a terri of the Au-calculus and a coterm
K of the dual calculus into a statemeMit:, K of the dual calculus. This operator is defined

as follows:
X K=xeK (M,N) :n K = (M# Ny o K
fst(M) :n K = M :,, fst[K] inl(M) :n K = (M®inl & K
sndM) :, K = M :, sndK] inr(M) :, K = (M%inr e K
(AX.S) :n K = [x.S¥]note K ua.S:nK=StaeK
(AX.M) :n K = (AX.M¥) e K
(MN) :n K = M 1, (NF@K) (whereM is not al-abstraction)

((AXMN) :n K = (N* @ x.(M :p @)).@ o K
5(0,xM,y.N) ;n K = (O ¢ [X.(M :n @), y.(N 1y @)])-@ @ K

whereS.a ¢ K meansS[¥/,] if K is a covalue, otherwise it meaBsy e K.
This translation is consistent with the naive translation, that is, the following lemma

holds.

Lemma 2.12
Let M andS be a term and a statement of thye-calculus, then

(1) DC+ M° e P —™ M :;, P for any covalueP,
(2) DC + M° —™ M# and
(3) DC + S° —™ SF,

Proof. We prove (1), (2), and (3) by a simultaneous inductionys. If (1) is shown for
some termM, (2) of M is easily shown by

@
M® —7 (M° e). —" (M} a).a = M?.

Therefore we prove (1) and (3).

Case ofx : this case is immediate.

Case ofax.M, (M, N), inl(O), and inrQ) : these cases are easily shown by the induction
hypothesis of (2).

Case ofMN (MN is a term,M is not at-abstraction) : this case is also easily shown by the

induction hypotheses of (1) and (2).
Case ofix.S : this case is easily shown by the induction hypothesis of (3).

—42 —

Case ofMN (MN is a statementM is not at-abstraction) : this case is also easily shown
by the induction hypotheses of (1) and (2).

Case of5(0O, x.S,y.T) : this case is also easily shown by the induction hypotheses of (2) and
(3).

Case of §]M : this case is also easily shown by the induction hypothesis of (1).

Case of {x.M)N :

((AX.M)N)° e P = ((Ax.M°) o (N°@a)).cc ® P —>n(ﬁL) (A1X.M°) o (N°@P)

I.H.(1)

—0y N° @ X(M° e P) —" N o x.(M° ¢ P)

I.H.(2)

—™ Nf o x.(M i P) = (IXM)N) :, P
Case of fstQ) :

I.H.(1)
fst(0)° e P = (O° e fst[a]).c o P —{;) O° e fst[P] —™ O :p fst[P] = fst(O) : P

Case of sndD) : this case is shown in a way similar to the above case.
Case ob(O, x.M,y.N) :

(0, x.M,y.N)’ e P = (O° ¢ [X.(M° 0),y.(N° e @)]).cc @ P

1LH.(1)

— @) O° ¢ [X.(M° e P),y.(N° e P)] —™ O° ¢ [x.(M 11 P),y.(N 3 P)]

ILH.(2)
—™ O o [x.(M 1 P),V.N i P)] = 6(O, x.M,y.N) :, P

Case ofua.S:

I.H.(3)
(ua.S) eP=SaeP —" SfaeP —{ , SH°/,] = pa.S ;P

Case of {x.S)N :
((AxS)N)* = [x.S°not e notN°) —{, y N° e x.S°

1.H.(2),(3) 4
—™ N e x.S% = (Ax.S)N)

This translation preserves the typing derivation, that is, the following proposition holds.

Proposition 2.13
(1) T, AIM:A thenl g A | M* 1A,

— 43—

(2) fT| Sk, A, thenl | SF |4 A.

Proof. This proposition can be shown by the subject reduction property for the dual calculus
using Proposition 2.11 and Lemma 2.12. |

Lemma 2.14
(1) Let M andN be terms, an& be a statement of th&:-calculus, then
DC + (M P)[V'/x —"™ MY/t P/, and
DC + SN/,] —™ (S[N/])* hold for any covaluéP.

(2) Let PandQ be covalues ant¥ be a term of the dual calculus, then
DC+ Me[x(xeP),y(ye Q] —™ Me[PQ]

(3) If K isnota covalue, theBC + O :,, K —™ OfeK for any termO of the Au-calculus.

(4) DC + (M :, N¥@P) —™ (MN :, P) andDC + (M :, noN#)) —™ (MN :,, P) for
any termsM andN of the Au-calculus, and covalul.

Proof. (1) we can prove this claim by a straightforward inductionvdandS. The key case
is:

(x:n P)[V/y] = (xe P)[V /] = N e P[N'/,] = (N i @). P[V /] —" N 2 P[V/4]
(2)M e [x.(xe P),y.(ye Q] —{.ng (Me[x(xeP),5)Bey.(yeQ)

—) (Me[x(xeP).B])BeQ—f, Me[x(xeP),Q]
—(namg (M @ [@,Q]).a e X(x o P) —{) (M e[a,Q]).a e P—f, Me[P.Q]

(3) this claim can be shown by induction on te@n

Cases of, AX.M, AX.S, ua.S, (M, N), inl(M), and inr(M) : these are easily shown by the
definition.

Case ofMIN (MN is a term,M is not a1-abstraction) :

I.H.
MN 1 K = M ;3 NF @K —™ MF o (NF@K) —{ g (MP @ (NF@0)).r @ K
—" (M :n N¥@a).a e K = (MN i, @).cc e K = (MN) o K

Case of {x.M)N :

(AXM)N :h K = (N* o X.(M 1n @)).2 @ K = (AX.M)N 1 @).a o K = (Ax.M)N)* o K

—44 —

Case of fstQ) :

I.H.
fst(O) :n K = O 1, fst[K] —™ OF e fst[K] — (hamg (O o fst[a]).cc K
—" (M 1, fst[a]).a @ K = (fst(O) :p @).a @ K = fst(O)* e K

Case of sndD) : this case is shown in a way similar to the above case.
Case ob(O, x.M,y.N) :

5(0, x.M,y.N) :n K = (O, [x.(M :n @), V.(N 1 @)]).a ® K
= (6(0, X M, y.N) :p @).cc @ K = §(O, x.M, y.N)* @ K

(4) If M is not at-abstraction, then the claim is immediately shown. We consider the
remaining cases.

(Ax.M) : (N*@P) = (Ax. M) o (N*@P) —5 N o x.(M* ¢ P)
—0 Nf e x(M i P) = (AXM)N 3, P
(Ax.S) : noN*) = [x.S|not e notN¥) —7 NF e x.S* = ((AX.S)N)*

Let E, andD, be a call-by-name evaluation term context and statement context of the
Au-calculus, and® be a covalue of the dual calculus, then we define covalyés, P) and
®(D,) as follows:

o({-},P)=P ®(EqN, P) = O(E,, N*@P)
O(fst(E,), P) = ®(E,, fst[P]) ®(sndE,), P) = ®(E,, snd[P])
O(o(En, x.ER{X}, y.EX i}, P) = ©(En, [O(E, P), ©(Ey, P)])

O([]E,) = O(En, @) ®(E,N) = ®(E,, nok N*))
O (5(En, X.Dn{x}, y.Diiy}), P) = ©(Ey, [©(Dn), ©(Dp)])

Then the following properties hold.

Lemma 2.15
(1) If M is not aA-abstraction, the®dC + (E{M} :; P) —™ (M :, ®(E,, P)) and
DC + (Dp{M})} —™ (M :, ®(Dy)) hold.

(2) For any termM of the Au-calculus,DC + (M :, ®(E,, P)) —™ (E,{M} :, P) and
DC + (M :, ®(Dy)) —™ (Dn{M})* hold.

— 45—

(3) Let M be a term an&® be a statement of thi&u-calculus, then
DC + (M i, P)[®®0/,] —™ M[Prl= /1] 10 P[®P/,], and
DC + S#H[*®n)/,] —™ (S[P"/])¥ hold for any covalue.
Proof. (1) is proved by induction ok, andD,. For E,N, we can prove the claim by the
induction hypothesis, sindg,{M} is not at-abstraction by the assumption Igf.

We now consides(E,, x.E/{x}, y.E//{y}) andS§(E,, X.Dn{x}, y.D/{y}).
Case ob(E,, x.E/{x},y.E/{y}) :

O(En{M}, X En{x} Y.EF{Y)) 1n P = Eq{M}* o [X.(E}{X} 1n P), y.(Ef{y} in P)]

—" En(MF o [x(x o O(E;, P))..(y » O(E7, P))

Lem 2.14(2)

—™ Ep{M}* o [D(E,, P), D(E/, P)]
= (En{M} i @).a o [D(E], P), ®(E;/, P)]

—" (EnfM} [®(E,, P), ®(E;, P)]

M O(Ey, [O(E), P), O(E;, P)))

= M :n O(S(En, X.EL{X}, y.E/'{Y}), P)

Case ob(E,, x.Dn{x}, y.D;{y}) : this case is proved in a way similar to the above case.
The other cases are easily shown using the induction hypothesis.
(2) is proved by induction o&, andD,. If E, is E;N, then

M i ®(EnN, P) = M :, ®(E,, N*QP) n En{M} :n (N*@P)

Lem2.14(4)

—™ Ep{MIN:, P

If D, is EnN, this case is also proved by the induction hypothesis and Lemma 2.14H}). If
is 6(En, X.E/{x}, y.E//{y}), then
M (1 ®(6(En, X EL{X},Y.E[{Y}), P) = M :;, ®(E,, [®(E], P), ®(E/, P)])
I.H.
—™ En{M} 1 [O(E}, P), ©(Ef, P)]
— o EnlM} in [x.(x @ ©(E[, P)),y.(y » ©(E[, P))]
I.H.
—" En{M} 1, [X'(EG{X} n P), y(Erlwl{y} :n P
Lem2.14(3)
—" (En{l\/l})ﬁ * [x.(Enfx} F’),y-(E,’{{y} 'n P)]
= 5(En{M}, X.EL{X}, Y.E/{Y]) n

— 46—

If Dy is 6(En, X.Dn{x}, y.D/{y}), this case can be shown in a way similar to the above case.
The remaining cases are proved easily using the the induction hypothesis.
(3) is proved by induction oM andS. The key case isf] M.

[IMYC9/,] = (M 0 a)[*©0/,] = (M2 g 1] 10 (DY)
it (DatMI™ i) = (@AM figio)

The other cases are proved easily using the the induction hypothesis. O

Then, we prove that the call-by-name modified translatiof greserves reductions.

Theorem 2.16 (Soundness df)*)

Q) If Au+ M —, N, thenDC + (M :, P) —™ (N :, P) for any covalueP, especially
DC + M# —™ N,

(2) If Aur S —, T, thenDC + S¥ —™ T¥,

Moreover, if— is (8-), (BA), (Bv) or (B-), then—"™ can be replaced by—"*.

Proof. The claims are proved by simultaneous inductior-e#,.
- Base cases are shown as follows.
Case of 8-) :

4 N N Lem2.1r]i(1) N
(AXM)N ;3 P) =N e x(M 17, P) —(py M P)[T /W] —™ (M[Y/,] 1 P)
Case of 8,) :

(fst(M, Ny 1, P) = (M, N :;, fst[P] = (M¥, N¥) o fst[P]
—{p) MPe P —, (M1 P)

The other rule of§,) can be proved similarly.
Case of 8,) :

) Lem2.15(1)]
(6(Inl(O), X.En{X}, Y.Epty}) :n P) —™ (inl(O) :n @(6({—}, XEn{x}, Y.EL{Y}), P))

= (inl(O) :n ©({-}, [D(En, P), ©(E}, P)])) = (inl(O) :n [©(En, P), ©(E;, P)])

= ((O%)inl ¢ [®(Eq, P), ®(E}, P)]) —f;,, OF @ ®(En, P) —f) O ®(Eq, P)

Lem2.15(2)
—"™ (En{O} :n P)

—47 —

The other rules off,) can be proved similarly.
Case of §.) :

Lem2.14(1

((/lX.S)N)ﬁ = N¥ o xS _>n(ﬁL) Sﬁ[Nﬁ/X] _)n*()(S[N/x])ﬁ

Case of {) :

Lem2.15(1)

(Enfua.S} :n P) —™ (ua.S 1y ®(Ey, P)) = SHOEP),] = SAPEA/ 1P/

em2.15

= SHOWIE) 1[P/,] MRS (gppEd-) Jea P/l
= (uB-SIP"* /a1 1n P)
The other rule of{) can be proved similarly.
Case of) :
(ue.[e]M i P) = ([IMYP/a] = (M 20)P/l = M 0 P
Case of f) :

Lem2.15(1

(Enf6(O, x.M,y.N)} :n P) —™)(6(0, X.M,y.N) :, ®(E, P))

= (O o [x.(M i ®(En, P)),Y.(N 1y ®(Ep, P))])

Lem2.15(2)
—™ (Oﬁ o [X.(En{M} :n P),y.(En{N} :n P)])

= (6(0, X.En{M}, y.En{N}) :n P)
The other rules ofA) can be proved similarly.
Case of ¢) : Let T not be a simple form. Then
(6(0,x.S,y.T)) = OF o [xS%,y. T —0 o (OF o [x.SF, A]).B e y.T*

—{ (O e [xSLY.(y e B)])B e y.TF = 6(0, xS,y [Bly) B e y.T*

= (ly.T)uB.5(0, xS,y [BlY)) .
The other rule ofy) can be proved similarly.
- Induction cases of (1) and (2).
We can easily show these cases by the induction hypothesis. We consider the less than
obvious caseON — (Ax.M)N is obtained fronD —, AXx.M andO is not at-abstraction.

I.H.
(ON:;, P) = (O (NF@P)) —™ (AxM i (N*@P)) = Ax.M* o (N*@P)
— 0y N o x.(M* e P) —0.) N¥ e (M i P) = (IX-M)N 3, P)

— 48—

2.4.3 The translation from CBV Au-calculus into CBV dual calculus

In this subsection, we introduce the call-by-value translation fromithealculus into the
dual calculus by modifying the naive translation){. The call-by-name translation also
consists of the two translations:) and) :y, K.

Definition 2.3 ()" : CBV Au-calculus— CBYV dual calculus)
Let M be a term of thelu-calculus, M) is defined as

(M) =(M 3 @).a (wherea is a fresh covariable)
and letS be a statement of th&u-calculus, 8)' is defined as

(M) =M iy
(MN)" = M 3, not{N") (whereM is not at-abstraction)
((AxS)N)" = N :, x.S'
(6(0,xS,y.T)) =M 3, [xS",y.T]

where the infix operator " translates a pair of termis! of the Au-calculus and a coterid
of the dual calculus into a statemevit:, K of the dual calculus. This operator is defined as
follows:
Xy K=xeK (M,N) :y K =(M?,N") ¢ K
fst(M) :y K = M :, fst[K] inl(M) :y K =(M%inl e K
sndM) :y, K =M :, sndK] inr(M) :y K = (M%inr e K
(Ax.S) iy K = [x.ST]note K ua.S K =S7%/,]
(AX.M) iy K = (Ax.MT) e K
(MN);y K=M:, (NF@K) (whereM is not at-abstraction)
(xM)N) ;y K= N :y x.(M 3, K)
(0, x.M,y.N) ;, K= 0Oy [X(M 3y K),y.(N :y K)]
When we compare the CBV translation given here with the CBN translation, the defini-
tions of (ua.S iy K), (Ix-M)N :, K), (6(O, x.M,y.N) :, K), ((/lx.S)N)T, ands(O, x.S,y.T)"
are diterent. This is because the administrative redex@srdiccording to the élierence of
(¢)-rules of the call-by-name and call-by-value systems.
Like the call-by-name translation, the call-by-value translation is also consistent with
the naive translation in the sense of the following lemma.

Lemma 2.17
Let M andS be a term and a statement of thye-calculus, then

— 49—

(1) DC + M° e K —¥* M :, K for any coternk,
(2) DC + M° —¥* M, and
(3) DC+ S° —V* ST,

Proof. We prove (1), (2), and (3) by a simultaneous inductiommandS. Most parts of
this proof are similar to the one in Lemma 2.12. For example,
Case of {X.M)N :

(AXM)N)° @ K = ((1x.M°) o (N°@«)).a ® K _>\(/ﬂL) (AX.M°) o (N°@K)

I.H.(1)
—5y) N7 @ x(M* e K) —" N 1y x(M :y K) = (AXM)N) 1y K

This call-by-value translation also preserves the typing derivation.
Proposition 2.18
(1) F T, AIM: A thenl |4 A| M A,
(2) IfT| Sty A, thenl' | ST 4 A

Proof. This proposition can be shown by the subject reduction property for the dual calculus
using Proposition 2.11 and Lemma 2.17. O

Definition 2.4
For each valu®/ in the Au-calculus, we define a valu¥')" in the dual calculus as follows.

(X' =x, (V. W))" = (VY, W)
(nl(V))¥ = (WWinl— (AXM)¥ = Ax.M?
(inr(W))Y = (W¥yinr (Ax.S)" = [x.ST]not

Using this notation, we can show the following lemma.

Lemma 2.19
(1) DCF VYe K —Y (V 1y K) for any coternK, especiallyy’ —"* V7.

(2) DC+ (V iy K) —Y* Ve K for any coternK. That is, the statemen¥(;, K) loops in
the call-by-value dual calculus.

—50 -

(3) Let M be a term$S be a statement, and be a value of thau-calculus, then
DC+ (M K)[V'/x] = (M[Y/x] :v K[V'/4]), and
DC + ST[V'/,] —™ (S[Y/4])' for any coternK.

Proof. (1) is proved by a straightforward induction ¥n For example, we consider the case
of (V, W): ((V,W)¥ e K) = (VY, W) e K i"* VI,WH eK = (VW) eK

(2) is also proved by an induction &h We consider the key cases.

Case oV, W):

(VW) iy K) = (VI W) e K — s VT e X ((x, W'y 0 K)
I.H. .
— e Vv X (%, W) e K) —" VY e x.((X, W) o K) — (VW e K

I.H.
—lname W' e Y.V,) e K) —(0 0 Wiy y. (VY y) e K) —Y WY ey ((VY, y) e K)

(nam

ol (VW) e K = (VW) e K

Cases ofV)inl and(W)inr: this case can be proved in a way similar to the above case using
the induction hypothesis andgmg-rule.
(3) is proved by a straightforward induction dhandS. The key case is:

(Xt K/ = (x o K /x] = VY o K[/ Rt (Vi KI[V'/d)

Definition 2.5
Let E, be a call-by-value evaluation singular term context, &nlde a coterm of the dual
calculus. Then we define cotetf(E,, K) as follows.

P({-IN,K) = NT@K P((AX.M){=}, K) = x.(M 3, K)
Y(fst(-), K) = fst[K] P(inl(-), K) = x.((X)inl e K)
¥(snd-}, K) = sndK] P(inr(-), K) = y.((y)inr e K)

P, M), K) = x((x, MT) e K) YUVA=D, K) =y.((V'.y) e K)
Y-} xM,y.N),K) = [x.(M 3, K),y.(N 3y K)]

and for every singular statement cont&xt we define cotern¥(D,) as follows.

Y([a{-}) =« Y(O({-}, xS, y.T)) = [xS7,y.T7]
¥({=}N) = notN™) P((Ax.S){-}) = x.ST

About this notation, the following properties hold.

—-51—

Lemma 2.20
(1) Let M not be at-abstraction, the®C + (E,{M} :y, K) —¥* (M :, ¥Y(E,,K)) and
DC + (Dy{M})" —¥ (M 3, ¥(D,)) hold.

(2) Let E be an elimination context ong.M){-}, andD, be an evaluation singular state-
ment context. TheC + (M :, ¥Y(E,K)) —¥ (E{M} :y, K) andDC + (M :,
¥(D,)) —"* (Dy{M})" hold for any termM of the Au-calculus.

(3) LetE; be anintroduction context of thig-calculus. TheC + (M :, Y(E;, K)) —"*
((AXE{x})M :, K) for any termM.

(4) Let E be an elimination context onk.M){—} of the call-by-valuetlu-calculus. Then
DC + (M 3y K)[YER/,] —¥ M[PIES /0] -y K[¥EA)/,], and
DC r ST[YER/,] —v* (S[¥IE1/5,.])" hold for any coternK.

(5) Let D, be an evaluation singular statement context of the call-by-vaizealculus.
ThenDC + (M 3, K)[Y®9/,] —¥* M[P} /1] v K[Y®Y/,], and
DC + ST[*®9/,] —" (S[P"7/(a5]) T hold for any coternK.

Proof. (1) SinceM is not aA-abstraction, we can immediately sho®,(M} :, K) =

(M :, ¥(D,)) by the definition. IfE, is an elimination context orik.M){-}, then we have
(E\{M} &y K) = (M :y, Y(E,, K)). For the introduction contexts, the claim is proved by a
case analysis d&,.

Case of{—}, N):

(M,N) :, K= (M, Ny e K —¥ . M e x.((x, N") o K)

(name¢
—loy (M v X.((X, NT) @ K)) = (M 3, P(({-}, N), K))
Case ok V, {-}):

VM) 1y K= (VM) e K —f 0 Ve X ((x MT) e K) —{ 0 V iy X.((X, MT) e K)

(nam
Lem2.19(2)

—' Ve x (X MT) e K) —) (VV, MT) e K —>{ o MT ey ((VY,y) o K)
— e (M v Y.V y) e K)) = (M 1y PV {-1), K))
Case of inl¢):

inl(M) z, K = (MY)inl e K — s M e x.((x)inl e K)
— g M v X((Xinl e K) = M 1y ¥(inl(-), K)

—-52—

Case of inr{): this case is proved in a way similar to the above case.
(2) can be shown by a case analysi€andD,. We give the key case @, as follows:
AX.S 1y P({=IN) = Ax.S ;y notN) = [x.ST]not e notN™)
—sy N ex ST —¥ Nty xS' = (AXS)N)'
For E, the key case isM is Ax.M andE is {—}N. This case is shown in a way similar to the
key case oD,.
(3) can be shown by a case analysigof
Case of{—}, N):
(M oy P(({=1N), K) = M oy X (X, NT) e K) — o M 1, x.((X",N") e K)
=My X.({X N) iy K) = (AX(XN)M 3, K
Case ok V, {-}):

Lem2.19(1)
My PV =DK) = (M iy y.((Vyy oK) —Y (M iy y.((VE,y) e K))
—l (M Y.V YD) e K)) = (M 5y y.((Vy) iy K)) = (Y,)M &y K
Case of inlf):
M iy P(inl(-), K) = M :y x.({x)inl @« K) = M :y x.(inl(X) :y K) = (Ax.inl(x))M 1, K

Case of inr{): this case is proved in a way similar to the above case.
(4) can be shown by induction d¥l andS. The key case is:

[IM[*ED/] = (M sy)[TEA /] S MPE /ag] 2 P(E.B)

(2)
—Y E{M[PE /1) v B8 = (BIEMMIPET /01D’
= (([IM)[PE /D)’

(5) can be shown by induction d¥l andS. The key case is:

([a]M)[*®/,] = (M &y)[T®/,] i M /a4 v (D)

@, Dyl t_ Dl t
—" (DAM[™ 11D = ([M)/ 110])

Then we prove that the call-by-value modified translatie)i preserves reductions.

— 53—

Theorem 2.21 (Soundness df-)")

Q) If Au+ M —y N, thenDC + (M :, K) —" (N :, K) for any cotermK, especially
DC + MT —¥* NT,

2 If Au+S —, T,thenDC + ST —¥* TT,

Moreover, if—, is (85), (8,), (Bv) or (8-), then—"* can be replaced by—"*.

Proof. (1) and (2) are proved by simultaneous induction-e,. Base cases are shown as
follows.

Case of 8-):
Lem2.19(2)
(AXMV K=V x(M:yK) —" Vex(M: K)
v Y Lemz‘lﬁ(g) v

D) M K[/ — M[¥/«] v K

Case of 8,):
Lem 2.19(2)
fst(V, W)y, K =(V,W) :, fst[K] —" (V,W)" e fst[K]

v v v Lem2.1v£i(l)
= (VY,W") e fst[K] —py VeK —" Vi K

The other rule ofg,) is proved similarly.
Case of 8,):

S@inl(V), x.M,y.N) :y K =inl(V) :y [x.(M 3, K),y.(N :y K)]

Lem2.19(2)
—Y (VWyinl e [x.(M :y K),y.(N :y K)]

—ly VY e X (M 5y K) —i) (M K)[Y'/]
Lem2.19(3) v
_)V* M[/X] :V K
The other rules of4,) are proved similarly.
Case of 8.):

4 + Lem 2.:%/2(2) v + v o Lem 2.:&/2(3) v .
(AXS)V)' =V iy xS" —" Ve, xS" — ST /] —" (S[7/«])
Case of {): Let E¢; be an elimination context oftk. M){—}, then

Lem2.20(1)
Eerfua. S}y K —" ua.S iy W(Ee, K) = ST E/,] = STTHED 1%/

Lem 2.20(4) .
—Y (S[PE oD 1€ /] = B S[PET /g1 v K

—54—

The other rule of{) is proved similarly.
Case of omp:

Lem 2.20(1)

Ea{(AXM)N} :;, K —Y" (AX.M)N :y ¥(Eei, K) = N iy X.(M iy P(Eer, K))

Lem 2.20(2)

—Y" Ny X(Eai{M} iy K) = UX.Eg;{M}N :, K

The other rule of{) is proved similarly.
Case of f):

Lem2.20(1)
Ec{0(O,x.M,y.N)} ;y K —Y (0, x.M,y.N) iy ¥(Ees, K)

=0y [X(M 1y Y(Eer, K)), Y.AN 1y ¥(Eey, K))]

Lem 2.20(2)

—" O [X(EaiM} iy K),Y.(Eaa{N} =y K)]
= 6(0, X.Ei{M}, y.Ec{N}) iy K

The other rule of{) is proved similarly.
Case of f,):

pa M o K = []M) ¢/ = (M oy)[K/a] = M 3 K

Case of flamg: Let O not be a value. Then

Lem 2.20(1) Lem 2.20(3)

E{O}. K —" 0Oy ¥Y(E,K) —" (UXE{x})O: K, and

Lem 2.20(1)
Ee{O} v K —" Oy P(Ee, K) —, Oy X.(x o ¥(Ee, K))

Lem2.20(2)
—\ v X(Ee{X} iy K) = (AX.Ee{X})O 1y K.

Induction cases (1) and (2) : These cases are in a way similar to the proof for induction cases
of call-by-name. m|

2.5 Translation from the dual calculus into theAu-calculus

In this section, we introduce the translations from the dual calculus int¢u#toalculus. As
in the previous section, we give twoffilirent translations for the call-by-name and call-by-
value calculi.

— 55 —

2.5.1 The naive translation

In this subsection, we give the naive translation from the dual calculus intutiealculus
This translation preserves equalities but does not preserve reductions.

Definition 2.6 (The naive translation from DC into Au)

The naive translation from the dual calculus into finecalculus is defined as follows. This
translation €¢), maps a terrM and a statemer$ of the dual calculus to a terrl, and
a statemen§, of the Au-calculus respectively, and maps a cotdfmvith a termO of the
Au-calculus to a statemeitt,{O} of the Au-calculus.

(X), = X a,{O} = [a]O
(M,N))o =(Mo, No) [K, L]o{O} = 6(0, x.Ko{x}, y.Lo{y})
(M)inl), =inl(M,) (fst[K]).{O} = K.{fst(O)}
(Nyinr), =inr(N,) (snd[L]).{O} = L.{snd©)}
([K]not), = Ax.K.{x} noKM).{O} = OM,
(AX.-M), = AX.M, (M@K),{O} = K,{OM,}
(S.a), = na.S, (X.S).{O} = (Ax.S,)O
(M e K), = K.{M,}

This naive translation is given by changing the part of sums of the original translation
(-). given by Wadler (2005). The naive translation is consistent with Wadler’s translation
in the sense of the following lemma.

Lemma 2.22
Let M be atermK be a cotermS be a statement of the dual calculus, &be a term of
the Au"@-calculus. Then

(1) A+ [M] ="M, du + [K.AO}] =" K {[O]}, andAu + [S.] =" S
(2) Ak [M.] =¥ Mo, Au F [K 4O} =¥ Ko{[O]}, andAu r [S.] =

Proof. (1) is proved by induction oM, K, andS. We give the cases of sums., (M)inl,
(N)inl, and [K, L].
Case of M)inl :

[(MYinL] = [B)-Le]M.] = ey (] [MLIDP™) /1oy 27O /,]
= wy.[yIinl([M.]) =5 ey [YJinl(M.) =, inl(M.) = ((Minl),

— 56 —

Case ofN)inr : this case is proved in a way similar to the above case.
Case of K, L]:

[[K. L1.{O}] = [L.{uB.K.{ucle. 5IO}]
= Lo{[1B.K.tpe.[a. BION} = LofuB[K. {ua.[e. IO}
= Lo{uB.Kol[ua.[a, BION)) = Lo{uB.Kolua.s([O]l. x[a]x. v.[8Iy)}}
£} 6([O] x.Ko{x), y-Lo{y}) = [K, LI{[O]}

(*) comes from the claimK.{ua.S} =, S[*™!/[4;)]. This claim is proved by a straightfor-
ward induction orK.

(2) is proved by induction oM andS. The key cases are terms and statements for sums,
and these cases are shown in a way similar to (1). m|

The naive translation preserves typing rules and equalities.

Proposition 2.23
(1) fTFA[M:A thenT'|-,, A| M, : A
if K:A|TFAandl'|,, A|O: A thenI' | K,{O} }-,, A; and
if | Sk A, thenl'| S, |-, A.

(2) If DC+ M =" N, thendu + M, =, N,;
if DC + K =" L, thenAu + K,{O} =, L.{O}; and
if DCFS="T,thendu+ S, =, T,.

(3) If DC+ M =Y N, thendu + M, =, N,;
if DC + K =Y L, thenAu + K,{O} =, L.{O}; and
if DCFS=YT,theniu+ S, =, T,.

Proof. (1) We can prove this claim by a straightforward inductiorton

(2) This claim can be shown directly by an induction€h Even if we do not adopt this
approach, we can show this claim as a corollary of Theorem 2.28 using Lemma 2.24.

(3) As in (2), we can show this claim directly, or as a corollary of Theorem 2.34 using
Lemma 2.30. o

In general, this naive translation does not preserve reductions as well as Wadler’s trans-
lation. (;.)-rule is a counter-example for the call-by-name system:

@,{0O} = [@]O «—p (UX[a]X)O = (X.(X ® @)).{O}

—57—

On the other handp()-rule is a counter-example for the call-by-value system:
([e]not e noK(x e B).)). = (NOK(X e B).7))o{[@In0t} = (AX.[a]X)uy.[B]X
“—(namg [@]uy.[B]X = a.{((x @ B).y)o} = ((x @ B).y @ a),

We also need to modify this naive translation. In the following two subsections, we give
different translations for the call-by-name and call-by-value calculi.

2.5.2 The translation from CBN dual calculus into CBN Au-calculus

To solve the problem for the call-by-name calculus displayed at the end of the previous
subsection, we need to modify the translation of the coteB8n

Definition 2.7 ((-); : CBN dual calculus— CBN Au-calculus)
We introduce the new translatior); by modifying the definition of £), as follows.

(X = x a3{O} = [a]O
(M, ND), = (M, Ny) [K, L1,{O} = 5(0, xKy{x, y.Lty)
((M)inl)y = inl(My) (fst[K])+{O} = Ky{fst(O)}
((N)inr)y = inr(Ny) (sndlL])3{O} = Ly{snd©)}
([KInot); = Ax.Kg{x} no(M);{O} = OMy

(AXM); = AX.M; (M@K),{O} = K;{OM;}
(S.a)y = na.Sy (x.S)4{O} = S4°/,]
(M o K); = Ky{My}

The following lemma means that the call-by-name translatignié consistent with the
naive translation.
Lemma 2.24
Let M be a termK be a coterm, an® be a statement of the dual calculus. Then

(1) Aur M, —; My;
(2) Au+ K {O} —;, Ky{O} for any termO of the Au-calculus; and

(3) Aur S, —p Sy

Proposition 2.25

(L) T g Al M:A then |, A Myt A

Q) K:A|T g Aandl' |y, A|O: A thenl' |, A | Ky{O}.
(B) fI'| Styc A, thenl |, A|S;.

— 58 —

Proof. These claims can be shown by the subject reduction property fotittoalculus
using Proposition 2.23 (1) and Lemma 2.24. m]

Lemma 2.26
(1) If Aur O — O, thendu + Ky{O} —1, Ky{O'} for any cotermK.

(2) M/ = (MIN/d),s KON/ = (KIN/)AOM]} andSy™/d = (S[V /).

(3) If Pis a covalue, theR;{-} is a call-by-name evaluation context of thye-calculus.

(4) My[% /g1 = (MI/aD)y, (KAODH /1] = (KIH/eDAOL% /-]}, and
Sil" /1a1i-1] = (S[*/a]), for any cotermi.

Proof. (1) The claim is proved by induction df.

(2) The claim is proved by induction av, K, andS.

(3) The claim is proved by induction dn

(4) The claim is proved by induction dv, K, andS. We give the key case:

(O[] = (1O /(1121] = L O a1}

Let F be a coterm context of the dual calculus, &Mde a term of thelu-calculus. Then
we define ternF,4{O} of the Au-calculus as follows:

({-D0}=0 (M@{-})y{O} = OMy
(fstl-1)4(O} = 1st(O) ([, PD4{O} = ua.6(O, x.[a] X, y.Pyiy})
(sndE-])4{O} = sndQ) ([K, -])4{O} = uB.6(0, x.Ky{x}. y.[Bly)

This notation satisfies the following property.

Lemma 2.27
Let cotermL not be a covalue, and be a covalue. Then

(1) A + F{LL{O} —; L{F4(O}]}, and
(2) Au+ Pﬁ{Fﬁ{O}} —h F{P}ﬁ{O}

for any termO of the Au-calculus.

— 50—

Proof. (1) is proved by a case analysisfof We give the key cases.
Case of {, PJ:

[L, PI{{O} = 6(0O, x.Ly{x}, y.Psly}) —) (AX.Ly{x}ua.6(O, x[a]X, y.Pyiy})
— .y Lt pa.o(O, x[a]x, y.Py{y}) } = Ly{ [, P14{O} }

Case of K, -]

[K, L]{O} = 6(O, x.Kg{x}, y.Lly}) —) (AY.LefyhuB.0(O, x.Ke{x}, y.[5]Y)
— i) Ll uB.6(0, x Ky{x}, y.[6]Y) } = Ly{ [K, =]4{O}}

(2) is also proved by a case analysigdofWe give the key cases.
Case of |, QJ:

Pi{ [, Ql{{O}} = Py{ pna.6(O, x.[a] X, y.Quly}) }
—) (O, X.Py{x}, y.Qety}) = [P, Ql4{O}

Case of K, -]

Py{ [K, =]4{O} } = Pe{ uB.6(0, x Ky{x}, y.[8]Y) }
—) 0(0, X Ke{x}, y.Pyiy}) = [K, P]4{O

We now prove that the call-by-name translatief);(preserves reductions.

Theorem 2.28 (Soundness df-);)

(1) f DC+ M —" N, thendu + My —; N;.

(2) If DC + K —" L, thenau + Ky{O} —;, L4{O}.

(3)If DC+S —"T, thendu + Sy —;, Ty.

Moreover, in (1), (2) and (3), #="is (8-), (BA), (Bv) or (B-), then—}, can be replaced by

+

—>n.

Proof. The claims are proved by simultaneous induction on the reduction relatidh
Base cases are shown as follows.
Case of 8-):

((Ax.M) o (N@P)), = (N@P)4{Ax.M;} = Py{(Ax. My)Ny}

— 60—

— ey Pe{M[M /1) = (PAMD[M /] = (M @ P)y[M /4]
= (x(M o P)),{N;} = (N e X(M o P)),

Case of 8,,):

((M, N) o fst[P]), = fst[P];{{My, Ng)} = Py{fst(Mg, N)}
— @, Ps{My} = (M e P),

The other §,) case can be shown similarly.
Case of g,):

(M)inl e [P, Q]), = [P, Ql{inl(My)}a = 6(inl(My), x.Py{x}, y.Qsy})
—) PeiMy} = (M o P);

The other 8,) case can be shown similarly.

Case of 8.):
([K]not e no(M)), = (NO{M))s{Ax.Ky{x}} = (AX.Ky{X}) My
—) Ke{Mg} = (M o K),
Case of 8r):
(Sa e P), =Py na.Sy) — g Sil™7/1ay0] remze® (S[F/a))s
Case of 8.):
(M o xS), = (xS)M} = S,/ “"E? (S[M/),
Case of gr):
My —) pa[a]My = ((M e @).a),
Case of {.):

K4(O) = (Ks00)[©/x = (x @ K);[°/d] = (x(x ¢ K)),{O}

Case of flamg: Note thatK is not a covalue.
Lem2.27(1)
(MeF{K}), = F{KI{M} —f Ke{FulMytt —) Kefua [e]Fi{My}}

n

Lem227(2)
= Kelua.ag FlMg}l} — Kelua Fla{M}}

= (M s Fla))a oK),

Induction cases can be shown easily.

-61—

2.5.3 The translation from CBV dual calculus into CBV Au-calculus

Now we introduce the modified translation)¢ for the call-by-value calculus. The prob-
lematic cases of the naive translation wefg @nd 3-)-rules. To solve these problems, we
introduce a notation:A(x.S)O. This meansS[®/,] if Ois a value, otherwiselk.S)O. Our
idea for solving the latter case is to modify the definition i § K), to (1,x.K.{X})M..

Definition 2.8 ((-): : CBV dual calculus — CBV Au-calculus)
We define the translation-§: as follows.

(X5 =X @;{0} = [a]O
(M, N)); = (M, N;) [K, L]+{O} = 6(O, X K¢{x}, y.Ls{y})
((Minl); = inl(M;) (FStK])+{O} = K [fst(O)]
((NYinr); = inr(N;) (snd[L])+{O} = Li[snd©O)]
(IKInot): = Ax.K:{x) notM).{O} = OM
(XM); = XM, (M@K):{O} = K [OMT]

(S.0): = par.S: (xS):{O} = (1,x.S:)O

(M e K); = Ki[My] K:[O] = (A,x.K;{x})O

For the call-by-value translation, we use the two notatkf©} andK;[O]. The relation
between these two notations is as follows.

Lemma 2.29
Let O be a term of thelu-calculus, an&K be a coterm, then

(1) Ki{V} = K,[V] for any valueV; and
(2) A+ KifO} —>; Ki[O].

Proof. (1) is immediately shown. We show (2) whénis not a value by a case analysis of
K.

Case ofw: @+{0O} = [@]O —(namg (12[@]2)O = a+[Q]

Case of K, L]:

[K, L]+{O} = 6(O, X Ki{x}, y.Li{y}) — mamg (126(z X-Ks{x}, y.L+{y})O = [K, L]+[O]
Case of fsiK]:

fst[K]+{O} = K[fst(O)] = (AzK+{Z})fst(O) — namg (12 K:{Z})((Ax.fst(X))O)
— (comp (AX(AZ2K+{Z})fst(x))O = (Ax.(K:[fst(x)])O

—-62—

= (Ax(fst[K]+{x})O = fst[K];[O]

Case of snd{]: This case can be shown in a way similar to the above case.
Case of natM):

nNoKM)+{O} = OM; —(namg¢ (122M;)O = (1znoM):{z})O = no M) [O]
Case ofM@K:
(M@K)T{O} = KT[OMT] = (AZKT{Z})OMT —(namé (/lZKT{Z})((/lXXMT)O)

— comp (AX.(1ZK;{Z})(XM;))O = (Ax.(K;[xM;])O
= (Ax.(M@K);{x})O = (M@K);[O]

Case ofx.S:

(x.S)+{O} = (Ax.S+)0 = (12.S:[*/x])O = (1z(x.S):{z}))O = (x.S):[O]

The call-by-value translations-}, is consistent with the naive translation as well as the
call-by-name translation.

Lemma 2.30
Let M be a termK be a coterm, an8& be a statement of the dual calculus, then

(1) Aur My —% My,
(2) Aur KO} — K{O} for any termO of the Au-calculus , and
(3) Aur S, — ST .

Proof. The claims are shown by a simultaneous inductiofiK, andS. We consider the
key cases.
Case of fstK]:

I.H. Lem2.29
fst[K].{O} = K.{fst(O)} — Ki{fst(O)} —; K:[fst(O)] = fst[K]:[O]
Case of sndf]: This case is proved similarly.
Case ofM@K:

I.H. Lem2.29
(M@K).{O} = K.{OM.} — K{{OM;} —{ K:[OM;] = (M@K);{O}

— 63—

I.H. _
Case 0f.S: (x.S).{0} = (1x.S.)0 —% (1x.S:)O —? (1,x.S;)O = (x.S):{O}
I.H. Lem2.29
Case oM o K: (M o K), = Ko (M.} —% Ki{M:] —i K:[M:] = (M o K); U

The translation<); is compatible with the type system.

Proposition 2.31

(D) HTC g AIM A thenl |y, A | M; DA

Q) K:A|TFgAandl -, A]O: A thenl |-, A | Ki{O}.
(B) fI'| Stgc A, thenl' |, A|S;.

Proof. These claims can be shown by the subject reduction property fotittoalculus
using Proposition 2.23 (1) and Lemma 2.30. m|

Lemma 2.32
Let O and O’ be terms of thelu-calculus,M andN be terms,V be a valueK andL be
coterms, an@® be a statement of the dual calculus.

(1) If Aur O —, O, thendu + Ki{O} — Ki{O'} andau + K [O] —7 K4 [O'].

(2) MY/ = (MIY/d); (KAODY /] = (K[Y/<DAOTY /4,
(K[LOD[Vi/4] = (K[V/x])f[o[v%/x] l, andS;[Vi/,] = (S[V/x])f-

Proof. (1) The claim is proved by induction df.
(2) We claim that if we have({ON[V /4] = (K[Y/«])-{O[¥/4]}, then we can derive;[O])[V /4] =
(K[V/x1):[O[Y* /4]]. We show this claim. Assum@ is a value, thetD[Y/,] is also a value.

Hence we have

(K[OD[Y1/x = (KAONIY /ud = (K[Y /) {01 /) = (K[Y /D) [O1" /]]-

If Ois not a value, the®["/,] is also not a value, so we have

(K{[OD[Y1 /x4 = (AZKi{ZNO)Y1/ = (AZ(Ke{ZD[V /x)(OLY /1))
= (Z(K[Y /D) +2)(©O1Y /) = (K[/:)+[01 /4 1

Therefore we show the other claims by inductionMnK, andS. We give the key case:
X[V /] = X[V /x] = V. O

—64—

Lemma 2.33

Let O be a term of thelu-calculus,M be a termK andL be coterms, an& be a statement

of the dual calculus. Then

A b M[WEE] —5 (M)

Au - (KT{O})[W'L*‘{V’)H/[a][_}] — (K[L/a])T[o[(ﬂy-Lf{y}){—}/[a]{_}]],

Ak (KON WL /1] — (K[Y/a])| O[O0 /1] |, and
Au v ST[W’LTM){_}/[a]{—}] —s (S[L/a])T-

Proof. We can prove this lemma by a simultaneous inductioVigiK, andS. We give two

cases.
Case ofu:
(m{O})[(dy‘L%{y}){—}/[al{_}] = ([a] O)[(Ay-u{y}){—}/[a]{_}]
= (Ay.L{yD (O[]
—5 (Y.L yN (O[S0 41) = L[O[]
Case of fsiK]:

((fst[K]) _I_{O})[(ﬂyi--{-{y}){—} /[a]{_}] = (K-r [fSt(O)])[(/ly'LT{y}){_}/[a]{_}]

25 (K LD Fst @0 1]
= (K[/a])¢| fSHO[" /10])]
= (StKT /o) {SHOL))

Lem 2.29(2)
—y (FStK[/o)) [SH O[O /)]

We now prove that the call-by-name translatiei);(preserves reductions.

Theorem 2.34 (Soundness df-)+)

Q) fDCFM —VY N, thendu + My — N;.

(2)If DC+ K —Y L, thendu + Ki{O} — L+{O} andAu + K;[O] —: L:[O].
3 IfDC+S —'T,thendu+ Sy — Ty

Moreover, in (1), (2), and (3), #="is (8-), (BA), (Bv) or (B-), then—; can be replaced by

+

—>V'

— 65—

Proof. (1)—(3) are proved by simultaneous induction on the reduction relatioh We
claim that if Ki{{O} —; L:{O}, thenK;[O] —; L:[O]. We first show this claim. If
O is a value, the claim is immediately shown. Otherwigg[O] = (Ax.K:{x})O —
(Ax.L+{x})O = L4[Q].

We often use the following shortcuts:
(@) (VoK) = Ki[Vi] = Ki{Vs}
(b) (XK xDM; —) (A K (X)M; = Ky [] = (M e K);
(©) (XSIM; — (TXSIM; = (XS)M} s, (XSH[M;] = (M o xS);

Base cases are shown as follows.
Case of 8-):

((AXM) » (N@K)), 2 (N@K){(1xM):} = Ki[(AxM:)N;]
= (1ZKi{Z)((AX-M;)N;) —(comp (AX(AZK{Z})M;)N;

) ©
—5 (AX(M @ K);)N; — (N e x.(M e K))T
Case of g,):
(VW) o Fst[K]), 2 18K {(V W))i} = K[FSKVs, We) | —5,) Ki[V3] = (V 0 K),

The other case of3(,) can be shown similarly.
Case of 8,):

(Vyinl o [K, L), 2 [K, LI (Voinl } = 8(nl(Vs), % K: (X0, Y.L+ 1Y)

@

—) KiVi} = (V e K);

The other case of3(,) can be shown similarly.
Case of 8.):

a (b)
(IKInot e notM)), 2 (nokMy).{ [KInot; } = (AxK{x))M; —; (M e K);

Case of Br):
(S e K), = Ki[(S.a)s | = (XK X)ua. Sy
— ST] E (S D),
Case of .):
(Vo xS), 2 (xS)Vi) = Si[V /] “TEY (S 1),

— 66 —

Case of {Rr):

Lem2.29(2)
M; —) pa[a]M; = pa.ai M} — pa.ai[M]

= pa.(M e @); = (M o a).ar);
Case of f): If Ois a valueV, then
KV} = (K DY/ 2 (o K)[Y/d = (x(x 0 K)), V).

If Ois not a value, then

Lem2.29(2) @
K{O} —y Ki[O] = (Ax.Ki{x})O = (Ax.(x ® K);)O = (x.(x K)).{O}.

Case of famg: Note thatM: is not a value becaudd is not a value.

((M,N) 0 K), = Ki[(M, N);] = (AZK+{Z})(M:, Ny
—>(nam@ (/lZ.KHZ})((/lX.(X, NT>)MT) —(comp (/lX.(/lZ. KT{Z}XX, NT))M%

(b) ©
— (AX.((X, N) K):)M; —7 (M o X.({X, N) & K)),

(VM) e K). = Ki[(V, M) | = (AZK{Z)(Vs, My)
—(namg (AZKH{Z)((AXAV;, X))M;) — (comp (AX(AZKA{Z)(V;, X)) My
) (©
—y (AXVLX) & KM —) (M @ X.((V, %) @ K)),
((M)inl e K), = Ki[(M)inl; | = (1zK+{zZ})inl(M;)
—(namg (1ZKH{Z)((AXINl(X))M:) — comp (AX.(AZK:{Z})inl(X)) M-
gj} (AX(O0Inl @ K)+)M, gj (M e x.((x)inl e K)).

The last casgM)inr e K —Y M e x.((x)inr e K), is also shown similarly.
Induction cases can be easily shown. O

2.5.4 Reloading property

Wadler (2005) showed that the compositions of his translatipns» dual — Au and

dual - Au — dual reload into thelu-calculus and the dual calculus respectively. That

is, they become identity maps up to the call-by-naral-by-value equalities. When we
consider the composition of our translations, we can obtain corresponding results as follows:

—67—

- areloaded term by the call-by-name modified translations is reduced from the original
term by the call-by-name reductions (Proposition 2.35 (1), 2.36 (1)), and

- areloaded term by the call-by-value modified translations is reduced from the original
term by the call-by-value reductions (Proposition 2.35 (2), 2.36 (2)).

Proposition 2.35 (Reloading property: Au — dual — Au)
Let O be a term an® be a statement of th&-calculus. Then

(1) ur S —; (S,
Au + P{{O} — (O :, P); for any covalueP, especiallylu - O —} (OF);.

(2) urS —y (SHy,
Au + K [O] — (O iy K); for any coternK, especiallyiy + O —; (O);.

Proof. (1) If we haveP;{O} —, (O :, P); for any covalueP, then we can obtai® —,
pe.[@]O = pa.a{O} —; ua (O @)y = ((0 1 @).), = (Oﬁ)ﬂ. We prove the rest of (1) by
a simultaneous induction dd andS.

Case ofx: Py{x} = (xe P); = (x:n P)y

Case oM, N): PL{(M.N)} —7 Po((MP);. (N} = Pyl(ME NE),)

= ((M,N)* e P); —7 ((M,N) :n P),

Case of fstQ) : Py{fst(O)} = fst[P];{O} in fSt{P]4{(O")y} = (OF o fst[P]),

—n (O fst[P]); = (fst(O) :n P);

The case of sndf) is shown similarly.

Case of inlQ):

Py{inl(O)} f;;; Pinl((0%))} = P{<OMinly} = ((Ohinl o P), = (inl(O) :n P),

The case of in@) is shown similarly.
Case o6(O, x.M,y.N) :

P¢{0(0, X.M,y.N)} — () (O, X.Pe{M},y.P4{N})
I.H.
— 6(0,X(M i P).y.(N 10 P)) = 6(O, X.(x(M :n P))4{X'LY (y.(N :n P));{y'})

I.H.
= [X(M in P),y.N in P)[{O} —p [X(M :n P),y.(N i P)]ﬁ{(oﬁ)ﬁ}
= (oﬂ o [x(M :n P),y.(N P)])N = (5(0.xM.y.N) :n P),

- 68—

I.H.
Case 0fIx.M: Py{Ax M} —;, P;{ax.(M#)} = (1x.MF) o P), = (AX.M , P),
Case ofMIN (MN is a term,M is not a1-abstraction):

I.H. I.H.
Py{ MN |} —;, Py{ M(NF); } = (NF@P),{ M} —, (M 2 (NF@P)), = (MN 1 P),

Case of {x.M)N:

|.H.
Py{ (AXM)N} —5) Py{ M[V/u] } = (X(Py{M}))4{N} —, (X.(M 1 P)),{N}

I.H.
—n (M 0 P),{ (NF); } = (NF 0 x.(M 2 P)); = (AXM)N :n P),

Case ofix.S:

1.H.
Pi{Ax S} —7, Py{ax(S%);) = Py{ay.(x SH,lyl} = ([xS¥Inote P) , = (AxS 0 P),

Case ofua.S:
I.H.
Pylua.S) —p Pylua. (S} —) (S 1] —0 (S1°/al); = (naS 0 P),
I.H.
Case of f]O: [a]O = o4{O} —, (O :n @); = (([2]O)),
Case ob(O, x.S,y.T):

I.H.
8(0.xS,y.T) —, 8(0. x(S)y. y.(THy) = (0. X (. SHxD). Y (. Tty })

I.H.
= [xS%y.T#,{0} — [xS%y.TH,{(OF);} = (OF o [x.s)‘,y.Tﬁ])ﬁ = (6(0, xS, y.T)),

Case ofMN (MN is a statementy is not al-abstraction) :

I.H. I.H.
MN — M(N®); = noN#), (M} —, (M :n nokN%), = ((MN)F),

Case of x.S)N:

(AXSIN 5 (SN sy SN/ = (xSHYIN)

S (SN = (N o x), = (SN,

— 69 —

(2) We can easily show —; (O"); from K;[O] —; (O :, K); in a way similar to the
proofin (1). In the following, we prove the rest of (2) by a simultaneous inductiod and
S.

Case ofx: Ki[x] = (xe K); = (x iy K)4

Case of M, N):

I.H. 5 B
Ki[(M, N)] —5 K¢ [{(MT), (N"))] = K¢ [(MT,NT)..] = ((M,N)T o K),
—y ((M,N) =y K).

Case of fstQ) :

Ki[fStO)] = fSUIK]1{0) — FSUIKT(ON)] vt 1SKI4[(O1)1] = (O o fSHK]);

—5 (O Tst[K]); = (St(O) v K),

The case of sndf) is shown similarly.
Case of inlQ) :

K [inl(O)] i’; K¢[inl((O")1)] = K[<O"inl4] = ((ONinl e K).. = (inl(O) i K),

The case of inQ) is shown similarly.
Case of5(O, x.M,y.N) :

K:[6(O, x.M,y.N)| = (1zK:{z})6(O, X.M, y.N) — () 6(0, x.(/lzK%{z})M,y.(/lzK%{z})N)
ILH.
—sy (0. XK [M].y.K4[N]) —; 6(0. x(M 1y K).y.(N 3, K))
= 6(0, X .(x(M 1y K)), (X}, Y (y-(N v K))_I_{y}) = [x(M y K),y.(N 3y K)].{O}
Lem2.29 IH.
—y [X(M 1y K).Y.(N iy K)L[O] —y (O [%.(M iy K).y.(N y K)1),

= (6(0O,xM,y.N) 1y K),

I.H.
Case ofix.M: Ki[AxM] —; Ki[Ax.(MT);] = (Ax.MT) e K). = (AX.M 1y K).
Case ofMN (MN is a term,M is not at-abstraction) :

I.H. Lem2.29
K[MN] 55 Ks[M(N);] = (NT@K)s{ M} —% (N'@K)[M]

—70-—

KNYEY (N'@K)); = (MN 1, K),

Case of {x.M)N:
Ki[AXM)N | = (12Ki{Z)((AX-M)N) — (comp (AX.(AzK+{z})M)N
I.H.
—y (AXK{MDN —y (Ax.(M 1y K)1)N —5 (X.(M 3y K)).{N}
I.H.
—y (N iy x(M iy K)), = ((AXM)N 1y K).
Case ofix.S:

K:[Ax.S] i’: Ki[Ax.(S7):] = K[ay.(xS).{y}] = ([xS'Inote K)T = (XS w K);

Case ofua.S:
I.H.
Ki[ua.S] —y Ki[ua.(SN)+] = (izKi{Z)ua (ST — (¢ (SN[14

Lem2.33 K
_>\>x; (ST[/a])T = (/«la’-s v K)T

Lem2.29 I.H.
Case of §]O: [a]O = a3{O} —} a+[0] — (O iy a@): = (([@]O)7).
Case ob(O, x.S,y.T):

I.H. . . -
5(0,%.8,y.T) —; 6(0.x(S")5, Y.T);) = 6(0. X (. SN)+(xXD). ¥ (- Tty)

. Lem2.29 . I.H. . . .
= [xSTy. T {0} —y [xST,y.T7],[0] — (o v [x.S’,y.T‘])Ts(é(O,x.S,y.T)‘)T

Case ofMIN (MN is a statementy is not al-abstraction) :

I.H. I.H.
MN — M(N"); = noN")+{M} —, (M 3y notN™)), = ((MN)"),

Case of {x.S)N:

(AX.S)N f;; (Ax.(SHIN —% (x.S):[N] i’; (N xS, = (((/lx.S)N)T)T

—-71-—

Proposition 2.36 (Reloading property:dual — Au — dual)
Let M be atermK be a coterm, an8 be a statement of the dual calculus. Then

(1) DC+ M —™ (My)?,
DC+ O e K —™ (Kn{O})ﬁ for any termO of the Au-calculus, and
DC + S —™ (S

(2) DC F M —¥ (M.)",
DC+ O" « K —"* (K;{O})' for any termO of the Au-calculus, and
DC+S —% (S))'.

Proof. (1) If we establish the following claims: (&) e Q —™ (M, 3, Q); (b) Of e K —™
Ky{O} if K is not a covalue; ()@ :, P) —™ (Pg{O})ﬂ; and (d)S —™ (Sy)#, we can easily
obtain (1). Therefore, we show these claims by a simultaneous inducti®h &h P, and
S.

Caseofx: xeQ=x:y P

Case of M)inl: (M)inl e Q i(’?*)‘ ((Mﬁ)ﬂ>inl e Q=inl(My) ;n Q= (M)inly :n Q

The case ofM)inr is shown similarly.

Case Of M, N): (M, Ny » Qo ((My)F, (N » Q = (M, Ny) 10 Q) = (M, N)y 1 Q)

Case of K]not:

[KInote Q —{) [X.(xe K)]note Q —7 [x.(x e K)note Q

I.H.(b)
—" [x(Kgx)Inote Q = (x.(Ky(x)) :n Q) = (K] :n Q)

e
Case OfxM: (1xM) s P " (1x.(M,)) « P = (AxM; in P) = (M), in P)
Case ofS.a:

I.H.(d)
SaeQ—" (Sf.a 0 Q —fy, (S)[%/al = (ue-.Sy 10 Q) = ((S)y 1 Q)

Case ofz: (O :n a) = ([2]O)* = (4{O))*
Case of P, QJ:

I.H.(c)

(0:[P.QD) =, (O [x(xe P), y.y e Q) —"™ (O [X.(P4x})*, y.(Qufy)])
—"™ O o [x.(Py{x})", V.(Quy})] = 6(0. X Pyix}. y.Qsiyh)* = ([P. Ql4{ON*

— 72 —

Case of fstP]: (O :n fst[P]) = (fst(O) :n P) MR (P4{fst(O)))¥ = (fst[P];{O})*
The case of sndf] can be shown similarly.
Case of natM):

I.H.(a)
(0 2 NOKM)) —™ (O :n NOK(M)*)) —™ (OMy)f = (NOKM)4{O)F

Case ofM@P:
I.H.(a) I.H. (c)
(O :n (M@P)) —™ (O :n (M)*@P)) —"™ (OMy :n P) —" (P,{OM,}y*
= ((M@P),{0})’

Case of K, Q] (where [K, Q] is not a covalue):

I.H.(b)
(OF o [K,L]) —{:, OF e [x(x e K), y.(y e L)] —" OF o [x.(Ks{x})%, y.(Lyly})]

= 6(0, x.Ky{x}, y.Lyly}) = ([K, L]4{O}*

Case of fstK] (whereK is not a covalue):

(O o fSt[K]) —>{amg (O @ fstla]).c e K —™ (O iy fstfa]).cc « K
= (fst(0) :n @).a o K = (fst(0))* e K

1.H.(b)
BN (Kﬁ{fs'[(o)})ji = (fs'[[K]ﬁ{O})ﬁ

The case of snd{] can be shown similarly.
Case ofM@K (whereK is not a covalue):

(O & (M@K)) —{1amg (OF @ (M@0)).c e K —™ (O (M@0)). 0 K

H.(a)
P (0 (MF@0) s K —™ (OMy sy a)are K

I.H.(b)
= (OMy) o K —™ (Kg{OM;})F = ((M@K)4{O})’

Case ofx.S:

I.H.(d) Lem2.14(1)
(0F o x.S) —™ (OF 0 x(S)F) =0y, SOl —™ (Si[C1D)F = (xS0

—73-—

I.H.(a) I.H.
Case ofM o K: (M e K) —™ (My)f o K —™ (Ky{My})* = (M o K)y)*

(2) We show these claims by a simultaneous inductioivrK, andS. If we establish
(O 3y K) —" (K:{O})", then we can easily obtai®{ « K) —* (K:{O})". Therefore, we
show this claim instead of the second clause of (2).
Case ofx: x —{ (xe @).a = (X a).a = x = (x;)F
Case of M)inl:
(M)inl S ((M)Hinl —¢ o (M:)Dinl e @).a = (inl(M;) =y @).a
= (inl(My))" = ((M)inl;)’

(M)inr is shown similarly.
Case of M, N):

I.H.
(ML N) —% (M), (N —t) (M), (Ng)T) 0).

= ((Mi, Ni) v @) = (Ms, No)T = (M, N)y)'

Case of K]not:

[KInot —y, | [x.(x e K)]not A7 [x(K{x}) Tnot—{ o ([x.(K+{x})"]note a).c

= (AXKi{x} iy @) = (AxK:{x})" = ([K]not;)'

Case ofix.M:

I.H.) .
XM —Y* Ax.(My)] —>\(/77R) (AX(My) o). = (AXM; iy).
= (AxM;)" = ((AxM):)'

Case ofS.a:
I.H. X . "
Sa —" (S).a = (S:)P/ol B = (ua.St wp) B = (W-ST)I = ((S))’
Case ofr: (O @)= ([2]O) = (a+{O})]
Case of K, L]:
I.H. .
(O W[K,L]) —’\(/;L) (O [x(xe K), y.y e L)])) =" (O [x.(Ki{x})T, y.(Ls{yD'])

— 74—

= 6(0, x.K+{x}, y.Lt{yD' = (K, L]+{O)'

Case of fsiK]:

ILH. Lem2.29 . i
(O fstK]) = (fst(0) :v K) —" (Kfst©Q)}) —" (K:[fst(O)])" = (Fst[K]+{O})’

snd[K] can be shown similarly.
Case of natM):

(0 NOKM)) —¥ (O, nOK(My)T)) —* (OM)' = (NOKM): (O]

Case oM@K:

IH. ILH.
(O (M@K)) —* (O (M:)T@K)) —* (OM 1y K) —* (Ki{OM})'

Lem2.29 + T
=P (K OM]) = (M@K):(0))'

Case OKS: (O3 ex.S) —¥ (O x.(S5)1) = (Ax.S:)0)" —¥* ((x.S)+{Oh)}

Case ofM e K:

I.H. I.H. "
(M e K) =" (M)" e K —{;) (My 1y K) =Y (Ki{M;})

Lem2.29
—Y (Ki[Mi])" = (M e K)y)'

We can obtain the Church-Rosser property for Alyecalculus by using the Church-
Rosser property for the dual calculus and the results in Section 2.4 and 2.5.
Proposition 2.37 (Church-Rosser property for thedu-calculus)

(1) If Au r O —; Mandiu + O —; M’, then there exists a ter® such that
ArM —; O andAu - M" —; O
If Au + S —; T andAu + S — T’, then there exists a ter® such thatiu
T—;Sandu+rT —; S

2)If Aur O —f MandAdu + O —; M’, then there exists a ter® such that
AurM —: O andiur M —; O
If Au + S —; T anddu + S — T’, then there exists a ter® such thatiu
T —; S andAut+T — S

— 75—

Proof. (1) We show the first line of (1). Suppodg + O —;, M andiu + O —} M’,
thenDC r (O)f —™ (M)# andDC r (O)¥ —™ (M’)* by Theorem 2.16. By the Church-
Rosser property of the dual calculus, there is a tBrof the dual calculus such th&xC +
(M)} —™ N andDC + (M’) —™ N. Hence we havely + ((M)*); —i (N); and

Au + (M) —5 (N); by Theorem 2.28. Therefore we obtalp + M — (N); and

Au + M” —* (N); by Proposition 2.35. The second line of (1) is shown similarly. (2) is
also shown in a way similar to (1). m|

2.6 Duality of call-by-name and call-by-value

Duality is the essential feature of the dual calculus. The dual calculus corresponds to
Gentzen’s sequent calculus and has explicit duality of classical logic at each level.
- Types: disjunction is dual to conjunction, and negation is self-dual,
- Expressions: terms are dual to coterms, and statements are self-dual,
- Typing rules: right rules are dual to left rules, and cut is self-dual, and
- Evaluation strategies: call-by-value is dual to call-by-name.
In this section, following Wadler’s approach, we discuss the systems that do not involve
implication, since duality is not defined for implication.
The duality translation from the dual calculus to itself is given as follows.
Duality for the dual calculus

(X)° =X (mA)° = =A°
(AAB=B°VA® (AVB) =B AA
(X)° =x (0)° =a

(M ND)" = [N°,M°] ([K, L])° = (L°.K®)
(Myinl)° = sndM°] (fst[K])° = (K®)inr
((Nyinr)> =1fst[N°] (snd[L])® = (L°)inl
(S.a)° = x.S° (X.S)° = S°.x
(M e K)> =K° e M°
Proposition 2.38 (Duality for the dual calculus)
(Involution) Duality is an involution, that is,

A=A M =M, K* =K, andS*° = S.

(Expressions and typing rules

—76—

(a) For any termM of the dual calculusiv® is a coterm.
If M has typeA, thenM® also has typé\, i.e.,
F'FA|M:AimpliesM®: A|A°FT° .
wherel™ is Xm @ Ay,....% @ Al forT' = X @ A,....%n © A, andA°® is ay,
B;,..‘,al: BiforAEal . Bl,...,an . Bn.

(b) For any coternK of the dual calculusK® is a term.
If K has typeA, thenK® also has typé, i.e.,

K:A|TEAimpliesA®-T° | K°: A .
(c) For any statemer® of the dual calculus$® is also a statement, and

I'|SFAimpliesA® | S° T .

(Evaluation strategies

(@) If DC+ M —" N, thenDC + M° —V N°.
If DC+ K —" L, thenDC + K° —V L°.
If DC+S —" T, thenDC + S° —V T°.

(b) If DC+ M —V N, thenDC + M° —" N°.
If DC+ K —V L, thenDC r K° —" L°,
If DC+S —VT,thenDC+ S° —"Te.

Wadler (2005) gave a translation between the call-by-name and call-by-yaicedculi
by composing the translation;-)°, and his translations between the dual calculus and the
Au-calculus. He explained duality between the call-by-naimecalculus and the call-by-
value Au-calculus by purely syntactic techniques. We follow his approach. Since we gave
the diferent translations for call-by-name and call-by-value in the previous sections, we
introduce two distinct translations between the call-by-name and call-by-¥ataalculi.
Definition 2.9 (The translation from the CBN Au into the CBV Au)
Let Abe atypeM andO be terms, an® be a statement of thiu-calculus. Then we define
the translation<), as follows.

(A, = A°
M.{O} = ((M#)°).{O}
S. = ((S*%°);

77—

Definition 2.10 (The translation from the CBV Au into the CBN Au)
Let Abe atypeM andO be terms, an® be a statement of th&-calculus. Then we define

the translation<). as follows.
(Ao = A
M.{O} = ((M)),{O}
S. =((8")"),
The following properties of these translations are easily shown.

Proposition 2.39
(1) For any termM of the Au-calculus, M,{O} and M,{O} are statements of theu-

calculus. For any statemest of the Au-calculus,S, and S, are statements of the

Au-calculus.

(2 If T, AIM:AandA, |, T, | O: A, thenl' | M,{O} }-,, A.
If T[Sk, A, thenl |S, |, A.

3) If T, AIM:AandA, |, T. | O: A, thenl' | M{O} |-, A.
If TS}, A, thenl'|S, |y, A.

Then, we obtain our final results.

Theorem 2.40
Let M, N, andO be terms, an® andT be statements. Then the following hold.

(1) The translation-{), preserves reductions.

Au+ M —, N impliesAu + M,{O} —, N,{O}
Au+ S —, Timpliesdu+ S, —, T,

(2) The translation{), preserves reductions.
Au+ M —, N impliesAu + M, {O} —, N,{O}
Au+ S —, T impliesAdu+ S, —n, T,
(3) The composition of translations obtained by applyird, @fter (). is identity up to
the call-by-name reductions.

Ak M —q pa.(Mo{al).

—78—

A F O (M} —, (M.{O}).
/l/,l S —n (So)o

(4) The composition of translations obtained by applyirg, @fter), is identity up to
the call-by-value reductions.

kM —y ua.(Mdfal),
A F OAM} —, (M.{O}),
Au+S —, (S.),

Proof. (1) is shown by using Theorem 2.16, Theorem 2.34, and Proposition 2.38.
(2) is shown by using Theorem 2.21, Theorem 2.28, and Proposition 2.38.

(3) follows from Proposition 2.35, 2.36, and 2.38. We show the third line first.
Prop 2.35(1) Prop 2.36(2)

—n (=) —n (7)), = (S0

The second line is shown as follows.

Prop 2.35(1

)
O.{M} = (O"){M} —; (O™)4{(MF);} = (M* 0 O°),
= (M** ¢ 0), = (0" « M¥)"),
Prop 2.36(2) to
—n (MP){0)™), = (M.{O}),
The first line follows from the second line.
M —,) tafalM £ pa.auM) — pa.(M. ().

(*) is shown by

a.{M} = (@™°):{M} = (@ * B).5)"):(M}
= (B.(8 ® @))y{M} = ([2]B[" /5] = [2]M..

(4) can be shown in a way similar to (3). m|
Although Wadler gave the same translation which goes back and forth between the call-
by-name and call-by-valugu-calculi, we needed two fferent translations. However, al-

though Wadler’s translation preserved oelyuationsour translations preserveductions
This is the greatest advantage of our results.

—79—

2.7 Appendix: Wadler’s systems and translations

Types A B :
Terms O, M, N :

X|AAB|AVB|-A|ADB

X|{M,N) | fst(M) | sndN) | u(a,B).S
| AXM | OM | ua.S | AX.S

[a]M | [a,5]M | OM

Statements S, T:
Typing rules

T|SkuAa:AB:B TF,AIM:AVB

TF,Alu@p)S:AvB Y TlapMr,bae Ap:B"E

The other typing rulesAx), © 1), (© E), (Al), (AEy), (AEL), (=1), (=E), (Act), and Pas3
are same as our system.

Syntax and typing rules of th&-calculus given in Wadler (2005)

Types AB:= X|AAB|AVB|-A|ADB

Terms M, N = x| (M, N) | (Myinl | (N)inr | [K]not| AX.M | S.a
Coterms K, L == a|[K,L]|fst[K] | sndL] | noxM) | M@K | x.S
Statements S, T:= MeK

The typing rules of the dual calculus (Wadler (2005)) are same as our system.

Syntax and typing rules of the dual calculus given in Wadler (2005)

— 80—

Values

Evaluation context
Statement context

V,W :

E =
D:

X |V, W) | fst(V) | sndWV) | AX.S | AX.M

| u(e, B).LalV | u(e, B).[BIW

(=} I(E.N) [{V,E) [fst(E) | sndE) | EM | VE

[¢]E |[a.BIE|EM|VE

(B&1) fsi(V, W) v V
(6&2) sndV, W) v W
Bv) [, lu(@.8).S =v Sla'/e.p'/B]
(B-) (AX.S)V =v S[V/X]
(B>2) (AXM)V =y M[V/X]
Br) [@]ua.S =v Sla’/a]
(n&) V:A&B =, (fstV,sndV)
(nv) M:AVB =y u(a,p).[a, SIM (v, B: fresh)
(n-) V:-A =y AXVX (x: fresh)
(n D) V:A&B =y AXVX (x: fresh)
() M =y ua.la]M (a: fresh)
(name) D{M} =y (AX.D{x})M (x: fresh)
(comp) D{(Ax.N)M} =y (AX.D{NHM
(s) D{ua.S} =v_S[D{-}/[e]{-]]
Equality axioms of thelu¥2-calculus
(B&1) fst(M, N) = M
(B&2) sndM, N) =n N
BV) [, 8@, B).S =n Sle’/a.B'/f]
B-) (AX.S)N =n S[N/X]
(B D) (Ax-M)N =n M[N/X]
(Br) []pa.S =n Sl[a'/a]
(n&) M:A&B =p (fstM, sndM)
(nv) M:AvVB =n u(a,p).[e,f]M (, B: fresh)
() M:-A =n AXMX (x: fresh)
(7 D) M:A&B =n AX.MX (x: fresh)
() M =n pa.la]M (a: fresh)
(¢&1) fst(ua.S) =n puB.S[Alfst{—[al{-}]
(¢&2) sndfua.S) =n uB.S[[Blsnd-}/[a]{-}]
(sVv) (B, ¥lua.S =n SIB.yl{-}/[al{-]]
(¢-) (ua.S)M =n S[{-}IM/[a]{-]]
(s2) (ua.S)M =n_uB-SIBH-IM/[a]{-}]

Equality axioms of theluV2-calculus

-81—

Values V, W :

Evaluation context E
(B&1) (V,W) e fst[K] ="
(8&2) (V,W)esndL] =Y
(BV1) (Wyinle[K,L] =Y
BV2) (Wiinre [K, L] =Y
(B-) [K]note nottM) =Y
B2) AX.Ne(M@K) =Y
(BR) (S).aeK =Y
(BL) Ve x.(S) =V
(n&) V:A&B =V
(nv) K:AvB =V
(1) Vi-A ="
(n D) V:ADB =V
R M =Y
(L) K ="
(name) E{M}eK =Y

X | (VW) | (V e fst[a]).c | (W e sndB]) B
| (Winl | (Whinr | Ax.M | [K]not
{=}I(E,N) [{V,E) | (E)inl | (E)inr

Ve K

We L

Ve K

We L

M e K

M e X.(N e K)

S[K/a]

S[V/X]

((V e fst[a]).a, (V e sndPB]).B) (a, B: fresh)
[X.((x)inl @ K), y.((yyinr e K)] (%, y: fresh)
[X.(V e not(x))]not (x: fresh)
AX.((V o (x@B)).B) (x: fresh)
(Mea).a (a: fresh)
X.(x @ K) (x: fresh)
M e X.(E{x} e K) (x: fresh)

Equality axioms of Wadler's call-by-value dual calculixd")

Covalues P,Q:

Coevaluation context F
(B&1) (M, Ny e fst[P] ="
(B&2) (M,N) esndf@Q] ="
(Bv1) (M)inle[P,Q] ="
(Bv2) (Qinre[P.Q] ="
(B-) [K]note notM) ="
B2 AX.Ne(M@K) ="
BR) (S).aeP ="
(BL) M e x.(S) =N
(n&) M:A&B =N
(nv) P:AvB =N
() P:-A ="
(n D) M:ADB =N
(R M ="
(L) K ="
(name) M e F{K} =N

a | [P, Q] | x.((x)inl e P) | y.({y)inr e Q)
| fst[P] | snd[Q] | M@Q | noK M)

= {=} I [K F]I[F P] [fst[F] | snd[F]

MeP

NeQ

MeP

NeQ

M e K

M e X.(N e K)

S[P/a]

S[M/X]

(M e fst[a]).a, (M e sndp]).5) (a, B: fresh)
[X.(Oinl @ P), y.({y)inr e P)] (%, y: fresh)
no([a]not e P).a) (a: fresh)
AX((M o (Xx@RB)).8)) (x: fresh)
(M ea).a (a: fresh)
X.(X e K) (x: fresh)
(M e F{a}).a e K (a: fresh)

Equality axioms of Wadler’s call-by-name dual calcul@X(")

-82—

() = X (M,N))* = (M",N")
(fst(O))* = (O efstla]).c (sndQ))* = (O e sndp]).B
(Ax.S)* = [x.(S)"]not (OM)* = O e NOKM*)
(ua.S)* = (S").a ([a]M)* = M'ea
(u(@.p).S)" = (((S) Binrey).ajinley).y

([e.BIM)" = M e[a,f]

(AX.M)* = AxX.M* (OM)* = (O o (M*@B)).8

Wadler’s translation from thgu-calculus into the dual calculus

(%) = X (2).{O} = [«]O

(M,N)). = (M,,N.) (K. LDAO} = L{uBK.{ua.[a.BlO}}
(Myinl), = wp(a,B).[a]M. (fstK]).{O} = K.{fst(O)}

(Njinr), = p(a.B).[BIN. (sndLL]).{O} = L.{sndQ)}

([K]not), = Ax.K.{x} (noM)).{O} = OM,

(AXM), = AxM, (M@K),{O} = K,{OM,}

(S.a). = ua.S, (x.S).{O} = (Ax.S,)0

(MeK), = KM,

——

Wadler’s translation from the dual calculus into thecalculus

— 83—

Chapter 3

Polarized dual calculus and logical
predicates for polarized linear logic

3.1 Introduction

Much work has been done in order to extend Curry-Howard correspondence to classical
logic in the last ten years. The first step was taken byfi@r{25] who observed that
call/cc corresponded to Peirce’s Law. Since then, a number of term calculi for classical
logic have been introduced. Among those, Parigot [40] introduced a particularly nice one,
the Au-calculus This calculus corresponds to classical natural deduction in just the same
way that thel-calculus corresponds intuitionistic natural deduction. In the meantime, it has
been known since Filinski [17] that there is a computational duality between call-by-value
and call-by-name in the presence of continuations. Selinger [45] investigated the duality by
giving categorical semantics to the call-by-value and the call-by-narr@lculus. Wadler
[48] introduced the dual calculus to show this duality in a purely syntactical way. This cal-
culus is a term syntax for classical sequent calculus, and explains the computational duality
of call-by-name/ call-by-value by the logical duality, namely the duality of the left-hand
side/ the right-hand side in sequent calculus.

Another approach to understand the duality between call-by-value and call-by-name is
polarized linear logiqLLP) of Laurent [33]. It is a variant of linear logic with a good seman-
tics in terms of coherent spaces. The most fundamental feature of LLP is that it has a clear
distinction betweemegativeformulas, for which structural rules can be freely used, and
positiveformulas, for which structural rules are forbidden. LLP is useful in understanding
the constructive aspect of classical logic. In particular, LLP suggests a close relationship

-84 —

between the call-by-valugcall-by-name duality and positivenegative duality. Laurent
defined two translations from the call-by-name and the call-by-vaiealculi into LLP,

and showed their soundnes®. these translations preserve reductions. The call-by-name
translation £)° translates a classical formula into a negative one, in particular a classical im-
plication A — B into a negative formulaA® —o B° (so, we call this the negative-translation

in this paper). On the other hand, the call-by-value translatight(anslates a classical for-
mula into a positive one, in particular a classical implicatfor> B into a positive formula

I(A* — ?B°) (so, we call this the positive-translation in this paper). Furthermore, Laurent
showed fullness of the negative-translatiae.(every proof ofA° is (equivalent to) an im-

age of a proof ofA in classical logic via the negative-translation) in [34]. However, it is
not proved (at least explicitly) that the positive-translation is also full. Another work to be
done is to give a term syntax for LLP. Although proof-nets provide a nice parallel syntax,
it is sometimes space-consuming, and complicated, especially in the presence of additives.
Hence it is natural to introduce a term syntax, that is compact and moreover well-related to
standard functional programming languages.

In this paper, we first give a term calculus for (distently large fragment of) LLP,
called polarized dual calculus (DCPwhich is based on the idea of Wadler’s dual calculus.
We then define two translations from the call-by-nafike call-by-valueilu-calculi into
DCP-, and show their soundness. These translations are almost straightforward adaptions
of Laurent’s (but the positive translation is slightlyfférent). Finally, we prove fullness of
these translations in the similar way to the logical predicate method used in Hasegawa [27].

The notion of logical predicate (unary logical relation) is a well-established tool for
studying the semantics of various typed lambda calculi. In particular, logical predicates for
intuitionistic linear logic were introduced in Hasegawa [26] for category-theoretic models
of linear logic, and applied to prove full completeness of Girard translation from the simply
typed lambda calculus to the linear lambda calculus in [27]. We adopt this method to show
fullness of Laurent’s translations. The use of logical predicates allows us to giviécam
proof to the fullness of two translations. In particular, just one Basic Lemmdtisisat for
both the positive- and the negative-translations.

The rest of this paper is structured as follows. In Section 2, we introduce the system
LLP~ as afragment of LLP. In Section 3, we give a term calculus DIoPLLP~. In Section
4, we review the call-by-name and the call-by-valwecalculus, define the positive- and the
negative-translations from thi-calculi into DCP, and then show their soundness. From
Section 5 to 7, we prove fullness of these translations by the logical predicate method.

— 85—

FX, P FA P

FPLp (AX) TSA (Cut)
FX,P FA,Q FE,N,M
TTAPRQ FSNTM
FX, P FX, FXN X, M
FTPeQ I—Z,PG?Q@Z FLNEM &
I-Z,P,) I—Z,N|
FX,7P FX,IN
Y FX, NN

(Weakening) (Contraction)

FX, N FX, N

Figure 3.1: Inference rules of LLP

3.2 LLPandLLP~

Definition 3.1 (Formulas of LLP)
Theformulasof LLP are defined as follows:

PQ:=X|PQ|Pa®Q|!N (positive formulak
NNM:=X"IN®M|N&M|?P (negative formulas

whereX andX* are atomic formulas. Theegationof formulaA (denoted byA!) is defined
as in linear logic.

Definition 3.2 (Sequents and inference rules of LLP)

The sequentf LLP have the form- X whereX is a finite multi-set of formulas among
which there isat most onepositive formula. Thenference ruleof LLP are defined as in
figure 3.1.

To give a simple term syntax later, we impose a restriction on LLP.

Definition 3.3 (LLP ")
The system LLP is obtained by restricting-rule, &-rule and (Cut)-rule of LLP to those
sequents which haveo positive formulagother tharnP, in the case of (Cut)-rule).

Remark 1
The restriction forces some sequents derivable in LLP to be non-derivable in LE®T
examplet+ X+ % Y+, X is derivable in LLP by the following derivation, but not in LEP

— 86 —

because one cannot appyrule in the presence of the positive form{a

F X X
F X5 Y X

I—XL7S’YL,X7?

However, we are mainly interested in proofsragative sequenis.e. those consisting of
only negative formulas), and our restriction is quite harmless for them. In fact, we have:

Theorem 3.1
Let £ be a negative sequent. Ifhas a derivation in LLP, then it also has a derivation in
LLP-.

In fact, the latter derivation can be obtained by simply permuting some inference rules in the
former derivation, and the permutations needed are invisible in terms of proof-nets. Hence
one could say that LLP and LFhave the same proof-nets for negative conclusions.

3.3 The system DCP

In this section, we will define a term calculus DCfr LLP~. The types of DCP are
formulas of LLP. Thevariablesof DCP- are denoted by, y, z

Definition 3.4 (Terms and Sequents of DCP)
The terms of DCP consist ofpositive termgdenoted by, u, .. .), negative termgdenoted
by k,I,...), andneutral termgdenoted by, o, ...) which are defined as follows:

t, uz=x|teu]inl(t) [inr(u) | 'k (positive term}
K, == x71|[KI] | (Xy)7T] 2 (negative termps
T,0=tek (neutral term$

x.T and &, y)r are abstractions witk (andy) bound int. The set ofree variablesoccurring
in t, k andr are denoted by FY), FV(k) and FV() respectively. We identify two terms
in the a-equivalence relation, and we will usefor the syntactic identity on terms. The
expressiort[u/x] denotes a term obtained by substitutimdor each free occurrence of a
variablex in t (the expressionk[u/X] and r[u/X] are used similarly). These are defined in
such a way that they do not cause free variable captures.

A contextof DCP- (ranged oveE, A, E, 0, .. .) is a finite set of variables annotated with
negativetypes (denoted by, : Ny, ... Xn : Np), in which each variable occurs at most once.

—-87—

FX:t:P A kP

kx:PL;x:P(AX) FX, A tek (Cut)
FXt:P I—A;UZQ® FEXINYy:M; 71 »
FZAteu:P®Q FX, (XY)T:N®M
FXot: P ® FX; u:Q ® FX: k: N I—Z;|Z|\/|&
FXoinl(®:PeQ ' rx;inru):PeQ 2 FX; [kI]:N&M
FX:t: P ° I—Z;kZNI
FX; 2t ?Pb FX; lk:IN
FX; I . FE,XINy:N;II _
FEx NI (Weakening) 3.2 N X 2] (Contraction)
FX, XN T FX; k:N
FX; XT:N (Focus) FZ,X:N;xok(UnfOCUS)

Figure 3.2: Types and the typing rules for DCP

A typing judgemenof DCP- takes either of the following forms:
FX;t:P X Kk:N or vX; 7.

When it is not necessary to distinguishP, k : N andr, we writeII to denote one of them.
In this casell[u/X] meangt[u/X] : P, k[u/X] : N or r[u/X].

Definition 3.5 (The typing Rules)

Thetyping rulesof DCP- are displayed in figure 3.2, where the (Cut)-rule andgkreile
are defined only when the contexsand A have no common element, and the variable
occurring in (Weakening)-rule and (Unfocus)-rule is a frash ew) variable.

Remark 2

(Unfocus)-rule and (Cut)-rule overlap. In fact, (Unfocus)-rule can be derived from (Cut)-
rule and (Ax)-rule. However, the correspondence with proofs of LaRd derivations of
DCP- becomes more closely by the presence of (Unfocus)-rule. (This is also mentioned by
Wadler [48] in the paragraph starting with “Rules Cut, Id, RE, and LE overlap;” of Section 3)

Remark 3

The restriction we imposed on LERimplifies the term syntax a lot. For instance, &-rule
and?-rule would be much more complicated without the restriction, and moreover (Focus)-
rule and (Unfocus)-rule would be required for positive types too.

— 88 —

Definition 3.6 (Reduction Rules)
Thereduction relation— of DCP- is defined to be the compatible closure of the following

rules.
B) teue(Xy)r —ps Uey(teXT)

inl(t) o [KI] —ps tek
inr(u) e [k,1] —5 uel
ke —ps tek

(&) te xr —, 1t/X]
() x(xek) —s, k wherex¢ FV(K)
(X Y)(x®yek) —, k wherex,y¢ FV(K)
IX(t e) —, t wherex ¢ FV(t)

In the following, we use—*, —* and= as the reflexive transitive closure, the transitive
closure and the reflexive symmetric transitive closure-efrespectively.

The (B)-rules and thed)-rule are intended to capture a natural cut-elimination procedure
for LLP~. More specifically, each of thg)-rules corresponds to a logical reduction step for
Q/®, /& (i = 1,2) and ¥?. The €)-rule roughly corresponds to the following structural
reduction step.

AX '0 . ﬂ p
FPLP FPLE PO v FE FX,P +0O,P*
‘o Lo FEP FEE FX,0
F3,P FPLA
s) Cut —
FTA (©

(Cut)

In the left proof, ancestors of the negative formBtaare indicated. It must be introduced

—

L . FE . :
as an axiom P+, P, by (Weakening)-rule S pL gz Or by a logical inference rulq pi p@

with P+ being the main formula. The above reduction step replaces an axiom by the proof
o L p

. = FE ; FSP - O, Pt .
n, and a (Weakening)-rule IFDL z by ==.,and pip® by —s¢o — (Cut) . Since

—

|_
O consists of only negative formulas by the restriction of ELEhis (Cut)-rule is certainly

LLP~’s. The ()-rules correspond to the simplification procedure of LipgPoofs.

We now mention some properties of DCPFirstly, this system has subject reduction
property: ifr Z;t: P (resp.- Z;k: N, + Z;7) andt — t’ (resp.k — k', 7 — 7’) then
FX U P(respt XK : N, + X;77). Secondly, it has substitution property:+Ht, x: P+; I1
andr A;t: Pthenr X, A;TI[t/x]. Finally, it is strongly normalizing. However, it does not
enjoy Church-Rosser property. For example x()((x® X') e z(y e ?2)) reduces t@.(y e 72)

— 89 —

by (n)-rule, (x, X)(y e ?(x® X)) by (¢)-rule, and these are normal. This example reflects the
fact that LLP with simplification rules is not confluent as follows :

FPRPY +Q Q" rPRQP-®Q- FPPt -QQ"

FP®Q,PL,Q r?2P®Q),Pt®Q cut FP®Q,PH,Q*
F?(P®Q), P+, Q* reducesto r?P®Q),P-,Q* and +rPRQP-®Qt
F2P®Q), Pt ® Q- F2P®Q), P QL F2P®Q), P-® QL.

But this is not so problematic; in fact, iff-rules are omitted, then the remaining reductions
of DCP (i.e. (¢)- and 3)-rules) enjoy Church-Rosser.

3.4 TheAu-calculus and the translations into DCP

3.4.1 TheAu-calculus

We consider two variants of th&-calculus, call-by-name and call-by-value, and interpret
them in DCP. First of all, we review the syntax of thi-calculus.

Definition 3.7 (1u-types)
Let X,Y,... range over the set of base types. Thpesof the Au-calculus (denoted by
A, B,...) is generated by the following grammar.

AB:=X|A—->B
Definition 3.8 (Au-terms)
Given two disjoint countable sets of variables, one is calledriables(denoted by, y, z . . .)
and the other is called-namegdenoted by, 3,7, ...). The(unnamed) termganged over
w,Vv, ..., andnamed-termganged ovet, o,, of the Au-calculus are defined by:

W,V = X | AXW | WV | ua.t (termg

7,0 = [a]w (named-termys

We consider terms module-conversion om-variables angi-names. The sets dfee vari-
ablesandfree name®f a Au-termw (resp.7), denoted by F\M{) and FN) (resp. FV)
and FNf)) respectively, are defined as usual.

Definition 3.9 (1u-typing rules)

A typing judgementf the Au-calculus takes the forfi - A|u: AorT + A | 7, wherel'
denotes a-contexti.e. X; : Ay, ..., X%, : Ay, andA denotes a-contexti.e.a; : By, ..., am:
Bm. Thetyping rulesfor the Au-calculus are defined in the figure 3.3.

—90 -

F,X:AkAlx:AVar
I'rAlw:A— B ZkAlv:Aa
XA A|wv:B
I'rA|w:A
I'rAa:Alla]w

I'X:ArA|lw:B
IF'rA|lAxw:A— B
I'rAa:Alw
I'rAlpuaw: A

PP

A-abs

u-abs naming

Figure 3.3: Typing rules for théu-calculus

Definition 3.10 (call-by-name reduction rules)
The one-stepall-by-name reductiorelation for thetu-calculus, written by—, is defined
as the compatible closure of the following rules.

3] (AxwW)v — w[v/X]

) (ua.)w — pB B0

(up) [Bl(ua.t) — 7[B/a]

(u) pa.falw — w (Wherea ¢ FN(W))

wherew][v/X] is the standard substitution of th-terms, andr[3/a] is just renaming of
the free name. 7[Y%/1,,)] is the result of recursively replacing any subterm of the form
[a]v by [B]lvwin .

Definition 3.11 (call-by-value reduction rules)
A valueis either a variable or a-abstraction.

V,W = X | AX.W

Let V, W range over values. The one-stegll-by-value reductiorrelation for theAu-
calculus, written by—,, is defined as the compatible closure of the following rules.

®) (AXWV — WV/X]
(¢tun) (ar)W — B[O 1]

(Zarg) V(ua.t) — pBa[PVO) /0]

(i) pa.fa]w — w (wherea ¢ FN(W))
(1p) [Bl(ua.t) — 7[B/a]

wherer[FIVO)/ 4] is the result of recursively replacing any subterm of the foaw{by
[BIVwin 7.

We write — . for the reflexive and transitive closure ef,. Similarly for —..

—-91—

3.4.2 The negative-translation from thedu-calculus into DCP-

In this subsection, we give the negative-translation fromAfealculus into DCP, and
show that it preserves the call-by-name reductions. It is called negative because it maps the
Au-types to the negative DCRypes. In particular, it map& — Bto !A° — B°.

According to this translation, bothvariables angi-names of thelu-calculus are inter-
preted by variables of DCRso in the sequel we also uses, v, . .. as variables of DCP

Definition 3.12 (the negative-translation)

The negative-translatiorronsists of three translations:)(, [-]-) and[-]. The first one
translates a type of th&u-calculus to a negative type of DCRhe second one translates a
(unnamed) term of thau-calculus together with a positive term of DCB® a neutral term
of DCP-, and the third one translates a named term to a neutral term of DUy are
defined as follows :

(X)° = X* (A= B)° = 2(A°): ® B°
[X]i = Xxeo2 [AXW]; = te ((X,@)[W],) (wherea is fresh)
[wvl; = [[W]]!M(@t [ua.tl = [[T]][t/a']

[la]W] = [W].
wheret is a positive term of DCPand[w] is an abbreviation g8.[wll; (3 is fresh).

LetI" be ad-contextx; : Aq,..., %, : A, andA be au-contexta; : By, ...,anm : By, Of
the Au-calculus respectively. We define the contexfSP(andA® asx; : ?2(A)*, ..., % :
?(A))*tanday 1 B, ..., am: B,

Proposition 3.2

The negative-translation is sound for derivation, that is

(1) f Ty Alw: Aandr,, X; t: (A%)* thenr ., ?20)*5, A2, [w];, and
(2) ifT'ky A Tthenr,, ?20T°)* A°; [7].

Proof. Simultaneous induction of (1) and (2) eg)..
Case of (Ax) : assumE,x : N+ A | x: Aand+ X; t: (A°)*, then we obtain the

following:
FX;t: (A°)
FX:2A); XCIAY X 2 ?2(A°)
FX:?20A°)5Z; Xe?t
F X 2R, 20)* A% Z; Xxe 2t

Wk

—92—

Case of Q-abs) : we consider the case that A | Axw : A — B is derived from
ILx:Ar A|w: B, and suppose X ; t: (?(A°)* ® B°)*. Using the induction hypothesis
to this sequentandz: B°; z: (B°)*, we obtain ?(°)*, A°, X ; t e (X,2)[w],. SO, we can
derive the conclusion of this case as follows.

F20°)*, A%, X ?2(A)*, z: B [wll,
F20)5 A% (X 9[w];: ?2A°)- 2B +X; t: (?(A°)" % B°)*
F20)*5, AT te (X 2w,

Case of (app) : we consider the case thatl', + A, A, | wv : B is derived from
I'MrA|w:A—- Bandl; - A, | v: A and suppose X ; t: (B°)*. Using the induction
hypothesis to the latter sequent and: A°; z: (A°)*, we obtain- ?(5)*, A5, z: A°; [V]..
So, we can derive ?()*, A5, 2 ; vl ®t:!A°® (B°)* as follows.

FR20)N AL ZIA S VI A
P2 A IV A
P20, A VIV A FXot: (Bt
F20)N ALY VIt A ® (B):

Now, we apply the induction hypothesisltpr A; | w: A — Bandr ?2[5)*, A3, 2 ; Vet :
IA°® (B°)*, then we obtain the conclusion of this case(;)*, ?([5)", A}, A, X5 [Wi et
Case of i-app) : we consider the case that A | ua.v : Ais derived froml’ + A, a :
A| 7, and suppose X ; t: (A°)*. Apply the induction hypothesis o+ A,a : A| 7, then
we haver ?(°)*, A%, a : A°; [r]. From the substitution lemma, we obtain the conclusion
of this case- ?(°)*, A%, X ; [r][t/a].
Case of (naming) : we consider the case thatA,a : A| [a]wis derived froml + A |
w : A. Now, we apply the induction hypothesisiic- A | w: Aand+ a : A°; a : (A°)*,
then we obtain the conclusion of this case(™)*, A"t ; [w],- O

From (1),kye. B - A% B 1 (A°)* and (Focus)-rule, it follows that if +,, A | w: Athen
oo, 2(C°)5, A 5 W] @ A,
Lemma 3.3
Letw andv be Au-terms, and andu be positive terms of DCP. Then the following hold.

(1) If t —, uthenw]; —* [wly -

— 03—

(2) If o ¢ FN(W) then[[W]]t[U/a’] = [[W]]t[u/a] .
If @ ¢ FN(7) then[[r][u/a] = [[7] .

(3) W™/ —* IW[*/dlly .. and
[[T]][![Iv]]/x] —" [[Y/:1 -

(4) If Bis fresh then
[[W]]t[!m®'8/a] = [[W[[ﬁ](_)v/[a](—)]]]t[!M&B/n], and

[eI[T™98/,] = [P0 -

(5) wl:[B/@] = IW{B/a]llys, and
[71[8/a] = [7[B/]1 .

Proof.

(1) By induction ornw.
Case ofx : we obtain[X]; = xe 2% — X e 2u = [X],
Case ofwv : we obtain[wvly = [Wlgee —" [Wlipgew = [WVIL by the induction

hypothesis.
Case ofix.w : we obtain[Ax.w]; =t e (X, @)[W], — U e (X, @)[W], = [AX.W],.

Case ofua.7 : we obtain[ua.t]; = [7][t/a] —* [7][u/a] = [ua.7]..

(2) By inducion orw andr.
Case ofx : we obtain[x];[u/a] = (x e Z)[u/a] = x e ?([u/a]) = [Xllu/a]-

Case ofwv: we obtain

=

[WVIi[u/a] = [WhggedU/a] 'S IWligteome) = IWhisgeue = [WVlgue -

Case ofix.w: we obtain
[AxWl[u/a] = (t e (x.B)[WI[U/a] £ tu/a] e (x AW, = [AX Wl -

Case ofup.7 : we obtain
[uB.7llu/e] = [71[t/Bl[u/e] = [][u/e][t[u/e]/B]
£ Iellt[u/al /8] = [1BTTquen -

Case of pjw : From the hypothesi® # a, so we obtain

[AwI[u/a] = [wWlslu/e] = Wl = [[B]W] .

—94—

(3) By inducion onw andr.
Case ofx:

IXBL™ /] = (x o 2)['M/,] = 1IVI e 2T /)
— (@™ ,]) © B1VIs — IVIST™/3/8] € Vg,
Case ofz(# X) :
[Z[™/] = (e)™M /] = 2o 2¢[™/,]) = [Zgm),

Case ofwyws :

— — I.H.
Twawo e[/ = Wl g ™ /5] —" IWalV/ XD o g
I.H.and(1)

*

—" WAV X e,y = [WaW2)[V/X] Ty

Case ofizw :

— — I.H. —
[zwi[™/.] = (te @B)IWIM /] — /] @ (2 AW/ X,
= [Azwv/X]lym,y = [(AZW)[V/X] T,

Case ofua.7:

_ — — — I.H. J—
Tpa. 7D [™/d = [1[t/a]['™ /4] = [/ ™/ /0] —* v/ ™/ /a]
= [[ﬂa'-T[V/X]]]t[!M/X] = [[(NG'-T)[V/X]]]t[!M/X]

Case of f]w:
LaIWII™ /] = IW1L[™ /] —° [w{v/xT. = ad(Wiv/x) T = [(alw)v/K]

(4) By inducion onw andr.
Case ofx:

IXI™/,] = (xo D)[TI/,] = x 0 2™ /,]) = [Xlygtes,
Case ofwyws :

T, TV I.H. _
Twawo T [™% /.] = W llggod ™" /el = IWal /1)1 D gy pimies

I.H. —
= [[Wl[[m()V/[(I](—)]ﬂ!M@t[!m®ﬁ/11]

—905—

= [l T Wal PO g) s,

= [(Waw) [/)] g,

Case oflzw:

(te (z V)IWI,)['TM#/,]

= (9,1 o 2)WY],
= [AZWPY 1] i

= [AzWP /g My

[Azw], [™%/,]

Case ofuy.7:

Ly T2 /,] = [0t/ ™9 7,] = T[T)0 ™ 1,1 /4]
|£~ [[T[[ﬂ](_)v/[a](—)]]][t[!mg’ﬂ/a] /7] = [[IJY'T[[B](_)V/[Q](—)]]]t[!Meaﬁ/a]
= [y DI o ipimies

Case of f]w:

LWL ™ /,] = T[T /,] 'S WPt igres = TP oIV
= [BIWP /oI = [dWPO /1ol

Case of §]w (wherey # a) :

LI IWIL™ /] = [wi, [™19 7,] 'S w201,
= [P/ DT = [AWE /o]l

(5) By induction orw andr.

Case ofx:

[X0:[B/e] = (xe A)[B/a] = x & ?({[B/a]) = [Xlip/a

Case ofvws :

Iwawolk[B/a] = [Wilgmge B/l 2 IWalB/e]lgiegonsa

I'H'gd(l) [[Wl[ﬁ/a]]]!m@n[ﬂ/a] = [wi[B/a] Wa[B/a]llys e

= [(Wiw2)[B/ @] Tlys/a)

—06—

Case ofizw :

LAzwIk[B/e] = (t e (. 7)[WI,)[B/a] = t[B/a] « (7)IWB/e]],
= [Azw[B/a]llys/0) = [(AZW)[B/a]Tlis/a]

Case ofuy.7:

Luy.whB/a] = [71t/Y1[B/a] = [71[B/l[t[B/al /Y]
2 I8/ IItB/ 1 /Y] = Tuy.7[B/] Dgsya
= [(uy.7)[B/alllys/

Case of fr]w:

La]wl[/a] = IWl.[8/a] =" [WB/alls = LIBIWIB/aD)] = [(eIW)[B/a]]

Case of §]w (wherey # a) :

LLYIWllB/a] = [wl,[B/a] 'S [w(/ell, = IIYI(WB/a])] = [([YIW)[B/al]

Theorem 3.4 (soundness of the negative-translation)
If w—, vthen[[w]; —* [v]; holds for any positive terrh

Proof. By induction on—,.
Base step :

[(AX WV = [AX W] 556 = (TVI ®1) @ (X, @)[W], — t e @.(']V] ® X.[wl,)
e e (WILLT]) o te a (Wi 1)
— [W[v/X]].[t/a] INAZN
[(ua. 7V = [pe.tl e = [[r]][!M@/a] = 10 ™= 1t/8] (B: fresh)
2O PO 0] 1B = 1 aBATP O o] T
Lem33 (2)

[ua.[e]wl; = [[elwi[t/a] = [W].[t/e] Wl
LAl = [ue.tly = [71[8/a] "= ‘5’[[18/]1

Lem 3 3 (2

—97—

Inductive step :
Case ofwv —, w'v (obtained fromw —, W) :
I.H.
[wWVI = [Wlggee —" IW lige = WV
Case ofwv —,, wv (obtained fromv —, V') :

I.H.and Lem3.3 (1)

£

[wWVI = (W et — [W] e = MWV e

Case ofixw —, Ax.w’ (obtained fromw —, W) :
I.H.
[AXW]; = te (X, @)[W], —" te (X, a)[W], = [AXW]|

Case olua.t —, ua.7’ (obtained fromr —, 7’) :
I.H.
[ne.tl = [7l[t/e] —" [7'1[t/e] = [ua.T'T
Case of fjw —, [a]w (obtained fromw —, W) :

I.H.

[[e]wl = Wi, —" W, = [[e]wW]

The case offf)-reduction is stricti.e. one-stepf)-reduction of thelu-calculus is trans-
lated into at least one step of DCleductions. On the other hand;)((u,) and (ug)-
reductions are translated into identity.

Remark 4

Our translation does not preserve the call-by-ngmale of thedu-calculus (.e. AXwx —,

w (wherex ¢ FV(w))) as the reduction rule. However, it does preserve it as the equational
rule. Since [x] = !'z[x], = !z(x e ?22) — x by the n-rule of DCP", we can prove
[AXwX]; = [w]; as follows.

[AXWX]; = t e (X, @)[WX]l, =t o (X)[Wlifge, — t® (X @)[Wlkea

=te (X a)(Xx®a e [W]) — tew] — [w];

3.4.3 The positive-translation from theAu-calculus into DCP-

In this subsection, we give the positive-translation from Ajpecalculus into DCP, and
show that it preserves the call-by-value reductions. It is called positive because it maps the
Au-types to the positive DCPtypes. In particular, it map& — Bto !(A* — ?B°).

—08 —

Definition 3.13 (the positive-translation)

The positive-translationconsists of the four translations=), (-)*, [-I) and[-]. The
first one translates a type of thi-calculus to a positive type of DCPthe second one
translates a value to a positive term of DCRNd the third and the last one are similar to
those in the negative-translation. They are defined as follows:

(X)* =X (A— B)* =((A")" 2 ?B°)
X' = X, (Axw)* = (X, @)[W], (Wherea is fresh)
[VIi=te V7,
VW = [Wix v+ e2(xst))s VWt = [VIixpwhz ey (Wherevis not a value)
[[a]w] = [, [ua.tl = [*1[t/a].

In the above definition, we give two kinds of definition for application. This is for the
following reason: to obtain a sound translation for the call-by-value reduction, we need to
have two views on application depending on the situations. For exaniles applied
to ua.t from the left-hand side” in the case af.()-rule, and W is applied toua.r from
the right-hand side” in the case afif)-rule. To solve this dilemma, we think ofwv as
(Ax.xw)v (actually, we use a slightly modified form) whens not a value. Then, we can
always assume that an application is of the f&fm, becauselx.xwis a value. Here, if we
abbreviate X.(V* e ?2(x®t)) by (V,1)>, and X.[W]liz(xe2@sty DY (W,)7, then[Vw]l; and[vw];
can be written agwl,- and[[V]wy- respectively.

Proposition 3.5

The positive-translation is sound for derivatioe, the followings hold.
(1) FTky ATV Athenr ., (T°),2A%; VE DA

(2) FTFy Alw:Aandr,, X ; t: (A%, thenr,, ()5, 2A% % [wl.
(3) Iy Al Tthenry,, (I°)*5, 2A%; [7].

Proof. Simultaneous induction of (1),(2) and (3) ep.
Case of (Ax) : assumE, x: N+ A | x: A. In this case, we can prove (1) as follows:

FX:(A)E; XA
F ()5 2A% x: (A°); x: A

Wk

— 99 —

Now, we suppose X ; t: I(A®*)*, then we can obtain (2) as follows:
FX:(A)Y; x: A
F ()5 24, x: (AL x: A
FX; to (A R ()5, 2A°, x: (A 2x: A
F ()4, 2A%, x: (A°)5, 2t e X

Wk

Case of {-abs) : we consider the case that- A | Axw : A — B is derived from
Ix:ArA|w:B. So, with+ « : ?B*; « : I(B*)*, we obtain- (I'*)*, ?A*, x : (A*)*, a :
?B* ; [w], by the induction hypothesis (2). Therefore, we can prove (1) as follows:

F(T)L, 2A%, X (A)*, a0 7B W],
F(I) A% (X @)wl, : (AT X 7B
F(T°)L, 2A° ; 1(x, @)W, : '((A%)* » ?B°)

Now, we suppose X ; t: 1?(A* ® I(B*)*), then we obtain (2) as follows:
F ()5, 2A°; (% @)[w], : 1((A%)*: 2 ?7B°)
FX;t:12A°1(B%)Y) ()5, 24 2%, a)[wl, : ?Y((A°)- ® ?7B°)
F (), 24,2 ; te ?1(x, a)[w],

Case of (appl) : we consider the case fhal, + A, A, | Vw : B is derived from
IMrA|V:A—- Bandl> + Ay | w: A and suppose X ; t : |(B*)*. By the induction
hypothesis (1), we obtain(I'))*, ?(A}) ; V* : I[((A*)* ® ?B*). Hence, we have the following
derivation.

FX(A); XA Xt (B
FX, X (A); xot: A°(B°)*
FCDS2A0); VO ((A) BB FE X (A P(x@t) 1 PA° @ [(B)Y)
= (I“I)l,?(Ai),Z, X:(A°):; V' e?2(X®t)
F ()5 2(A3),2 5 x(V* e 2(x® 1)) : (A%)*
F(TDE 2,25 X (Ve 2(x@ 1)) @ [(A%)*

Here, we apply the induction hypothesis (2Jto+ A, | w: A and above sequent, we obtain
the conclusion of this case:(I'})*, (I)*, 2(A1), 2(A3), 2 ; [Wlixv+e2xst)-

Case of (app2) : in this case, we consider thal, + A, A, | vw : B (wherevis not a
value) is derived fromi'; A; [v: A— Bandl; - A, |w: A and suppose X ; t: I(B*)*.
Then,

Fz:(A):; z: A ra:?B; a:(B%)*
Fa:?B%z: (A)t; zea: A°Q®!(B*)*
FX:I2AQI(B)Y); x: (At 2 ?2B°) +a:?B%z:(A%)'; 2@®a): ?2A°®!(B*)*)
FX:?2A°Q(B*)Y),a: 7B, z: (A*)*; xe?@Z®a)
FX:?2A°Q!(B*)Y),a: 7B ; z(Xe ?@®)) : (A%)*
FX:?2A°®!1(B*)Y),a: 7B ; 1z(Xe ?2z® @)) : V(A*)*

—100 —

and the induction hypothesis (2), we have

F (35 243), x: 2(A° @ I(B*)), a1 2B ; [VIhiz(xe2@a)) (= [XV,)
Therefore, we obtain (I')*, ?(A3), X : ?(A*®!(B*)*), : 7B*; (Ax.xv)" : (?(A*®!(B*)*)®
?B°) from the following derivation.

F ()5 2A3), X ?2A° @ I(B*)*), e : ?2B*; [xV],
F ()5 2003) 5 (% @)[xvl, : (?(A° ® [(B*)Y) 2 7B*)
F ()N 23) 5 (X a)[xv], : '(?(A° ® |(B*)*") ¥ ?B°)

So, we can derive (I)*, ?(A3), X ; 1z((AX.XV)" e ?@z® 1)) : 1?(A* ® |(B*)*) as follows:

FZ:?2A®(B%)Y); z: [((A)*®7B%) +X,;t:!(B)*
FXZ:?2A° @ (B)Y); zot: (A% ® 7B*) ® I(B*)*
F)5 2(A%) ; (Axxv)* D 1(2(A° @ I(B*)") ® 7B°) +X,z: ?2(A° @ !(B*)); 2@®t) : 2(((A°)*: ® ?B*) @ I(B*)Y)
F ()R, 2(A5), 2,2: ?2(A° @ I(B*)*) ; (AxxV)* e ?2(z®1)
F)5, 2(A5), 2 z((AxxV)* e ?2z®1)) : ?(A° ® !(B*)*)
F ()5, 2(A5), 2 12((AXxV)" & 2@ 1)) @ 12(A° ® I(B*)*)

Finally, we obtain the conclusion

F (D5 (T35 240, (A, Z 5 Tz (xxv:e2esy) (= TVWIL)

from the induction hypothesis.

Case of -app) : we consider the case thiat A | ua.7: Ais derived froml' + A, a: A|
7, and suppose X ; t: 1(A")*. Apply the induction hypothesis O+ A,a: A | T, then we
haver (I'*)*, ?A*, a: ?A° ; [r]. From the substitution lemma, we obtain the conclusion of
this case- (I'"*)*, ?A°, X ; [7][t/«].

Case of (naming) : we consider the case thatA, a: A | [a]w is derived froml" + A |
w: A. Now, we apply the induction hypothesisfo- A | w: Aand+ a: ?A° ; a: (A4,
then we obtain the conclusion of this cas@™)*, ?A* ; [w],.

From (1),kye. B: ?A%; B2 I(A%)*: and (Focus)-rule, it follows that If +,, A | w: Athen
Foce. (F.)J_a /AN m: ?A°.

Lemma 3.6
Letw andv be Au-terms, and andu be DCP -positive terms. Then the following hold.

(1) If t —y uthen[w]; —* [wW].

—101 -

(2) WIV*/x] = (WV/X])",
[wI[V*/X] = IW[V/X]v-/x, and
[0V /¥ = [=[V/X].
(3) If ais notin FN(V), FN(v) and FNY), then
V*t/a] = V*,
[VIu[t/a] = [VIyte, and
[7lt/e] = [7].

(4) V*[(w,B)*/a] —* (V[P oD,
IVI(w, B)*/a] —* IMPXO" /1)1 Tweg)/a). @nd
[<1l(w,) /a] —* [T[P/ o]

(5) W[(V.8)"/e] = (W[EVO) /i y5]),
VIV B)” /e] = IO /o] vy /a1, @Nd
[=1[(V, B)" /a] = [[PVO) /1]

(6) V*[B/a] = (V[B/a])",
[wlk[B/a] = IW[B/a]lls/a, and
[71[B/a] = [*[B/a]l.

Proof. (1) By induction orw.
Case ofx : we obtain[Xx]; =t e 2x — u e 2X = [X]],.
Case ofVw: we obtain the following by the induction hypothesis:

[VWI; = [Wlixv-e20ety —" [TWlixv+erpxeuy = [VWIy

Case ofvw (wherev is not a value) : we obtaina(t)® —* (w, u)® by the induction
hypothesis. Again, we apply the induction hypothesis, then we have

[vwlle = [VIwy: —" [Vww= = [vwly -
Case ofix.w : we obtain
[AXW]; =t e 2(AXW)* — U e 2(AX.W)* = [AXW], .
Case ofua.7 : we obtain
[pe.7l = [7l[t/e] —" [7l[u/a] = [pa.tl, -

—-102 —

(2) By inducion onw, w andr.
Case ofx : we obtain

X [V*/X] = X[V*/X] = V*
[XDV*/X] = (te 2X)V'/X] = t[V'/X] @ 2(X'[V7/X])
=t[V'/X] e N = [VIyv/x -
Case ofz(# x) : we obtain
ZIV'/X| =4V /X =z=Z
[zI[V*/x] = (te 2Z)[V*/x] = t[V*/X] & 2(Z[V"/X])
= t[V*/X] [] r)Zk = [[Z]]I[V*/X] .

Case ofizw : we obtain

zwW) [V*/X] = (2 &) IWIL[V'/X] ' (z &) IWV/X] T
= (AzWV/X))* = ((AzW)[V/x])*

[AzWI[V*/X] = (t @ 2(AzW))[V*/X] = t[V*/X] @ 2(AZW)*[V*/X]
=t[V*/X] o 2zW[V/X])" = [(AzW)[V/X] Nipv-/x -

Case ofWw (whereW is a value): By induction hypothesis, we haW ¢)"[V*/X] =
(W[V/X], t[V*/X])*. Then we obtain

IWWILV* /X = IWlow- [V /4 'S IWV/ X Do tv 9
= [WIV/ X Twivyq, tqve > = TWIVIXIWIV X Tgve 0
= [((WWI[V/X]Tgv-/x -

Case ofvw (wherev is not a value): By induction hypothesis, we hawe ()*[V*/X] =
W[V/X], t[V*/x])<. Then we obtain

IVWILV? /X = [V LV* /X 'E IV Tty
= [[V[V/X]]](W[V/X],t[V*/X])q = [[V[V/X]W[V/X]]]t[V*/X]
= [(vWIV/X]Dipven -

Case ofuB.7 : we obtain
[pB.7 IV /X = [711t/BIIV /X = [7IIV /XY /X /8]

- 103 -

2 LAV /4 /8] = LBV X Dgv- 19
= [B-O)V/ X ygv+/x -

Case of BJw : we obtain
LBIWILV" /x| = IwllV* /X 'S IWV/ X115 = IBIWIV/X)]

= [(BIWIV/A] -

(3) By induction onV, v andr.
Case ofx : we obtain
X'[t/a] = X[t/a] = x=X
[XIult/a] = (ue ?2X)[t/a] = u[t/a] e ?(X[t/a])
= U[t/a/] o X' = [[X]]u[t/a] .

Case ofizw : we obtain
(Azw)’[t/a] = (z M)Wl [t/a] = 1z y)Iwl, = (1zw)’

[Azw]y [t/a] = (ue ?2(AzwW))[t/a] = uU[t/a] e ?2(1zw)*[t/]

= Ult/a] ?(1zw)" = [AZWllyjt/a] -

Case oWw (whereW is a value): By induction hypothesis, we have

(W u)"[t/a] = (W, ult/a])”

Therefore we obtain
I H.
[Wwlu[t/a] = IWlwye[t/e] = [TWlw ey
= [Wlw e = IWWyt/ -

Case ofw;w, (wherew; is not a value): By induction hypothesis, we have

(Wy, U)7[t/a@] = (Wa, U[t/a])™ .

Therefore we obtain

IH.

[wiwallu[t/a] = [Willw,, w=[t/a] = [Willw, uert/a]
= [Wallw, uit/e))< = TWiW2llyjt/ag

—104 -

Case ofuy.t : we obtain

[uy.Tlult/e] = [I[u/Alt/e] = [l [t/e][ult/al /]
= [l [ut/el Y] = Ty Ty -

Case of §]w (note thaty # a by the hypothesis): we obtain
[[Iwilt/e] = [wl,[t/a] =" [wl, = [[yw] .

(4) By inducion onV, v andr.
Case ofx : we obtain

X[(w, B)*/a] = X[(W, B)“/a] = X=X
[XDi[(w, B)/a] = (t e 2X)[(W, B)/a] = t[(w, B) /] & 2(X[(W, B)~/a])
= t{(w, B)"/a] @ X" = [Xllyw,p)</a) -

Case ofizv: we obtain

(Azv)'[(w, B)*/a] = Yz »)IVIL[(w, B)*/a] S NI/ o1,
= (A2 /D) = (AZV[FOY) 0D
[AzVIi{(w. B)*/e] = (t e 2(Azv)")[(W. B)*/a]
= t{(w, B)"/a] o 2(Azv) (W, B)"/e]
—" t{(w, B)"/a] o 202/)"

= [z o] gl -

Case ofWw(whereW is a value): By induction hypothesis, we have

(W 87 [(w, B)/a] —" (WO 0], tl(w, B)*/a])”

Therefore we obtain

I.H.
IWwWIL[(w, B)*/a] = [Wlmw e [(W, B)°/a]l —* IWP /i1 T (w.p)/al
I.H.and(1)

*

—" IWPO /O T wisom g 1, i 5y< e
= [WIAOY /1 IO a1 ow gyl
= [OWWIPOY/ o] Tgwpyerar -

Case ofw;w, (wherew; is not a value): By induction hypothesis, we have
(W2,)°[(W, B) /] —* Wo[1"/ 1), (W, B)/a])”

—105 -

Therefore we obtain

Twiwalle[(W, 8)* /@] = [Wi Tl o=[(W, ﬁ)“/oz] [[wl[w“ " 1o D, 1wy ol
I.H.and(1)

*

—" WO a1 a1y, i 5y
= [Wa[PO/ O[O /1 ST Tyl

= [WawW) [P /o] ow gyl -
Case ofuy.r : we obtain

[y 7lidl(w, B)*/al = [71[t/¥I(w, B)*/a] = 71w, B)"/elltl(w, B)*/al/¥]

I H.
—* [P o1 (W, B)*/al /7]
= [y 1 [P o] liw.g e = Ty o gw.g) /e -

Case of {]v (wherev is not a value): we obtain
[laVIIOw. 8)*/a] = IVRIW. A /o] —* I T
= MO/ o]wlls = LB fragoIw s = LAPOY/wo] T
Case of]V (whereV is a value): we obtain
L[]V 10w £)*/a] = VL0) fa] —" IVIT gl

= IV 1o ity = X IWDze2@esy © 2V PO o))"

. . @
— (VIO D) @ X W ezsy — W @uom) o2@@8)
= [BIVIPOY/oIwT = TIV)FOY/ 101 T -

Case of §]v (wherey # a): we obtain
[LAVIIW, £)/a] = VLI,)/l —° [P 11,
= [MY/ oD 1 = TOIEY /o] T

(5) By inducion onW, v andr.
Case ofx : we obtain

XV, B) Ja] = X[(V; B)"/a] = x=X
[XI:[(V; B)” /] = (t e 2X)(V; B)"/a] = t[(V,) /a] @ ?(X'[(V, B)"/a])
= t[(V, B)" /a] @ X" = [Xlqv.py /o] -

- 106 —

Case ofizv: we obtain

H.

AZv)'[(V, BY /a] = (zNIVILI(V. B Ja] ‘£ 1z NIV /ol
= (2O oD = (2O /o))
[AZVI[(V: B)” [a] = (t e 2(Azv)")[(V. B)" /a]
= t{(V, B)"/a] & 2zV)"[(V, B)" /a]
= t{(V, B)" /a] & 20zV[1VO /)"
= [z /1o gy o) -

Case olWw(whereW is a value): By induction hypothesis, we have
(W)°[(V, B)/a] = W[PVYO /101, t(V, B) fa))”
Therefore we obtain
TWWI[(V; B)” /a] = [Wlw-[(V, B)” /]
I.H. _
= WO o Mowoe v e
= MW O /g v g 1. vy ra)>

_ V(- V(-
= IWAYO) /1o IWBYE) /i o1 v gy e
= [WW[PVO /o vy ra -

Case ofw;w, (wherew; is not a value): By induction hypothesis, we have
(W,)7[(V, B)” /@] = W[VO /1101, tI(V, B)” /al)® .
Therefore we obtain
[waw21I[(V, B)”/a] = [Willw,,n=[(V; B)” /]
I.H. _
= "M /i M. vervyr fo)
= Wi (YO /a1 O Dot g1 v)

= [wWa[VO /1 oIV /L O 1 evgy el

= [WwW) YO St vyl -
Case ofuy.r : we obtain
[py-7II(V, B)” /] = [71It/YII(V, B) /]

—107 —

= [71[(V, B)” /e][tI(V, B)” /2] /y]
2 1APVO TNV, B) fal]
= [y ™ [t v e o

= [y DO g Doy ol -

Case of ffjw : we obtain

[ldWII(V. B /a] = IWILI(V, B fa] 'E WO /gyl
= VWO /011 = LIBIVWMPYO /0]
= [(W)™ /o] T

Case of ¥]w (wherey # @): we obtain

[IWILY, B /o] = [wlLI(V. B) /a] ‘2 TWEVO) /o],
= [IWMPYO /oD 1= TIIWIEPYO /o] 1

(6) By induction onV, w andr.
Case ofx:

X[B/a] = X[B/a] = x=X
[XI:[B/a] = (te 2X)[B/a] = 1[B/a] ?(X[B/a]) = t[B/a] @ 2X" = [X]lp/a

Case ofizw :

(Azw)’[8/a] = Yz 7)IWl, [B/a] = Yz 7)IWB/ell,
= (1zw[B/a))’ = (ZW)[B/a])’

[zwl[B/a] = (t o 2(1zw)")[B/e]
= t[B/a] « 20zW)’[8/a] = t[B/a] ¢ 2AZW[B/a])’
= [AzwB/a]llys/a) = [(AZW)[B/a]llys/a1

Case ofWw(whereW is a value): By induction hypothesis, we have
(W t)"[8/a] = (W[B/a], t[B/a])” .
Therefore we obtain
IWwWI[B/a] = [Wllw-[8/al Es IWIB/alllowv-187a1 = IWIB/] T owig/ar, /el

—108 -

= [W[B/a] wWiB/a]llyse) = IIWW[B/a]llysa -
Case ofw;w, (wherew; is not a value): By induction hypothesis, we have

(W2, 1)°[B8/a] = (W2[B/a], t[B/a])™ .
Therefore we obtain
[Waw, T8/l = [Wallys,o-[8/a] 'Z" TWalB/a] T, o-is7ei

= [WiB/a]lwis/a1, t1/a))-
= [wWi[B/a]wa[B/alllisa) = T(WaW2)[B/a]Tls/a) -

Case ofuy.t:
[uy.7lB/a] = [71[t/¥1[B8/a] = [71[B/allt[B/a]/y]
£ [[B/o]1[tIB/a] /7]
= [uy.7lB/e]lypra) = [y 7)B/a]llysa
Case of f]w:

Lledwl[B/e] = IWla[B/a] ‘£ Iw[B/a]ls = [IAWB/]) = [([e]W)[B/e]]

Case of §]w (wherey # a) :

[yIW[B/e] = [wl,[8/a] 'E [wiB/e]l, = IIYI(WB/a])] = [([yIW)[B/e]]

Theorem 3.7 (soundness of the positive-translation)
If w—, vthen[w]; —* [V]; holds for any positive terrh

Proof. By induction on—,,.
Base step :

[AXW)V i = [Vizxwyre2@st) = 'Z((AXW)" @ 2(X® 1)) @ NV*
— V' e Z((AXW)" e ?2@Z® 1))
— (Axw) e ?2(V* ®t) = (X, @)[W], ® ?2(V* ®1)

— (V' ®1) e (x,)W,

—109 -

st W[V /x t/e] TR v

[(ua.t)Wik = [pa.tlwy- = [71[(w, 1) /e] = [71[(w, 8)°/al[t/f] (B s fresh)
Lem3.6 (4)
—* [P 0] 1Mt/B] = T BAP O o] T

[V(ua.1)l = [petlyy = [TV 1) /e] = [7D[(V,)7 /][t/B]

rem2o ©) [7[VO /o] 11t/8] = 1 B[PV /1mo] T
[[e]wl; = [[alwWi[t/a] = [Wl[t/e] "= © [w],

Lem3.6 (6)

[[Blue.t] = [ua.7ls = [71[B/a] [r[B/a]l

Inductive step :
Case ofix.w —, Ax.w (obtained fronw —, W) :

[Axw]; =t e ?21(X, @)[W], j te ?21(X, a)[W], = [AXW]

Case ofvw —, V'w (obtained fromv —,, V', andv is not a value) :

ILH.
Wi = [VIw, o= —" [V w0 = [V WI

Case ofvw —, vw (obtained fromw —, W/, andv is not a value) : by the induction
hypothesis, we can obtaimw(t)* —* (W, t)°. Using Lemma 3.6 (1), we obtain the con-
clusion of this case in the following way.

[vwi; = [VIw, o2 —" [VIw 1= = [vWi;

Case oVw —, V’'w (obtained fronV —, V’, andV is a value) : by the induction hypoth-
esis, we can obtain/ t)> —* (V’, t)>. Using Lemma 3.6 (1), we obtain the conclusion of
this case in the following way.

(VWi = Wl —" Wl o = [V W]

Case ofVw —, VW (obtained fromw —, W', andV is a value) :

H.
VW = Wl —" W v = TVW

Case ofua.t —, ua.7’ (Obtained fromr —,, 7’) :

[ua.t]; = [[T]][t/a] [[T 1[t/a] = [ua.t'T

—110 -

Case of fjw —, [a]w (obtained fromw —, W) :

H.

|
[lalwl = (Wi, —" W], = [[e]W]

Remark 5

Similarly to the call-by-name case, our translation does not preserve the call-bysvalue
rule of theAu-calculus (e. Ax.Vx —, V (wherex ¢ FV(V))) as the reduction rule, but

it does preserve it as the equational rule. Wixeand o« are fresh fort, we can prove
I(x, a)(te ?(X®@)) = t using they-rules of DCP as the following way: X, @)(te ?(x®a)) =
I(X,a)('z(te?2) e 2(Xx® @) — (X, @)(X®@ @ e Z(t ® ?22)) —> !Z(t @ ?2) — t. S0, We obtain
(AXVX)* =V* by

(AxVX)* = 1%,)V Xla = (X @)[Xz(v-e20)) = /(X @)(1Z(V* ® 2@z ® @)) @ ?X)

— (X, a)(Xxez(V' e ?2z®a))) — (X, a)(V' e ?(X® a)) = V".

3.5 Logical Predicates and Basic Lemma

In the following, we only consider the, %, !, ?-fragment of DCP for simplicity, and still
call this fragment DCP. In this section, we develop the logical predicate method for
LLP, and then prove the Basic Lemma that works for both the negative- and the positive-
translationsuniformly. We denotel- (resp.u-) contexts of thelu-calculus byl (resp.A),
and contexts of DCPby X andA.
We define ['; A]° by ?@C°)*, A°, and [; A]* by ('), ?(A®). In the following, ¥ stands
for eithero or . Note that ['; A]" is always a context of DCP
Definition 3.14
For any positive typ® and negative typ#l, and a special symbal define

DI(T; A) = {t: DCP-pos.term + [[;A]*; t: P},
D/ (T; A) := {k: DCP-neg.term + [[;A]"; k: N},and
DI (;A) = {7 : DCP -neut.term [;A]"; 7).

Definition 3.15
For any context’, A and typeA of the Au-calculus, define

AN\ A) ={w: Aquterm|TFA|w: A}, and

-111 -

AN A) :={7: Au-namedterm+ A|7}.

Definition 3.16 (D'-predicate)

Let £ be a positive type (resp. negative typg, 7 andn’ be positive (resp. negative, neutral)
terms. A familyS of sets indexed byl- andu-contexts of thelu-calculus is called &°-
predicate ort whenS(I'; A) c DY(T; A) and

(monotonicity) if I' c I andA c A’ thenS(T'; A) ¢ S(I'"; A’), and
(equality) if = € S(T; A), 7’ € DL(T; A) andz = #’ thenr’ € S(T'; A).

Let S, 7 be D-predicates or¥. The relationS c 7 is defined byvI',A(S(;A) C
T(;4))

In the sequel, we fix &-predicateB on L. In terms of thisB, negation is defined as
follows.
Definition 3.17 (negation)
LetS be a family of sets indexed by thie andu-contexts of thelu-calculus andS(I'; A)
D/(T; A). We define as follows.

S*(;A) = {k e DL, (T;A) | VI STYA' S AVt e SI; A) (te k e BI"; A))).

We defineS+ for S such thatS(I"; A) DL(F; A) similarly.

Lemma 3.8

Let S be an indexed family as above aS{I"; A) c Dg(r; A). ThenS*t is aD'-predicate on
&

Proof. We show thatS+ satisfies therfionotonicity) and gquality) conditions. Here, we
consider the case thétis a negative type (for the positive type case, it is similarly proved
as this case).

(monotonicity): Assumel” > I', A’ > A andt € S*(I"; A), then foranyl™” > I, A” > A’
andk e S(I'”; A”), we hava ek € B(I"; A”) by the definition of negation. Hence, we obtain
te SH(I; A).

(equality): Assumet € S*(I"; A) andt = t/, then foranyi” > I', A’ > A andk € S(I"; A'),
we havet’ e k =t e k € B(I'"; A’). Since8 satisfies équality), we obtaint’ e k € B(I"; A”).
Therefore, we conclude € S*(T'; A). O

—-112 -

Lemma 3.9
Let S and7 be D'-predicates og. Then we have

(1) Sc S+,
(2) If Sc 7 thenT+ c 8§+, and
(3) St =S+

Proof. We consider the case thais a negative type (for the positive type case, it is similarly
proved as this case).

(1) Supposek € S(I';A). Foranyl” > T', A’ > A andt € S*(I""; A’), we havet e k €
B(I"; A’) sincek € S(I'"; A’). Therefore, we obtaik € S+(T'; A).

(2) SupposeS c 7 andt € 7+(I'; A). Foranyl” > T, A’ > A andk € S(I'""; A’), we have
teke B(I"; A’) sincek € 7(I""; A’). Therefore, we obtaihe S*(T'; A).

(3) Itis immediate from (1) and (2).

Definition 3.18
SupposeP, Q areD'-predicates o, Q, andN, M areD'-predicates oM, M respectively.
We then define as follows.

(P, A) ={tu|teP(;A), ue Q;A)}
P, A) = {2 |te PI;A))
PRQA=(P.Q", NI3M:=N" M)
P = (P, IN = (NI

Lemma 3.10
Let P, Q, N and M be D-predicates o, Q, N and M respectively. Ther? ® Q, 7P,
N ® Mand W areD'-predicate orP ® Q, 2P, N ® M and N respectively.

Proof. It immediately follows from Lemma 3.8. O

Definition 3.19 (logical -predicate)
Let & range over the types of DCRind.L. A family {S} of D-predicates is calledlagical
D'-predicatewhen the following conditions hold:

—-113 -

e eachS; is aD'-predicate or.
o le = SXJ', Sx = SXLJ' andSL = 8B.

° SP®Q =Sp ®SQ, Snem = SN B S, Sin = !Sn, andS»p = 2Sp .

Lemma 3.11
If {S;¢} is a logicalD'-predicate, theng;)* = S;-.

Proof. By induction oné.
If £is a atomic typexX or X+, it is immediate.
If £isP® Q, we have

(Spe)' = (Sp®Sq)* = (Sp, Soy* tem3?) (Sp, So)*

' <SJF;L, S$L>l =Sp. ¥ SQl = SPL’S’Q* = S(P®Q)l)
If £is N2 M, we have

(Snam)™ = (S ® Sw)* = (S, Sw ' (Sne, Sue)tt
= Sne @ Sve = Sneemt = Sinwmyr
If £is 7P, we have
(So)* = (2Sp)* = SHbt om0 g
'E S = 18p. = Sipr = Spopy:

If £is N, we have

(Si)* = (1SW)*" = S 2 8% = 28y = Soe

Lemma 3.12 (Basic Lemma)
Let {S;} be a logical®-predicateX = x; : Ny, ..., X, : N, be a context of DCP, andI’, A
be contexts of thau-calculus. For ang € Sy:(I'; A) (1 <i < n), the following hold.

(1) If - Z; k: N, thenk[s;/X1,. .., S/%] € Sn(T; A).
(2) f FX; u: P, thenu[s;/Xg,...,S/%] € Sp(T’; A).

(3) If + XZ; 7, thent[s /X1, ..., S/X%] € B([; A).

—114-—

Proof. By induction on the derivation of DCPWe consider the last rule of the derivation.
Case of (Ax)-rule: it is immediate from the hypothesis.
Case of (Cut)-rule: Suppose thak, A ; tekis derived from- X ; t: Pandr A ; k: P+ by
(Cut)-rule. By induction hypothesis, we hai[&/X] € Sp("; A) andk[5/X] € Sp.(T'; A) =
ST A). Hence we obtain

(te K)[5/X] =t[5/X] e K[S/X] € B(';A) .

Case of®-rule: Suppose thatX, A ; teu: PeQisderivedfrom-X; t: Pand- A; u: Q
by ®-rule. By induction hypothesis, we havis/X] € Sp(I'; A) andu[S/X] € So(l; A).
Hence we obtain
(teu[s/K] =t[S/X] ® u[S/X] € (Sp, Sp)(I; A) C (Sp, Sp)(T; A)
= (Sp®SQ)(I; A) = Spea(l'; A)
Case of®-rule: Suppose that £ ; (y,27 : N»® M is derived from- Xy: N,z: M ; 7
by ®-rule Lets € S (I54) (1 <i < n),andl’ c I, A ¢ A" andt € Sn.(I";A") and
ue Sy (I"; A'). By induction hypothesis,
(teu) e ((y.27)[S/X] = (teu) o (y, (r[S/X]) = 7[S/X. t/y,u/7 € BI; A) .
Therefore we obtain
((y, 27)[S/X] € (Sne, Sme) (T A) = (S Sip) (T A) = (Sn B Sw)([T; A) = ST A)

Case of I-rule: Suppose thatz ; 'k : IN is derived from- X ; k : N by !-rule LetI" c I”,
Ac A and?e (Sy)°(I;A), e, t e (SHI;A). Sincek[5/X] € Sn(T; A) by induction
hypothesis,

('K)[s/X] @ 2t = I(k[S/X]) @ 2t =t e (K[S/X]) € B(;A) .

So, we obtain
(K[Z/K] € (SH))T; A) = ISN(T; A) = SN A)

Case of the ?-rule: Suppose thak ; 2 : ?P is derived from+ X ; t : P by ?-rule Since
t[S/X] € Sp('; A) by induction hypothesis, we obtain

(M[S/K] € SAT; A) C (SP)H(T; A) = 2Sp(T; A) = Sop(T; A) .

Case of (Focus)-rule: Suppose thaX ; z7 : N is derived from+ X,z : N ; 7 by (Focus)-
rule. Foranyi” > I', A’ > A andt € Sy(I'; A'),

te (z7)[S/X] = te z(r[§/X]) = 7[S/X.t/Z] € B(I"; A')

—-115-

by induction hypothesis. So, we obtain
(z7)[S/R] € S§* ([4) = Sn(I5 4) .

Case of (Unfocus)-rule: Suppose thhak,z : N ; ze k is derived from+ X ; k : N by
(Unfocus)-rule. For any e Sy (I'; A), by induction hypothesis we have

(ze K)[S/X.t/Z = te K[S/X] € B([; A) .

Case of (Weakening)-rule: We now consider the case of positive terms. Suppose that
>,z. N; t: Pis derived from- X ; t: P by (Weakening)-rule. Sinceis a fresh variable,
we have the conclusion of this case by induction hypothesis as follows:

t[S/X, s/Z] =1[5/X] € Sp(T; A) .

It is similarly shown the case of negative and neutral terms as this case.

Case of (Contraction)-rule: We now consider the case of positive terms. Suppose that
>,z2. N; t[z/x z/y]: Pis derived fromr Z,x: N,y: N ; t: P by (Contraction)-rule. Then,
we have the conclusion of this case by induction hypothesis as follows:

(t[z/x, z/YD[S/X, s/ = t[S/X, s/%, s/Y] € Sp(L; A) .

It is similarly shown the case of negative and neutral terms as this case.]

3.6 Fullness of the negative-translation

In this section, we discuss onllge negative-translatiartherefore we considéiw] and[r]]
as the images off andr by the negative-translatian

Definition 3.20

For a typeA and context$’, A of the Au-calculus, we define
B°([;A) == {r € D2(T;A) | Jo € AX(T; A) (r = [o])}, and
PA(T; A) = {k € D3.(T5 A) | Gw € AL(T; A) (k= Tw]) .

Lemma 3.13
B° is aD°-predicate onL, andP, is a®D°-predicate orA°.

—116 —

Proof. For each case, we will check them@notonicity) and gquality) condition of ©°-
predicate.

(monotonicity): Assumel’ c I, A c A’. If T € B°(T"; A), then there is a € A*(T"; A) C
A¥(I'"; A’) such thatr = [[o]. So, we have € B°(I"; A’"). Suppose we pick & e PA(T; A),
then there is av e A,,(T'; A) c AL(I”; A’) such thak = [[w]. Hence we havi € PA(I”; A).
(equality): Supposer € 8°(I';A) andr = 7/, then there is a= € A#(I"; A) such that
7 = 1 = [o]. Therefore, we have’ € B8°(I'; A). And suppose&k € P,(I'; A) andk = k'.
Then there is av e A}(T; A) such thak’ =k = [w]. Hence we havi’ € PA(T; A). O

Lemma 3.14
(i) If @ : A€ A, thena € P4(I'; A) for anyT.
(i) If x: AeT, thenx e ?®,)*(I'; A) for anyA.

Proof. (i) Supposex : A € A andI” > I'andA” o> A, k € Po(I"";A’). There exists
w e A4(I”; A) such thak = [w], and therv e k = a o [w] = [W], = [[e]w] € 8°(T"; A').
Thereforeax € PA(T'; A).

(ii) Supposex : A € I'. Notice that (Pz)* = (Px))*** = ((Px))*. So, we will prove
X € (P))*(;A). Foranyl” > T'andA’ o A, k € (Py)°(I";A’). Then there exists
t € Po(I"; A’) such thak = 2. Thereforexek = xe A =[[X]; =te [X] € B°(I"; A’) and so
X € (PA))(IT; A). O

Lemma 3.15
Pyt =Pa

Proof. It suffices to showP,~ c Pa. Take anyl', A andk € Py*(I';A). We havea €
Px([; A, e : A) from the previous lemma, therefosies k € 8°(I'; A, o : A). So, there exists
a Au hnamed-term, say, such thair ¢ kK = [o]. Then we obtairk = a.(a e k) = a.[c] =
a.([ol[e/a]) = a.lua.cll, = [ua.ol € Pa(T; A). O

Lemma 3.16
LetT’, A be contexts of thau-calculus and € (?P;)*(T'; A). Then there is av € AL(T; A)
such that = !]w].

Proof. Supposeé € (?P;)*(I"; A), thent is a positive term of typeA°. So,t is a variable or
there is & € D;.(I'; A) such that = 'k. If tis a variable, say, thenx: AeI"andx = X

—-117 -

Otherwise lef” > T, A’ > A andu € Px(I"; A’). Then iis in (P5)°(I"; A”) and sou e k =
ke 2u € B°(I"; A) because of @;)* = ((Px)?)*. Then we obtairk € P5*(T; A) = Pa(T; A).
So, there is au-termw € A4(T; A) such that = 'k = ITw].

Lemma 3.17
Pt ¥ Pg =Pase

Proof. (<) : We take anyl" and A, and letk € (7P, ® Pg)(I';A). Since P, ® P =
((Px)*, Pg)t andx € (PPy)*(Ix : AJA, e @ B) ande € Pg(I',x : AjA,a : B), we have
(Xx®a)e ke B°(I',x: A;A, a : B). Therefore there existsu named-terny- such that- €
A, x: A A, : B)yandx®a ek = [o]. Then we obtaik = (X, @)(Xa ek) = (X, @)[c] =
(% @)[pa.cla = 2(ze (% @)[pa.ol.) = Z[Axua.o]l, = [Axua.o] € Pa_p(T; A)

Conversely, if we assumie € Pn_g(I'; A) for anyI" and A. Then there exists au-
termv € A4 4(T;A) such thatk = [v]. On the other hand, assurfiec T", A c A,
t € (P)*(I"; A’) andu € P5(I"; A'), there is alu-termw e A,(I"; A’) such that = wl
by the previous lemma. Thengu) ek = ({Tw]®@U) @ [V] = [V]feu = [VW, = Ue VW] €
B°(I"; A’). Therefore we obtaik € ((?Py)*, P5)*(I; A) = (7Px ¥ Pe)(I'; A).

Proposition 3.18
There is a logica®°-predicatgP,} such thaP, = Pa holds for anyiu-typeA.

Proof When we defin@y. = Px, Px := Px* andP, := $°, then the logica®°-predicate
{E} is defined recursively. Now, we cheBk. = Pa holds for anylu-typeA. This is shown
by induction onA. WhenA is the basic typeX, it is trivial. For the case of arrow type
A — B, we have

—~ —~ ~ _—~ |H
Paspe = Popeyrype = Pa B Ppe = Pa ¥ Pg = Pasp

Then we obtain the following theorem immediately by applying the Basic Lemma and
Lemma 3.14 tqﬁr}.

—-118 —

Theorem 3.19 (fullness of the negative-translation)
LetT" andA be contexts of thau-calculus, and suppose?([™)*,A° ; k : A°. Then there
existsw € AL(T; A) such thak = [w].

Proof. Forallx: AeTande : Be A, xe ?@)([;A) = ?Q’E’;jo)l(r; A) = TP\(?(Ao)L)L(F; A),
anda € Pg.(I; A) = TP%O(F; A) = 7P7(Bo)l(l“; A) hold. So, we now apply the Basic Lemma for
the IogicalD"-predicate{fP%}, then we obtairk = K[X/X, @/@] € Pa(T; A) = Pa(T; A). This
means there is gu-termw € A4(T'; A) such thak = [w.

3.7 Fullness of the positive-transiation

In this section, we discuss onlige positive-translationtherefore we considdw] and[]
as the images o andr by the positive-translation

Definition 3.21

For a typeA and context$’, A of the Au-calculus, we define
B*([;A) = {r € DI(T;A) | Jo € AT A) (r = [o])}, and
Ra(T; A) = {te DA.(T;A) | AV € AL(T; A) (t=V)).

Lemma 3.20
B* is aD*-predicate onL, andR, is aD*-predicate orA°.

Proof. For each case, we will check the@notonicity) and gquality) condition of ©°-
predicate.

(monotonicity): Assumel” c I” andA c A’. If T € B8°(T'; A), then thereis & € A*(T'; A) C
A*(I"; A’) such thatr = [o]. So, we haver € 8°(I”; A’). Now, suppose we pick tie
Ra(T; A), then there is a valué € A,\(T; A) ¢ A (I”; A’) such that = V*. Hence we have
t € Ra(I"; A).

(equality): Supposer € B8°(I';A) andr = 7/, then there is a= € A#(I"; A) such that
7 =1 = [[o]. Therefore, we have € 8°(I'; A). And suppose € Ra([; A) andt = t’. Then
there is a valu&/ € A\(T'; A) such that’ = t = V*. Hence we havé € Ra(T; A). O

Lemma 3.21
Lett be a positive term. Then= (X, a)(t e ?(X® @)) for any x, a ¢ FV(t).

—-119 -

Proof. This can be shown as follows:

I(X,a)(te?X® @) = (X, a)('z(t e 72) e ?(X®)
— (X a)(X® a) o (t ?72))

— lz(te?2 —t .

Lemma 3.22
RXJ‘ = RA.

Proof. Firstly, we consider the case when the typis an atomic typeX. SinceD§(I'; A) =
{x | x: X € I'} (because variables are the only terms of the atomic ¥p&x(['; A) c
Ryt (I A) c {x| x: X eT}. If x: XisinT thenx € Rx(T; A) sincex = x* andx € AL (T; A).
So, we obtairRx(I"; A) = Ry (I'; A).

Secondly, we consider the case when the tjae an arrow typeA — B. We claim
that ?k® @) € Ry (I, X : AJA,a : B) since foranyi” > (I',x : A), A’ > (A, e : B) and

t € Rag(I”; A), there exists a valué such thalv* = t and we obtain

te?X®a) =V e ?(x®a) =!Z(V" ¢ ?2Z® a)) ® 2X = [X]liz(v+e2(z2a))
= [VXl, = [[a]VX] € B°I"; A').

Now, assumes € Ry%(I'; A). Sinceue ?(x®) € B°(I', x : A; A, a : B), then there exists
a named-termr in A#([, x : A; A, a : B) such thaf[r] = ue ?(X® @). By Lemma 3.21, we

haveu = (X, @)(Ue ?(X® @)) = (X, @)[7] = (X, @)[ua.t], = (AXua.7)" € Rag(;A). O

Lemma 3.23
() If x: AeT, thenx e Ra(I'; A) for anyA.
(i) If @: A€A, thena € RF(T; A) for anyT.

Proof. (i) Supposex: A € T, thenx € A,(T’; A) for any A. Hence we havex € Ra(l; A)
sincex = X'.

(i) Supposea: A€ A,T c I", A c A’ andk € Ri(I"; A’). Then there is & € Ra(I"; A")
such thak = 7, so there is & € A\(I"; A’) such that = V*. Hence we have

aek=aeA=aeN =[V], =[[a]V] € B°I";A) .

Therefore we obtair € R2H(T; A). O

—-120 -

Lemma 3.24
RA(T; A) = { ke D3, (T;A) | Iw € AL(T; A) (Tw] = K) }

Proof. (c): Assumek € ZRA(T; A) = RZ-(T; A), there exists a named-terne A“(T; A, a

A) such thatx e k = [7] sincea € R (I'; A, e : A) from the previous lemma. Hence, we
havek = a.(@ o k) = a.[7] = [ue.7] € RHS.

(2): Assume that there exists € A,\(T;A) such thatk = [wl, and supposé&” > T,
A’ > A andt € R*(I"; A’). Sincex € Ra(I”, X : A; A’) from the previous lemma, we have
?x € RA(I",x : A;A’). Hence there exists a named-terme A*(I",x : A;A’) such that
te ?x = 7] = [ua.7],. SO, we have X, @)(t e 2X) = (X, @)[ua.7], = (AXua.7)*. Therefore
we obtaint = !x.(t e 2X) = IX.(I(X, @)(t @ 7X) @ ?2(X® @)) = IX.((AXua.7)" ® ?(X® @)). Hence,

t o k=Ix((Axua.7)* o 2X® @)) [WI = [Wllix ((ixc.7)* o 2(x2)
= [(Axua.t)W], = [[a](AXua.T)W] € B*(T7; A").

So, we obtairk € RZ-(T; A) = 7RA(T; A). O

Lemma 3.25
Rasp = (Ry ® 7Rp)

Proof. (c): GivenI andA, supposé € Rag([; A). There exists a valu€ € A, ,(T; A)
such that = V*. By Lemma 3.21, we have= V* = I(x, a)(V* e ?(X® «)) for fresh variables
xanda. LetI” D T, A’ D A, u € Ry(I"; A’) andu” € (?Rg)*(I""; A’). Then there exists a
valueW e A, (I"; A’) such thau = W*. So we have

URU) e (X a) (V' o 2x®a)) = (W @ U)o (x,a)(V" e 2(X® a))
=V e?2W'QU) =12(V' e ?2Z® U)) ¢« ANV
= [Wliz(v+e2@zuy = [VWIy
=u e [VW] € B (I A)

since[VW] € 7Rg(I"”; A’) from the previous lemma. Hence we obtaind)(V* e ?(X®a)) €
(Ra, (7R)*)*(I"; A), and then we have

t=1(x a)(V* ® 2X® a)) € I(Ra, (PRp)*)*([; A) = I(RE X 7Rg)(T;A) .

(0): Assumet € [(Rx® 7Rg)(I; A) = (Ra, (Rp)")*+7(T; A). Sincex € Ra(T, X : A; A) and
a € (Rp)(I'; A, @ : B) from Lemma 3.23, there exists a named-tereA*(I', X : A} A, a :

—-121 -

B) such that e ?(x® @) = [r]. Therefore we obtaih=!(x, a)(t e ?(x® @)) = (X, @)[7] =
I(X, @)[ua.t], = (AxXua.1)" € Rapg(l; A). |

Now, we can prove the following proposition similar to as Proposition 3.18.

Proposition 3.26
Then there is a IogicaiD'-predicate{TR%} such thafR, = Ra holds for any typeA of the
Au-calculus.

Proof When we defin®y = Ry, Ry := Rx* andR, = B°, then the logica®*-predicate
{R.} is defined recursively. Now, we chell. = R holds for anyiu-typeA. This is shown
by induction onA. WhenA is the basic typeX, it is trivial. For the case of arrow type

A — B, we han’Rg(A—)B)' = E!((AO)L?S’?BO) = I(ﬁj‘. % ?nggo) Ig. I(Rk % 7RB) Lem:3.25 Rasp O

Therefore we have the following theorem by applying the Basic Lemma and Lemma 3.23
to {R,}.
Theorem 3.27 (fullness of the positive-translation)
LetI" andA be contexts of thau-calculus, then the following hold.
(i) if F ()%, ?A°; t: A® then there exist¥ € AL (T'; A) such that = V*.
(i) if + (I*)*,?A°; k: ?A° then there exista/ € A\(T'; A) such thak = wl .

Proof. By Lemma 3.23 and Proposition 3.26, we have

X € RA(T; A) = Rae(T; A) = RE(T; A) = Riarye+ (T A), and
a € RF(T; A) = R%(T; A) = RE4(T; A)
= (Re)*([; A) = Rigey: (T; A)

forall x : A e I'anda : B € A. So, we now apply the Basic Lemma for the logical
D°-predicateR,}, then we obtain:

(i) t = t[X/R @/@] € Ra([;A) = Ra(T; A). This means there is a valiee AN,L(T; A) such
thatt = V*, and

(i) k = K[R/X, @/@] € Roa(T; A) = 7RA(T; A). By Lemma 3.24, This means there isja
termw e A4(T; A) such thak = [w]. O

—-122 —

Chapter 4

Conclusion and Future Work

Conclusion

The main aim of the thesis was to observe the relationship between the computational duality
and the logical duality. The computational duality is the duality between the call-by-name
and call-by-value strategies. The logical duality is the duality of classical logic so-called de
Morgan'’s duality. This logical duality of classical logic appears as right and left symmetry
of Gentzen’s sequent calculus LK, and positive and negative duality of Laurent’s polarized
linear logic. Wadler’s dual calculus was a suitable system for researching this logical duality.
Chapter 2 discussed the relationship between the computational duality of call-by-value
call-by-name and the logical duality of LK. Especially, to study the relationship between the
computational procedure and the cut-elimination procedure of LK, we replaced the equali-
ties in Wadler’s paper with reductions. We first analized Wadler’s results, and specified the
problematic rules of thau-calculus that cannot be simulated by the reductions of the dual
calculus. These problematic rules are not essential rules djtealculus because they are
not the normalization procedures of proofs, and there is no influence even if we remove these
rules from call-by-value system. We refined the call-by-value and the call-by-name systems
of the Au-calculus and the dual calculus by deleting these problematic rules. These systems
are defined as reduction systems. Then we gave the call-by-name translations between the
call-by-nametu-calculus and the call-by-name dual calculus, and showed that these trans-
lations preserve call-by-name reductions and satisfy reloading property. We also gave the
call-by-value translations between the call-by-valwecalculus and the call-by-value dual
calculus, and showed that these translations satisfy the properties similar to the call-by-name
translations. Then we introduced the translation from the call-by-nar@lculus into the

—123 -

call-by-value one and its inverse translation by composing the above translations via the
dual translations on the dual calculus. Finally, we proved that these translations preserves
reductions and reloading property from the above results. The results of this chapter showed
duality between the call-by-name and call-by-valgecalculi as reduction systems. This
means that we succeded to give the best possible answer to Wadler's open question.
Chapter 3 discussed the relationship between the computational duality of call-by-value
call-by-name and the logical duality of positiveegative. We introduced a term calculus for
a suficiently large fragment of Laurent’s polarized linear logic, called polarized dual calcu-
lus DCP, which is based on the idea of the dual calculus. Then we defined two translations
from the call-by-namgthe call-by-valuelu-calculi into DCP, and showed their soundness
of derivations and reductions. Finally, we proved the fullness of these translations in a way
similar to the logical predicate method used by Hasegawa.

Future Work

In Chapter 2, we gave the best possible answer to Wadler’s open question, hutchleuli

and the dual calculi that we had introduced did not enjoy storongly normalization. This
fact does not necessarily mean these systems are meaningless. Actually, Tzevelekos [47]
showed that the dual calculus satisfies strongly normalization and Church-Rosser property
by assuming appropriate side-conditions. There is a possibility thayieaalculi can be
refined to satisfy strongly normalizing and Church-Rosser property if we assume some side-
conditions.

Another work in the future is to extend the results in this thesis. If we want to apply
our results to more practical and powerful programming languages, we should discuss and
extend our results about two important concepts: a fixed-point operator and data types. From
this motivation, Kakutani [32] extended thig-calculi by adding a fixed-point operator and
an iteration operator to the call-by-name system and the call-by-value one respectively. He
followed Selinger’s category-theoretic approach, and showed duality between call-by-name
recursion and call-by-value iteration. Therefore we might be able to extend the results in
this thesis via this line, and explain the duality between recursion and iteration by Wadler’s
syntactical approach.

—124—

Bibliography

[1] Y. Akama. On mints’ reduction for ccc-calculus. Th.CA '93: Proceedings of the

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

International Conference on Typed Lambda Calculi and Applicatigrages 1-12,
London, UK, 1993. Springer-Verlag.

R. M. Amadio and P.-L. CurienDomains and Lambda-CalculNumber 46 in Cam-
bridge Tracts in Theoretical Computer Science. Cambridge University Press, 1998.

F. Barbanera and S. Berardi. A strong normalization result for classical IAgitals
of Pure and Applied Logic/6(2):99-116, 1995.

F. Barbanera and S. Berardi. A symmetric lambda calculus for classical program ex-
traction. Information and Computatiqri25(2):103-117, 1996.

H. Barendregt. Lambda calculi with types. Handbook of Logic in Computer Sci-
ence, Volumes 1 (Background: Mathematical Structures) and 2 (Background: Compu-
tational Structures), Abramsky Gabbay& Maibaum (Eds.), Clarendorvolume 2,
pages 117-309. Oxford University Press, Inc., 1992.

P. N. Benton, G. Bierman, and V. Paiva. Computational types from a logical perspec-
tive. Journal of Functional Programming@(2):177-193, 1998.

A. Church. A formulation of the simple theory of type3ournal of Symbolic Logic
5(2):56-68, 1940.

T. Coquand and G. Huet. The calculus of constructitmf®rmation and Computatign
76(2-3):95-120, 1988.

P.-L. Curien and H. Herbelin. The duality of computationl@iP '00: Proceedings of
the fifth ACM SIGPLAN international conference on Functional programpnpages
233-243. ACM Press, 2000.

—125—

[10] H. B. Curry and R. FeysCombinatory Logi¢cvolume |. North-Holland Publishing
Company, Amsterdam, 1958.

[11] V. Danos, J.-B. Joinet, and H. Schellinx. LKQ and LKT: Sequent calculi for second
order logic based upon linear decomposition of classical implication. In Jean-Yves
Girard, Yves Lafont, and Laurent Regnier, editgkdyances in Linear Logjo/olume
222 ofLondon Mathematical Society Lecture Note Seneges 211-224. Cambridge
University Press, 1995.

[12] V. Danos, J.-B. Joinet, and H. Schellinx. A new deconstructive logic: Linear logic.
Journal of Symbolic Logi2(1):755-807, 1997.

[13] P. de Groote. A CPS-translation of thg-calculus. InProceedings 19th Intl. Coll.
on Trees in Algebra and Programming, CAAP’94, Edinburgh, UK, 11-13 Apr, 1994
volume 787, pages 85-99, Berlin, 1994. Springer-Verlag.

[14] P. de Groote. Strong normalization of classical natural deduction with disjunction. In
Fifth International Conference on Typed Lambda Calculi and Applications, TLCA'01
volume 2044 oL ecture Notes in Computer Scienpages 182-196. Springer-Verlag,
2001.

[15] Ken etsu Fujita. A sound and complete cps-translation for lambda-mu-calculus.
In Typed Lambda Calculi and Applications, 6th International Conference, Valencia,
Spain, June 10-12, Proceedingmges 120-134, 2003.

[16] M. Felleisen, D. P. Friedman, E. Kohlbecker, and B. Duba. A syntactic theory of
sequential controlTheoretical Computer Sciencg?(3):205-237, 1987.

[17] A. Filinski. Declarative continuations and categorical duality. Master’s thesis, Univ.
of Copenhagen, 1989.

[18] H. GeuversLogics and Type SystenBhD thesis, University of Nijmegen, 1993.

[19] N. Ghani. Beta-eta equality for coproducts.Rroceedings of TLCA'95humber 902
in Lecture Notes in Computer Science, pages 171-185. Springer-Verlag, 1995.

[20] J.-Y. Girard. Interprétation fonctionelle et élimination des coupures dans
I'arithmétique d’ordre supérieurPhD thesis, Univ. Paris VII, 1972.

—126 —

[21] J.-Y. Girard. The system F of variable types, fifteen years |dtieeoretical Computer
Science45(2):159-192, 1986.

[22] J.-Y. Girard. Linear logicTheoretical Compter Sciencg0:1-102, 1987.

[23] J.-Y. Girard. A new constructive logic: classical logiMathematical Structures in
Computer Sciengéd. (3):225-296, 1991.

[24] J.-Y. Girard, P. Taylor, and Yves LafontProofs and types Cambridge University
Press, New York, NY, USA, 1989.

[25] T. G. Griffin. A formulae-as-type notion of control. POPL '90: Proceedings of the
17th ACM SIGPLAN-SIGACT symposium on Principles of programming languages
pages 47-58, New York, NY, USA, 1990. ACM Press.

[26] M. Hasegawa. Logical Predicates for Intuitionistic Linear Type TheoriesTyped
Lambda Calculi and Applications (TLCA'99)olume 1581 of_ecture Notes in Com-
puter Sciencgpages 198-212. Springer-Verlag, 1999.

[27] M. Hasegawa. Girard translation and logical predicalearnal of Funct. Prog.pages
77-89, 2000.

[28] H. Herbelin. A lambda-calculus structure isomorphic to gentzen-style sequent calcu-
lus structure. InNCSL '94: Selected Papers from the 8th International Workshop on
Computer Science Logipages 61-75. Springer-Verlag, 1994.

[29] J. Roger Hindley.Basic simple type theoryCambridge University Press, New York,
NY, USA, 1997.

[30] W. A. Howard. The formulae-as-types notion of construction. In J. P. Seldin and J. R.
Hindley, editors;To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism pages 479-490. Academic Press, Inc., New York, N.Y., 1980.

[31] C.B.Jay and N. Ghani. The virtues of eta-expansimurnal of Functional Program-
ming, 5(2):135-154, 1995.

[32] Y. Kakutani. Duality between call-by-name recursion and call-by-value iteration. In
CSL '02: Proceedings of the 16th International Workshop and 11th Annual Confer-
ence of the EACSL on Computer Science Logages 506-521, London, UK, 2002.
Springer-Verlag.

—-127 —

[33] O. Laurent. Etude de la polarisation en logiqué>hD thesis, Univ. Aix-Marseille 2,
2002.

[34] O. Laurent. Polarized proof-nets ang-calculus. Theoretical Computer Science
290(1):161-188, 2003.

[35] O. Laurent, M. Quatrini, and Lorenzo T. de Falco. Polarized and focalized linear and
classical proofsAnnals of Pure and Applied Logit34(2—-3):217-264, 2005.

[36] O. Laurent and L. Regnier. About translations of classical logic into polarized linear
logic. In Proceedings of the eighteenth annual IEEE symposium on Logic In Computer
Sciencepages 11-20. IEEE Computer Society Press, 2003.

[37] E. Moggi. Computational lambda-calculus and monadsPrisceedings 4th Annual
IEEE Symp. on Logic in Computer Science, LICS’89, Pacific Grove, CA, USA, 5-8
June 1989pages 14-23. IEEE Computer Society Press, Washington, DC, 1989.

[38] E. Moggi. Notions of computation and monaddnformation and Computatign
93(1):55-92, 1991.

[39] C-H.L.OngandC. A. Stewart. A curry-howard foundation for functional computation
with control. InProc. of the Symposium on Principles of Programming Languages
pages 215-227, 1997.

[40] M. Parigot.Au-calculus: an algorithmic interpretation of classical natural deduction. In
Proc. of International Conference on Logic Programming and Automated Deduction
volume 624 ofLecture Notes in Computer Sciengages 190-201. Springer-Verlag,
1992.

[41] Michel Parigot. Free deduction: An analysis of "computations” in classical logic. In
RCLP, pages 361-380, 1991.

[42] G. D. Plotkin. Call-by-name, call-by-value and the lambda-calculheoretical Com-
puter Sciencgl(2):125-159, 1975.

[43] J. C. Reynolds. Towards a theory of type structure.Ptagramming Symposium,
Proceedings Colloque sur la Programmatjopages 408—-423, London, UK, 1974.
Springer-Verlag.

—128 —

[44] A. Sabry and M. Felleisen. Reasoning about programs in continuation-passing style.
In Lisp and Symbolic Computatipf(3/4):289-360, 1993.

[45] P. Selinger. Control categories and duality: on the categorical semantics of the lambda-
mu calculus Mathematical Structures in Computer Sciengages 207-260, 2001.

[46] A. S. Troelstra and H. Schwichtenber@asic proof theory Cambridge University
Press, New York, NY, USA, 1996.

[47] N. Tzevelekos. Investigations on the dual calculd$ieoretical Computer Science
360(1):289-326, 2006.

[48] P. Wadler. Call-by-Value is Dual to Call-by-Name. limernational Conference on
Functional Programming, Uppsala, Swed@ages 25-29, 2003.

[49] P. Wadler. Call-by-Value is Dual to Call-by-Name — Reloaded.Rewriting Tech-
nigues and Applications, Nara, Japgmages 185—-203. Springer, 2005.

[50] Y. Yamagata. Strong normalization of the second order symmetric lambda-mu calcu-
lus. Information and Computatiqri93(1):1-20, 2004.

—-129 —

