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Abstract 

Named entity recognition (NER) in the molecular biology domain, the task of identifying and 
categorizing molecular entities appearing in text, is one of the most important tasks in a 
biological text mining engine. In general, this task is taken as the first step towards the more 
ambitious task of molecular event extraction (relation extraction) and, eventually, pathway 
discovery. However, NER in this scientific domain, which seems to be the easiest task among 
others in text mining, still achieves quite low performance. As can be seen from the most 
recent shared-task evaluations of NER in this domain (JNLPBA-2004), the best performance 
in terms of F1-score is only 72.6. This result is far below what is achieved by NER system in 
newswire domain (F1-score of about 96%) which is near the human level of performance. At 
present, most NER systems employ term internal features (e.g., lexical and morphology) and 
co-occurrence information as term external features. Due to the lack of molecular naming 
convention, which leads to the difficulty of terminological variations as well as the difficulty 
of polysemy (i.e. the sharing of names between different entities), such features are 
insufficient to handle the difficulties for NER in the molecular biology domain. To obtain a 
complete set of rules for lexical patterns of molecular names seem impossible, thus to use 
term external features other than co-occurrence information is of interest. 

In this thesis, the semantic relationships between a predicate and its arguments in terms of 
semantic roles are proposed to enhance NER system in the molecular biology domain. The 
semantic role information is derived from a predicate-argument structure (PAS) which is a 
higher sentence representation level than syntactic relation and surface form levels. Thus, the 
use of semantic roles is more consistent than co-occurrence information derived from a 
surface level. To employ the semantic role for NER system, it is realized in various sets of 
syntactic features which were used by a machine learning model to explore the most efficient 
way in allowing this knowledge to provide the highest positive effect on the NER. 

As a result, the best feature set is composed of the 6 lexical features (i.e., surface word, 
lemma form, orthographic feature, part-of-speech, phrase-chunk and head word of NP-chunk) 
and 4 PAS-related features for representing an argument’s semantic role (i.e., predicate’s 
surface form, predicate’s lemma, voice and the united feature of subject-object head’s lemma 
and transitive-intransitive sense).  Moreover, the use of semantic roles can show the positive 
effects for only the predicates conforming to the criteria as follows. A predicate must have its 
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arguments as both agent and theme with a higher probability of belonging to a named entity 
class than non-named entity class; otherwise, a predicate must have its arguments as both 
agent and theme with a lower probability of belonging to a named entity class than non-
named entity class and the number of training examples for this predicate should be large 
enough (by observing from empirical evidences, at least 270 sentences). The improvement in 
performance obtained from the NER system using PAS-related features, compared to not 
using these features, affirms that the using of semantic roles can enhance NER system.  
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Chapter 1 
Introduction 

Recently, the field of molecular biology has brought about the rapid growth in the volume 
of scientific literature published online in order to report experimental results. To make 
use of these free-text articles which are readable only by humans for further analysis (i.e., 
to find connected information among research or to discover information implicit 
conveyed in the text), the articles require to be transformed into machine-readable formats 
such as data base or ontology. The need for a structured representation can be seen from 
the human efforts to construct databases such as BIND (Bader et al., 2001), KEGG 
(Kanehisa et al., 2002), DIP (Xenario et al., 2002), MINT (Zanzoni et al., 2002). As the 
production rate of literature is very high, it is hard for human curators to maintain up-to-
date database resources. Information extraction (IE) systems that aim to identify and 
extract required facts mainly from documents, as well as relate and integrate these facts 
from multiple sources are considered to be an important remedy for biology researchers. 

At present, most researches of biomedical IE systems pay their attentions to two main 
targets: recognition of molecular named entities and recognition of relationships among 
named entities. These two targets are on the way to reach the goal of discovering 
biological pathways which is a network of interactions and events between biological 
molecules (e.g., proteins, drugs). Although IE systems in the molecular biology domain 
benefit from the techniques of traditional IE which are used efficiently in the news 
domain, the overall performance of the molecular biology IE systems for both named 
entity recognition (NER) and relation extraction are still far from the levels where they 
can be used to replace the human curator.  

This thesis focuses to enhance traditional NER system in the molecular biology domain 
by using the deeper knowledge than the knowledge derived from syntactic and surface 
form levels. The semantic relationships between a predicate an its arguments in terms of 
semantic roles are proposed to enhance NER system.  
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1.1 Motivation 

A proposition conveyed in a sentence can be represented in a semantic representation 
level such as a predicate-argument structure (PAS). The relationships in terms of semantic 
roles between a predicate dictating the event and its arguments as containing entities 
participating in the event are represented in a PAS. For example, the PAS representing a 
sentence “John loaded the truck with hay” says that “John” plays the semantic role as “an 
agent or loader” of the event driven by the predicate load, “the truck” plays the semantic 
role as “a beast of burden”, and “hay” plays the semantic role as “a cargo”.1  The 
semantic representation at the level of PAS has its important property that the same PAS 
will be used to represent different surface forms if these surface forms convey the same 
proposition. Thus, a sentence “John loaded hay on the truck” is represented in the same 
PAS frame as the sentence “John loaded the truck with hay”. The capability of PAS to 
unambiguously represent the semantics of an event motivates us to enhance IE systems 
using PAS.  

With regard to the recognition of relationships among named entities, to extract 
proteins participating in protein-protein interaction event from a sentence “These findings 

suggest that Msp1p is a component of the secretary vesicle docking complex whose 
function is closely associated with that of Dec1p” by using a surface syntactic form of “A 
associate with B”, an incorrect pair of proteins “Msp1p” and “Dec1p” is likely to be 
extracted. The knowledge from PAS of predicate associate that “Dec1p” is not an 
argument in this event would help to avoid the extraction of “Msp1p” and “Dec1p” from 
the above sentence. 

In the case of NER which is the target application in this thesis, the hypothesis is that 
an argument’s semantic role should impose type restrictions on the entities within the 
argument. This is founded on the basis observation that a biological event can be realized 
as a predicate and its participating named entities (NEs) as the predicate’s arguments. So 
far, various methods to solve NER problem have been proposed (Fukuda et al., 1998; 
Krauthammer et al., 2000; Kazama et al., 2002; Takeuchi and Collier, 2002; Settles, 
2004; Finkel et al., 2004; Zhang et al., 2004). Most methods rely on two types of 
evidences: the internal evidence and external evidences. The internal evidence is related 

                                                      
1 These semantic role labels are taken from PAS of the predicate load proposed in the PropBank project (Kingsbury and 

Palmer 2002). 
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to lexical information of a term (i.e., orthographic and morphological information). The 
external evidence is the information of co-occurrence of terms appearing in the local 
context of a target term. The overall performances of these systems are still quite low. As 
can be seen from the most recent shared-task evaluations of NER in this domain 
(JNLPBA-2004), the best performance in terms of F1-score is only 72.6. This result is far 
below what is achieved by NER system in newswire domain (F1-score of about 96%) 
which is near the human level of performance. The reason is that the term external and 
internal evidences using so far are sufficient to handle the difficulty of terminological 
variations as well as the difficulty of polysemy (i.e. the sharing of names between 
different entities) in the newswire domain, but not in the molecular biology domain which 
contains higher difficulty. The semantic role which is proposed in this thesis is counted as 
term external evidence as same as co-occurrence information. However, it is derived from 
a PAS which is a higher level than a surface form level where the co-occurrence is 
derived. According to this, the semantic role is rigid to the variation at the surface and 
syntactic levels. The use of this semantic knowledge should be able to enhance existing 
NER systems in the molecular biology domain. 

1.2 Objectives and Approach 

1.2.1 Thesis Question 

The principal question addressed in this thesis is: 

Can the semantic information describing the relationships in terms of semantic 
roles between a predicate and its arguments enhance NER?  

1.2.2 Approach 

The general approach to answering the thesis question has been to apply semantic 
relationships represented in PAS to the molecular biology NER system based on a state-
of-the-art machine learning approach. More specifically, two main subsidiary works have 
been done:  

• Construction of PASBio resource: In order to completely take advantage of a 
set of semantic roles for a predicate, a PAS frame is used as a reference. In 
each PAS frame, a typical set of semantic roles for a predicate used in a 
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particular sense is represented. PAS frames for general English are already 
being constructed in several projects. However, several predicates found in the 
biological text, which is also written in English, have been used in different 
either meaning or behavior from what they have been used in general domain. 
Therefore, it is important to construct PAS frames for this scientific domain. 

• Employment of semantic roles in machine-learning based NER system: 
The objective of this task is to prove the hypothesis that the semantic role is 
useful to improve the performance of traditional NER system. In this, how to 
apply the semantic information of semantic roles for NER system and how 
much the improvement in performance can be gained from employing each 
predicate’s semantic roles are investigated.  

1.3 Contributions 

This thesis makes two distinct contributions to the fields of bioinformatics and 
computational linguistics: 

• PASBio resource: This resource contains frames of predicate-argument 
structure analyzed from the literatures in molecular biology domain and a set of 
annotated sentences corresponding to the frames. Available to download at: 
http://research.nii.ac.jp/~collier/projects/PASBio/. 

• Enhancing NER system by employing deep knowledge represented in 
PAS: Semantic relationships between a predicate and its arguments have been 
applied to improve performance of the state-of-the-art NER system. 
Theoretically, this thesis has shown the relation between semantic roles and 
named entity type. Empirically, this thesis has shown how to efficiently 
represent semantic roles in terms of machine learning features as well as the 
criteria for obtaining positive effect from semantic roles.  

1.4 Reader’s Guide to the Thesis 

The remaining chapters of this thesis are as follows. 

• Chapter 2 provides background knowledge of the IE in molecular biology 
domain, especially the methodology to recognize molecular biology named 



 

 - 17 - 

entities. Also, the chapter includes background knowledge about predicate-
argument structure. The related works are discussed in this chapter as well. 

• Chapter 3 describes in detail the work in this thesis to construct predicate-
argument frames for molecular biology domain 

• Chapter 4 describes in detail about another work in this thesis which is to 
enhance NER by applying the knowledge of semantic relationships represented 
in PAS. Additionally, how to transform PAS knowledge into a set of features 
for machine learning is illustrated in this chapter. 

• Chapter 5 presents conclusions and future works. 
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Chapter 2 
Background and Related work 

In the last decade, the field of molecular biology, aiming to understand about the origin, 
function and structure of living systems has experienced a massive growth in the peer-
reviewed publications reporting experimental results. Most publications are stored in 
computer-based resources retrievable through the Internet such as the PubMed2 organized 
by the National Library of Medicine. To make optimal use of these free-text articles 
readable only by humans, the articles must be transformed into a structured format such 
as a database or ontology. The need of data in the computer-readable format has been 
shown in the construction of several databases such as BIND (Bader et al., 2001), KEGG 
(Kanehisa et al., 2002), DIP (Xenario et al., 2002) and MINT (Zanzoni et al., 2002). A lot 
of human efforts have been taken to build these databases. Because the production rate of 
literature is very high, for example, it is noted in a survey of Cohen and Hunter that 1500 
abstracts per day are added to Medline (Cohen and Hunter, 2004), it is hard for human 
curators to keep database systems up-to-date. As an IE system has its global aim to 
extract the information mainly from documents and relate the pieces of information by 
filling a structured template or a database record, it is considered to be an important 
remedy for biology researches concerning above need . 

This chapter is organized as follows. Firstly, how IE from text, particularly the named 
entity extraction task, has been applied in the molecular biology domain will be 
discussed. Secondly, one of the most important levels of linguistic knowledge that is the 
PAS level will be discussed. Finally, how the PAS seems to be helpful for the task of 
NER in the molecular biology domain will be discussed. 

2.1 Information extraction in the molecular biology domain 

The goal of information extraction (IE) is to provide instances of structured knowledge 
representations from unstructured free-form text. IE systems in general are capable of 
identifying and extracting useful information, as well as relating and integrating 

                                                      
2 http://www.ncbi.nlm.nih.gov/PubMed/ 
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information from multiple sources (Cowie and Lehnert, 1996). Traditionally, IE systems 
with a high influence from the series of evaluation exercises called the Message 
Understanding Conferences (DARPA, 1995; DARPA, 1998) have been successfully used 
to extract information from text in newswire domain. The success of IE systems depends 
on the performance of several subtasks of which the pipeline shown in Figure  2-1(a). A 
traditional IE system generally consists of 5 subtasks: (1) named entity extraction, also 
called named entity recognition, to identify and categorize proper names appearing in text 
such as person names, email addresses, location names; (2) template element task to 
extract instances of features related to each named entity such as age values of persons; 
(3) co-reference task to find and link together all references to the same entity in a given 
text such as identifying the antecedent of each pronoun; (4) template relation task to 
extract  instances of relations among entities such as extracting employment relation 
between entity company and entity person; (5) scenario template task to extract instances 
of events or facts of predefined frames and slots (i.e., to integrate and relate extracted 
facts from all the tasks explained before). IE systems that have actually been deployed in 
the general domain are; for example, ATRANS (Lytinen and Gershman, 1993), JASPER 
(Andersen et al., 1986) and SCISOR (Rau, 1991). 
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Figure  2-1: Subtask pipelines of (a) traditional and (b) molecular biology IE system 
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In the molecular biology domain, IE systems are developed in the similar way of the 
traditional IE to reach the goal of discovering biological pathways which is a network of 
interactions and events between proteins, drugs, and other molecules. However, the 
biological IE system is normally composed of only 2 main subtasks as shown in Figure 
 2-1(b). The molecular NER systems work in the wider scope than the traditional NER 
systems. Because each molecular entity has its unique identity which has been identified 
in the domain ontology such as Gene Ontology GO)3, the extraction of molecular entities 
in some works (Couto et al., 2005; Ehrler et al., 2005) involve also the link between the 
extracted entities from text to the GO concept. This is considered as doing the co-
reference task. In addition, in order to classify the entity to the correct identity concept, 
the information related to the entity (such as which organism this entity is found, what the 
product of this entity is, etc.) described in text must be extracted also. This accounts for 
doing the template element task (i.e. the instances of features related to the entity is 
extracted). Another main task of the molecular IE system is the relation extraction task of 
which the task scope already cover the template relation and scenario template tasks. For 
a traditional IE system which is applied to extract information from the literature in 
general domain, the template relation task captures a relation between two entities; for 
example, the relation “employee of” between person “John” and company “ABC”), next a 
number of these two binaries relation and also properties of the entities are used to fill the 
slots of the scenario template that is predefined to explain the occurrence of a particular 
event. In the general domain, the binary relation between entities itself is often not an 
event. On the contrary, most relations between molecular entities are identified as event 
(e.g., protein-protein, protein-gene and protein-drug). Thus, template relation task and 
scenario template task are merged together to extract relations describing the events in the 
molecular biology domain. The examples of the IE systems in the molecular biology 
domain are summarized below. 

The Highlight system (Thomas et al., 2000) works based on the techniques from SRI 
Menlo Park’s Fastus (Hobbs et al., 1996), a leading performer in the Message 
Understanding Conferences (MUCs)’s evaluation. To capture protein interactions, hence 
only the interactions associated with the verb phrase interact with, associate with, and 
bind to, it uses part-of-speech tagging and partial parsing. Also, discourse analysis is 

                                                      
3 http://www.geneontology.org/ 
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employed to identify co-referring noun phrases. Finally, predefined domain-specific 
patterns are used to map relevant information in the literature. EMPathIE and PASTA 
(Humphreys et al., 2000) are systems that aim to capture enzyme reactions and the system 
to capture information concerning the role of amino acids in protein molecules 
respectively. Similar to the Highlight system, these systems have also been developed 
through five separate component subtasks as defined by MUCs. Pustejuuovsky and 
colleagues (Pustejovsky et al.,  2002) propose the system to extract inhibition-relations by 
using UMLS Thesaurus (Humphreys et al., 1998) as a reference knowledge source for 
named entity extraction and coreference resolution tasks. To extract relations, syntactic 
grammars are defined from intensive analysis over the corpus. Although only inhibition-
relation extraction is examined, the authors claim that the system is applicable for any 
binary relations. Prior systems cover the extraction of relation found between sentences, 
but the system such as SUISEKI (Blaschke, 1999) can only extract a binary relation 
found at a sentence level. Also, the GENIES system (Friedman et al., 2001) and the 
GeneWay system (Rzhetsky et al., 2004) which is an extended version of GENIES do not 
cover cross-sentence relations. However, these systems can extract complicated relations, 
such as relations of relations. For example, the extraction of relations from the sentence 
“phosphorylated Cbl coprecipitated with CrkL, which was constitutively associated with 
the C3G” will result in a form like “[action, attach, [protein, Cbl, [state, phosphorylated]], 
[protein, CrkL, [action, attach, [protein, CrkL], [protein, C3G]]]]” meaning that the final 
relation between “phosphorylated Cbl” and “CrkL” occur after the prior relation between 
“CrkL” and “C3G”. 

Due to the restriction in the access to full length articles imposed by copyright and the 
availability to access publicly MEDLINE abstracts4 , most of the systems mentioned 
above have been developed solely on abstracts. It has been reported that abstracts contain 
higher information density (information content divided by document length) than full 
texts, however a lot of critical information is contained in the body of the text (Shah et al., 
2003; Schuemie et al., 2004). Thus, biological IE systems should aim for further 
development to extract information from full text (Friedman et al., 2001; Corney et al., 
2004; Shi et al., 2005). As the difficulties will increase in full text, the IE system would 

                                                      
4 http://www.ncbi.nlm.nhih.gov/PubMed/ 
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require more sophisticated linguistic processing than it uses to extract information from 
abstracts.   

So far, many efforts have been taken to solve the NER problem as it is the first step in 
biological IE and it seems to be the simplest task compared to others. Various approaches 
have been applied, for instance, dictionary-based approaches (Krauthammer et al., 2000; 
Hirschman et al., 2002; Tsuruoka et al., 2003; Tuason et al., 2004), rule-based approaches 
(Fukuda et al., 1998; Proux et al., 1998; Gaizauskas et al., 2000; Cohen et al., 2002; 
Franzen et al., 2002; Tanabe and Wilbur, 2002; Yu et al., 2002; Narayanaswamy et al., 
2003), and machine learning approaches (Andrade and Valencia, 1998; Collier et al., 
2000; Hatzivassiloglou et al., 2001; Lui et al., 2001; Kazama et al., 2002; Takeuchi and 
Collier, 2002; Lee et al., 2003, Morgan et al., 2003; Shen et al., 2003; Yamamoto et al., 
2003). 

 

tagged sentence : <protein>Cytokines</protein> bind to <protein>hematopoietin
   receptors</protein> and activate <protein>JAK kinases<protein>.

'raw' sentence : Cytokines bind to hematopoietin receptors and activate JAK kinases.

Named Entity Recognition

Relation Extraction
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Figure  2-2: An example of outcomes after named entity recognition and relation                  
extraction 
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With respect to the overall target of extraction, most of the biomedical IE systems aim 
at present on two main targets: (1) recognition of molecular named entities and (2) 
recognition of relationship among named entities. A simplified example of the input and 
output of these two processes is shown in Figure  2-2. These two targets are en route to 
help in molecular pathway understanding. A detailed discussion of named entity 
recognition (NER) is presented in Section 2.1.1 and biological relation extraction in 
Section 2.1.2. The shared-tasks for biomedical IE systems are summarily discussed in 
Section 2.1.3. 

2.1.1 Recognition of molecular named entities 

In the molecular biology domain, named entity recognition (NER) is used to identify 
within the text which text constituents refer to molecular named entities, and then to 
classify the entity into relevant biology concept classes. Molecular named entities include 
genes, proteins, small molecules, chemical molecules, tissues, etc. From the sentence 
shown in Figure  2-2, the result from this NER process is the fact that “Cytokines”, 
“hematopoietin receptors” and “JAK kinases” are protein names. Not only is NER an 
important component of biological relation recognition systems, the task can benefit for 
other applications of biological text mining. For instance, document retrieving where a 
pertinent subset of documents are obtained (Stapley and Benoit, 2000) and document 
clustering where similar documents are grouped together (Willett, 1988). 

Although NER in the molecular biology domain has been receiving attention by many 
researchers for a decade, the task remains very challenging. Its challenges are caused 
mainly by the complex structure of molecular names and the lack of naming convention. 
Organisms that have nomenclatures which are highly controlled by groups of researchers 
will tend to have smaller variations than those without control, making them easier to 
identify. This is affirmed by results reported in the task 1B of BioCreAtIvE (Hirchman et 
al., 2005). Among three model organism databases (i.e., mouse, fly and yeast), genes or 
proteins in the fly database contain the highest ambiguity; followed by mouse and yeast. 
Therefore, the NER systems got the lowest performances when they are applied to fly 
database compared to other two databases. Genes or proteins in the fly database contain 
the highest ambiguity; follow by mouse and yeast (Hirschman et al., 2004). More details 
about the ambiguity or difficulty in recognizing molecular named entity are explained in 
the following section. 
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2.1.1.1 Difficulty of named entity recognition in the molecular biology 
domain 

Several factors that have made the task of biological NER difficult are shown as follows. 

• Lack of naming conventions in biology: Some efforts have been made to 
standardize the naming of biological entities (e.g., Guidelines for Human Gene 
Nomenclature 5 , Drosophila Gene Nomenclature 6  and Standardized Genetic 
Nomenclature of Mice7); however, many biologists often do not follow these 
recommended nomenclatures. This factor is the fundamental cause of other 
difficulties, which will be described in the following. 

• Various patterns of terminology: Some names may be named with standard 
English words, for instance “light”, “map”, “complement” and “Sonic 
hedgehog” are used to name human genes. Some names may be named by 
using alphanumeric, such as “9-cis retinoic acid”. Some names may be named 
like symbols or codes, such as “M(2)201”. Some names, especially protein 
names, may be named by using an amino-acids sequence, such as “amino acids 
[aa] 1 to 25”. 

• Term nesting: Names may be formed by nesting of terms such as 
“[leukaemic[T [cell line]] Kit225]”. The term nesting brings into the question 
that at what level of fine-grained distinctions should be processed. 
Krauthammer and Nenadic mentioned that to also recognize and highlight the 
sub-terms (i.e., “cell line” and “T cell line”) when recognizing the term 
“leukaemic T cell line Kit225” would be valuable in the subsequent term 
identification process (Krauthammer and Nenadic, 2004). The semantic 
categories in the ontology must play an important role for this granularity 
problem.  

• Term coordination: Sometimes two entities are coordinated by their 
arguments, such as “B and T cells” refer to two entities: 1) B cells and 2) T 
cells. Sometimes two entities are coordinated by their heads, such as “adrenal 
glands and gonads” refer to two entities: 1) adrenal glands 2) adrenal gonads. 

                                                      
5 http://www.gene.ucl.ac.uk/nomenclature/guidelines.html 
6 http://tinman.vetmed.helsinki.fi/eng/drosophila.html 
7 http://www.informatics.jax.org/mgihome/nomen/ 
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Also, sometimes there is no coordinating conjunction neither “and” nor “or” 
which makes more ambiguity. For instance, it is difficult to know that “Toll-6, 
-7, -8” refer to “Toll-6”, “Toll-7”, and “Toll-8”, but not “Toll-6”, “-7”, and “-
8”. In addition to the ambiguity to distinct entities within coordinated term, to 
differentiate term coordination from term conjunction is also highly ambiguous 
since term coordination and term conjunction share the same structures. As 
noted by Nenadic and colleagues (Nenadic et al., 2004), “adrenal glands and 
gonads” may be recognized by way of the term conjunction between “adrenal 
glands” and “gonads”. 

• Homonymy: Homonymy, one kind of polysemy8, is the ambiguity that occurs 
when two or more entities have the same name but refer to unrelated meanings 
or objects (Buitelaar, 1998). The homonymy ambiguity is mostly caused by the 
overlapping of acronyms of different entities. For example, the acronym 
“THA” is used for 98 meanings including “total hip arthroplasty”, 
“tetrahydroaminoacridine”, tetrahydro-9-aminoacridine, and so forth; or “GR” 
can refers to both glucocorticoid receptor and glutathione reductase. 

• Systematic polysemy: This kind of polysemy is the ambiguity regarding the 
sameness of name for referring to the objects which systematically relate to 
each others, especially through the complementary of senses (Buitelarr, 1998). 
A gene and its produced protein often have the same name; for instance, 
Hatzivassiloglou and colleagues mentioned in their work (Hatzivassiloglou et 
al., 2001) that they found from the same article the use of term “SBP2” is a 
protein in the sentence “By UV cross-linking and immunoprecipitation, we 

show that SBP2 specifically binds selenoprotein mRNAs both in vitro and in 
vivo” and is a gene in the sentence “The SBP2 clone used in this study 

generates a 3173 nt transcript (2541 nt of coding sequence plus a 632 nt 3’ 
UTR truncated at the polyadenylation site)”. Furthermore, the names of some 
genes are from the related diseases such as “FHM” comes from family 
hemiplegic migraine disease (Erhardt et al., 2005). 

                                                      
8 Polysemy is the ambiguity of an individual word or phrase that can be used (in different contexts) to express 

two or more different meanings.  
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• Many alias names for each entity (synonym): The reason for containing 
many alias names of a molecular entity is mainly because most biologists will 
shorten the name of the prior mentioned entity when mention it again in the 
literature, such as “-150 CD28 response element (CD28RE)/AP-1 site” is the 
same DNA as “-150 CD28RE/AP-1 site”. Interestingly, two entities with 
similar names like one name is the shorter name of another one, but they can 
refer to two distinct entities. For instance, “epidermal growth factor” and 
“epidermal growth factor receptor” are two distinct proteins. It is mentioned in 
the survey paper of Dickman that there are 50-100 alterations every week to 
the nomenclature section of mouse genome database Web page (Dickman, 
2003). This huge increasing volume of alterations for just one organism implies 
the difficulty for named entity extraction among various organisms in the 
molecular biology domain. 

Due to the factors mentioned above, NER task in the molecular biology domain seems 
to be more complex than in the newswire or general domain. More naming convention 
can be found in general domain, for instance, a word initialized with a capital letter must 
be a proper noun, a word containing “Co.” must be an organization name, and a word 
containing “Mr.” or “Ms.” must be a person name. Also, many closed groups of words for 
particular types of named entities are present, such as a group of words referred to months 
are “January”, “February”, “March”, etc. 

2.1.1.2 Existing methods to extract biological named entity 

To cope with the above-mentioned ambiguous and variable nature of names in the 
molecular biology domain, a number of techniques have been proposed. These techniques 
can be roughly divided into three categories: (1) dictionary looking up approach, (2) 
heuristic rule-based approach and (3) machine learning approach. 

2.1.1.2.1 Dictionary looking up approach 

By comparing a word or a string in text with each entry in the existing, manually created 
dictionaries or knowledge resources (e.g., ontology or databases) that contain lists of 
molecular entities is a straightforward approach to recognize entity names. However, if 
only a direct map between a term in text and a term in a reference knowledge source is 
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used, such an exact match is likely to fail due to the term variant problem. As mentioned 
before in section 2.1.1.1, most of the concepts in the molecular biology domain have 
more than one term (e.g., four possible variations of protein name spelling 
“TNFalpha1R”, “TNFalpha-1 R”, “TNF alpha1R”). Thus, the term used to represent a 
concept in terminology resource is perhaps not the one used in its text mention. At least, 
the text mention should be normalized for being compatible to the resource term 
regarding to case, inflection and hyphen variation, as well as word order variation 
(Bodenreider et al., 2002). Another method is generalizing a dictionary entry that is 
replacing dictionary terms with generic placeholders (Bunescu et al., 2004). Two 
dictionaries used in Bunescu and colleagues’ work include the Human Proteome Initiative 
(HPI) 9 and the Gene Ontology Database10. For each term in both dictionaries, Bunescu 
and colleagues isolate and replace numbers with <n>, Roman letters with <r> and Greek 
letters with <g>. So, the term “interleukin-1 beta” would be transformed to “interleukin 
<n> <g>”. So far, the generic dictionary is used instead of the original dictionary. A 
canonical dictionary is also created when more coverage is required. From previous 
example, the final term of “interleukin-1 beta” would be “interleukin”. The method gains 
higher coverage while precision is compensated. 

Another one is the use of the DNA sequence-like strings to represent both input text 
and a dictionary entry (Krauthammer et al., 2000). Then, the Basic Local Alignment 
Search Tool (BLAST)-based identification algorithm is used to compare the DNA 
sequence-like strings of the input text to of a dictionary entry. The recall of 79% and the 
precision of 71% have been achieved. 

The EDGAR system (Rindflesch, 2000) which aims to extract drugs, genes and 
relations is a kind of hybrid technique. The EDGAR is based mainly on direct mapping to 
UMLS with support from the ancillary gene and cell lists. Rindflesch states that UMLS, 
Metathesaurus has wide coverage for drug names, but not genes and cells. This 
corresponds to what is reported from Bodenreider and colleagues (Bodenreider et al., 
2002). Moreover, the ancillary lists are also incomplete, particularly for cell lines. 
Therefore, EDGAR makes use of head noun information to be its clue to identify gene 

                                                      
9 Available to be downloaded at http://us.expasy.org/sprot/hpi/hpi_ftp.html. 
10 Available to be downloaded at http://www.godatabase.org/dev/database/archive. 
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and cell names. For example, if in a string contain the word “cell” as its head then a 
substring before this word would be a cell name. Similar way is applied for gene.  

The success of the dictionary-based approach depends on how efficiently the method 
can do the matching terms between text and dictionary as the method mentioned above 
have focused. Furthermore, its success also depends on the availability and the coverage 
of the dictionaries, as well as how up-to-date dictionaries are. If a dictionary has low 
coverage, even the best matching method has been applied, it would cause high false 
negatives 11. So, the system should not rely on just a dictionary as shown with  the 
EDGAR system. 

2.1.1.2.2 Heuristic rule-based approach 

A second approach relies on heuristic rules aiming to tackle the problem of false 
negatives when named entity terms are missed from the reference dictionary. One of the 
first methods based on hand-built rules was the PROPEP algorithm, Protein Proper-noun 
phrase Extracting Rules (Fukuda et al., 1998). This method used surface clue on character 
strings (e.g., the patterns of capitalization, numbering, and the use of hyphens or special 
characters in terms) to identify protein names from MEDLINE abstracts. This system 
achieved the precision of 94.70% and the recall of 98.84% from the experiments on 30 
abstracts related to SH3 domain12.  

Proux and colleagues (Proux et al., 1998) analyzed the list of gene names for 
Drosophila and showed that Fukuda et al.’s method cannot hold for these groups of genes. 
They make use of linguistic knowledge (i.e., word morpheme and part-of-speech) derived 
from their finite state-based tagger, together with a set of local dictionaries. After this first 
stage of the algorithm, typical words such as species names, units, or common protein 
names are recovered. Then, the contextual clues such as the unknown word, for example 
the “Antp” or “esp” will be validated as gene name if it is located near the word “gene”.  
For their small-scope test set extracted from FlyBase, they achieved good results (91.4% 
precision and 94.4% recall).  

                                                      
11 “False negatives” refers to the terms supposed to be relevant NEs, but the NER system cannot recognize 

from the text. 
12 Hence, “domain” means a discrete portion of a protein with its own function, but does not mean a particular 

field of thought, activity, or interest. 



 

 - 29 - 

The use of contextual clues and dictionaries in addition to lexical patterns is aimed at 
resolving false negatives and false positives 13 problems, respectively. Similarly, Ng and 
Wong’s automatic pathway discovery system (Ng and Wong, 1999) has been augmented 
the lexical rules, which are mainly adapted from the method of Fukuda and colleagues, 
with dictionaries and context clues.  

The ABGENE system (Tanabe and Wilbur, 2002) employs a number of dictionaries 
not only to keep out false positives, but also to recover false negatives. In this system, 
Tanabe and Wilbur use Brill’s part-of-speech tagger (Brill, 1992) to learn transformation 
rules for a single-word gene and protein name recognition. These rules are based on the 
occurrences and part of speech of word and its neighboring words. Then, false positives 
(i.e., wrong genes or protein names) from these results are filtered out if a word matches a 
term in a precompiled dictionary of general biological terms (acids, antigen, etc), amino 
acid names, restriction enzymes, cell lines, and organism names from the NCBI 
Taxonomy Database (Wheeler et al., 2000). Interestingly, this system recovered false 
negative names, which were failed to be recognized by the lexical and contextual rules of 
the Brill tagger, by looking up from a dictionary as Locuslink (Pruitt and Maglott, 2001) 
and an ontology as the Gene Ontology (The Gene Ontology Consortium, 2000). It seems 
to conflict with a prior mentioned that the false negatives are generated from the 
recognition of names based on dictionary. From my viewpoint, the reason could due to an 
imbalance in the corpus used to train the Brill tagger. More precisely, only high frequency 
rules or patterns to capture genes or proteins would be generated, thus even simple names 
could be omitted because of their low frequency. Therefore, dictionaries can cover these 
missing names. On the contrary, the manual built rules (Fukuda et al., 1998; Proux et al., 
1998; Ng and Wong, 1999) are capable of correct capturing simple names, but need 
dictionaries to clean out the wrong complex names. 

Although, the use of rules with a contribution of contextual clues and reference 
resources are very helpful to disambiguate ambiguous bio-molecular names, yet a rule-
based approach inevitably generates a large number of false positives. In biology domain, 
numerous terms are associated with multiple meanings since in many cases a protein 
shares a same name with its associated gene as well as a gene always shares its name with 

                                                      
13 “False positives” refers to the wrong answers given by the NER system (i.e., terms are not required NEs, 

but are suggested by the system as NEs).   
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its transcripts, such as mRNA, rRNA and tRNA (Hatzivassiloglou et al., 2001). 
Supplementally, some terms could be other types of concepts in related domains, like the 
mouse gene “diabetes” has its homonym in the clinical field. It seems to conflict with the 
high performances shown by prior mentioned methods. These outcomes resulted from the 
small coverage of their test corpus, e.g., the FlyBase corpus used by Proux and colleagues 
contain only a small percentage of multi-word gene names (Proux et al. 1998) or only 30 
MEDLINE abstracts on SH3 domain are used in the experiments of Fukuda and 
colleagues (Fukuda et al., 1998). Also, only genes and proteins are the targets for 
recognition. It is widely recognized that the rules would be very complicated or even 
cannot be constructed when the recognition focus widens to extract different kinds of 
molecular entities concurrently in order to understand their relations. 

2.1.1.2.3 Machine learning approach 

The prominent weak points of the dictionary-based approach are the difficulty to maintain 
up-to-date dictionaries or knowledge resources and keep them well organized in order to 
avoid ambiguities among terms. In case of the rule-based approach, besides the weak 
point that handcrafted rules are often incomplete, other weak points are the difficulty to 
modify the rules when new rules corresponding to new names are needed as well as when 
rules are required to be used with a new biology sub-domain which is different from the 
ones in which the rules were constructed. Moreover, the maintenance of rule sets becomes 
increasingly difficult over time. The interaction between tens of rules may be 
understandable, but this becomes impossible for hundreds of rules.   With respect to these 
expandability problems, the machine learning approach is often seen as the best 
alternative.  

It should be noted that the machine learning approach itself needs expensive and time-
consuming annotation of corpora by domain experts, which are used as training examples. 
However, to construct training examples by domain experts seem to be done with less 
effort than to analysis complex rules or to complete knowledge resources in a wide and 
dynamic domain such as the molecular biology domain. In addition, the machine learning 
approach has clearer direction regarding to the performance improvement of the system. 
Even though human cannot have a clear picture in what happens inside the model, but it 
is at least apparent where is the point to be improved (e.g., the corpus or the mathematic 
algorithm or the selection of features). Therefore, in this work, the NER system is 
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developed following the machine learning direction. The proposed system focuses on 
feature engineering (i.e., feature design and feature selection), but not on making the 
choice of machine learning algorithms. As such, the following discussion focuses mainly 
on feature sets employed by disparate machine learning methods. 

Among various machine learning methods implemented on various choices of 
algorithms, for example, Hidden Markov Models (Collier et al., 2000; Zhang et al., 2004; 
Zhao, 2004; Zhou et al, 2004), Support Vector Machines (Kazama et al., 2002; Takeuchi 
and Collier, 2002; Lee et al., 2003, Park et al., 2004), Decision Trees (Nobata et al., 
1999.), Conditional Random Fields (Settles, 2004), Maximum Entropy (Finkel et al., 
2004; Lin et al., 2004), and the hybrid model (Zhou and Su, 2004; Song et al., 2004; 
Rossler, 2004), the significant features that have been used are listed below. 

• Surface word: As proven by Nobata and collegues (Nobata et al., 2000), this 
feature is very powerful clue about the class to which it belongs. However, using 
only this feature, a classification model will not achieve high accuracy because of 
the potentially very large size of the vocabulary, the large number of new terms 
being created and the limited coverage of the annotated corpus. In other word, to 
use this feature separately from other features causes the so-called data-
sparseness problem. The surface word feature has to be combined with other 
features which provide more generalizable information such as part-of-speech. 

• Part-of-speech: This feature is more generalizable than lemma and surface word 
features. A part-of-speech or syntactic word class is defined as the role that a 
word plays in a sentence. In traditional English grammar, there are eight parts of 
speech (e.g., noun, verb, adjective, adverb, pronoun, preposition, conjunction and 
interjection), but this list is extended for using in text applications such as 45 
types of part-of-speech categories that were used in Nobata and colleagues’ 
system (Nobata et al., 1999). Although not only ambiguities from sentence 
structure as in general domain but also ambiguities from overlaps between names 
of molecular entities and words in general language14, various part-of-speech 
taggers or shallow parsers have been used to parse biological language and have 
been shown to be flexible enough for this distinctive sublanguage. For instance, 

                                                      
14 Proux and colleagues reported that from their analysis of the list of gene names for Drosophila, many 

names belong to the (English) natural language, e.g. vamp, ogre, zip, zen, etc. (Proux et al, 1998) 
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the Brill’s part-of-speech tagger (Brill, 1992), the Conexor FDG parser 
(Tapanainen and Jarvinen, 1997) in systems, HMM-based part-of-speech tagger 
(Zhou et al., 2004) etc. Some studies reported better accuracy when these 
statistical parsers have been trained on biological corpus (Zhou et al., 2004). On 
the contrary, some found lower accuracy (Collier and Takeuchi, 2004). Some 
systems claim very significant improvements in accuracy using this feature (Lee 
et al., 2003; Zhou et al., 2004). 

• Orthography: Orthographical information can be considered to be the set of 
rules of how a word is spelled. It has been widely used in NER, such as (Collier 
et al., 2000; Nobata et al., 2000; Takeuchi and Collier, 2002; Lee et al., 2003; Lin 
et al., 2004; Zhang et al., 2004). This feature has been claimed to be very 
significant for NER in the molecular biology domain (Collier and Takeuchi, 
2004). Each system has defined its own sets of orthographical information. For 
examples, features AllCaps, CapMixAlpha, LowMixAlpha, and SingleCap are 
reported by Lin and colleagues as more useful orthographical features than others 
in their set. But, these first three features are not use in some other systems. 
However, they are actually all minor variations. Basically, they are not very 
different from each other. I think that to be able to efficiently define a set of 
orthographical features, the nomenclature rules (e.g., Guidelines for Human Gene 
Nomenclature, Drosophila Gene Nomenclature, and Standardized Genetic 
Nomenclature of Mice) should be consulted. 

• Morphology: This information about minimal meaning units in words is 
obviously important for NER to some extent. Some examples are shown in Table 
 2-1. In example no.1, a word which has its suffix “~cyte” is most likely referring 
to a particular cell_line or cell_type. The example no. 2 shows that the suffix 
“~nase” indicates that the word containing it is a name of a protein. Besides 
named entities in the molecular biology domain, special suffixes used within an 
individual sub-domain can be found as an example shown in example no. 3. The 
suffix “~emia” is always used for naming any sicknesses which are related to a 
condition of the blood. The using of morphology feature results in a 
generalization at the word level. This feature has been assessed by pervious 
works (Yamamoto et al., 2004) to be useful for NER. 
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       Table  2-1: Examples of morphological patterns observed from GENIA corpus  
    

No. Suffix Named Entity Class Example 

1 ~cyte cell_line or cell_type monocyte, lymphocyte 

2 ~nase enzyme (protein) biocytinase, chitinase, 
dextranase, glucokinase, 
kinase 

3 ~emia or ~emic sickness related to a 
condition of the blood 

leukemia, anemia 

 

• Head noun: In the text, named entities in some classes are always mentioned by 
using their proper names plus head noun showing their classes. From my 
observation in the GENIA corpus version 3.02 15 , the corpus containing 
MEDLINE abstracts already annotated named entity classes manually, most of 
RNA names are ending by the head word “RNA” or “mRNA”. Moreover, most 
named entities belonging to class cell_line are ending by the head word 
“cell_line” or “cells” and most named entities of cell_type are ending with the 
word “cells” or “cell”. On the contrary, named entities of class protein or class 
DNA are rarely ended by its class name (i.e., 9% for class protein and 1% for 
DNA). However, not only does class name play a role as head word of named 
entities in its class, but also can other nouns as shown by some examples in Table 
 2-2. So, this feature seems to be salient for recognizing named entity. The 
experiments done by Zhang and colleagues has proved the head noun is very 
useful by improving the F-measure at least 7.3 in their work (Zhang, 2004). Also, 
it is worth to note that the head noun was shown to be significant firstly in rule-
based NER systems, where it was called a function term or f-term instead 
(Fukuda et al., 1998; Franzen et al., 2002; Torii et al., 2003). 

• Context words: This feature includes words occurring in the same sentence as 
the named entity being classified. Context words can be nouns, verbs, or words of 
any type of part-of-speech. The basic idea is probably based on the concept of 
sublanguage 16 . Harris said in one of his works that “There is a particular 

                                                      
15 http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/ 
16 Harris introduced the term ‘sublanguage’ for a portion of natural language differing from other portions of 

the same language syntactically and/ or lexically (Harris, 1968). 
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structure to science information in general, and to the information of each 
subscience in particular because for each subscience there are particular subsets 
of nouns that occur with particular subsets of verbs of other words” (Harris, 
2002). The underlined strings seem to convince the relevance of contextual 
information to NER. Some systems concern a set of words before and after a 
named entity in current focus, as well as other features of these context words to 
be used as features (Takeuchi and Collier, 2002), or just a set of words before and 
after a focusing named entity (Lee et al., 2003).  

 

Table  2-2: Examples of head noun for some named entities observed from 
GENIA corpus 

 
No. Head Noun Named Entity Class Example 

1 activator protein heterodimeric activator, Ets activator, 
urokinase_like plasminogen activator, 
transcriptional activator 

2 inhibitor protein cytoplasmic inhibitor, cytosolic 
inhibitor 

3 promoter DNA engenous E2A promoter, lg promoter,     
V kappa gene promoter, IL-2 gene 
promoter, stem cell promoter 

4 transcript RNA AML1/ETO transcript,              
PML/RAR alpha transcript 

 

Moreover, some particular verbs 17 which occur adjacent to a focusing named 
entity have been used as contextual information for a named entity being 
classified as well (Zhou et al., 2004). In Zhou and colleagues’ work, a binary 
feature is used to represent whether a verb occurs in the context around the term 
in focus or not. By combining information related to verbs into NER system, the 
performance is expected to be improved. It is straightforward to think that 
particular verbs may provide the evidence on the boundaries and the classes of 
biomedical entity names, for example, the verb “bind”, “interact”, and “inhibit” 

                                                      
17 Eight verbs including activate, express, bind, induce, inhibit, interact, regulate, and stimulate are used in 

Zhou and colleagues’ work. 
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are often used to indicate the protein-protein interaction. This knowledge has 
been widely used to extract instances of relations between biological entities in 
the text (Ono et al., 2001; Blaschke et al., 1999; Putejovsky et al, 2002; Thomus 
et al., 2000 ; Sekimizu et al., 1998). Furthermore, there exists a prior work 
(Spasic et al., 2003) which tried to classify terms into their potential classes by 
using the context given by verb. This method employs the verb complementation 
patterns which have been learnt automatically by combining information found in 
a corpus and ontology. The verb complementation patterns are the co-occurrence 
between each verb and the arguments which their concept classes are known. 
Once the verb patterns are obtained, an unknown class term will be classify to the 
potential class based on the similarity measure between this new term’s verb 
complementation patterns to the pre-analyzed for known class term. However, 
against expectation, both efforts get not preferable results for using contextual 
verbs to classify named entities. The overall F-measure has decreased by 1.8 in 
Zhou and colleagues. F-measures of 40.68%, 26.28%, 21.85%, and 19.69% 
resulted from using bind, inhibit, interact, and mediate respectively in the work of 
Spasic and collegues. 

In my opinion, I think it needs an efficient adaptation for using this verbal 
context. The key point to be discovered is how to represent the semantic relations 
between a verb and terms being its arguments. To employ verb features able to 
represent just the knowledge that if verbs exist in the context of the term in 
question or not would be insufficient. 

As mentioned above, these features derived from name-internal sources of information 
(e.g., surface word, part-of-speech, orthography, morphology, and head noun) and from 
name external sources of information (e.g., context words) are important to recognize 
molecular named entities. However, it should be noted that these features have to be used 
with care because some features may interfere with other features resulting in 
performance degradation. 

Furthermore, there is no existing system which has explored these features that can 
achieve the performance, F-measure, over 75%. The highest performance reported in the 
most recent shared-task, JNLPBA 18, is obtained by Zhou and Su with the F1-score of 
                                                      
18 http://www.genisis.ch/~natlang/JNLPBA04/ 
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72.6 (Zhou and Su, 2004). This is far behind the state of the art in news-based NER where 
an F-score of over 95% on recognition of people and place name etc. is the standard. I 
believe there should be some other features else that can enhance NER in molecular 
biology domain. New valuable features are what I am are exploring in this thesis. 

2.1.2 Extraction of relations between molecular named entities 

Following on from NER, the higher level task is to recognize relations between named 
entities, such as protein-protein relation (Ono et al., 2001; Thomas et al., 2000; Friedman 
et al., 2001), protein-drug relation (Rindflesch et al., 2000), or protein-subcellular 
location relation (Craven and Kumlein, 1999). From  

Figure  2-2, the facts that Cytokines has a binding relationship 19   to hematopoietin 
receptors and Cytokines has an activation relationship 20 with JAK kinases are extracted at 
this recognition stage. 

Relation extraction includes not only relation of named entities in the basic event (e.g., 
transcription event, translation event and post translational modification event), but also 
the relation between the relationships between the basic events. It can be the extraction 
within a single sentence or even more ambitious to extract relations that span over 
multiple sentences. In this latter case, the techniques for coreference resolution are 
essential (Pustejovsky et al., 2002). At present, most interest of relation extraction is to 
extract protein-protein interaction relation. Various techniques for extracting protein-
protein interaction have been proposed; perhaps these approaches belong to 3 groups as 
discussed below.  

The first approach is based on the statistical estimation of the occurrence of surface 
words in literature. This approach is practical for the system which aims merely to 
discriminate documents that are likely to contain interaction information from the others 
(Stapley and Benoit, 2000; Jenssen T. K. et al., 2001; Marcotte et al., 2001;Donaldson et 
al. 2003). It is obvious that the performance of the system using this approach will be 
decreased for the case that the interaction occurs in a sentence with multiple names. This 

                                                      
19 Keyword bind is classified into attach category of interaction keyword. (Friedman et al., 2001; Temkin and 

Gilder, 2003) 
20 Keyword activate is classified into activate category of interaction keyword. 
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should be because the system cannot recognize the real number of interaction events 
occur in such sentences.  

Secondly, a more practical approach is the use of regular expressions predefined based 
on the ordering in a sentence of interaction elements (i.e., protein names) and the verb 
indicating a specific type of interaction (e.g., bind, inhibit and interact). No deep 
linguistic analysis is used here (Blaschke et al., 1999). Only simple patterns such as 
“protein A – action – protein B” were used in this system. Variants of such pattern (i.e., 
“action – protein A – protein B” and “protein A – protein B – action”) cannot be extracted 
from the system. Moreover, this approach seems unable to cope with a sentence in which 
a subject or object is distanced from a verb by parenthetical commas, relative clauses, etc.  

Third, some rule-based approaches employ deeper syntactic aspects such as syntactic 
categories of a particular sentence’s constituent (part-of-speech) and syntactic roles (e.g., 
subject and object) to construct a set of rules (Sekimizu et al., 1998; Rindflesch et al., 
2000; Ono et al., 2001; Pustejovsky et al., 2002). The coverage and precision of this 
group outperforms others. 

Furthermore, machine-learning-based approach to extract instances of relations 
between named entities also exists (Craven and Kumlien, 1999). Craven and Kumlien’s 
interest are not protein-protein interaction, but other 5 types of relations: the relation 
between protein and subcellular-structure, the relation between protein and cell-type, the 
relation between protein and tissue, the relation between protein and disease, as well as 
the relation between protein and pharmacologic-agent. The system benefits from a 
relational learning algorithm (Quinlan, 1990). 

2.1.3 Evaluation events 

With regard to system performance, overall performances of systems for both NER and 
relation extraction are still far from the levels where they can be used to replace the 
human curator. Although the performances reported from some systems are very high, it 
is not significant enough to conclude that the methods used in the systems practical. First 
reason would be related to the coverage scope of the corpus. The set of corpus 
corresponding to a particular sub-domain would contain fewer ambiguities in names than 
wider one. For instance, the system of Proux and colleagues (Proux et al, 1998) obtained 
F1-score of 93% which is as high as human-level performance from using the Flybase 
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corpus, but the precision can be decreased by 20% from using the larger scope corpus 
such as the Medline. Moreover, the ambiguities in names of different types of organisms 
are not equal as discussed before in section 2.1.1. This is also one key point to the system 
performance. In addition to the aspect of corpus scope, the size of corpus impacts the 
system performance as well. This is affirmed by the experiments reported in Collier and 
Takeuchi’s work (Collier and Takeuchi, 2004). In that, F1-score of 60.7% and 40% 
obtaining from applying the system with base features to 100% and 20% of Bio1 training 
corpus21. The machine learning system always gets the better result from the larger set of 
training data. 

Furthermore, the difference of criterion or what an error is in an evaluation of each 
research also needs to be considered. The different assumptions in evaluation have 
already been concerned by some systems; for instance, Franzen and colleagues (Franzen 
et al., 2002) have shown the efficient way to evaluate their system compared to other 
systems with several notions of correct matching. As the need of gold standard 
evaluations like in general domain (i.e., the evaluation series of MUCs), the shared-tasks 
offering standard evaluations for many types of IE in the molecular biology domain had 
been established. For each shared-task, all participants must use the same data proposed 
by the task organization with their own methods to reach the same extraction goal of the 
task. Therefore, performances among different participants can be compared fairly. The 
short descriptions of some main evaluation events in the molecular biology domain are 
shown in Table  2-3 and the summarization of results from each shared-task is given 
below. 

• JNLPBA-2004 22 : This International Joint Workshop on Natural Language 
Processing in Biomedicine and its Applications (JNLPBA) only focused on 
named entity recognition. Only 5 classes (e.g., protein, DNA, RNA, cell line and 
cell type) annotated in GENIA V.3.02 corpus were used. In this shared-task, the 
best system resulted in the F-score of 72.6% by using the well designed 
classification model which is the integration of a Support Vector Machine (SVM) 
into a Hidden Markov Model (HMM). In addition, the knowledge deeper than 
lexical-level knowledge were explored in this best system, such as the name alias 

                                                      
21 http://research.nii.ac.jp/~collier/resources/bio1.1.xml 
22 http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/ERtask/report.html 
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phenomenon, the cascaded entity name phenomenon, the use of closed dictionary 
which is constructed by extracting all entity names from the training data, the use 
of open dictionary from the database term list Swiss-Prot23 and the alias list 
LocusLink24, the abbreviation resolution as well as part-of-speech tagging which 
is trained on the GENIA corpus V3.02p. 

• TREC Genomics Track-200425: In ad hoc retrieval task, 50 information-need 
statements and a database of Medline 1993-2004 (~4.6 million abstracts) are 
given. Then, the IE system must answer all documents satisfying the information-
need. The examples of 50 information-need statements are such as “What are the 
stem cell markers in different tissues?”, “Information on neil1.” and “Similarities 
of metabolic pathways for yeast and ecoli”. The best result for this task is 0.4075 
for mean average precision (MAP), 6.04 for mean number of relevant document 
@10 and 41.96 for mean number of relevant document @100.   

Another task is to retrieve from the collection of about 20,000 full-text 
articles, all relevant documents to a particular gene. Then, these documents must 
be categorized corresponding to the GO top category, i.e. function, process and 
locus. The best F-score for this task is Triage: 0.2681 and GO categorization: 
05611. 

• BioCreAtIvE-2004 26 : This Critical Assesment of Information Extraction in 
Biology (BioCreAtIvE) focused on two main tasks: task 1-extraction of entities 
and task 2-funtional annotation. Task 1 was also divided into task 1A and task 1B 
of which details are as follows.  

 

 

 

 

 

                                                      
23 http://ca.expasy.org/sprot/ 
24 http://www.ncbi.nih.gov/entrez/query.fcgi?db=gene 
25 http://ir.ohsu.edu/genomics/2004workshop.html 
26 http://www.mitre.org/public/biocreative/ 
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Table  2-3: List of shared-task evaluation events for IE systems in the biology domain 
 

Evaluation Event Data Shared Task Description 

JNLPBA-2004 

Place/Date: Geneva, 

August 28-29, 2004 

the extended version 
of the GENIA corpus 
version 3.02 with 
reduced numbers of 
classes 

Allow participants to use whatever 
methodology and knowledge sources 
they liked to identify and classify 
technical terms in the molecular 
biology domain 

TREC Genomics 
Track-2004 

Place/Date:NIST, 
November 18,  2004 

- MEDLINE 
bibliography 

-full text of articles 
about mouse 
genomics biology 

2 main tasks:  

1) retrieve documents from a large 
subset of the MEDLINE bibliographic 
database using topics obtained from 
scientists  

2) retrieve documents relevant to a 
particular gene and categorize these 
documents to GO top category 

BioCreAtIvE-2004 

Place/Date: Spain, 

March 28-31, 2004 

- text annotated with 
gene names from 
three model organism: 
Fly, Yeast and Mouse 

- text annotated with 
GO term 

2 main tasks:  

1) extract of gene-related name and 
gene name 

2) link descriptive mentions in text 
with a GO concept 

TREC Genomics 
Track-2003 

Place/Date: NIST, 
November 19, 2003 

text annotated with 
the GO classes 

For gene X, find all MEDLINE 
references that focus on the basic 
biology of the gene or its protein 
products from the designated 
organism. Basic biology includes 
isolation, structure, genetics and 
function of genes/proteins in normal 
and disease states. 

KDD Cup-2002 

Place/Date: Canada, 
July 23-26, 2002 

a set of papers on 
genetics or molecular 
biology, and for each 
paper, a list of the 
genes mentioned in 
that paper 

2 main tasks: 

1) determine if a paper contain any 
curatable gene 

2) determine if that paper has 
experimental results for transcripts of 
that gene or proteins of that gene 

 

BioCreAtIvE Task 1A focused on extraction of gene-related names in 
sentences; for example, genes, binding sites, motifs and proteins. A term 
(mutant-related term “p53 mutant” or any of words codon, antibody, etc.) with a 
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gene name were extracted. But, the generic terms such as “zinc finger” or 
mutation terms such as “p53 mutations” were not required. The evaluation in this 
task showed that the best methods achieved F-scores of 80%, with both the best 
precision and recall values of around 80%. It was concluded that this 
performance is inherently limited by the accuracy of the human annotator. Also, 
the main concerning point for the improvement of overall performance is about 
tokenization. Tokenization or word segmentation for biological terms is non-
trivial; for instance, from this portion of text “…a protein kinase A-mediated 
pathway…”, the needed token is “protein kinase A” but not “A-mediated”. It is 
important to have a parser with the special rules for token text in the molecular 
biology domain.  

BioCreAtIvE Task 1B focused on extracted normalized gene names (i.e. to 
link all the genes mentioned in text to a list of unique identifiers) for 3 model 
organisms (mouse, fly and yeast). The system produced lists were evaluated by 
comparison of the lists produced by human efforts. The result has shown that 
there is a high correlation between degree of achievement and ambiguity nature 
of the organisms. Among these 3 databases, the yeast database consists of 
smallest vocabulary, shortest names and least ambiguity. The mouse database 
consists of largest vocabulary, longest names, but less ambiguity than fly. 
Contrarily, the fly database has most ambiguity with medium-length names and 
large vocabulary. Therefore, the comparison of the approaches’ performances 
from the organism aspect indicated that the highest F-scores of most systems are 
when identifying yeast’s gene names, followed by mouse and fly respectively. 
Only the system extracting yeast’s gene names can obtain the best F-score of 
about 90%. 

BioCreAtIvE Task 2 addressed issues of automatic functional annotation 
using GO classes. This task required systems to link specific text passages with 
GO concepts when full text articles were given. As this task is very difficult, top 
systems returned 250-300 correct passages with recall and precision only about 
30%. It was expected that the creation of lexical resources for GO terms and 
paraphrases will help to improve these results. 
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• TREC Genomics Track-200327: In TREC-Genomics track, the best results to 
extract all PubMed abstracts discussing a given gene’s function from 525,938 
abstracts (dating 4/1/2002-4/1/2003) were 0.4165 for mean average precision 
(MAP), 3.16 for mean number of relevant documents @ 10, and 4.84 for mean 
number of relevant document @ 20. These best results are achieved by a research 
group from the National Library of Medicine. The key methodologies to achieve 
these good results were: (1) identifying species through use of MeSH terms and 
other simple rules, (2) recognizing terms or their synonyms or lexical variants in 
non-text fileds, in particular MeSH and substance name and (3) using additional 
general key words, such as genetics, sequence, etc.  

• KDD Cup-2002 28 : This Knowledge Discover and Data Mining (KDD) 
competition aimed to construct automatically extraction system to assist genome 
annotators (task 1) and to construct models that can characterize the behavior of 
individual genes described in text. The best performances (resulted from the team 
using manually generated rules and patterns to perform the tasks) were the F-
scores of 78% and 67% for the first and second tasks, respectively.   

2.2 Predicate-argument structure (PAS): a frame describing 
semantic roles 

An event is described in each sentence by a composition of a verb and its arguments. A 
verb, which indicates a type of an event expressed in a sentence, can exist in its verbal 
form, its participial modifier format or its nominal form. For example, the normal form of 
a verb used to describe the event “making something active” would be activate, its 
participial modifier format would be activating or activated, and its nominal format 
would be activation. Beyond a verb, sentence constituents holding semantic roles to 
complete the meaning of an event indicated by the verb are called arguments. The 
semantic roles played by the set of arguments with respect to the particular verb are 
represented in the PAS frame of that verb.  

 

                                                      
27 http://ir.ohsu.edu/genomics/2003meeting.html 
28 http://www.biostat.wisc.edu/~craven/kddcup/index.html 
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PropBank VerbNet FrameNet 

PAS for Verb:  

  SELL 

Arguments: 

0: seller 

1: thing sold 

2: buyer 

3: price paid 

4: beneficiary 

Sentence 1: 

[All Brownstein]0 

sold [it]1 for [$60 a 

bottle]3. 

 

PAS for Verb:  

  RENT 

Arguments: 

0: landlord 

1: thing rented  

2: renter 

3: rent 

4: term 

Sentence 2: 
[Mary]0 rented [a 

room]1 to [John]2 for 

[a week]4 then 

evicted him. 

PAS for Verb Group:   

  GIVE 

Verb Members: give, 

sell, rent, 

render, refund, 

peddle, pass, 

loan, lend, lease 

Arguments : 

0: agent 

1: theme 

2: recipient 

Sentence 1: 

[All Brownstein]0 

sold [it]1 for $60 

a bottle. 

Sentence 2: 
[Mary]0 rented [a 

room]1 to [John]2 

for a week then 

evicted him. 

PAS for Event:      

  Commerce_sell 

Event Definition: Basic 

commercial 

transactions from the 

perspective of the 

seller  

Verb Members: sell, 

rent, charge, lease, 

retail, vend 

Arguments : 

0: seller 

1: goods 

Sentence 1: 

[All Brownstein]0 

sold [it]1 for $60 a 

bottle. 

Sentence 2: 
[Mary]0 rented [a 

room]1 to John for a 

week then evicted 

him. 

 
Figure  2-3: Predicate-argument structures of PropBank, VerbNet and FrameNet 

 

Recently several major projects have been proposed in providing resources of an 
English predicate-argument lexicon. These projects include VerbNet (Kipper et al., 2000), 
FrameNet (Baker et al., 1998), and PropBank (Kingsbury and Parmer, 2002; Kingsbury et 
al., 2002). There are significant differences in approach among these 3 projects. For 
example, PAS of verbs sell and rent are proposed as two distinct structures in the case of 



 

 - 44 - 

PropBank and only a single structure for both verbs in the case of VerbNet and FrameNet 
(Figure  2-3). 

VerbNet defines general PAS for a group of verbs that share similar syntactic behavior, 
underlying Levin’s alternations theory (Levin, 1993). VerbNet’s PAS for give contains 
sell and rent as members.  Argument roles for all of the give verb members are assigned 
for agent, theme, and recipient illustrated by example sentences 1 and 2. In the case of 
FrameNet, PAS is defined based on the underlying principal of what users or applications 
expect to see for a specific event definition. FrameNet’s PAS for event Commerce_sell 
shown in Figure  2-3 expects only argument seller and goods from the event driven by any 
verb in a set of verb members. Considering the annotation on sentence 1 in these 3 
projects, “All Brownstein” is annotated as seller, agent, and seller in PropBank, VerbNet, 
and FrameNet respectively. Similarly, there is also an argument to support the annotation 
of “it” in all projects. But, only the PropBank scheme has an argument labeled  price paid 
to support element “$60 a bottle” of sentence 1 which is likely to be an important 
participant of the event describing a selling activity. Moreover, a constituent “a week” in 
sentence 2 is considered to be an argument labeled as term only by the PropBank scheme. 
I consider that arguments like price paid for the events involving the verb sell, and an 
argument term for events involving the verb rent, are important for user applications.  

In contrast to VerbNet and FrameNet, PropBank defines individual verb-specific PAS 
frames which are likely to contain more detailed specifications of arguments than are 
possible for verb groupings. Moreover, PAS construction in a more verb-specific manner 
than either VerbNet or FrameNet would assist explicitly in discovering rules for mapping 
from surface syntactic structures to underlying semantic propositions. In this thesis, I 
decide to use PropBank’s scheme as a basic starting point and examined sentences 
containing interesting verbs from a variety of molecular biology journal articles. Thus, 
more detail only about PropBank is illustrated. 

In PropBank a verb may get more than one PAS frame if the verb can be used in 
several senses. There will be one set of arguments labeled with semantic roles for each 
verb sense. For example, PropBank defines three distinctive PAS frames (Figure  2-4) for 
the verb run on account of sense variation. A semantic role of an argument represents a 
semantic relationship between the argument and its related verb. In a sentence, it is 
possible that not all arguments defined in a PAS frame of a particular verb sense are 
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mentioned. The example sentence in Figure  2-4(a) illustrates this point (i.e., only Arg0 
and Arg1 occur in this sentence without the occurrence of Arg2, Arg3 and Arg4). In each 
PAS, arguments are labeled ranging from Arg0 up to Arg5 with a mnemonic label 
indicating its predicate-dependent role. 

 

(a) (b) (c) 

PAS for Verb: RUN 

Sense:  operate, 

proceed 

Arguments: 

Arg0: operator 

Arg1: machine,  

operation, 

procedure 

Arg2: employer 

Arg3: coworker 

Arg4:instrumental 

 

Example: 

Mr. Stromach wants 

to resume a more      

influential role in 

running the company. 

  Arg0: Mr.Stromach 

   REL: running 

  Arg1: the company 

PAS for Verb: RUN 

Sense: walk quickly  

Arguments: 

Arg0: runner 

Arg1: course, 

race, 

distance 

 

Example: 

John ran the Boston 

Marathon. 

Arg0: John 

REL: ran 

Arg1: the Boston 

Marathon 

 

PAS for Verb: RUN 

Sense: encounter  

Arguments: 

Arg0: encounterer 

Arg1: thing 

encountered 

 

Example: 

John ran into 

problems with his 

dissertation. Again. 

And again. 

Arg0: John 

 REL: ran 

Arg1: problems 

with his 

dissertation 

 

 

 
Figure  2-4: PropBank’s three distinct predicate-argument structures of run 

 
Besides these core arguments defined in PAS are adjuncts which are traditionally not 

defined in PAS because they can potentially take multiple values and not required to 
minimally define the event. PropBank does consider adjuncts when annotating sentences, 
and provides labels such as ArgM plus tags such as TMP for temporal information, LOC 
for locative information, PRP for a reason or motivation, etc. After manually defining 
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PAS, PropBank has annotated the Penn TreeBank II Wall Street Journal corpus, which 
contains constituency and dependency information from the TreeBank project (Marcus, 
1994).  

2.3 Predicate-argument structure and the molecular named 
entity recognition 

This section aims to illustrate why this thesis proposes that the semantic relation between 
a predicate and its arguments represented in PAS has a power to enhance NER systems. 
The PAS is the deeper level than lexical and syntactic representation levels of the 
proposition conveyed in a sentence. In each PAS frame, a set of semantic relationships in 
terms of the specified roles of the arguments of the predicate indicating the event is 
formed.  

 

Recognition
Event

( predicate
recognition )

Arg 0 Arg 1
Role: recognizer

or agent
Role: thing being

identified or theme

a) The predicate-argument frame for predicate recognize

Sentence 1 ...these [transcriptional activators]PROTEIN recognize a [common
                  consensus motif]DNA ...

            Arg0: transcription activators
            Arg1: common consensus motif

Sentence 2 [DNA binding sites]DNA are recognized by the [Ah
receptor]PROTEIN.

            Arg0: Ah receptor
            Arg1: DNA binding sites

b) Instances of arguments in example sentences for predicate recognize
 

 
Figure  2-5: Semantic relationships between a predicate recognize and its arguments 
  
Figure  2-5(a) shows the predicate-argument frame of the predicate recognize which is 

used to express the recognition event29  in the molecular biology. From consulting to this 

                                                      
29 It is the recognition for an antigen or a substrate. 
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PAS frame, the semantic knowledge at the PAS level of sentences 1 and 2 can thus be 
obtained as shown in Figure  2-5(b). That is the occurrence of a recognition event has two 
participants (i.e., Arg0 and Arg1). The first argument (Arg0) has a relationship to the 
predicate recognize as a recognizer or agent of the event, and the second argument (Arg1) 
plays the role of the thing being identified or theme in the event. Sentence 1 shows the 
usage of the predicate recognize in active voice. The sentence’s surface subject, which is 
“transcriptional activators”, plays the role of agent and its surface object “common 
consensus motif” plays the role of theme. On the contrary, a surface subject of sentence 2, 
which is “DNA binding sites”, plays the role of theme and a surface object “Ah receptor” 
plays the role of agent as the predicate recognize is used in passive voice. 

The constituent “transcriptional activators” in sentence 1 and the constituent “Ah 
receptor” in sentence 2 have the same semantic role of agent and these two entities 
belong to the same semantic class of PROTEIN, but their syntactic functions are different 
(i.e., the former functions as the subject whereas the latter functions as the complement of 
the preposition “by”). Similarly, the constituent “common consensus motif” in sentence 1 
and the constituent “DNA binding sites” in sentence 2 have the same semantic role of 
theme and the same semantic class of DNA, but not the same syntactic function (i.e., the 
former functions as the direct object while the latter functions as the subject). Thus, it can 
be concluded that the semantic role of an argument would impose to a particular type of 
named entity30. This is a key idea to employ semantic relations in PAS for enhancing 
NER system. However, semantic roles in the PAS of a predicate will contribute to 
improve NER system if they relate to a particular type of named entities for which the 
NER system is involved. 

The evidences used in the existing NER systems can be categorized into 2 groups: the 
internal and external evidences. The internal evidences are provided by the words in the 
named entity term itself such as orthographic and morphological information. The 
external evidences are provided by the context in which a term appears. The co-
occurrence of terms appearing in the local context of a target entity term is so far the main 
external evidences used in NER systems. In this thesis, the evidence proposed to be used 
is the semantic roles represented in a PAS. This evidence is considered as a term external 

                                                      
30 The empirical evidence observed on GENIA V3.02 corpus (http://www-tsujii.is.s.u-

tokyo.ac.jp/~genia/topics/Corpus) shows that the frequency of occurrence for PROTEIN to be agent in a 
recognition event is about 53% and for DNA to be theme is about 26%. 
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evidence as same as the co-occurrence. The external evidences are helpful for NER 
system especially when the internal evidences are weak in determining in which class the 
named entity is. Sometimes the internal evidences are totally useless. For instance, by 
using only the term internal evidence (i.e. the lexical information), the NER systems will 
not be able to identify that the term “China” in a sentence “China announced a new 
policy regarding North Korea” does not refer to the country. Instead, it should be 
classified as a government’s spokesman. In this case, the co-occurrence information 
which is a kind of the external evidence plays an important role to identify that the term 
“China” refers to a person (not a country) because the co-occurrence between the term in 
the class person and the word “announce” (a logical form of “announced”) would have 
higher frequency than between the term in the class country and the word “announce”. 
However, most of the sentences used in the molecular biology literature are compound31 
or complex32 sentences. The external evidence in the form of co-occurrence information 
can easily mislead the NER systems. 

 

We also found that mRNAs encoding  GATA-1 and [GATA-2] Protein are expressed  in all these cases.
w-2 w-1 w1 w2

predicate-arguments semantic relationship
(semantic role)  

 
Figure  2-6: The external evidences (co-occurrence and semantic roles) related to the 

target term “GATA-2” 
 

The sentence in Figure  2-6 is an example of a complex sentence found in the molecular 
biology domain. The target term to be classified to a particular named entity type is 
“GATA-2”. By using the co-occurrence information which is usually related to 2 terms 
before the target term (i.e., “GATA-1” and “and”) and after (i.e., “are” and “expressed”), 
the term “GATA-2” tends to be classified to a wrong class that is a gene name due to the 
high frequency of co-occurrence between a gene name and the word “express” (a logical 
form of “expressed”). On the contrary, by considering the semantic roles of the term 
“GATA-2”, this term tends to be correctly classified as a protein name. The term “GATA-
                                                      
31 A compound sentence is a sentence composed of independent clauses connected by a co-coordinating 

conjunction, semi-colon or an independent marker such as however, therefore and moreover. 
32 A complex sentence is a sentence which has one independent clause and one or more dependent clauses 

that rely on the some component of the independent clause for their completeness.  
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2” has no semantic relationship to the predicate “expressed”, but it is an argument of the 
predicate “encoding” and has the semantic role as “the product of encoding event”. In the 
molecular biology domain, proteins but not genes are counted as the encoding product. 
From this example, it can be concluded that to know what a semantic role (or a semantic 
relation to a predicate) of a target term is would lead to the correct result for NER system. 

 As describe above, this thesis proposes to take into account the semantic relationship 
between a predicate and its argument in terms of semantic role for enhancing NER in the 
molecular biology domain. The investigation of this proposal has been evaluated and 
reported in chapter 4.  
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Chapter 3 
PASBio: an analysis of PAS frames from 

literatures in the molecular biology domain 

In the molecular biology domain, a gene and its products are the center of the study. 
Therefore, the assertion of genes, their products and functions at the cellular level, as well 
as the combined effects at the organism level can be seen in the literature of this domain. 
As explained in section 2.2, PAS is a representation of a set of semantic roles played by 
the arguments participating in the event indicated by the predicate. Genes or gene 
products, the participants of the molecular event, possibly are the arguments playing 
either the role of agent or theme. In addition, different molecular level or phenotypic 
effects are described as the other arguments of such events. 

To conceptualize a surface sentence describing an event into PAS is a nontrivial task. 
There is often no simple mapping rule between syntactic knowledge (also called 
grammatical information) and semantic knowledge in the form of PAS. Domain 
knowledge is very important for the identification of an argument’s boundary from the 
syntactic components in a sentence. Also, it helps to correctly interpret the semantic role 
of the argument. A sentence’s constituent functioning as a subject would have its 
semantic role as agent or causer and an object would have its semantic role as theme or 
patient in most of the cases. Not only are machines confronted with the difficulties in 
transforming a syntactic component of a sentence into an argument with its semantic role, 
but also human. Domain expertise is essential but it does not guarantee the absence of 
misinterpretation. Therefore, the PAS frames as reference knowledge for annotating 
semantic roles in text are needed. The reference resource of PAS frames describing 
semantic roles of a predicate’s arguments should be constructed for human annotators 
before machines are trained. Furthermore, the PAS frames can also be used as a guideline 
on defining extraction templates for text mining application. 

To construct a lexicon of PAS frames is not new, but all available resources such as 
PropBank (Kingsbury and Palmer,  2002; Kingsbury et al., 2002), VerbNet (Kipper et al., 
2000) and FrameNet (Baker et al., 1998) which are described in the previous chapter are 
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grounded on the general domain. The scientific sublanguage33 used in the molecular 
biology literature has its special characteristic that makes it distinct from general language. 
Some nouns (entities) belong to some semantic classes and verbs are used in some 
particular senses can be found in only the molecular biology sublanguage. Due to the 
constraint relations between participants of a molecular event, a word can have subtly 
different meanings between being used in the molecular biology domain and in general 
domain. The differences in the meaning and the usage of some nouns and verbs between 
the molecular sublanguage and general English language motivate the PASBio project 
that aims to construct PAS frames specifically for molecular biology domain. 

This chapter is organized as follows. Firstly, the biological events being the focus of 
the PASBio project are explained. Secondly, the reason supporting the requirement of an 
analysis of PAS frames specific for the molecular biology domain is shown. That is how 
it is very difficult even for human in order to derive the understanding on a sentence in 
the form of semantic relationships represented in PAS will be illustrated. Then, the 
scheme and method used in the analysis of PAS frames are described, following with the 
resulted frames. Finally, the general idea to utilize PASBio frames as reference resources 
for researchers in the field of bioinformatics is introduced. 

3.1 Events in the molecular biology domain 

According to the Gene Ontology, the term biological process refers to a broad category of 
biological tasks accomplished via one or more ordered assemblies of molecular entities 
(genes or gene products). The biological process often involves transformation, in the 
sense that something goes into a process and something different comes out of it. The 
biological processes are cell growth and maintenance, signal transduction, metabolism 
and biosynthesis, etc.  

A biological process can be composed of several molecular events. Each molecular 
event is carried out by one molecular entity or well-defined assemblies of several entities. 
For example, phosphorylation of a protein molecule by a protein kinase is a molecular 
event, which is a part of the cellular signaling process or transcription of a gene by a 

                                                      
33 A sublanguage is the particular language used in a body of texts dealing with a circumscribed subject area 

(often reports or articles on a technical speciality of science subfield, in which the authors of the documents 
share a common vocabulary and common habits of word usage (Hirchman and Sager, 1982). 
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polymerase is a part of the gene expression process. Consequence of a molecular event or 
a disruption of it will be a local effect to the event or an overall effect to the entire 
process. For instance, a mutation in the coding region of a gene that introduces a stop 
codon into the open reading frame would lead to a pre-mature termination of transcription 
considered as the local effect and may be responsible for a disease state of an organism 
due to deficiency of that protein as the phenotypic effect. Different events are described 
by different predicates with the associated sets of arguments as illustrated in Figure  3-1. 

 

 
 

Figure  3-1: Molecular events and predicates (bold letter) used to describe the events34 
 

The figure shows a hypothetical signal transduction pathway of an idealized cell and its 
corresponding predicate for each event. The signal is triggered at the outer membrane 
ligand-binding to receptor dimers. This signal is mediated (by various proteins) to the 

                                                      
34 This figure is drawn by Parantu K Sha, a researcher at EMBL (European Molecular Biology Laboratory), 

Heidelberg, Germany. 
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nucleus of the cell using various events (protein-protein interactions, phosphorylation, 
etc) and initiates transcription of a gene. The protein product (after splicing, translation 
and synthesis) of the gene inhibits receptor signaling. Thus, it regulates its own 
expression levels via a negative feedback loop. The direction of information flow is 
shown with arrows. The predicates listed in this figure cover events in gene expression, 
regulation and signaling processes which are of the current interest. 

3.2 Predicate-argument relationships conveyed by the 
statements in molecular biology literatures 

As PAS is a representation of semantic relationships between a predicate relating to a 
particular event narrated in a sentence and its arguments. These semantic relationships are 
described in terms of the arguments’ semantic roles. With regard to the biological events 
described in section 3.1, the molecular entities are mostly related to the arguments of a 
predicate indicating the event and the functions of the molecular entities in the event are 
related to the semantic roles of the arguments. 

 

Noun
phrase Prep. phrase Verb phrase

Subject Complement Complement

component
in gene RNA alternative

mRNA

entity getting
spliced

Syntactic
categories Verb

Syntactic
relations

Argument
categories

liguistic core argument

One exon is spliced out of the MLC3nm
transcript

to give an
alternative

product

lost
component

in smooth
muscle

Prep. phrase

Complement

location
referring to

tissue

Predicate-
Argument
relations

Surface
Text

tissue

Secondary
Predication

IE core argument 
(purpose argument) 

  
 

Figure  3-2: Syntactic and semantic level representation of the surface text “One exon is 
spliced out of the MLC3nm transcript in smooth muscle to give an alternative 
product” 
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The semantic roles are represented at the PAS level which is the level higher than 
surface and syntactic representation of a sentence. The semantic knowledge in the PAS 
level is considered to be deeper than the semantic and syntactic knowledge in other lower 
levels. Fundamentally, underneath the understanding on a sentence, a hierarchy of 
sentence representation containing various kinds of conceptual knowledge needs to be 
derived as an example in Figure  3-2. 

From above figure, the understanding made on a sentence “One exon is spliced out of 
the MLC3nm transcript in smooth muscle to give an alternative product” is shown in 
different levels (i.e., from the surface text level up to the PAS level). The first higher level 
than the surface level is the level describing syntactic categories, also called linguistically 
as parts of speech. The sentence’s constituents “One exon”, “is spliced out”, “of the 
MLC3nm transcript”, “in smooth muscle”, and “to give alternative product” have their 
syntactic categories as noun phrase, verb, prepositional phrase, prepositional phrase, and 
verb phrase respectively. Next higher level is the syntactic relations level in which the 
syntactical function of each constituent in the sentence is described. From the figure, 
“One exon” functions as the surface subject of the passive form verb “is spliced out” and 
other constituents function as the subject’s complement. 

The levels higher than the two syntactic levels mentioned above are semantic levels 
including argument categories level and predicate-argument relations level. In contrast 
to the syntactic levels, these semantic levels are highly related to domain knowledge. 
Both the categories and the semantic roles, used in the level of argument categories and 
predicate-argument relations respectively, would be the concept classes of objects and 
the set of relationships between objects. In this example, at the argument categories level, 
“One exon”, “the MLC3nm transcript”, “smooth muscle” and “alternative product” 
constituents pertain to the domain concept classes of a gene product (RNA), tissue and 
alternative mRNA respectively. At the highest level of the scheme proposed, the PAS 
representation contains the most abstract information motivated from conceptual in the 
real world. Semantic roles played by the constituents aside from the predicate in focus are 
represented at this level. Thus, the process of removal of an exon from mRNA (alternative 
splicing) is indicated by the predicate splice out which is in verbal form for this example. 
Here, the verb’s arguments play the semantic roles of lost component (“One exon”), entity 
getting spliced (“the MLC3nm transcript”), location referring to tissue (“smooth 
muscle”), and secondary predication - showing purpose or reason in this example (“to 
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give an alternative product”). The semantic role of secondary predication is assigned to 
the argument “to give an alternative product” because this by itself is capable of 
instantiating a PAS frame and at the same time it is considered in this scheme to possibly 
be a core argument due to being a key component of the occurrence of the event. 

In accordance with IE systems, it is substantial to be able to understand the sentence at 
the level higher than syntactic levels in order to efficiently extract required facts. At least, 
the knowledge from the level describing argument categories which relates to the facts 
explaining types of domain objects participating in the event should be obtained. At the 
PAS level, the knowledge of semantic roles increases the degree of completeness of the 
knowledge in order to understand what occurs in the event. The intervention between 
participants and the outcomes of the event are represented in the PAS level. Some recent 
efforts to apply this PAS knowledge for their applications affirm the importance of the 
PAS knowledge. Text processing applications in general domain such as machine 
translation tools make use of PAS knowledge as a key knowledge in the sentence 
representation shared between source language and target language (Han et al., 2000; 
Hajic et al., 2004). In the molecular biology domain, the PAS knowledge has been used 
for extracting interaction or relation between gene and gene products (Sekimizu et al., 
1998; Rindflesch et al., 2000). 

In order to take advantages of PAS knowledge, a constituent at the surface level must 
be mapped to an argument defined in the PAS frame. It is naturally for molecular biology 
experts to conceive the PAS semantics of the sentence from using pre-constructed 
syntactic information (grammatical knowledge), but it is not true for people without 
domain knowledge. In the following, selected sentences from MEDLINE abstracts and 
EMBO 35  Journal articles are used to illustrate what makes the conceptualizing on a 
surface sentence into semantic relationships between a predicate and its argument difficult. 

In Figure  3-3, the sentences (1)-(3) are the examples of surface sentences describing 
the event indicated by the predicate eliminate. Here, we consider 3 different arguments: A, 
B and C. Semantic roles assigned to each argument include A – causal agent of the event, 
B – the entity being removed, and C – location at molecular (sequence) or cellular level 
where the entity is being removed. Sentence (1) shows simple indicative form of which 
the surface-based pattern to map surface form to PAS level would be “A eliminates B in 
                                                      
35 The European Molecular Biology Organization [http://www.nature.com/emboj/] 
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C” (where A=One mutation, B=the BamHI site and C=exon7); sentence (2) shows the 
passive form, without the mention of A and C, of which the mapping pattern would be “B 
are eliminated” (where B=all three sites); sentence (3) shows a form, using a different 
preposition compared to sentence (1) in order to mention C, of which the mapping pattern 
would be “A would eliminate B within C” (where A=a 3-bp in-frame deletion, B=an  

 

(1) [One mutation]A eliminates [the BamHI site]B in [exon 7]C 
and … 

(2) The same high level of activation of B-Raf occurs only 
when [all three sites]B are eliminated. 

(3) One of the remaining three families carried [a 3-bp in-
frame deletion]A that would eliminate [an asparagines 
residue]B within [a kinase domain of the product]C; the 
other two… 

 

(4) Northern blot analysis with mRNA from eight different 
human tissues demonstrated that [the enzyme]A was 
expressed exclusively in [brain]C, with [two mRNA isoforms 
of 2.4 and 4.0 kb]B. 

(5) [Two equally abundant mRNAs for il8ra]A, [2.0 and 2.4 
kilobases in length]B, are expressed in [neutrophils]C and 
arise from usage of two alternative polyadenylation 
signals. 

(6) This “functional allelic exclusion” is apparently due to 
control of the TCR assembly process because these [T 
cells]C express [RNA and protein for all four transgenic 
TCR proteins]A. 

 
Figure  3-3: Examples of the surface forms describing events corresponding to the 

predicates eliminate and express. Semantic roles of the predicates’ arguments 
are marked as […]A or […]B or […]C 

 
asparagines residue and C=a kinase domain of the product). As can be seen, each 
sentence requires a specific pattern based on surface form to map into the same PAS. It 
would not be possible to construct surface-based mapping rules to cover all possible 
alternation. However, for these 3 sentences, using of the knowledge from the syntactic 
relations level is practical to build up semantic relations from these 3 surface texts. The 
corresponding mapping rule based on semantic relations would be (A=a subject of 
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eliminate, B=a direct object of eliminate, C=a complement of the preposition functioning 
as adverbial of eliminate) for active voice36.  

The examples of sentences describing the event express37 are shown as sentences (4)-
(6). These sentences illustrate that only the syntactic knowledge is unable to directly link 
the surface level to PAS level. All participants of the event and their semantic roles when 
PAS-based representation of the sentences is applied are shown. The arguments 
participated in the occurrence of the event express consist of A – entity expressed, B – 
physical property of the expressed entity, and C – location referring to organelle, cell or 
tissue. In sentence (4), (where A= the enzyme, B=two mRNA isoforms of 2.4 and 4.0kb, 
C=brain) the information needed to describe the event with respect to argument B is 
marked by using a prepositional phrase, but in sentence (5), (where A=two equally 
abundant mRNAs for il8ra, B=2.0 and 2.4 kilobases in length, C=neutrophils), argument 
B is described in an appositive which is seemingly not playing an important role in the 
description of the event. For these 2 sentences, a common mapping rule based on 
syntactic relations cannot be obtained. The constituents of argument B in (4) and (5) have 
different syntactic functions (i.e., adverbial and apposition respectively).  

Sentence (6), (where A=RNA and protein for all four transgenic TCR proteins and C=T 
cells, without mentioning B) shows a different kind of problem. When reading through 
sentence (6), without deep domain knowledge, one may think that “T cells” has semantic 
role as an agent to activate the expression of “RNA and protein for all four transgenic 
TCR proteins” because it is a subject of the sentence. However, biologists would not 
think of “T cells” as an agent in this context, perceiving it as information about location. 
With the knowledge about molecular biology, “T cells” cannot be perceived of as an 
agent but the appropriate condition happening in “T cells” would be a reason. 

To discuss linguistically, the usage in the molecular biology literature of the predicate 
express is analogous to the usage of the predicate develop in PropBank as shown in 
Figure  3-4. The constituent “John’s neck” which locates in sentence (7) as a complement 
of preposition “on” is moved to be a subject in sentence (8) without changing its semantic 

                                                      
36 The direct object in active voice sentence is promoted to function as subject in passive voice sentence, and 

the subject is demoted to a complement of the preposition “by” (that may be left out). 
37 Expression or gene expression is the process by which a gene’s coded information is converted into the 

structures presenting and operating in the cell. 
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roles. This transition is similar to the movement of the argument C, a location argument, 
of sentence (4) or (5) to a subject position in sentence (6).  

As discussed above, the semantic information in PAS can be directly obtained from the 
grammatical knowledge (i.e., syntactic categories and syntactic relations) just in some 
cases. To build up the complex rules for mapping surface level into PAS level from 
various sources of knowledge (e.g. syntactic information and domain knowledge) would 
need the machine learning as the rules can be too complex to complete by manual. 
Therefore, the PAS frame describing a set of significant semantic roles for a predicate is 
required to be a reference frame for constructing a semantic role-annotated training data.    
The availability of PAS frame resources for using in general domain (e.g., PropBank, 
VerbNet and FrameNet) supports the claim. 

 

(7) [A big spot]Arg2 developed on [John’s neck]Arg1. 

(8) [John’s neck]Arg1 developed [a big spot]Arg2. 
 

 
Figure  3-4: Examples of sentences annotated by Propbank project. PAS frame of the 

predicate develop consists of 2 arguments (i.e., Arg1: non-intentional theme 
and Arg2: thing developed) 

 
The molecular biology sublanguage has some specific properties compared to general 

domain as the scientific conceptual would have strong influence to the word-meanings. In 
PASBio project, the analysis results show that some verbs have been used in only 
molecular biology domain or some have been used with the sense slightly different (or 
obviously different from non-scientific domain. The particular types of participants 
(entities) of the molecular events described in molecular biology literature bring into a set 
of PAS frames specialized for the molecular biology domain as discussed in the section 
3.4. 

3.3 Defining PAS frames for the molecular biology domain 

This section contributes to explanation of how predicates are choose, how example 
sentences are obtained, using scheme and methods, as well as constructed PAS frames. 
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Only some PAS frames are selected to discuss in this section. All of theme are available 
to be download at http://research.nii.ac.jp/~collier/projects/PASBio/.  

3.3.1 Data collection 

3.3.1.1 Selection of verbs 

The English language used in research articles of biological and biomedical sciences is a 
sublanguage of written natural language. While most of its vocabulary is similar to that of 
general English, some verbs are domain-specific in nature. The main focus here is the 
verbs that are used for describing molecular events in biology. Various researchers have 
different areas of interest and new concepts are added in the literature continuously. 
However, the areas of cellular signaling, gene expression, regulation and disruption of 
expression events are very important for the larger community of investigators involved 
in basic biomedical research and those involved in high throughput analysis. They are 
discussed throughout different parts of papers as possible cause of normal and disease 
states of different organisms. Hence, ignoring the normal distribution (frequency) of 
different verbs in the literature the verbs are chosen from those involved in the above-
mentioned processes (events). Most of the verbs are shown in Figure  3-1.  

3.3.1.2 Selection of example sentences 

Most of IE applications are still largely carried out using PubMed abstracts. Using 
abstracts is advantageous because they contain the highest density of keywords compared 
to other sections of research articles. However, the bio-text mining should scale-up to 
cover full journal articles where most of the detailed results are contained along with the 
supporting evidences, the comparisons to other works, the background information, etc. 
Recent investigations have shown that Introduction and Discussion sections apart from 
paper abstracts may be viewed as interesting sources of important biological information 
(Shah et al., 2003). Thus, the PAS-frames are defined by analysis on sentences from 
MEDLINE abstracts and from all other sections except the Method section of full text 
journals EMBO, PNAS38, NAR39 and JV40. Sentences from the Method section are not 

                                                      
38 Proceedings of the National Academy of Sciences of the United States of America [http://www.pnas.org/] 
39 Nucleic Acids Research Articles [http://nar.oupjournals.org/] 
40 Journal of Virology [http://jvi.asm.org/]  
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used in this analysis because they are limited in terms of biomedical information, as well 
as they have generic written styles and verb sense usage tending to overlap with general 
language.  

Sentences were carefully chosen to cover a broad usage of each verb under study from 
the MEDLINE and full text journal corpora as described before. The equal numbers of 
sentences containing a particular verb in its verbal format and its participial modifier 
format are in control. Before starting an analysis on each sentence, a sentence was parsed 
using Connexor Parser (Tapanainen and Jarvinen, 1997) that uses Functional dependency 
Grammar (FDG), to give parse tree, word, lemma, syntactic function and dependency 
links between words in order to help in determining the boundary of each argument exists 
in a sentence. This parse tree served as a useful guide in hand analysis, but was not 
considered by any means as a gold standard. At least 10 sentences were selected to 
determine PAS of the verb under study. The use of the parser considerably reduces the 
manual labors involved in defining arguments.  

3.3.2 Guidelines to define PAS frame in the PASBio project 

The PropBank’s scheme (with necessary adaptations) is used to define PAS for the 
molecular biology domain. To define PAS for any verb, a survey about the usages of the 
verb from a set of sample sentences in a representative corpus is made. Examining the 
usage of an individual verb will indicate if it needs to be divided into several senses. In 
PASBio, these senses are divided with the aim of obtaining fine-grained semantic senses 
using the WordNet (Miller, 1990) lexical database. Each of PASBio’s PAS contains a set 
of core arguments. A core argument is an argument shown by its usage to be important to 
complete the meaning of the event. Nevertheless, if an argument is considered important 
but there is no evidence to show that the argument exists together with the predicate in at 
least 20% of the selected sentences, this predicate may not be assigned as a core 
argument. There are two different types of core argument: the first type plays a role 
during the main event denoted by the predicate while the second type plays a role after 
the main event and aims to express results or consequences of the main event. Further 
details are given in the next section (Figure  3-5) illustrated with the PAS for mutate. Arg 
X (with X, a cardinal number, starting from 0 and then incremented for each additional 
argument) is used for labeling the first type of core argument and ArgR is used for the 
second type. A mnemonic label is added after Arg X and ArgR in order to give a short 
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description of the semantic role played by the argument. Biological function and usage of 
the argument are used to describe the semantic role in PAS. No attempt is made to ensure 
the consistency of mapping between argument labels (argument name) and the roles (the 
mnemonic labels) played by the arguments across verb frames, except Arg0. Arg0 is 
reserved for only the argument playing the semantic role of agent. In some cases, this 

agent argument is not found in the usage of some verbs. Thus, PAS frames of such verbs 
will contain the core argument from Arg1. See PAS frames for mutate (Figure  3-5), 
express (Figure  3-11) and transform.02 (Figure  3-13) as examples. 

In addition to annotating a sentence’s constituents corresponding to core-arguments 
with the tag Arg X or ArgR, the sentence’s constituents which do not play the role of core 
arguments but fall into three types (i.e., adverbial, negation and modality) are annotated 
with the tag ADV or MAN in the case of an adverbial, NEG in the case of negation, and 
MOD in the case of modality. At the current stage of this project, only adverbials in terms 
of adverbs are considered to be annotated as MAN (for a manner adverb) or ADV (for 
other types of adverbs). If any adverbials in terms of phrases or clauses are mandatory for 
expressing events indicated by particular predicates, these adverbials will be defined as 
core arguments within PAS frames. For example, an adverbial phrase playing the role of 
locative modifier is included in the set of core arguments in the frame for predicate 
initiate. (Refer to example sentence “Apparently HeLa cells either initiate transcription at 
multiple sites within RPS14 exon 1.”). Moreover, a manner adverb deserves special 
distinction from other adverb types because it shows how a certain action is performed 
which is very important to understand facts in a biological sentence. For example, 
“normally” in the sentence “Mice have previously been shown to develop normally” is 
necessary for IE in order to understand that there is no problem in the development of the 
mice. Other types of adverbs for example play the roles of aspectual modifiers that give 
information about whether some event or state of affairs is completed or is still going on, 
and so forth (e.g., “still” in the sentence “Wanda still would like to talk about the music 
festival.”), adverbs playing roles as frequency modifiers that indicate the frequency of a 
certain type of event (e.g., “always” in the sentence “One always hears rumors.”), adverbs 
playing roles as focusing modifiers that consist of the four words even, only, also, and too 
(e.g., “The transcription is initiated only in female blastoderm embryos.”), and so on will 
be all tagged as ADV. In case of negation and modality, NEG and MOD are given directly 
to a negator word (i.e., not or n’t) and a modal verb (i.e., will, may, can, shall, must, 
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might, should, could and would) respectively. Though negations (operating at the 
sentence level) and modality (operating at various levels) are not defined as core 
arguments (mandatory arguments) within any PASBio’s PAS frames because 
linguistically both of them cannot even be considered as any types of predicate’s 
arguments, they are all worth annotating from an IE perspective if they exist in the same 
clause where a focused predicate exists. Similarly, adverbials which are not mandatory 
enough to be core arguments are also considered worthy of being annotated when found 
in the text. They should not be ignored as they can significantly alter or even reverse the 
meaning of the sentence. 

3.4 Examples of PAS frames with the explanation 

In this subsection, some examples of PASBio’s PAS frames and how each frame is 
defined by examples of sentences relevant to it are illustrated. There are three important 
cases that are examine in comparison to PropBank: (1) verbs that are rarely used in 
general language (e.g., splice) or have a unique biological interpretation (e.g., express and 
translate), (2) verbs that have a similar meaning used in the newswire domain and 
biology domain but show different patterns of usage (e.g., alter and initiate), and (3) 
verbs that are used with the same meaning and usage style in both domains (e.g., abolish 
and delete).  

 

Table  3-1: Examples of predicates in each group 
 
Group A : same sense, more arguments 

alter, begin, develop, disrupt, inhibit, initiate, mutate, proliferate, skip 

Group B : same sense, less arguments 

generate, block, decrease, lose, modify 

Group C : same sense, same structure 

abolish, confer, eliminate, lead to, result, delete 

Group D : different sense or not occur 

splice, express, truncate, translate, encode, transform, catalyze, transcribe, recognize 
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The usage of different verbs in biology influence PAS for biological domain falls into 
four groups: A – same sense, more arguments; B – same sense, fewer arguments; C – 
same sense, same structure; D – different sense or does not occur. Table  3-1 shows the 
examples of verbs for each group. The frames of PAS of two verbs are given as examples 
for each group.  

3.4.1 Group A 

Verbs in this group have been used in biology documents with the same semantic sense as 
in PropBank, but they required more core arguments in their structures.  

Consider the event of mutation, one of the most important biological events and a 
general cause behind genetic diseases. The verb mutate is used to describe the changes in 
an entity (gene or gene product) and mutations can be natural or engineered. PropBank 
defines two arguments for this verb which are Arg0: agent and Arg1: entity undergoing 
mutation, but from analysis four arguments are proposed in this work for the PAS frame 
of the verb mutate. As mentioned in the section 3.3.2, Arg0 is reserved only for the 
argument playing the semantic role of agent. From all observed the examples, passive 
forms are used to describe mutate events which mean that the agent does exist in the 
event but it is unnecessary to be explicitly stated because it is commonly known by the 
domain experts. This results in PASBio’s core arguments for mutate starting from Arg1 
and a position for agent is left because the agent possibly could be mentioned in other 
biological sub-domains. The PASBio’s Arg2 describing event participating entities 
(referred to as ‘Named Entities’) is analogous to PropBank’s Arg1. Thus PASBio’s Arg1, 
Arg3, and ArgR are extra arguments compared to PropBank. The arguments Arg1and 
Arg3 are captured conforming to linguistic criterion (Mayers et al., 1996) which considers 
that a sentence element which plays a particular role to a predicate will be considered to 
be a core argument in a PAS frame even though it does not exist in every sentence in 
which the predicate appears. The existence of the omitted element is implied by the 
existence of the predicate. For example, in the sentence “John is eating”, the existence of 
a core argument of eat which denotes a type of food will be assumed. Similarly, Figure 
 3-5 shows that Arg1 and Arg3 do not exist in all sentences 1.1 to 1.3, but are assigned as 
core arguments by their intuitive presence in the domain models of biologists. Noticeably, 
consequences of the event driven by verb mutate are often seen in examples. Apart from 
“changes at molecular level” assigned as Arg3, the consequence, “changes at phenotype  



 

 - 64 - 

 

Frame 1: Predicate MUTATE 
 

 Argument Structure for Biology PropBank Argument Structure 

 
Arg1: physical location 

where mutation happen   
//exon,intron// 

Arg2: mutated entity 
// gene // 

Arg3: changes at molecular   
level  

ArgR: changes at phenotype 
level 

 

   
Sense = to undergo and cause   
        to undergo mutation 

Arg0: agent 
Arg1: entity undergoing   

         mutation 
 

Match to MUTATE senses in WordNet: sense 1 – undergo mutation 

Sentence 1.1 The exon 5 mutated allele with the premature 
translation termination resulted in severe deficiency of Hex A. 
 

Pred: mutate 
Arg1: exon 5 
Arg2: allele 
Arg3: [with] the premature translation termination 
ArgR: resulted in severe deficiency of Hex A 

 
Sentence 1.2 The gene mutated in variant late-infantile neuronal 
ceroid lipofuscinosis (CLN6) and in nclf mutant mice encodes a 
novel predicted transmembrane protein. 
 

Pred: mutate 
Arg1: - 
Arg2: gene 
Arg3: [in] variant late-infantile neuronal ceroid 

lipofuscinosis (CLN6) and in nclf   
      mutant mice 
ArgR: encodes a novel predicted transmembrane protein 
 

Sentence 1.3 Transient expression of the exon 8 mutated alpha-chain 
cDNA in COS-1 cells resulted in deficiency of enzymatic 
activity. 
 

Pred: mutate 
Arg1: exon 8 
Arg2: alpha-chain cDNA in COS-1 cells 
Arg3: - 

ArgR: resulted in deficiency of enzymatic activity 

 
 

 
Figure  3-5: Predicate-argument frame for mutate, belonging to group A 
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level” is suggested as ArgR (explained below). Sentence 1.1, 1.2, and 1.3 support this 
explanation. 

The argument ArgR:results/consequences is an argument giving information about 
consequences after the event denoted by the predicate occurs. For mutate, most of the 
example sentences describing this event contain an ArgR argument, revealing the 
necessity of it. The requirement of this argument from an observation perspective 
coincides with biologist’s viewpoint, thus this is considered as a core argument (more 
precisely an IE core argument) and named as ArgR instead of Arg X (a core argument 
from a purely linguistic perspective). The argument named as Arg X has to play a role 
during the event but not after the event. This condition is depicted by a formula like 
“mutation event = ( Arg X + mutation + Arg X ) + ArgR”. Empirically, it is found that this 
result argument (ArgR) is used with verbs relating to an abnormal biological 
phenomenon. Examples of other verbs that need this argument are skip, delete, etc. 

 
 

Frame 2: Predicate INITIATE 
 

 Argument Structure for Biology PropBank Argument Structure 

 
Arg0: agent             

//gene// 
Arg1: entity created    

//transcription or 
translation// 

Arg2: specific location on 
gene        
//exon or intron// 

Arg3: location as tissue or 
cell  

Arg4: method 
        

 
Sense = begin 

Arg0: agent 
Arg2: theme (-creation) 
Arg3: instrument 

 

Match to INITIATE senses in WordNet: sense 1 – bring into being 

Sentence 2.1  Apparently HeLa cells either initiate transcription 
at multiple sites within RPS14 exon 1, or capped 
5'oligonucleotides are removed from most S14 mRNAs 
posttranscription. 
 

Pred: initiate 
Arg0: - 
Arg1: transcription 
Arg2: [at] multiple sites within RPS14 exon 1 
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Arg3: HeLa cells 
Arg4: - 

 
Sentence 2.2  I kappa B-epsilon translation initiates from an 
internal ATG codon to give rise to a protein of 45 kDa, which 
exists as multiple phosphorylated isoforms in resting cells. 
 

Pred: initiate 
Arg0: - 
Arg1: I kappa B-epsilon translation 
Arg2: [from] an internal ATG codon 
Arg3: - 
Arg4: - 

 
Sentence 2.3 Since RTKs initiate signaling by recruiting 
downstream components to the activated receptor, proteins that 
are immediately downstreamof an activated RTK can be identified 
by first identifying sequences in the RTK that are necessary to 
activate downstream signaling (Schlessinger and Ullrich, 1992; 
Pawson, 1995). 
 

Pred: initiate 
Arg0: RTKs 
Arg1: signaling 
Arg2: - 
Arg3: - 
Arg4: [by] recruiting downstream components to the 

activated receptor 
 

 
Figure  3-6: Predicate-argument frame for initiate, belonging to group A 

 
Verb initiate also takes additional arguments as core arguments. As shown in Figure  3-6, 
Arg2 (sentences 2.1 and 2.2) describes the point of transcription initiation and Arg3 
provides information about the tissue/cell where the gene (or product) is expressed. In 
PropBank, the sentence’s segments defined by the parser with functional tag as LOC 
(location) will be considered as non-required elements. However, the extraction of spatial 
information is very important from the perspective of biological description. Furthermore, 
another interesting point that can be seen from the examples in Figure  3-6 is that authors 
in biology not only put the agent but also various other kinds of semantic roles in the 
subject position. In Sentence 2.1 “HeLa cells” is syntactically the subject that seems to be 
the agent of an initiate event, but domain knowledge suggests that the agent can be only a 
protein (usually polymerases bound to the gene being transcribed) in this case. “HeLa 
cells” is annotated as Arg3:location as tissue or cell instead of Arg0:agent. In sentence 
2.2, “I kappa B-epsilon translation” is also a subject as in the previous example, but it is  
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Frame 3: Predicate BLOCK 
 

Argument Structure for Biology PropBank Argument Structure 

 
Arg0: agent, causer       
Arg1: theme  

//entity or process 
being stopped// 

 

   
Sense = oppose, halt, stop 

Arg0: agent 
Arg1: theme (action or 

object being 
stopped) 

Arg2: secondary predication 
Arg3: instrument     
           

Match to BLOCK senses in WordNet: sense 3 – stop from happening or 

developing 

Sentence 3.1 Tagetin is more specific for distinguishing between 
different RNA polymerases because it blocks RNA polymerase 
during elongation. 
 

Pred: block 
Arg0: it 
Arg1: RNA polymerase during elongation 
 

Sentence 3.2 Membranes were blocked in TBST (Tris-buffered saline, 
0.05% Tween-20) containing 5% bovine serum albumin (for anti-
phosphoryrosine blots) or skimmed milk and probed with 
antibodies. 
 

Pred: block 
Arg0: - 
Arg1: Membranes 

 
Sentence 3.3 Mutations at the 3’ splice site that specifically 
block step II do not affect the association of hPrps 16 and 17 
with the spliceosome, indicating that these factors may 
function at a stage of step II prior to recognition of the 3’ 
splice site. 
 

Pred: block 
Arg0: Mutation at the 3’ splice site 
Arg1: step II  
 MAN: specifically 

 
Figure  3-7: Predicate-argument frame for block, belonging to group B 

 

“entity created” assigned as Arg1. Only in Sentence 2.3 (describing initiation of signaling 
event), the subject of the sentence fills the semantic role “agent”, so a subject “RTKs” can 
be annotated as Arg0. Additionally, the point to note is “the entity created” in sentence 
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2.3 is different from sentence 2.1 and 2.2 as it is a signaling event that is initiated, but not 
a transcription or translation event. 

 
 

Frame 4: Predicate GENERATE 
 

Argument Structure for Biology PropBank Argument Structure 

 
Arg0: agent, causer   

//gene, protein// 
Arg1: thing created 

 

  
Sense = create 

Arg0: creator 
Arg1: thing created 
Arg2: source 
Arg3: benefactive 
Arg4: attribute, secondary 

predication 
 

Match to GENERATE senses in WordNet: sense 1 – bring into existence 

Sentence 4.1 Prnd generates major transcripts of 1.7 and 2.7 kb as 
well as some unusual chimeric transcripts generated by 
intergenic splicing with Prnp. 

 
Pred: generate 

Arg0: Prnd       
Arg1: major transcripts of 1.7 and 2.7 kb   

 
Sentence 4.2 The bidentate RNase III Dicer cleaves microRNA 
precursors to generate the 21-23 nt  
long mature RNAs. 

 
Pred: generate 

Arg0: The bidentate RNase III Dicer  
Arg1: the 21-23 nt long mature RNAs 
 

Sentence 4.3 Human leukocyte antigen (HLA)-G molecules are 
generated by an alternative splicing of the primary transcript 
of the gene and display specialized function in regulating the 
immune response. 

 
Pred: generate 

Arg0: an alternative splicing of the primary transcript of 
the gene  

Arg1: Human leukocyte antigen (HLA)-G molecules 
 

 
Figure  3-8: Predicate-argument frame for generate, belonging to group B 
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3.4.2 Group B 

Verbs in this group have been used in biological texts with the same semantic sense as in 
PropBank, but they required fewer arguments in their structures in the PAS frame 
proposed here. 

Verb block both in biomedical texts and in business news texts has very similar 
semantics. However, an event described by verb block in the biomedical domain may not 
mention information about secondary predication and instrument most of the time. The 
semantic role secondary predication is assigned to the argument that is in itself capable of 
instantiating another PAS frame. The sentence “[JohnArg0] blocked [Mary Arg1] from 
[completing her dissertation Arg2] with [his constant pestering Arg3].” is annotated by 
PropBank’s PAS frame. An argument Arg2-secondary predication is annotated for 
“completing her dissertation” because this contains in itself the PAS of the verb complete.  

From this PropBank example, the meaning of the event denoted by block cannot be 
completely understood if the sentence just states as “[JohnArg0] blocked [Mary Arg1].” as it 
is necessary to mention the action being stopped. In contrast in the biology domain, by 
mentioning only the entity being stopped (Sentence 3.1-3.3), the expert reader can 
understand that the event which applies to that entity is being stopped without providing 
an explanation of the action being stopped at the position of secondary predication. 
Similarly, an instrument used to block is encoded in the nature of an agent or causer. The 
structure of block and its examples are given in Figure  3-7. Only core arguments as 
defined in the structure exist in Sentence 3.1 and 3.2 (the agent is not mentioned). In 
sentence 3.3, MAN is used to label “specifically” as this adverb plays the role of a manner 
modifier. 

In Figure  3-8 the PAS frame of generate is similar to that of block. Only Arg0-agent 
and Arg1-entity created are expressed in all observed sentences from the biology corpus. 

3.4.3 Group C 

Verbs in this group have been used in biological documents with the same semantic sense 
as in PropBank. Moreover, their usage in both the biological corpus and PropBank 
indicates that their PAS frames are identical. Specialization of domain does not seem to 
affect verbs in this group.  
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Frame 5: Predicate CONFER 
 

Argument Structure for Biology PropBank Argument Structure 

 
Arg0: agent  

//mechanism, process, 
entity// 

Arg1: given biological 
property 

Arg2: entity receiving 
biological property  

         //gene product, cell// 
 

  
Sense = grant, give 

Arg0: agent 
Arg1: gift 
Arg2: given to 

 

Match to CONFER senses in WordNet: sense 2 - present 

Sentence 5.1 Besides these side chain interactions with the 06-
alkyl group, structure-based analysis of mutational data 
suggests that substitutions at Gly156 and Lys165 confer 
resistance to 06-BG through backbone distortions. 
 

Pred: confer 
Arg0: substitutions at Gly156 and Lys165 
Arg1: resistance 
Arg2: [to] 06-BG 

 
Sentence 5.2 The portion of the STATs conferring specificity for 
either a MAPK or a MAPK substrate kinase (MAPKAP) has not been 
determined. 
 

Pred: confer 
Arg0: The portion of the STATs 
Arg1: specificity 
Arg2: [for] either a MAPK or a MAPK substrate kinase 

(MAPKAP) 
 

Figure  3-9: Predicate-argument frame for confer, belonging to group C 
 

In Figure  3-9 and Figure  3-10 show PAS for confer and lead. In both biology and 
newswire corpora, confer is used with semantic “to give (as a property or characteristic) 
to someone or something” and lead to is used in the sense of “to tend toward or have a 
result”. 
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Frame 6: Predicate LEAD 
 

Argument Structure for Biology PropBank Argument Structure 

 
Arg1: factor/cause 
Arg2: result 

  
Sense = resulted 

Arg1: factors/cause 
Arg2: result 

 
Match to LEAD TO senses in WordNet: sense 3 – tend to or result in 

Sentence 6.1 In this homologous part of the genes, GPB lacks one 
exon due to a point mutation at the 5' splicing site of the 
third intron, which inactivates the 5' cleavage event of 
splicing and leads to ligation of the second to the fourth 
exon. 
 

Pred: lead 
Arg1: a point mutation at the 5' splicing site of the 

third intron 
Arg2: [to] ligation of the second to the fourth exon 

 
Sentence 6.2 Genetic deficiency of GM2 activator leads to a 
neurological disorder, an atypical form of Tay-Sachs disease 
(GM2 gangliosidosis variant AB). 
 

Pred: lead 
Arg1: Genetic deficiency of GM2 activator 
Arg2: [to] a neurological disorder 
 

 
Figure  3-10: Predicate-argument frame for lead, belonging to group C 

 
 

3.4.4 Group D 

Verbs in this group have been used in biology documents with a different semantic sense 
compared to PropBank, or PAS frames for them are not found in PropBank. More than 
one semantic sense is found in the corpus for some verbs. PAS frames for express and 
transform are presented in Figure  3-11, Figure  3-12, and Figure  3-13, respectively to 
illustrate predicate-argument structures for this group.  
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Frame 7: Predicate EXPRESS 
 

Argument Structure for Biology PropBank Argument Structure 

 
Arg1: named entity     

//gene or gene 
products// 

Arg2: property of the 
existing named entity 

Arg3: location refering to 
organelle, cell or 
tissue 

 

   
Sense = say  (express.01) 

Arg0: speak 
Arg1: utterance 
Arg2: hearer  

 
Sense = send very quickly 
(express.02) 

Arg0: sender 
Arg1: thing sent 
Arg2: sent to 

  
Match to TRANSFORM senses in WordNet: sense 5 – manifest the effects 

of a gene or genetic trait 

Sentence 7.1 Northern blot analysis with mRNA from eight different 
human tissues demonstrated that the enzyme was expressed 
exclusively in brain, with two mRNA isoforms of 2.4 and 4.0 kb.   

 
Pred: express 

Arg1: the enzyme 
Arg2: [with] two mRNA isoforms of 2.4 and 4.0 kb 
Arg3: [in] brain 
 ADV: exclusively 
 

Sentence 7.2 Two equally abundant mRNAs for il8ra, 2.0 and 2.4 
kilobases in length, are expressed in neutrophils and arise from 
usage of two alternative polyadenylation signals. 

 
Pred: express 

       Arg1: mRNAs for il8ra 
       Arg2: 2.0 and 2.4 kilobases in length 
       Arg3: [in] neutrophils 
 
Sentence 7.3 T cells from double TCR transgenic mice express only 
one or the other of the two available TCRs at the cell surface. 

 
Pred: express 

Arg1: one or the other of the two available TCRs 
Arg2: - 
Arg3: T cells from double TCR transgenic mice 
 ADV: only 
 

 
Figure  3-11: Predicate-argument frame for express, belonging to group D 
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Frame 8: Predicate TRANSFORM.01 
 

Argument Structure for Biology PropBank Argument Structure 

 
Sense = to cause (a cell) to 

undergo genetic 
transformation 

Arg0: agent/causer of 
transformation 

Arg1: entity undergoing 
transformation 

Arg2: effect of 
transformation/end 
state 

   
Sense = change 

Arg0: causer of 
transformation 

Arg1: thing changing 
Arg2: end state 
Arg3: start state      

Match to TRANSFORM senses in WordNet: sense 2 – change or alter in 

form, appearance, or nature 

Sentence 8.1 We and others have found that FGF8b can transform the 
midbrain into a cerebellum fate, whereas FGF8a can promote 
midbrain development. 
 

Pred: transform 
Arg0: FGF8b  
Arg1: the midbrain 
Arg2: [into] a cerebellum fate 
 MOD: can 
 

Sentence 8.2 Phospholiipase D (PLD) is known to stimulate cell 
cycle progression and to transform murine fibroblast cells into 
tumorigenic forms, although the precise mechanisms are not 
elucidated. 
  
    Pred: transform 

Arg0: Phospholipase D (PLD)  
Arg1: murine fibroblast cells 
Arg2: [into] tumorigenic forms 
 

Sentence 8.3 Overexpression of the retroviral oncoprotein v-Rel can 
rapidly transform and immortalize a variety of avian cells in 
culture. 
 

Pred: transform 
Arg0: Overexpression of the retroviral oncoprotein v-Rel  
Arg1: a variety of avian cells in culture  
Arg2: - 
 MOD: can 
 ADV: rapidly 
 

 
Figure  3-12: Predicate-argument frame for transform (sense 1), belonging to group D 
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Frame 9: Predicate TRANSFORM.02 (TRANSFORM INTO) 
 

Argument Structure for Biology PropBank Argument Structure 

Sense = to transfer gene from 
source organism into 
target organism 

Arg1: entity being inserted 
Arg2: organism or cell 

undergoing 
transformation 

 

Sense = change 

Arg0: causer of 
transformation 

Arg1: thing changing 
Arg2: end state 
Arg3: start state      

Match to TRANSFORM senses in WordNet: sense 6 – change (a bacterial 

cell) into a genetically distinct cell by the introduction of 

DNA from another cell of the same or closely related species) 

Sentence 9.1 This construct was transformed into the yeast strain 
HF7c (Clontech). 
 

Pred: transform 
Arg1: This construct 
Arg2: [into] the yeast strain HF7c (Clontech) 
 

Sentence 9.2 For expression of the recombinant protein, pET28a-5 
was transformed into Escherichia  
coli strain BL21(DE3). 
 

Pred: transform 
Arg1: pET28a-5 
Arg2: [into] Escherichia coli strain BL21(DE3) 
 

Sentence 9.3 To generate GST fusion proteins, the relevant DNA 
fragments were cloned into pGex2T (Pharmacia) and transformed 
into the bacterial strains BL21 or TOPP (Stratagene). 
 

Pred: transform 
Arg1: the relevant DNA fragments 
Arg2: [into] the bacterial strains BL21 or TOPP 

(Stratagene) 
 

 
Figure  3-13: Predicate-argument frame for transform (sense 2), belonging to group D 

 
The verb express is used in the biology domain with the meaning “to manifest the 

existence of a gene or gene product” (or detection of the same by the experimenter) unlike 
its normal usage with the meaning of “give an opinion or send quickly”. The PAS of 
express is given as Figure  3-11.  
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In the case of transform, two senses are used in biology papers: “to cause (a cell) to 
undergo genetic (or neoplasmic) transformation” as shown in Figure  3-12 and “to transfer 
a gene from source organism into target organism” as shown in Figure  3-13. Even though 
the first meaning of transform found in biological corpus is similar to the sense of 
“change” found by PropBank, there is still a huge gap between them. In the biological 
literature, illustrated by examples in sentences 8.1-8.3, this genetic transformation 
mentions only the agent or causer, what entity is getting transformed, and what will be the 
effect after transformation. It will not mention the start state of the entity undergoing 
transformation because it is known from the expert reader’s domain ‘common sense’ 
knowledge that the start state refers to a normal condition of that entity. Transform in the 
second sense always occurs in a sentence connected by preposition into, and in the 
passive voice form in which no mention is made with regard to the agent. 

3.5 Utilization of PASBio’s frames 

The semantic representation at the PAS level does not depend on the variation of the 
sentences’ surface forms. If two surface forms carry the same proposition, they will be 
represented into the same PAS. Whatever syntactic function each constituent has in one 
surface form, its semantic role (i.e. the semantic relation to the predicate) does not change 
in another surface form. For instance, the constituent “LMP-1” has a syntactic function as 
the subject of the predicate “activates” in the sentence “LMP-1 activates the pathways” 
and has a syntactic function as the object in the sentence “The pathways is activated by 
LMP-1”. Because the proposition transmitted by the former sentence is as same as by the 
latter, the constituent “LMP-1” has the semantic role as agent or causer of the activation 
event in both sentences although its syntactic function in the former sentence differs from 
in the latter. 

This property of the PAS interests to various information processing applications: 
machine translation, text summarization, relation extractions between molecular entities, 
etc. Machine translation requires encoding a surface sentence of a source language into a 
language independent logical form of a clause meaning, and then generating from this 
logical representation a surface sentence in a target language. PAS has been used as such 
a logical representation in machine translation (Han et al., 2000; Hajic et al., 2004). For 
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text summarization applications, PAS could be employed as the basic unit of a discourse 
representation, before being summarized (Marcu, 2000).  

In case of the extraction of events or relations between molecular entities, PAS were 
simply used in the work of Sekimizu and colleagues (Sekimizu et al., 1998). In this work, 
the template for relation extraction had two slots for two arguments of the predicate 
corresponding to the target relation. This PAS template supported only binary relations 
between two participants of the event (i.e. only the arguments functioning as subject and 
object). More complete notion of PAS is employed in MedScan system (Novichkova et 
al., 2003). This system can transform the syntactic tree of an entire sentence into the set of 
logical relationships between the words in a sentence. This transformation would result in 
a sentence’s normalized semantic tree counted as the sentence representation at the PAS 
level. 

The potentiality of PAS that can be represented by a single form for various surface 
sentences containing the same information have been taken advantage directly by above 
text processing applications. However, the NER system which is a focus application in 
this thesis has shown the indirect usage of PAS. Not the meaning of the whole sentence is 
the focus of the NER system, but some portions of a sentence containing the named 
entities of interest. In this thesis, the NER system uses the semantic role of a sentence’s 
constituent as one of the evidences to classify the named entity into the correct semantic 
class. This is practicable because the semantic role that each constituent (an argument of a 
predicate) plays in the event partly imposes type restrictions on the entities within the 
constituent41. 

As mentioned above, the representation of a sentence in the form of PAS benefits for 
several kinds of the text processing applications. Either the manual methods or the 
automatic methods for transforming a sentence from its surface level to the PAS level, a 
set of PAS frames is necessary. A lexical resource of PAS frames available for public 
allows the common agreement among experts. The manual methods will construct the 
mapping rules based on the information of a sentence in lower levels (i.e. lexical and 
syntactic information) to obtain the target templates defined in a shared PAS resource. 
The automatic methods (the machine learning-based methods) construct the training 
examples by using the shared PAS frames as the reference frames to annotate texts. Then, 
                                                      
41 Please see section 2.3 for more details. 
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these annotated texts are learnt by the machine learning to build the automatic semantic 
role identification model. 
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Chapter 4 
Applying semantic roles in PAS to enhance 

named entity recognition (NER) 

In the molecular biology domain, NER is the task of identifying and classifying text 
constituents referring to the bio-molecular entities into their concept classes. The terms 
used for referring to the entities in the molecular biology domain are significantly 
different from the terms in the newswire domain in which the original definition of named 
entities is introduced. In 1995, the named entities to be extracted from the newswire 
literature were defined by MUC-6 as the proper names of person (e.g., Anan), 
organization (e.g., Toyota), location (e.g. Southern Thailand), etc. However, the terms 
counted as the bio-molecular named entities can be either the proper names or the 
descriptive names. For instance, the proper name “I kappa B alpha” and the descriptive 
name “growth factor” are both protein names. The descriptive names of bio-molecular 
entities are mainly derived from the biological functions of the entities. The growth factor 
is a protein named from its function of cell division stimulation when it binds to its cell-
surface receptor. Another example is elongation factor, it is a name of protein that 
ribosome needs to make polypeptide chains longer. As these molecular entities are named 
by the terms containing general words (not proper nouns), they are ambiguous to be 
identified as named entities. Many terms containing similar words are not molecular 
named entities; for example, bioaccumulation factor means the concentration of a 
chemical in living tissue divided by its concentration in the animal’s diet, or risk factor 
means anything that raises the chance that a person will get a disease. To name the 
molecular entities with the descriptive names multiply the difficulties from the factors 
described in section 2.1.1.1 (e.g., lack of naming conventions in biology, various patterns 
of terminology, term nesting, term coordination, homonymy, systematic polysemy and 
synonym). 

Although, it is unclear how to compare the difficulties between NER in newswire 
domain and in the molecular biology domain, by the above characteristics of terms for 
molecular named entities as well as the ambiguity factors described in section 2.1.1.1 the 
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bio-molecular NER seems to be more difficult than the newswire NER. Furthermore, the 
experiments conducted by Gaizauskas and colleagues (Gaizauskas et al., 2003) resulted in 
the F-score of 93% and 83% when the same NER system is applied to newswire domain 
and molecular biology domain, respectively. This lower F-score of about 10% in case of 
the molecular biology domain compared to the newswire domain supports the previous 
mentioned idea that the bio-molecular NER seems to be more difficult. Furthermore, from 
the final results reported in the most recently shared-task of NER for the molecular-
biology domain (JNLPBA-2004), the best performance in terms of F-score is only 72.6 
(Kim et al., 2004). In contrast, according to MUC-6 the accuracy in general news-based 
NER is about 96%. 

The gap between the performances of the NER systems in the molecular biology 
domain and in the newswire domain brings into the question that why the traditional NER 
systems are successful for newswire domain, but not the molecular biology domain. This 
would be explainable that compared to the general named entities, the molecular named 
entities have much more lexical ambiguities especially from the use of the descriptive 
names, homonymy and systematic polysemy42. The term internal evidence, the lexical 
information, is too weak to handle. The external evidence will play an important role for 
disambiguating molecular named entities. As discussed in section 2.3, the use of co-
occurrence, one kind of the term external evidences, is practical when the target term 
exists near the informative terms43 in a sentence. On the other hand, the use of semantic 
roles is more consistent because the semantic role of a term to its related predicate is 
independent of the distance between a target term’s position and its related predicate’s 
position in a sentence.  

In this thesis, underlying the idea that an argument’s semantic role should impose type 
restrictions on an entity within the argument, the use of semantic roles as term external 
evidences for NER systems is proposed. The semantic role knowledge is formed into 
features of machine learning based NER systems. What is the effective way to form 
semantic roles into features and how much each predicate’s semantic role set can 
contribute to improve tradition NER systems are investigated in this work. 

                                                      
42 Please see section 2.1.1.1 for details and examples. 
43 The informative terms refer to the terms carrying clues to the named entity class of the target term. 
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This chapter is organized as follows. Firstly, each of the processes and knowledge 
components composing the system is explained in detail. Secondly, the experimental 
results are shown and the contribution of PAS-related features to NER is discussed on the 
basis of the used features and the predicate groups. Then, the sources of errors and the 
factors that impede the NER system to get high performance improvement is discussed. 
Finally, the effectiveness of an argument’s semantic role is illustrated  

4.1 Method 
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Figure  4-1: Overview of the processes and knowledge components in using system 
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The overall architecture for the entire system is shown by processes and knowledge 
components in Figure  4-1. This system is composed of 8 main processes: (1) pre-process 
explained in section 4.1.1, (2) parsing process and (3) repairing process explained in 
section 4.1.2, (4) sub-structure recognizing process explained in section 4.1.3, (5) term 
enhancing process explained in section 4.1.4, (6) encoding process explained in section 
4.1.5, (7) predicate and sentence selecting process explained in section 4.1.6 and (8) 
machine learning process and its results explained in section 4.2-4.4. 

4.1.1 Data set and pre-process 

The GENIA corpus V3.02 (Ohta et al., 2002; Kim et al., 2003) is used as the data set of 
named-entity tagged text. It is the largest annotated corpus in the molecular biology 
domain available publicly44. The GENIA corpus contains 2,000 MEDLINE abstracts that 
were collected using the search terms human, transcription factor and blood cell since the 
corpus creators aimed their annotation work to converge on biological reactions 
concerning transcription factors in human blood cells. 

In GENIA corpus, each word in the text from totally 490,941 words is annotated with 
part-of-speech tags according to its syntactic role. In addition, about 100K biological 
terms (97,876 terms to be precise) are annotated with 36 terminal classes (thick circle 
nodes) from the GENIA ontology shown in Figure  4-4. The GENIA ontology is intended 
to be a formal model of concepts corresponding cell signaling reactions in human. It is to 
be used by text processing applications: IE, IR-Information Retrieval, classification and 
categorization of documents, text summarization, etc. 

 

(1)…we have detected two crossreacting proteins in [activated 
normal human lymphocytes]DNA. 

(2)Although these heterodimers do not recognize a classical 
[thyroid hormone response element]cell-type (TRE) 
characterized by direct repeat… 

 
 

Figure  4-2: Example of qualifier inconsistency in GENIA corpus 

                                                      
44 http://www-tsujii.is.s.u-tokyo.ac.jp/~genia/topics/Corpus/ 
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The annotated text with 36 classes in GENIA corpus has been done by 2 domain 
experts. However, no interannotator agreement for term annotation has been published. 
Through a simple inspection done in this thesis, some inconsistencies are found. From 
sentence (1) in Figure  4-2, all qualifiers are included in the boundary of the named entity 
“activate normal human lymphocytes” which refers to DNA. On the other hand, in 
sentence (2) the quantifier “classical” is not annotated as a part of cell-type. As in the 
GENIA corpus annotation scheme, to include or not include quantifiers in the named 
entities is left to the expert judgment, thus it is not surprise to have qualifiers 
inconsistency. Figure  4-3 illustrates another inconsistency. The term “monoclonal 
antibody” is annotated as protein in sentence (3), but the same term is not annotated in 
sentence (4).  

 

(3)Using Western blot analysis with a [monoclonal 
antibody]protein recognizing 17-amino acid epitope… 

(4)We demonstrate that cross-linking CD30 with an anti-CD30-
specific monoclonal antibody, which mimics… 

 
 

Figure  4-3: Example of loss annotation in GENIA corpus 
 

To work with all 36 classes in the corpus may contain quite high inconsistency, 
therefore in this work only 5 classes as in JNLPBA shared task (Kim et al., 2004) are 
used. These classes are protein, DNA, RNA, cell line and cell type (shown as bold-italic-
named-with-yellow-background nodes in Figure  4-4). Several subclasses of protein, DNA, 
and RNA from the original taxonomy are simplified into their mother classes 
corresponding to them. The classes of cell line and cell type are of interest to be annotated 
in order to make the task realistic for post-processing by a potential template filling 
application. 

According to the above mentioning, pre-processing is responsible for converting all 
named entities tagged with classes, other than classes of cell line and cell type as well as 
subclasses of protein, DNA, and RNA, into non-tagged entities. Moreover, all subclasses 
of protein, DNA, and RNA must be converted to the classes of protein, DNA, and RNA, 
respectively. 
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Not only is the pre-process stage involved with converting all tagged classes into 5 
required classes, but it also removes non-named entity XML elements from the text. In 
addition, it prepares the XML attributes in a form which is acceptable to the parser. 
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Figure  4-4: The GENIA ontology (36 terminal classes shown as thick circle nodes, 5 
classes used in the following experiments shown as bold-italic-named-
yellow background nodes) 

 

4.1.2 Parsing and repairing process 

The Conexor FDG parser (Tapanainen and Jarvinen, 1997) is used in the parsing process 
as it is widely used and is considered to be a state-of-the-art commercial parser. The 
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grammatical relations connecting one word to another can be obtained from the FDG 
parser which works based on a dependency grammar. This grammatical relation between 
words is needed for identifying dependencies between a verb and its arguments. In 
addition to functional dependency relations between words, the parser gives syntactic tags 
for phrases and morphological tags as well. After parsing the named-entity tagged 
sentence “Both compounds altered the <NAME cl=“protein”>NFAT-1 transcriptional 
complex</NAME>, causing its retarded mobility on gels.”, the syntactic information for 
each token or word comes out in columns as shown in Figure  4-5. These columns are 
word number or word position indexes in a sentence, surface form of word, lemma form 
or base form of word, syntactic relation of the focused word to the word on which it 
depends (e.g., from line 2 in Figure  4-5, subj:>3 means that the word compounds has 
syntactic relation as the subject of the word number 3 that is altered in this sentence), 
syntactic function (e.g., @DN> means functioning as determiner, @SUBJ means 
functioning as subject, @+FMAINV means functioning as finite main verb), surface 
syntactic information of a word (e.g., from line 1 in Figure  4-5, the word Both has %>N 
as its surface syntactic information, so this word is known by the parser that it is the 
determiner or premodifier of a nominal), and the last column is referred to morphological 
information 45 (e.g., from line 3 in Figure  4-5, <MORPH>V PAST</MORPH> indicates 
that the word altered is a verb in past tense form). 

  The repairing process is a post-process of parsing process. Its main purpose is to 
correct for wrongly segmented sentences which the parser sometimes outputs. Certain 
multi-word expressions are also identified by inserting underscores between two separate 
words tokenized by the parser, such as in_vivo, even_though and so_far. 

4.1.3 Sub-structure recognizing process 

The sub-structure recognizing process is the process to identify the tokens that constitute 
arguments of predicates. In this study, a predicate in verbal form but not nominal form is 
mainly focused. Therefore, for a verb such as activate, the surface forms of this predicate 
to be analyzed include activate, activates, activated, and activating, but not activation. 
                                                      
45 Morphological information describes about the structure of word form. The FDG parser gives different 

aspect of the word form for different part-of-speech. For instance, the degree of comparison is a 
morphological information given to adjectives, but for verbs the information to indicate if a verb is modal 
auxiliary, or infinitive, as well as tense (e.g. present or past) and grammatical category of forms that 
designate a speaker or writer (e.g. singular-first person, singular-third person, etc.) are given. 
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With regard to arguments, only arguments corresponding to the syntactic relation of 
either subject or object are bound in this study. At present, it lacks a practical semantic 
role labeling system to identify arguments of a predicate, especially for molecular biology 
domain. Thus, this study which is to investigate the contribution of semantic relationship 
between a predicate and its arguments simplifies its scope by only concerning over 
arguments being grammatical subject or object. The general algorithm used for finding a 
subject and object term of each verb from a set of data processed until 4.1.2 is as follows: 

(1) Find a position of target predicate which must be in a verbal form only. 

(2) Interpreting which voice this verb is in by checking at the column 6 of the verb 
token. If it is %VA, the verb is an active verb. On the other hand, if it is %VP, the 
verb is a passive verb. 

(3) Find a subject or object of a verb by traversing through syntactic relations given by 
the parser at the column 4. Basically, the system will traverse up until subj:># is 
found in case of subject and traverse down until obj:># is found in case of object 
(# refers to the word number of the target verb or the verb in focus). From Figure 
 4-5, the token compounds is found to have subject relation to the verb alter and the 
token complex is found to be an object. 

(4) After the head of surface subject and surface object is found from (3), the full 
boundary of a subject or an object is identified by propagating to the premodifiers 
of a noun which is a subject head and an object head. These premodifiers will have 
@A> at the column 5 in parsing data. All modifiers except determiners are 
included in the surface subject or the surface object boundary as shown in Figure 
 4-5 that NFAT-1 and transcriptional are included but the is not included in the 
boundary of surface object containing complex as the object head. A determiner is 
not included into a boundary of object or subject because any determiners never 
ever are parts of biological terms. This rule not to include a determiner is also used 
by Rindflesch and colleagues in their system to extract binding relationships from 
text (Rindflesch et al., 2000). 

 

The step (3) explained above is practical for only basic case. However, in some cases, 
to look for only subj:>#  or obj:># is not enough to get subject head or object head. The 
extended criterion as explained in the following section is needed.  
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  1 Both Both det:>2 @DN> %>N 

<MORPH> 

DET -

</MORPH> 

  

 2 compounds compound subj:>3 @SUBJ %NH 

<MORPH> 

N NOM_PL 

</MORPH> 

<- 

Surface 

Subject 

  3 altered alter main:>0 @+FMAINV %VA 

<MORPH> 

V PAST 

</MORPH> 

<- 

Target 

Verb 

  4 the the det:>7 @DN> %>N 

<MORPH> 

DET -

</MORPH> 

  

  <NAME cl="protein">        

 5 NFAT-1 nfat-1 attr:>6 @A> %>N 

<MORPH> 

N NOM_SG 

</MORPH> 

<- 

Surface 

Object 

 6 transcriptional transcriptional attr:>7 @A> %>N 

<MORPH> 

A ABS 

</MORPH> 

  

 7 complex complex obj:>3 @OBJ %NH 

<MORPH> 

A ABS 

</MORPH> 

  

  </NAME>         

  8 , ,       

  9 causing cause ha:>3 @-FMAINV %VA 

<MORPH> 

V ING 

</MORPH> 

  

  10 its it attr:>11 @A> %>N 

<MORPH> 

PRON GEN_SG3 

</MORPH> 

  

  11 retarded retarded attr:>12 @A> %>N 

<MORPH> 

A ABS 

</MORPH> 

  

  12 mobility mobility obj:>9 @OBJ %NH 

<MORPH> 

N NOM_SG 

</MORPH> 

  

  13 on on loc:>9 @ADVL %EH 

<MORPH> 

PREP -

</MORPH> 

  

  14 gels gel pcomp:>13 @<P %NH 

<MORPH> 

N NOM_PL 

</MORPH> 

  

  15 . .       

                  

 
Figure  4-5: A parsing result from FDG parser of a sentence “Both compounds altered the         

NFAT-1 transcriptional complex, causing its retarded mobility on gels.” 
Boundaries of surface subject and object are shown by red squares. 
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4.1.3.1 Bounding constituent for subject 

• Modal auxiliary verbs, Auxiliary verbs and Verb phrase functioning similar 
to auxiliary verbs: 

In many cases, modal auxiliary verbs (e.g., can, must, should, would, could, may, 
shall, will, might, and ought to) or auxiliary verbs (e.g., have, be, and do) or verb 
phrases functioning similar to auxiliary verbs (e.g., have been shown to, be 
needed to, be used to, be known to, and play a role in) are used with a target verb 
as shown in Figure  4-8. When these verbs are used with a target verb, to traverse 
up through syntactic relations for subj:>#, where # is the word number of target 
verb will not succeed. In the case of modal auxiliary verb or auxiliary verb, the 
system has to traverse down starting from the subject which links to another verb 
at the position #. This subject will be the subject head for the target verb if this 
linkage is finally chained to the target verb as the main of this auxiliary verb. In 
the case of a verb phrase such as have been shown in Figure  4-6, after traversing 
through the linkage from the subject (Mutations) linking to non-target verb (have), 
the linkage will be ended at the main verb shown. Then, the target verb is checked 
if it links to this main verb or not. In this example, the target verb block links to 
the main verb shown. Therefore, the token Mutations is identified as a surface 
subject of the target verb block. 

• Sharing subject with other verbs: 

Sometimes, the target verb shares its subject with other verbs it connects to by 
coordinating conjunctions (e.g., and, and or). If a token has syntactic relation as a 
subject of the verb which the target verb connects, that token will be identified as 
the subject of the target verb as well. In Figure  4-7, the token Cytokines is a 
subject of the word number 2 (subj:>2) and the target verb activate is conjunct to 
the word number 2 (cc:>2). Thus, the token Cytokines is bound to be a subject 
head of the target verb activate.  

 

 

 

 



 

 - 88 - 

 1 Mutations mutation subj:>6 @SUBJ %NH 

<MORPH> 

N NOM_PL 

</MORPH> 

<- 

Surface 

Subject 

 2 in in mod:>1 @<NOM %N< 

<MORPH> 

PREP – 

</MORPH> 
  

 3 the the det:>5 @DN> %>N 

<MORPH> 

DET – 

</MORPH> 
  

 <NAME cl="DNA">        

 4 Tat tat attr:>5 @A> %>N 

<MORPH> 

N NOM_SG 

</MORPH> 
  

 5 gene gene pcomp:>2 @<P %NH 

<MORPH> 

N NOM_SG 

</MORPH> 
  

 </NAME>         

 6 have have v-ch:>7 @+FAUXV %AUX 

<MORPH> 

V PRES 

</MORPH> 

<- 

Verb 

phrase  

 7 been be v-ch:>8 @-FAUXV %AUX 

<MORPH> 

V EN 

</MORPH> 

ｗhich 

functions 

similar to 

 8 shown show main:>0 @-FMAINV %VP 

<MORPH> 

V EN 

</MORPH> 

auxiliary 

verbs  

 9 to to pm:>10 @INFMARK> %AUX 

<MORPH> 

INFMARK -

</MORPH> 

  

 10 block block cnt:>8 @-FMAINV %VA 

<MORPH> 

V INF 

</MORPH> 

<- 

Target 

Verb 

 11 HIV hiv attr:>12 @A> %>N 

<MORPH> 

ABBR NOM_SG 

</MORPH> 

<- 

Surface 

Object 

 12 replication replication obj:>10 @OBJ %NH 

<MORPH> 

N NOM_SG 

</MORPH> 

    

 13 in in loc:>10 @ADVL %EH 

<MORPH> 

PREP – 

</MORPH> 
  

 <NAME cl="cell-type">        

 14 human human attr:>15 @A> %>N 

<MORPH> 

A ABS 

</MORPH> 
  

 15 T t attr:>16 @A> %>N 

<MORPH> 

ABBR NOM_SG 

</MORPH> 
  

 16 Cells cell pcomp:>13 @<P %NH 

<MORPH> 

N NOM_PL 

</MORPH> 
  

 </NAME>         
  17 . .       

Figure  4-6: A parsing result in case a target verb is not a main verb of a sentence 
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 <NAME cl="protein">        

 1 Cytokines cytokine subj:>2 @SUBJ %NH 

<MORPH> 

N NOM_PL 

</MORPH> 

<- Surface 

Subject 

 </NAME>         

 2 bind bind main:>0 @+FMAINV %VA 

<MORPH> 

V PRES 

</MORPH> 

 

 3 to to ha:>2 @ADVL %EH 

<MORPH> 

V -

</MORPH> 

  

 <NAME cl="protein">        

 4 hematopoietin hematopoietin attr:>5 @A> 
%>N 

<?> 

<MORPH> 

N NOM_SG 

</MORPH> 

 

 5 receptors receptor pcomp:>3 @<P %NH 

<MORPH> 

N NOM_PL 

</MORPH> 

  

 </NAME>         

 6 and and cc:>2 @CC %CC 

<MORPH> 

CC – 

</MORPH> 

  

 7 activate activate cc:>2 @+FMAINV %VA 

<MORPH> 

V PRES 

</MORPH> 

<-  

Target  

Verb 

 <NAME cl="protein">        

 8 JAK jak attr:>9 @A> %>N 

<MORPH> 

N NOM_SG 

</MORPH> 

<- Surface 

Object in the 

form 

 9 kinases kinase obj:>7 @OBJ %NH 

<MORPH> 

N NOM_PL 

</MORPH> 

  

 </NAME>         

 10 . .       

                 

 
Figure  4-7: A parsing result in case a target verb shares its subject with another verb 

 

• Relative pronoun resolution: 

It is possibly found that a target verb exists as a main verb in a subordinate clause 
of which the relative pronoun (e.g., which, who, and that) presents as the subject 
of the clause. In Figure  4-8, a relative pronoun that (word number 7) is identified 
by the parser as a subject of the target verb mediate. To identify that as a subject 
of a verb mediate would not be useful to investigate the contribution of semantic 
relations between predicate and its arguments to NER task. The relationship 
between the noun phrase cis-acting elements and the target predicate mediate 
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must be recovered. In other words, the object of the main clause is the subject of 
the subordinate clause. 

 
                  

  1 Here here  @ADVL %EH 

<MORPH> 

ADV – 

</MORPH> 

  

  2 we we subj:>3 @SUBJ %NH 

<MORPH> 

PRON 

PERS_NOM_PL1 

</MORPH> 

  

  3 map map main:>0 @+FMAINV %VA 

<MORPH> 

V PRES 

</MORPH> 

  

  4 the the det:>6 @DN> %>N 

<MORPH> 

DET – 

</MORPH> 

  

  <NAME cl="DNA">        

 5 cis-acting cis-acting attr:>6 @A> %>N 

<MORPH> 

A ABS 

</MORPH> 

<- 

Surface 

Subject 

 6 elements element obj:>3 @OBJ %NH 

<MORPH> 

N NOM_PL 

</MORPH> 

  

  </NAME>         

  7 that that subj:>8 @SUBJ %NH 

<MORPH> 

PRON – 

</MORPH> 

  

  8 mediate mediate mod:>6 @+FMAINV %VA 

<MORPH> 

V PRES 

</MORPH> 

<- 

Target 

Verb 

 9 interleukin interleukin attr:>10 @A> %>N 

<MORPH> 

N NOM_SG 

</MORPH> 

<- 

Surface 

Object 

 10 responsiveness responsiveness obj:>8 @OBJ %NH 

<MORPH> 

N NOM_SG 

</MORPH> 

  

  11 Of of mod:>10 
@<NOM-

OF 
%N< 

<MORPH> 

PREP – 

</MORPH> 

  

  12 The the det:>16 @DN> %>N 

<MORPH> 

DET – 

</MORPH> 

  

  <NAME cl="DNA">        

  13 mouse mouse attr:>14 @A> %>N 

<MORPH> 

N NOM_SG 

</MORPH> 

  

  14 IL-2R il-2r attr:>15 @A> %>N 

<MORPH> 

N NOM_SG 

</MORPH> 

  

  15 alpha alpha attr:>16 @A> %>N 

<MORPH> 

N NOM_SG 

</MORPH> 
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  16 gene gene pcomp:>11 @<P %NH 

<MORPH> 

N NOM_SG 

</MORPH> 

  

  </NAME>         

  17 using use man:>8 @-FMAINV %VA 

<MORPH> 

V ING 

</MORPH> 

  

  18 A a det:>21 @DN> %>N 

<MORPH> 

DET SG 

</MORPH> 

  

  <NAME cl="cell-line">        

  19 thymic thymic attr:>20 @A> %>N 

<MORPH> 

A ABS 

</MORPH> 

  

  20 
lymphoma-

derived 

lymphoma-

derived 
attr:>21 @A> %>N 

<MORPH> 

A ABS 

</MORPH> 

  

  21 hybridoma hybridoma obj:>17 @OBJ %NH 

<MORPH> 

N NOM_SG 

</MORPH> 

  

  </NAME>         

  22 ( (       

  <NAME cl="cell-line">        

  23 PC60 pc60 mod:>21 @NH %NH 

<MORPH> 

N NOM_SG 

</MORPH> 

  

  </NAME>         

  24 ) )       

  25 . .           

 
Figure  4-8: A sentence example showing the case when a target verb is a main verb of a 

subordinate and relative pronoun such as “that” in this example (the word 
number 7) posses syntactic relation as a subject of the target verb “mediate” 
(the word number 8) 

 

4.1.3.2 Bounding constituent for object 

In addition to the simple case that the object head of a target verb can be captured by 
searching for a token with obj:># (where # is a word number of the target verb), there is 
also a case that the target verb shares its object with other verbs. Similar to sharing 
subject, if the target verb links to the same word as the object links to, such object would 
be an object head of the target verb as well. 

Furthermore, an object of some verbs not only has syntactic relation directly to the 
target verb as an object, but also it has a relation to a preposition which follows a target 
verb as a complement. In Figure  4-9, the token receptors has no direct dependency 
relation to the word number 2 which is the target verb, but it links to the word number 3 
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as the complement of that word (shown by pcomp:>3 in column 4). Among all verbs used 
in the experiments, only prepositional complements of 5 verbs (i.e., bind, associate, 
interact, result, and lead) are bound as the object. From these 5 verbs, there are 7 types of 
co-occurrence patterns between verbs and prepositions found from GENIA corpus such as 
“bind to”, “associate to”, “associate with”, “interact to”, “result in”, “result from”, and 
“lead to”. 

The consequences of this sub-structure recognition process are 4 PAS-related features 
(i.e., predicate surface form, predicate lemma, voice, and surface syntactic role) added for 
all tokens in both a surface subject boundary and a surface object boundary related to a 
particular target predicate. These features are detailed as follows. 

• Predicate surface form: The surface form of the predicate preserving 
orthographic and morphological information. 

• Predicate lemma: The lemmatized form of the predicate in lower case and 
infinitive form. Various inflected forms of the same predicate are mapped to their 
common root. For example, activate, activates, activated, and activating are 
mapped to activate treated as the same thing. 

• Voice: This is used to distinguish between the active and passive voice of the 
predicate. Tags used for this feature are ACT for active voice and PAS for passive 
voice. 

• Surface syntactic role: This is either surface subject or surface object which is 
identified by the method explained above. Tags used are SSUBJ for surface 
subject and SOBJ for direct object. Furthermore, the tag used for surface object 
which is found as a prepositional complement (explained in section 4.1.3.2) is 
PCOMP. From preliminary experiments, it is shown that to make distinction 
between direct object and prepositional complement object influences the correct 
interpretation of the objective argument’s semantic roles. 

4.1.4 Term enhancing process 

This process adds in certain features that are specifically designed to reduce known 
problems of ambiguity for term recognition. This includes adding an orthographic feature 
for each token by using rules proposed in earlier studies (Collier et al., 2000), identifying 
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text chunks for noun phrases (NP), verb phrases (VP), adverb phrases (ADVP) and 
prepositional phrases (PP). Text chunks are found using regular expressions on parts of 
speech found by the parser and provide a flat representation of syntactically correlated 
words. 

 

                  

  <NAME cl="protein">        

  1 Cytokines cytokine subj:>2 @SUBJ %NH 

<MORPH> 

N NOM_PL 

</MORPH> 

<- Surface 

Subject 

  </NAME>         

  2 bind bind main:>0 @+FMAINV %VA 

<MORPH> 

V PRES 

</MORPH> 

<-  

Target  

Verb 

  3 to to ha:>2 @ADVL %EH 

<MORPH> 

V -

</MORPH> 

  

  <NAME cl="protein">        

  4 hematopoietin hematopoietin attr:>5 @A> 
%>N 

<?> 

<MORPH> 

N NOM_SG 

</MORPH> 

<- Surface 

Object  

in the form  

  5 receptors receptor pcomp:>3 @<P %NH 

<MORPH> 

N NOM_PL 

</MORPH> 

of 

prepositional 

complement 

  </NAME>         

  6 and and cc:>2 @CC %CC 

<MORPH> 

CC – 

</MORPH> 

  

  7 activate activate cc:>2 @+FMAINV %VA 

<MORPH> 

V PRES 

</MORPH> 

  

  <NAME cl="protein">        

  8 JAK jak attr:>9 @A> %>N 

<MORPH> 

N NOM_SG 

</MORPH> 

  

  9 kinases kinase obj:>7 @OBJ %NH 

<MORPH> 

N NOM_PL 

</MORPH> 

  

  </NAME>         

  10 . .       

                  

 
Figure  4-9: A sentence example showing the object of a target verb can be found from 

the complement of preposition co-occurred with the target verb 
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Column 1 2 3 4 5 6 7 8 9 10 11 

Further- 
more 

Further- 
more - RB ic B-

ADVP O O O O O 

, , - , pu O O O O O O 
we we we PRP lw B-NP O O O O O 
show show - NN lw B-VP O O O O O 

that that - DT lw B-
SBAR O O O O O 

IL-12 il-12 IL-12 NNP cd
h B-NP O O O O B-

protein 
stimulates stimulate - VBZ lw B-VP O O O O O 
formation formation form-ation NN lw B-NP O O O O O 
of of - IN lw B-PP O O O O O 
a a - DT lw B-NP O O O O O 
DNA-
binding 

dna-
binding 

com- 
plex VBG 2c I-NP recog- 

nizes 
recog- 
nize ACT SSUBJ B-

protein 

complex complex com- 
plex JJ lw I-NP recog- 

nizes 
recog- 
nize ACT SSUBJ I-

protein 

that that that DT lw B-
SBAR O O O O O 

recognizes recognize - VBZ lw B-VP O O O O O 
a a - DT lw B-NP O O O O O 

DNA dna se- 
quence NNP 2c I-NP recog-

nizes 
recog- 
nize ACT SOBJ O 

sequence sequence se- 
quence NN lw I-NP recog 

nizes 
recog- 
nize ACT SOBJ O 

previously previously - RB lw B-
ADVP O O O O O 

shown show - VBN lw B-VP O O O O O 
to to - TO lw I-VP O O O O O 
bind bind - NN lw I-VP O O O O O 

STAT stat pro- 
teins NNP 2c B-NP O O O O B-

protein 

proteins protein pro- 
teins NNS lw I-NP O O O O I-

protein 
and and - CC lw O O O O O O 

that that - DT lw B-
SBAR O O O O O 

this this - DT lw B-NP O O O O O 

complex complex com- 
plex JJ lw I-NP O O O O O 

contains contain - VBZ lw B-VP O O O O O 

STAT4 stat4 STAT4 NNP cd B-NP O O O O B-
protein 

. . - . pu O O O O O O 

 
Figure  4-10: Training data is in IOB2 format. Feature columns are separated with spaces.  
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4.1.5 Encoding process 

Encoding process has its function to constitute features derived directly from parsing 
result in section 4.1.2 and derived through processes in section 4.1.3 and section 4.1.4. In 
each experiment, a column formatted table of features with the named entity classes 
provided in IOB2 format46 is used. Until now, the training data which will be used for 
machine learning contains 11 columns as shown in Figure  4-10.  

All features comprise of 1) surface word, 2) lemma form, 3) head word of NP-chunk, 
4) part-of-speech, 5) orthographic feature, 6) phrase-chunk, 7) predicate surface form, 8) 
predicate lemma, 9) voice, 10) surface syntactic role, and 11) named entity classes which 
is the answers to be learned by machine.  

This whole set of training data will be selected to be trained by machines for each 
predicate separately. The next section describes what predicates to be studied are and 
what are the criteria to choose these predicates. 

4.1.6 Predicate and sentence selecting process 

As the predicate-argument relationship is a specific characteristic for each individual 
predicate, thus influences of features derived from the knowledge of predicate-argument 
relations are explored separately for each predicate. The training data for each predicate 
contains sentences extracted from the whole set of training data,  mentioned in section 
4.1.1, by using the criteria that these sentences must contain a focus predicate in verbal 
form at least once.  

With respect to what predicates were studied, the predicate selecting process were 
started by gathering predicates used in earlier works to capture biological events 
(Blaschke et al., 1999; Ono et al., 2001; Pustejovsky et al., 2002) and gathered from 
predicates used in my work to construct the PASBio47 database as explained in chapter 3. 
Most predicates from the 44 predicates which have been gathered are found rarely in the 
GENIA corpus (the source of training sets). In order to avoid having too small set of 

                                                      
46  IOB2 format (Ratnaparkhii, 1998) is a standard format for word-chunk used in many gold standard 

collection and evaluation exercises such as CoNLL’s shared tasks or the MUCs. The tag “O” is given to 
words outside a chunk, “B-k” to the first word in a chunk of type k, and “I-k” to the remaining words. 

47 PASBio contains PAS frames analyzed from the literatures in the molecular biology domain. Available 
online at http://research.nii.ac.jp/~collier/projects/PASBio/ (Wattarujeekrit et al., 2004).  
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training data, the predicates containing less than 100 examples48 are filtered out. This 
filtering process results in 19 predicates in total as shown in Figure  4-11. From these 
predicates, 6 predicates were selected to be used for investigating of the effects of various 
forming of predicate-argument related features. The idea to obtain these 6 predicates is 
described later in this section and the outcome of the investigation will be discussed in 
section 4.3. For the other 13 predicates, they will be used to evaluate the overall 
effectiveness of the best model using predicate-argument related features compared to the 
lexical-based model in which predicate-argument related features are not employed.  This 
experiment to affirm the best model and a general analysis of the sources of errors as well 
as the possibilities to the improvement are discussed in section 4.3-4.4. 
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Figure  4-11: Graph showing the number of examples for each of 19 predicates used in 

the experiments. The dotted line represents the average number of 
examples for these predicates 

 

Due to the hypothesis that the proportion of named entities as arguments should be a 
key impact on NER, the statistics expressing type of named entity for agent argument and 

                                                      
48 The number of examples is a number of clauses containing a particular predicate. In a sentence, it is 

possible to have more than one clause related to the predicate. 
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theme argument 49 for each predicate is calculated from the corpus and summarized in 
Table  4-1. From this statistics, the 19 predicates are classified into 3 groups: 

• Group 1 (A group of predicates having both arguments agent and theme with 
a higher probability of belonging to a named entity class than non-named 
entity class): The predicates in this group include bind, express, activate, encode, 
interact and recognize. 

• Group 2 (A group of predicates having both arguments agent and theme with 
a lower probability of belonging to a named entity class than non-named 
entity class): The predicates in this group include inhibit, result, signal, block, 
decrease, suppress, generate, modulate, lead and alter. 

• Group 3 (A group of predicates having either arguments agent or theme with 
a higher probability of belonging to a named entity class than non-named 
entity class): The predicates in this group include regulate, mediate and associate. 

In order to understand whether the probability to belong to a named entity class of an 
argument affects to the performance of NER or not, the experiments should be done on 
predicates from every group. However, if the number of examples for predicates from 
each group is not in balance, the analysis could be inconclusive. Thus, the 6 predicates are 
selected (2 predicates from each group) on the basis that these predicates have a similar 
number of training examples. Their numbers of examples are around the average line 
shown in Figure  4-11. Selected predicates for group 1 are encode and recognize, group 2 
are block and lead, and group 3 are regulate and associate. 

A set of sentences for each of these predicates will be investigated separately through 
several sets of features (i.e., models 1-6). To form each set of features are explained in the 
next section and the experimental results are given in section 4.3.  

 

 

 
                                                      
49 Hence, the agent argument refers to the argument which has syntactic role as subject in the case of active 

voice and refers to the argument having syntactic role as object introduced by the preposition “by” in the 
case of passive voice. The theme argument refers to the argument which has syntactic role as object in the 
case of active voice and refers to the argument having syntactic role as subject in the case of passive voice. 
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Table  4-1: Proportion of agent and theme arguments in 5 classes of named entities 
 

Agent Argument Theme Argument 

Predicate 
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To
tal

 N
E%

 

No
n-N

E%
 

Bind 
399 46.1 10.3 00.0 00.3 01.8 58.5 41.5 662 26.6 31.6 00.2 00.2 01.2 59.8 40.2 

Inhibit 
561 26.2 01.3 00.0 00.2 00.4 28.1 71.9 710 09.3 01.4 00.6 00.1 00.7 12.1 87.9 

Express 
338 03.9 03.6 00.6 23.7 30.1 61.9 38.1 620 54.7 07.9 06.8 01.1 02.1 72.6 27.4 

Activate 
464 49.6 03.0 00.2 01.0 00.7 54.5 45.5 625 35.5 15.2 00.0 02.2 08.3 61.2 38.8 

Regulate 
381 54.3 08.9 00.0 00.0 01.0 64.2 35.8 482 10.2 10.2 00.2 00.4 00.4 21.4 78.6 

Mediate 
418 54.6 12.7 00.0 00.0 02.6 69.8 30.1 433 04.2 01.6 00.0 00.0 00.9 06.7 93.3 

Result 
329 06.1 02.7 00.6 00.9 02.1 12.5 87.5 396 03.3 01.3 00.0 01.0 00.0 05.6 94.4 

Associate 
39 41.0 00.0 00.0 05.1 05.1 51.2 48.8 614 16.6 05.0 00.0 00.5 02.0 24.1 75.9 

Signal 
154 20.1 00.0 00.0 00.7 00.0 20.8 79.2 148 11.5 00.0 00.7 00.0 01.4 13.6 86.4 

Lead 
241 06.6 00.4 00.0 01.2 00.8 09.1 90.9 296 02.4 00.7 00.0 00.0 00.3 03.4 96.6 

Block 
209 28.7 02.4 00.0 00.5 00.5 32.1 67.9 234 11.6 01.7 00.9 00.0 01.3 15.4 84.6 

Encode 
228 03.5 47.8 04.8 00.4 00.4 56.9 43.1 234 66.7 00.9 00.9 00.0 00.0 68.5 31.5 

Decrease 
75 20.0 04.0 01.3 00.0 00.0 25.3 74.7 115 10.4 00.9 00.0 00.0 00.9 12.2 87.8 

Suppress 
101 20.8 02.0 00.0 02.0 01.0 25.8 74.2 158 07.6 01.3 01.3 00.0 00.7 10.9 89.1 

Interact 
133 53.3 09.0 00.0 01.5 00.7 64.6 35.3 145 52.4 27.5 00.0 00.0 00.6 80.6 19.3 

Recognize 
113 53.1 00.0 00.0 07.0 14.2 74.2 25.7 94 25.5 25.5 00.0 00.0 00.0 51.0 49.0 

Generate 
69 08.7 04.4 00.0 07.3 07.3 27.7 72.3 103 20.3 05.8 02.9 08.7 04.9 42.6 57.4 

Modulate 
66 28.8 01.5 00.0 00.0 07.6 37.9 62.1 109 05.5 00.0 00.0 00.0 00.0 05.5 94.5 

Alter 
53 28.3 01.9 00.0 00.0 01.9 32.1 67.9 93 10.8 00.0 00.0 00.0 01.1 11.9 88.1 
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4.2 Machine learning process 

The machine learning process is the last process in this methodology. Not only does this 
process involve applying a learning algorithm to the training data, but also is responsible 
for feature engineering (i.e., feature selection and feature design). 

Firstly, the prepared training data such as shown in Figure  4-10 are formed into 2 sets 
of training models. The Model 1 is composed of the training data with a set of features 
not related to PAS information (i.e., from column 1 to column 6). On the other hand, the 
Model 2 is composed of the training data with a set of features including PAS-related 
features (i.e., features from column 7 to column 10 added to features from column 1 to 
column 6). To compare learning results from these two models would help to test if the 
intuition (i.e., semantic relations between predicate and its arguments are salient to 
improve NER) is on the right track. The SVMs learning algorithm is used in this work. 

However, the representation of the PAS-related knowledge within 4 features (columns 
7-10) as basically given to the word tokens within the boundaries of surface subject and 
surface object recognized through the process in section 4.1.3 would not be enough for 
being able to clearly see the impact of semantic knowledge within PAS to the NER. Thus, 
some extra features in accordance with the subject and object boundaries (e.g., a feature 
representing the knowledge of transitive and intransitive sense, a feature representing 
syntactic path from the subject head or the object head to the target verb) are derived and 
added to the Model 2, leading to 4 more models (the Model 3, 4, 5 and 6) to be explored. 
The theoretical thought underlying the derivation of these additional features are 
explained in section 4.2.3.  

4.2.1 Support Vector Machines (SVMs) 

SVM classification method is known as the stronger learning method in comparison with 
decision tree learning and other statistical learning methods (Vapnik, 1995; Sholkopf et 
al., 1997; Vapnik 1998). In computational linguistics domain, SVMs have achieved 
highest performance in various shared tasks. For instance, the method using SVMs for 
automatic semantic role labeling of Hacioglu and colleagues (Hacioglu et al., 2004) 
succeed to be the best model in the CoNLL-2004 shared task 50 or the success of the Kudo 

                                                      
50 http://www.lsi.upc.edu/~srlconll/st04/st04.html   
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and Matsumoto’s text chunking method (Kudo and Matsumoto, 2000) in the CoNLL-
2000 shared task 51. Also, SVM classifier has been widely recognized to be practical for 
the molecular biology NER task (Kazama et al., 2002; Lee et al., 2003; Takeuchi and 
Collier, 2003; Yamamoto et al., 2003).  

The main idea of SVMs is to construct a hyperplane to separate the two classes with a 
maximum margin which is the distance between two hyperplanes. Suppose N training 
examples (xi, yi), where (1 ≤ i ≤ N) and xi is a feature vector, yi is the class label {-1, +1} 
of xi are given, SVMs find a hyperplane w.x + b = 0 which correctly separates the training 
examples and has a maximum margin by applying the equation 

)),(()(
1

bzxKwsignxf i

m

i
i += ∑

=

 where f(x) = +1 means x is a member of a certain class 

and f(x) = -1 means x is not a member, m is the number of support vectors and K(x, zi) is a 
kernel function. According to Takeuchi and Collier’s work, the polynomial function 
degree 2 has been shown to be the best kernel for their NER system (Takeuchi and Collier, 
2002), thus the kernel function used in the experiments is k(x) = (1+x)2.                                                 

The TinySVM package used in this work is implemented by NAIST Computational 
Linguistic Laboratory 52.  This package allows setting parameters F and T for specifying 
the context boundary to be used as features. The parameter F and T are used to specify the 
window in the form “F:[beginning position of token]..[end position of token]:[beginning 
position of column]..[end position of column] 53” and “T:[beginning position of defined 
class]..[end position of defined class]”, respectively. In this work, the context window for 
all experiments is set as “F:-1..1:0..” and “T:-2..-1”. This setting of context window is 
shown to be the best setting from the preliminary experiment that have been conducted. 
Figure  4-12 shows the boundary of the context windows used in this work (the blue 
square is the position being estimated class by SVMs, the green area represents the 
context fixed by parameter F and the light blue area represents the context fixed by 
parameter T.  

 

 
                                                      
51 http://www.cnts.ua.ac.be/conll2000/chunking/   
52 http://chasen.org/~taku/software/TinySVM/.  
53 In case of parameter F, if [end position of column] is omitted, the last column is set as [end position of 

column]. 
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Column 1 2 3 4 5 6 7 8 9 10 11 

…           
IL-12 il-12 IL-12 NNP cdh B-NP O O O O B-protein 
stimulates stimulate - VBZ lw B-VP O O O O O 

Formation formation form-
ation NN lw B-NP O O O O O 

Of of - IN lw B-PP O O O O O 
A a - DT lw B-NP O O O O O 

DNA-binding dna-
binding 

com- 
plex VBG 2c I-NP recog- 

nizes 
recog- 
nize ACT SSUBJ B-protein 

Complex complex com- 
plex JJ lw I-NP recog- 

nizes 
recog- 
nize ACT SSUBJ  

That that that DT lw B-SBAR O O O O  
recognizes recognize - VBZ lw B-VP O O O O  
A A - DT lw B-NP O O O O  

DNA dna se- 
quence NNP 2c I-NP recog-

nizes 
recog- 
nize ACT SOBJ  

Sequence sequence se- 
quence NN lw I-NP recog 

nizes 
recog- 
nize ACT SOBJ  

…           

 
Figure  4-12: Context windows from setting “F:-1..1:0.. T:-2..-1” 

 

Due to Tiny SVM is a binary classifier, another aspect need to be decided for multi-
class classification task of NER is about the strategy for combining several binary 
classifiers. In this work, all experiments with Tiny SVM use the strategy of one-against-
one (also called pairwise) rather than one-against-the rest. The one-against-one strategy 
will construct 2/)1( −KK  binary SVMs where K denotes the number of the target 

classes. Each binary SVM has one vote for its answer class after learning the sample. The 
final class to be answered from the combination of these several binary classifiers is the 
class with the maximum votes. 

4.2.2 Lexical-based model and PAS-based model 

As stated before, the Model 1 and Model 2 are constituted from the 13 features of the 
already prepared training data from the pre-process (section 4.1.1) to the encoding 
process (section 4.1.5). The Model 1 is considered to be a base model to evaluate the 
overall effects of PAS-related features to the performance of NER, whereas the Model 2 
is considered to be a base model for comparing the contribution of various forming of 
PAS-related features to NER. Therefore, the Model 1 will be called lexical-based model 
and the Model 2 will be called PAS-based model henceforth. 
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• Model 1: Lexical-based model 

A set of features used in this lexical-based model are state-of-the-art features for 
the NER task. The features such as surface word, lemma form, and orthographic 
feature are quite cheap to be obtained because they are the information derivable 
from the lexical appearance of a word by using just linguistic knowledge (e.g., 
morphological analysis). The domain knowledge is not necessary for extracting 
these features. A little bit more expensive features are part-of-speech, phrase-
chunk, and head word of NP-chunk. These features rely on the capability of 
parser to investigate the syntactic functions of a word in a sentence. 

As discussed in chapter 2, these cheap features work well for NER in general or 
newswire domain (more than 90% for the best performance). However, the state-
of-the-art performance for NER in molecular biology domain (the performance is 
less than 80%) declares the need of features representing deeper information than 
the lexical-based features do. The first effort to employ deeper knowledge for 
NER is expresses in a set of features added in the Model 2, explained as follows.  

• Model 2: PAS-based model 

The Model 2 contains all lexical-based features used in Model 1, with an 
additional set of features representing semantic relations between a predicate and 
its arguments (also known as arguments’ semantic roles). However, these 4 
additional features (i.e., predicate surface form, predicate lemma, voice and 
surface syntactic role) can be correctly determined an argument’s semantic role 
(agent or theme) for merely simple cases. If both surface subject and surface 
object co-occur with a target verb, it can surely determine that the argument 
functioning as subject plays the role of agent and the argument functioning as 
object plays role of theme when the predicate is used in active voice, and vice 
versa in passive voice. The correct determination of semantic role would lead to 
the correct named entity classification, underlying the hypothesis that semantic 
relationships in PAS (arguments’ semantic roles) for each predicate confine 
classes of named entities participating in the event indicated by the predicate. 
However, as the arguments with the same semantic role possibly belong to 
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different named entity classes, the lexical-based features and PAS semantic 
based-features are required altogether to solve this ambiguity. 

In the next section, several kinds of syntactic information are derived to be features 
supporting the original PAS-based features with the aim to diminish the ambiguity in 
determining semantic roles. 

4.2.3 Additional predicate-argument related features 

As stated in the previous section, the more semantic role of each argument can be 
correctly interpreted, the more semantic knowledge in PAS can take effect to improve 
NER systems. This claim will be confirmed by the experimental results provided in 
section 4.3. 

It is worth to note that the problem placing underneath the problem of employing PAS-
knowledge for enhancing NER task is to find the choice of syntactic features to support 
identification of semantic structure. 

• Model 3: Path 

Path feature represents the syntactic path from the subject argument to the related 
predicate and from the related predicate to the object argument. The partial parser 
based on dependency grammar is used in our work, so the path is derived from 
the flat structure of dependency tree. For example, the path between the subject 
constituent and the predicate is “NP_VP_ADVP_VP” and the path between the 
object constituent and the predicate is “VP_PP_NP” for the sentence “[Increased 
cytokine secretion]NP  [was]VP  [specifically]ADVP [inhibited]VP [by]PP [G1]NP”. As 
can be seen, the information that in a sentence the subject posits before the 
predicate but the object posits after the predicate is also embedded in the 
representation of path as shown. 

• Model 4: A pair composed of the subject and object’s heads 

A pair of subject and object’s head feature is designed following the intuition 
that a named entity class of an agent should restrict a possible type of a named 
entity playing role as theme and  vice versa. Moreover, the head words of subject 
and object are used as these heads may be considered as subtypes of any named 
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entity classes. The using of a pair of lemma forms of subject-object head words 
would help to reduce data sparseness problem compared to the using of a pair of 
surface forms of subject-object head words. 

• Model 5: Transitive and intransitive sense 

A column is added to be a feature representing if a predicate is used in transitive 
or intransitive sense. For each surface subject’s constituent, a tag “fobj” is set if 
the surface object is found in the current clause. A tag “O” is set if the surface 
object is not found. However, this feature helps just in part to correctly determine 
transitive or intransitive sense implicit in the usage of a predicate as the object 
argument can be omit in a clause although a predicate is used in transitive sense. 
For instance, the predicate “eat” is used in transitive sense without mentioning 
any objects in the sentence “Yesterday, John ate at ABC restaurant”. 

• Model 6: Joining of a subject-object’s head pair and transitive-intransitive feature 

A pair of subject-object head is used to be assigned to a column of transitive-
intransitive feature instead of “fobj” when the object is found in the 
corresponding clause. 

4.2.4 Assessment 

In this work, all prepared data set is divided into 9 parts of training set and 1 part of 
testing set due to 10-fold cross validation is using. The testing set has the named entity 
class hidden from the learner model and results from the learner model are then compared 
against the correct class to determine F1 scores (van Rijsbergen, 1979). The F1 score is 
calculated from the equation F1 = (2PR)/(P+R), where P denotes Precision and R Recall. 
P is the ratio of the number of correctly found named entity chunks to the number of 
found named entity chunks, and R is the ratio of the number of correctly found named 
entity chunks to the number of true named entity chunks.  

4.3 Experimental results and discussion 

Firstly, all models of different feature sets described in section 4.2.3 are applied to 6 
predicates. As shown in Table  4-1, these predicates include encode and recognize 
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(predicates from group 1), block and lead (predicates from group 2), as well as regulate 
and associate (predicates from group 3). The F1-scores resulted from this experiment are 
shown in Table  4-2. 

In each record, the F1-score of a corresponding predicate is given for Model 1 
(Lexical-based model), Model 2 (PAS-related model), Model 3 (the Model 2 with added 
Path feature), Model 4 (the Model 2 with added Pair of subject and object’s heads feature), 
Model 5 (the Model 2 with added Transitive/Intransitive feature) and the Model 6 (the 
Model 4 is embodied in Model 5). Compared to the F1-score in Model 1, the higher F1- 
scores from any other models are shown in bold number. Moreover, if the F1 scores in 
any models among Models 3-6 are higher than in Model 2, the scores will be highlighted 
with a gray background. The number of examples for each predicate is given in a bracket 
next to a predicate’s name. 

 

Table  4-2: F1-scores of representative predicates trained with features in Models 1-6 
  

Model 

 

Predicate 

M 1 

Lexical-

based 

M 2 

PAS-

based 

M 3 

Path 

M 4 

Pair of 

Head 

M 5 

Trans/ 

Intrans 

M 6 

M4+M5 

Encode (265) 56.60 57.56 58.38 57.16 57.69 57.64 Group 1: 
both high Recognize (121) 47.24 49.39 48.47 49.54 49.16 49.39 

Block (270) 51.19 51.47 52.23 51.85 52.02 51.95 Group 2: 
both low Lead (288) 57.01 57.40 56.70 57.12 57.53 57.49 

Regulate (525) 61.87 60.48 60.13 60.72 60.01 60.37 Group 3: 
high/ low Associate (377) 52.09 51.48 51.29 50.43 51.40 50.97 

 

As can be observed from Table  4-2, the simple representation of PAS related 
knowledge such as in Model 2 improves the performance for all predicates except the 
predicates regulate and associate which only have either argument agent or theme with a 
higher possibility to belong to a named entity class than non-named entity class, 
compared to lexical-based features (Model 1). On the other hand, predicates in groups 3 
do not show any improvement in any models using PAS-related features (Models 3-6). 
Thus, in the following, only predicates in group 1 and group 2 will be discussed in terms 
of the effectiveness of each type of the extra PAS-related features used in Models 3-6, 



 

 - 106 - 

compared to the model using PAS-based feature set (Model 2) which influences to the 
improvement in performance for all predicates of group 1 and 2. The reason of the 
performance degradation of the predicates in group 3 will be discussed in section 4.4. 

 

Surface Word Phrase-chunk Syntactic roles 
Path pattern 

between SSUBJ or SOBJ and the predicate 

        

the B-NP O O 

proteins I-NP SSUBJ NP_VP 

encoded B-VP O O              <- target predicate "encode" 

by B-ADVP O O 

these B-NP O O 

two I-NP O O 

latter I-NP SOBJ VP_ADVP_NP 

genes I-NP SOBJ VP_ADVP_NP 

is B-VP O O 

approximately B-ADVP O O 

65% B-NP O O 

        

 
Figure  4-13: Examples of simple Path patterns between arguments and the predicates 

found in the data set of encode 
 

With regard to Path feature (used in Model 3), the performance is improved from 
Model 2 for only the model training on data set of predicates encode and block. 
Empirically, one reason for this should be that the surface subject and surface object of 
these two predicates are located close to the predicate in most cases. For example, as 
shown in Figure  4-13, the path patterns between arguments and the predicate encode of 
“…[protein]NP [encoded]VP [by]ADVP [these two latter genes]NP…” are “NP_VP” for the 
subject argument and “VP_ADVP_NP” for the object argument. Owing to the short path 
patterns, the path patterns can be generalized throughout the data sets. On the contrary, 
long path patterns are mostly found in the examples for other 2 predicates such as 
recognize and lead. For example, as shown in Figure  4-14, from the sentence “[Control 
peptides]NP [corresponding]VP [to]ADVP [the normal pml]NP [and]O [RAR alpha proteins]NP 

[were]VP [not]ADVP [recognized]VP.”, the path from the subject argument “Control 
peptides” to the predicate recognize is “NP_VP_ADVP_NP_O_NP_VP_ADVP_VP”. 
This long path pattern would cause data-sparseness problems for the path feature. 
Similarly, the long path pattern of the predicate lead is given an example in Figure  4-15. 
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Surface Word Phrase-chunk Syntactic roles 
Path between SSUBJ or SOBJ and the 

predicate 

Control B-NP SSUBJ NP_VP_ADVP_NP_O_NP_VP_ADVP_VP 

peptides I-NP SSUBJ NP_VP_ADVP_NP_O_NP_VP_ADVP_VP 

corresponding B-VP O O 

to B-ADVP O O 

the B-NP O O 

normal I-NP O O 

pml I-NP O O 

and O O O 

RAR B-NP O O 

alpha I-NP O O 

proteins I-NP O O 

were B-VP O O 

not B-ADVP O O 

recognized B-VP O O            <- target predicate “recognize” 

. O O O 

 
Figure  4-14: An example showing the long Path patterns between arguments and the 

predicates found in the data set of recognize. The subject argument is 
always followed by some modification before reaching its predicate. 

 
The next feature, the Head-Pair feature, which aims to use the named entity type of 

subject as a restriction for the named entity type of object and vice versa, does not show 
its usefulness for predicate encode and lead. In case of lead, its arguments (i.e., both 
agent and theme) are prone to be non-named entity rather than to belong to a named entity 
class (shown in Table  4-1), so the pair of the head words of its arguments can have many 
variants such as shown in Figure  4-16. This causes this feature to be ineffective in 
constraining a named entity functioning as a subject with named entity functioning as an 
object and vice versa. In case of the predicate encode, although both its arguments are 
prone to belong to named entity classes rather than to be non-named entity, the Head-Pair 
feature is not helpful for the predicate encode. As the predicate encode used in the 
molecular biology domain has a specific semantic to describe relationships between genes 
and gene products, the head pair of arguments for this predicate is mostly found as 
gene_protein. Therefore, this feature contains too general information to be helpful for 
encode. One of the sentences contain gene_protein is shown in Figure  4-13. 
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Surface Word Phrase-chunk Syntactic roles 
Path between SSUBJ or SOBJ and the 

predicate 

The B-NP O O 

elevation I-NP SSUBJ NP_O_NP_SBAR_VP_ADVP_NP_O_NP_VP 

in O O O 

intracellular B-NP O O 

calcium I-NP O O 

that B-SBAR O O 

is B-VP O O 

induced I-VP O O 

by B-ADVP O O 

interactions B-NP O O 

at O O O 

the B-NP O O 

antigen I-NP O O 

receptor I-NP O O 

leads B-VP O O            <- target predicate “lead” 

to B-ADVP O O 

the B-NP O O 

activation I-NP PCOMP VP_ADVP_NP 

of B-PP O O 

the B-NP O O 

calcium-dependent I-NP O O 

phosphatase I-NP O O 

calcineurin I-NP O O 

. O O O 

 
Figure  4-15: An example showing the long Path patterns between arguments and the 

predicates found in the data set of lead. The subject argument is always 
followed by some modification before reaching its predicate. 

 

Surface Word Phrase-chunk Syntactic roles Head Pair of arguments 

The B-NP O O 

generation I-NP SSUBJ generation_downstream 

of B-PP O O 

second B-NP O O 

messengers I-NP O O 

In O O O 

T B-NP O O 

cells I-NP O O 

normally B-ADVP O O 

leads B-VP O O                  <- target predicate “lead” 

to B-ADVP O O 

downstream B-NP PCOMP generation_downstream 
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signaling B-VP O O 

that B-NP O O 

results B-VP O O 

In B-ADVP O O 

transcriptional B-NP O O 

activation I-NP O O 

of B-PP O O 

the B-NP O O 

IL-2 I-NP O O 

gene I-NP O O 

. O O O 

    

The B-NP O O 

consequences I-NP SSUBJ consequence_failure 

of B-PP O O 

EBV B-NP O O 

infection I-NP O O 

of B-PP O O 

T B-NP O O 

cells I-NP O O 

at O O O 

an B-NP O O 

early I-NP O O 

stage I-NP O O 

Of B-PP O O 

differentiation B-NP O O 

may B-VP O O 

lead I-VP O O                  <- target predicate “lead” 

to B-ADVP O O 

failure B-NP PCOMP consequence_failure 

of B-PP O O 

normal B-NP O O 

T I-NP O O 

Cell I-NP O O 

repertoire I-NP O O 

development I-NP O O 

, O O O 

autoimmunity B-NP O O 

, O O O 

Or O O O 

malignancy B-NP O O 

. O O O 

 
Figure  4-16: Examples of the Subject-Object Head Pair for lead. The head pairs are            

generation_downstream and consequence_failure for sentence 1 and 2 
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In case of Transitive/Intransitive feature, it is surprised that for some predicates this 
feature is not useful in improving the performances though it is important in correctly 
interpreting the semantic role of an argument. From Figure  4-17, the subject argument 
“John” has the semantic role of agent in sentence (1) but the subject argument “the 
window” has the semantic role of theme in sentence (2). These two sentences illustrate 
that to know only the syntactic function as a subject or object cannot have a correct 
determination on the semantic role. To give information stating if the object is found in a 
sentence or not would therefore help to some extent to imply the sense in which the 
predicate is used. The performance of the model having this feature (Model 5) should 
outperform the PAS-based model (Model2).  

 

(1) [John]agent broke [the window]theme. <- Transitive sense 

(2) [The window]theme broke.            <- Intransitive sense 

 
 
Figure  4-17: Sentences show the use of the predicate broke in the transitive sense  

(sentence 1) and in the intransitive sense (sentence 2) 
 

However, the performance for recognize decreased when this feature was applied. 
From the result analysis, the parsing error accounts for this unexpected result. Some 
linkages between words are lost as shown in Figure  4-18.  

 
 1 The the det:>3 @DN> %>N  

 
<NAME 

cl="protein 

"> 
     

 

2 Ah ah  @DUMMY %EH 

<- 

Surface 

Subject 

 3 receptor receptor subj:>4 @SUBJ %NH  

 </NAME>       

 
4 recognizes recognize main:>0 @+FMAINV %VA 

<- Target 

Verb 

 <NAME cl="DNA ">      

 

5 DNA dna  @PCOMPL-S %NH 

<- 

Surface  

Object 

 6 binding binding attr:>7 @A> %>N which 

 7 sites site  @SUBJ %NH unable to 
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 </NAME>      capture 

 8 for for mod:>7 @<NOM %N< as no 

 9 the the det:>13 @DN> %>N relation 

 
<NAME 

cl="protein 

"> 
    to the 

 10 B B attr:>11 @A> %>N predicate 

 11 cell cell attr:>12 @A> %>N is found 

 12 transcription transcription attr:>13 @A> %>N  

 13 factor factor pcomp:>8 @<P %NH  

 </NAME>       

 14 , ,     

 
<NAME 

cl="protein 

"> 
     

 15 BSAP bsap  @SUBJ %NH  

 </NAME>       

 16 : :     

 17 a a det:>19 @DN> %>N  

 18 possible possible attr:>19 @A> %>N  

 19 mechanism mechanism mod:>15 @NH %NH  

 20 for for mod:>19 @<NOM %N<  

 
21 

dioxin-

mediated 

dioxin-

mediated 
attr:>22 @A> %>N  

 22 alteration alteration pcomp:>20 @<P %NH  

 23 of of mod:>22 @<NOM-OF %N<  

 24 CD19 cd19 attr:>25 @A> %>N  

 25 gene gene attr:>26 @A> %>N  

 26 expression expression pcomp:>23 @<P %NH  

 27 in in mod:>26 @<NOM %N<  

 
<NAME 

cl="cell-

type"> 
     

 28 human human attr:>29 @A> %>N  

 29 B b attr:>30 @A> %>N  

 30 lymphocytes lymphocyte pcomp:>27 @<P %NH  

 </NAME>       

 31 . .     

 
Figure  4-18: Incomplete parsing results for the predicate recognize 

 
As the linkage from token sites (the word number 7) to the predicate is lost, then a 

constituent for surface object of recognize cannot be captured. This causes a subsequent 
problem for the Transitive/Intransitive feature; i.e., this feature is set to “O” to represent 
that the predicate recognize is used in the transitive sense, whereas it does not. Thus, this 
incomplete parsing result accounts for decreasing F1-score of recognize when using the 
Transitive/Intransitive feature (Model 5) compared to when not using it (Model 2). 
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Average Improvement of F1-scores
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Figure  4-19: Average improvement of F1-scores for each of PAS-related models (Models 
2-6) compared to the lexical-based model (Model 1) 

 

A graph of the average improvement of the F1-score from each PAS-related model 
compared to the lexical-based model is shown in Figure  4-19. All predicates in group 3 
did not show the performance improvement when a feature set of every PAS-related 
model was applied to. So, the average F1-score of each model is calculated from the 
performances resulted from the applying of the model to the predicates in only group 1 
and group 2. In the case that the mix model (Model 6) is not considered, the results show 
that the Transitive/Intransitive feature (Model 5) gives the highest contribution as 
expected. Some more performance improvement can be obtained in Model 6 where the 
Head-Pair feature (Model 4) is embedded in the Transitive/Intransitive feature (Model 5). 
In this, the average F1-score rises up from 1.09 to 1.11. Prior to concluding that the 
Model 6 is the best model in this work, the other ways of joining features from different 
models have been explored. However, their performances get worse compared to Model 6 
and to the use of each model separately. 

In order to affirm the effectiveness of PAS-related features to NER, the Model 1, 2, and 
6 are applied to the rest of selected predicates. The F1-scores of all 19 predicates are 
summarized in Table  4-3. The predicates that have either F1-score in Model 2 or in 
Model 6 higher than the F1-score resulted from Model 1 are marked in bold-faced 
characters. A group of each predicate corresponding to the proportion of its arguments to 
belong to named entity classes (as explained in section 4.1.6) is also given in this table, as 
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well as a comparison of the F1-score from Model 2 and from Model 6 with the F1-score 
from Model 1 for every predicate. 

 

Table  4-3: F1-scores of all 19 predicates trained with features in the Model 1, 2 and 6 
 

Model 
Group 

Predicate 
Size of  
Examples 

Model 1 
(Lexical-

based) 

Model 2 
(PAS-

based) 

Model 6 
(Model 4 + 

Model 5) 
M2-M1 M6-M1 

Recognize 121 47.24 49.39 49.39 2.15 2.15 

Encode 265 56.60 57.56 57.64 0.96 1.04 

Interact 165 56.46 57.02 57.46 0.56 1.00 

Bind 825 62.74 62.76 62.78 0.02 0.04 

Express 779 60.43 59.64 59.71 -0.79 -0.72 

1 

Activate 719 66.18 65.23 65.12 -0.95 -1.06 

Result 407 55.04 55.76 56.12 0.72 1.08 

Block 270 51.19 51.47 51.95 0.28 0.76 

Inhibit 779 60.70 61.80 61.23 1.10 0.53 

Lead 288 57.01 57.40 57.49 0.39 0.48 

Signal 291 54.68 54.86 54.74 0.18 0.06 

Suppress 170 51.32 50.82 50.76 -0.50 -0.56 

Modulate 118 44.68 44.67 43.99 -0.01 -0.69 

Alter 102 50.12 48.91 48.91 -1.21 -1.21 

Generate 121 40.46 37.90 39.25 -2.56 -1.21 

2 

Decrease 171 48.75 47.87 47.51 -0.88 -1.24 

Mediate 500 60.22 60.01 60.18 -0.21 -0.04 

Associate 377 52.09 51.48 50.97 -0.61 -1.12 3 

Regulate 525 61.87 60.48 60.37 -1.39 -1.50 
 

From empirical results in Table  4-3, what can be concluded is that by applying the 
PAS-related features in addition to the lexical-based features, not only the performance of 
NER system was improved in case of the predicates in group 1, but also it was improved 
in case of the predicates in group 2. As the predicates in group 1 have both arguments 
agent and theme with a higher probability of belonging to a named entity class than non-
named entity class, the application of PAS-related features for the predicates in this group 



 

 - 114 - 

was expected to allow NER system to have higher performance than what it got from 
lexical-based features. The predicates such as recognize, encode, interact and bind 
conformed to this expectation, but not express and activate. From the analysis through the 
experimental results, one reason of the performance degradation of the predicates express 
and activate was from the incomplete parsing results. The boundaries of agent and theme 
arguments can not be identified correctly if the incomplete parsing results are conditioned. 
Without the impact from incorrect boundary identification, all predicates in group 1 have 
shown the positive effect of using PAS-related features. This claim is affirmed in further 
experiments explained in detail in section 4.4. 

As described in section 4.1.6, the property of predicates in group 2 is opposite to that of 
predicates in group 1. However, the effectiveness of using PAS-related features for the 
predicates in this group is not contrast to group 1. Some predicates such as inhibit, result, 
signal, lead and block show the performance improvement for using PAS-related features. 
On the contrary, there are also some predicates showing negative effects such as decrease, 
suppress, generate, modulate and alter. This phenomenon can be explained as that the 
lower probability of belonging to a named entity class of both arguments agent and theme 
of predicates in group 2 helps the machine learning model to identify the arguments as 
non-named entity.  An example of the predicate inhibit is shown in Figure  4-20. In this 
figure, the constituent “B95-8 cytosol” seems lexically a kind of molecular entity as it 
starts with capital letter, number, hyphen and so on, but it is correctly classified not to be 
named entity as it is a surface subject of inhibit. 

However, some predicates in this group show the negative effects. Their small numbers 
of examples are the reason for inability of machine learning model to take advantage of 
PAS-related features. A predicate showing positive effect such as inhibit, result, signal, 
lead and block has the number of training example as 779, 407, 291, 288 and 270, 
respectively; whereas a negative effect predicate such as decrease, suppress, generate, 
modulate and alter has the number of training examples as 171, 170, 121, 118, and 102, 
respectively. This statistical information affirms previous explanation. 
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Surf. Lem. Head POS Orth. Phr. PSurf PLem Voice SynR Path H_NE M_NE 

B95-8 b95-8 Cytos
ol 

 
cdh B-NP Inhibit

ed inhibit ACT SSUB
J 

cytos
ol_bin
ding 

O O 

cytos
ol 

cytos
ol 

Cytos
ol 

 
lw I-NP Inhibit

ed inhibit ACT SSUB
J 

cytos
ol_bin
ding 

O O 

inhibi
ted 

inhibi
t -  lw B-VP O O O O O O O 

specif
ic 

specif
ic 

Bindin
g 

 lw B-NP Inhibit
ed inhibit ACT SOBJ O O O 

bindin
g 

bindin
g 

Bindin
g 

 lw I-NP Inhibit
ed inhibit ACT SOBJ O O O 

of of -  lw B-PP O O O O O O O 
[ [ -  pu O O O O O O O O 
3H 3h 3H  cd B-NP O O O O O O O 
] ] -  pu O O O O O O O O 
dexa
metha
sone 

dexa
metha
sone 

dexa
metha
sone 

 
lw B-NP O O O O O O O 

( ( -  pu B-NP O O O O O O O 
P p P  sc I-NP O O O O O O O 
< < -  ot O O O O O O O O 
0
.
0
1 

0
.
0
1 

0
.
0
1 

 
ot B-NP O O O O O O O 

) ) -  pu O O O O O O O O 

when when -  lw B-
ADVP O O O O O O O 

mixed mix -  lw B-VP O O O O O O O 

with with -  lw B-
ADVP O O O O O O O 

cytos
ol 

cytos
ol 

Cytos
ol 

 lw B-NP O O O O O O O 

prepa
red 

prepa
re -  lw B-VP O O O O O O O 

from from -  lw B-
ADVP O O O O O O O 

either either -  lw I-
ADVP O O O O O O O 

a a -  lw B-NP O O O O O O O 

huma
n 

huma
n Line 

 
lw I-NP O O O O O 

B-
cell_li
ne 

B-
cell_li
ne 

lymph
oid 

lymph
oid Line 

 
lw I-NP O O O O O 

I-
cell_li
ne 

I-
cell_li
ne 

cell cell Line 
 

lw I-NP O O O O O 
I-
cell_li
ne 

I-
cell_li
ne 

line line Line  lw I-NP O O O O O I-
cell_li

I-
cell_li
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ne ne 
( ( -  pu O O O O O O O O 

HL hl HL 
 

2c B-NP O O O O O 
B-
cell_li
ne 

O 

) ) -  pu O O O O O O O O 
Or or -  lw O O O O O O O O 

Rat rat Thym
us 

 lw B-NP O O O O O O O 

thymu
s 

thymu
s 

Thym
us 

 lw I-NP O O O O O O O 

. . -  pu O O O O O O O O 
 

Figure  4-20: An example of the classification results from SVMs using PAS-related 
features for the predicate inhibit. The result from SVMs is shown in blue, 
the boundary of surface subject is shown in pink, and the surface object is 
shown in yellow54 

 
In case of group 3, the performance degradation is found for all predicates in this group 

(i.e., mediate, associate and regulate) when the PAS-related features are employed. As 
predicates in this group have only argument agent or theme with a higher probability of 
belonging to a named entity class than non-named entity, these predicates lacks of the 
restriction between named entity types of arguments agent and theme. This seems to be 
the reason of performance degradation when applying PAS-related features to the 
predicates in group 3. The machine learning model is likely to fail in identifying the 
arguments at the surface subject and surface object boundaries to the correct named entity 
class. An example of the predicate associate is shown in Figure  4-21. The statistical 
evidence observed from GENIA corpus expresses that only the agent argument of the 
predicate associate is prone to be a kind of named entity. As there is no restriction pattern 
as DNA-associate-DNA, as well as lexical information in the following sentence is not an 
obvious guiding for being DNA, thus SVMs classify “transcriptional regulatory element” 
and “nuclease-hypersensitive site” as non-named entities. 

 

 

 

                                                      
54 Column names: Surf=Surface word, Lem=Lemma form, Head=Head word of NP-chunk, POS=Part-of-

speech, Orth=Orthographic feature, Phr=Phrase-chunk, PSurf=Predicate surface form, PLem=Predicate 
Lemma, Voice=voice, SynR=Surface syntactic role, Head=Pair of subject and object’s heads, 
H_NE=Human annotated class of named entity and M_NE=Machine annotated class of named entity. 
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Surf Lem Head POS Orth Phr PSurf PLem Voice SynR Head H_NE M_NE 
A A -  sc B-NP O O O O O O O 
transc
ription
al 

Trans
criptio
nal 

eleme
nt 

 
lw I-NP Assoc

iated 
assoc
iate PAS SSUB

J 
eleme
nt_sit
e 

B-
DNA O 

regula
tory 

regula
tory 

eleme
nt 

 
lw I-NP Assoc

iated 
assoc
iate PAS SSUB

J 
eleme
nt_sit
e 

I-DNA O 

eleme
nt 

eleme
nt 

eleme
nt 

 
lw I-NP Assoc

iated 
assoc
iate PAS SSUB

J 
eleme
nt_sit
e 

I-DNA O 

is be -  lw B-VP O O O O O O O 
asso
ciate
d 

asso
ciate - 

 
lw I-VP O O O O O O O 

with with -  lw B-
ADVP O O O O O O O 

a A -  lw B-NP O O O O O O O 
nucle
ase-
hyper
sensit
ive 

nucle
ase-
hyper
sensit
ive 

site 

 

ot I-NP Assoc
iated 

assoc
iate PAS PCO

MP O B-
DNA O 

site site site  lw I-NP assoc
iated 

assoc
iate PAS PCO

MP O I-DNA O 

in in -  lw O O O O O O O O 
the the -  lw B-NP O O O O O O O 

pol pol gene  lw I-NP O O O O O B-
DNA 

B-
DNA 

gene gene gene  lw I-NP O O O O O I-DNA I-DNA 
of of -  lw B-PP O O O O O O O 
huma
n 

huma
n virus  lw B-NP O O O O O O O 

immu
nodefi
cienc
y 

immu
nodefi
cienc
y 

virus 
 

lw I-NP O O O O O O O 

virus virus virus  lw I-NP O O O O O O O 
type type type  lw I-NP O O O O O O O 
1 1 1  1ds I-NP O O O O O O O 
. . -  pu O O O O O O O O 

 
Figure  4-21: An example of the classification results from SVMs using PAS-related 

features for the predicate associate. The result from SVMs is shown in blue, 
the boundary of surface subject is shown in pink, and the surface object is 
shown in yellow 

 

Summarily, the PAS-related features will help to improve NER using lexical-based 
features for a predicate conforming to the following criteria: 
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- a predicate in group 1 (arguments both agent and theme with a higher probability 
of belonging to a named entity class than non-named entity class) 55 

- a predicate in group 2 (arguments both agent and theme with a lower probability of 
belonging to a named entity class than non-named entity class) plus enough 
examples (with regard to the empirical evidence, at least 270 examples should be 
enough56)   

Moreover, PAS-related features can give more contribution to improve the lexical-
based NER system when it is applied to the predicates in group 1 than in group 2. 

4.4 Impediments to high performance improvement 

In Table  4-3, the experimental results show that the PAS-related features only slightly 
improve NER. The highest performance improvement was only 2.15 resulted from 
applying the PAS-related features to the predicate recognize. However, this is not because 
the semantic relationship between a predicate and its argument is an insignificant 
knowledge for NER. According to the analysis on the experimental results, it was found 
that there were several factors impede the NER system in taking full benefits from the 
PAS-related features. These factors can be classified into 3 main groups: (1) boundary of 
arguments (2) semantic role representation and (3) named entities outside argument 
boundaries.  

4.4.1 Boundary of arguments 

This impediment factor involves the incorrect identification of an argument boundary. It 
is the consequence from the problems pertaining to the parsing results and the quantifiers. 

4.4.1.1 Problem from the parsing result 

There are 2 kinds of parsing errors which affect the NER system to incorrectly identify 
the argument boundary. The first error is the lost of linkage between words. By the nature 
of the sentences in bio-molecular literature, multiple ideas are conveyed in a single 
                                                      
55 In section 4.4, the experiment to prove that the performance improvement from using PAS-related features 

is also obtainable in case of the predicates express and activate, which are 2 predicates in group 1 showing 
performance degradation in Table 4-3. 

56 This remark is just a preliminary conclusion. Further detailed investigation will be performed in future 
work. 
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sentence. Thus, sentences from the bio-molecular literature are rather the complex 
sentences than simple ones. The sentence “HTLV-1 encodes an essential 40-kDa protein 

termed Tax that not only transactivates the long terminal repeat of this retrovirus but also 
induces an array of cellular genes” shown in Figure  4-22 is an example of complex 
sentences which are often found in the bio-molecular literature. In this sentence, the 
parser failed to give syntactic relation “object:>2“ to the word number 6 “protein” (i.e. the 
linkage between the argument at the surface object position and its predicate is lost). Thus, 
the argument shown in the red-dotted squares cannot be captured by the sub-structure 
recognizing process of the NER system used in this work. 

 
                  

  1 HTLV-I htlv-i subj:>2 @SUBJ %NH 

<MORPH> 

N NOM_SG 

</MORPH> 

<- 

Surface 

Subject 

  2 encodes encode  @+FMAINV %VA 

<MORPH> 

V PRES_SG3 

</MORPH> 

<- 

Target 

Verb 

  3 an an  @DN> %>N 

<MORPH> 

DET SG 

</MORPH> 

  

  4 essential essential attr:>5 @A> %>N 

<MORPH> 

A ABS 

</MORPH> 

<- 

Surface 

Object 

  <NAME cl="protein">       

which 

unable to 

capture 

  5 40-kDa 40-kda attr:>6 @A> %>N<?> 

<MORPH> 

N NOM_SG 

</MORPH> 

as no 

relation 

to the 

  6 protein protein   @SUBJ %NH 

<MORPH> 

N NOM_SG 

</MORPH> 

predicate 

is found 

  </NAME>         

  7 termed term  @+FMAINV %VA 

<MORPH> 

V PAST 

</MORPH> 

  

  <NAME cl="protein">        

  8 Tax tax  @NH %NH 

<MORPH> 

N NOM_SG 

</MORPH> 

  

  </NAME>         

  9 that that subj:>12 @SUBJ %NH<Rel> 

<MORPH> 

PRON -

</MORPH> 

  

  10 not not neg:>11 @ADVL %EH 

<MORPH> 

NEG-PART -

</MORPH> 
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  11 only only meta:>12 @ADVL %EH 

<MORPH> 

ADV – 

</MORPH> 

  

  12 transactivates transactivat* mod:>8 @+FMAINV %VA<?> 

<MORPH> 

V PRES_SG3 

</MORPH> 

  

  13 the The det:>16 @DN> %>N 

<MORPH> 

DET – 

</MORPH> 

  

  14 long Long attr:>15 @A> %>N 

<MORPH> 

A ABS 

</MORPH> 

  

  15 terminal Terminal attr:>16 @A> %>N 

<MORPH> 

A ABS 

</MORPH> 

  

  16 repeat Repeat obj:>12 @OBJ %NH 

<MORPH> 

N NOM_SG 

</MORPH> 

  

  17 of Of mod:>16 
@<NOM-

OF 
%N< 

<MORPH> 

PREP – 

</MORPH> 

  

  18 this This det:>19 @DN> %>N 

<MORPH> 

DET- 

</MORPH> 

  

  19 retrovirus Retrovirus pcomp:>17 @<P %NH 

<MORPH> 

N NOM_SG 

</MORPH> 

  

  20 but But cc:>12 @CC %CC 

<MORPH> 

CC – 

</MORPH> 

  

  21 also Also meta:>22 @ADVL %EH 

<MORPH> 

ADV – 

</MORPH> 

  

  22 induces Induce cc:>12 @+FMAINV %VA 

<MORPH> 

V PRES_SG3 

</MORPH> 

  

  23 an An det:>24 @DN> %>N 

<MORPH> 

DET SG 

</MORPH> 

  

  24 array Array obj:>22 @OBJ %NH 

<MORPH> 

N NOM_SG 

</MORPH> 

  

  25 of Of mod:>24 
@<NOM-

OF 
%N< 

<MORPH> 

PREP – 

</MORPH> 

  

  <NAME cl="DNA">        

  26 cellular Cellular attr:>27 @A> %>N 

<MORPH> 

A ABS 

</MORPH> 

  

  27 genes Gene pcomp:>25 @<P %NH 

<MORPH> 

N NOM_PL 

</MORPH> 

  

  </NAME>         

  28 . .       

                  

 
Figure  4-22: An example of incomplete parsing results for the predicate encode 
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Another parsing error is that the information is given, but it is incorrect. From Figure 
 4-23, the token “bZIP” highlighted in pink is suggested by the parser as a noun head 
(%NH), thus this token is not included in the same NP-chunk as the tokens 
“transcriptional” and “activator”. The boundary of the subject argument of the predicate 
bind is incorrectly identified as shown in the light-green square. 

 
                  

 1 ZEBRA zebra subj:>2 @SUBJ %NH 

<MORPH> 

N NOM_SG 

</MORPH> 

  

 </NAME>         

 2 is be  @+FMAINV %VA 

<MORPH> 

V PRES_SG3 

</MORPH> 

  

 3 a a det:>4 @DN> %>N 

<MORPH> 

DET SG 

</MORPH> 

  

 <NAME cl="protein">        

 4 bZIP bzip subj:>20 @SUBJ %NH<?> 

<MORPH> 

N NOM_SG 

</MORPH> 

  

 5 transcriptional transcriptional attr:>6 @A> %>N 

<MORPH> 

A ABS 

</MORPH> 

<- 

Surface 

Subject 

 6 activator activator mod:>4 @APP %NH 

<MORPH> 

N NOM_SG 

</MORPH> 

  

 </NAME>         

 7 which which subj:>8 @SUBJ %NH<Rel> 

<MORPH> 

PRON 

WH_NOM 

</MORPH> 

  

 8 binds bind mod:>6 @+FMAINV %VA 

<MORPH> 

V PRES_SG3 

</MORPH> 

<-Target 

Verb 

 9 as as copred:>8 @ADVL %EH 

<MORPH> 

PREP – 

</MORPH> 

  

 … … … … … … …   

 
Figure  4-23: An example of the incorrect parsing results for the predicate bind 

 
These types of parsing error influence the system to incorrectly interpret semantic roles. 

As the system cannot capture the object argument of the sentence in Figure  4-22, the 
system would wrongly interpret that this sentence is intransitive sentence and the subject 
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constituent “HTLV-I” plays the role of theme of the predicate “encodes”. In fact, the 
constituent that plays the role of theme is “essential 40-kDa protein”. 

To investigate the contribution of PAS-related features without the impact from parsing 
error, the manual identification of the boundaries of surface subject and surface object 
was done instead of using the information of syntactic relations resulted from the parser 
to identify these boundaries. The argument boundaries corresponding to the predicates 
such as express, activate, decrease, associate and recognize were identified manually on a 
set of 100 examples of each predicate, as well as a full set of examples (265 examples) of 
the predicate encode. The reasons why these predicates were selected to show the effects 
from the parsing error were as follows. 

The predicates express and activate were chosen to confirm the claim in the previous 
section that these 2 predicates should not result in performance degradation in case of 
using PAS-related features. The predicate decrease, a representative of group 2, was 
selected to test if its performance degradation found in the previous section was still 
remain in non-parsing error condition. Similarly, the predicate associate was selected for 
group 3. With regard to recognize and encode, as they gave the two best performance 
improvements shown in the previous section, it is interesting to see the upper bound of 
the performance improvements if there is no impact from parsing errors. The F1-scores 
resulted from SVMs training on these data sets are shown in Table  4-4. 

 

Table  4-4: F1-scores obtained from the training sets containing manually identified the 
surface subject and surface object boundaries 
 

 
Model Group Number of  

Examples 
Model 1 

(Lexical-based) 
Model 6 

(Model 4 + 
Model 5)  

Performance 
Improvement 

(Manual) 
Express 1 100 49.83 50.82 0.99 
Activate 1 100 58.65 59.27 0.62 
Decrease 2 100 51.87 51.73 -0.14 
Associate 3 100 43.28 39.91 -3.37 
Recognize 1 100 46.31 52.43 6.12 

Encode 1 100 56.89 59.29 2.40 
Encode 1 265 (Full) 56.60 59.87 3.27 
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In Table  4-3, the using of PAS-related features in addition to lexical-based features for 
parsing-examples 57  of express and activate resulted in the performance degradation 
compared to the using of only lexical-based features. On the contrary, the performance 
improvement is obtained in case of manual-examples. In this regard, the F1-scores of 
using PAS-related features are 0.99 (for express) and 0.62 (for activate) higher than of 
using only lexical-based features as shown in Table  4-4. This result supports the 
conclusion mentioned at the end of section 4.3 that the positive effects of PAS-related 
features on NER system should be obtained for all predicates in group 1. 

For the predicates decrease (group 2) and associate (group 3), NER systems still result 
in performance degradation although manual-examples are used instead of parsing-
examples. This conforms to the conclusion mentioned at the end of section 4.3 that the 
positive effects of PAS-related features to NER system will be obtained from a predicate 
in group 2 in the condition that its training data must be large. Furthermore, the positive 
effects of PAS-related features to NER system will not be obtained from applying these 
features to the predicates in group 3. 

Considering recognize, from training on 100 manual-examples, the performance 
improvement increase to 6.12—which is about 3 times of 2.15 that is obtained from 121 
parsing-examples. The size of the manual-examples of recognize is nearly equal to that of 
the parsing-examples; thus, it can be implied that the parsing error affects in decreasing 
the power of PAS-related features to enhance NER system for at least 3 times. In 
accordance to this, the performance improvement of encode also increase about 3 times in 
case 256 manual-examples are used, compared to 256 parsing-examples.  

Moreover, the results in Table  4-4 show that the more training data, the better 
performance. The performance improvement of 2.40 acquired from the NER system 
training on just 100 manual-examples of encode increase to 3.27 from training on 256 
manual-examples affirms what is just stated. 

To be summarized, the parsing errors (i.e., the lost of syntactic relation and the 
incorrect information for a word) must be handled to allow the NER system using PAS-

                                                      
57  Hence, the training examples are called manual-examples when argument boundaries are identified 

manually and are called parsing-examples when argument boundaries are identified automatically based on 
syntactic relation information given by the parser. 
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related features to get a maximum bound of performance at 3 times higher than what can 
be achieved under the parsing error condition. 

4.4.1.2 Problem from the quantifier 

The use of quantifier in a sentence is a problematic factor in identifying a boundary of an 
argument. From Figure  4-24, the constituent “multiple isotypes” in the sentence “T cells 
express multiple isotypes of protein kinase C” will be bounded to be the argument theme 
of the predicate express because the general algorithm for sub-structure recognition uses 
raw information given by the parser that “multiple isotypes” has syntactic relation as the 
object of “express”.  

 

T cells express [multiple isotypes] of protein kinase C… 
                [     protein     ] 
                [        O        ]   [    protein    ] 

      
Figure  4-24: A sentence showing human annotation in GENIA corpus (green part) and 

the answer from the NER system using PAS-related features (blue part) 
 

However, the substantial argument that should be identified as a theme argument is 
“protein kinase C” (a protein-entity that can be a participant of the expression event). The 
constituent “multiple isotypes” is merely a quantifier. This is analogous to a sentence in 
general language; for instance, in the sentence “David drinks a cup of coffee”, the entity 
that is drunk is “coffee” but not “a cup”. If the sub-structure recognition process can 
distinguish a substantial argument from a quantifier, the  semantic role will be assigned to 
the correct constituent. 

 

…TCF-1 specifically recognizes [T beta 5 element] of the TCR 
beta enhancer 
                                [        DNA     ] 
                                [        DNA     ] 

      
Figure  4-25: A sentence showing human annotation in GENIA corpus (green line) and 

the answer from the NER system using PAS-related features (blue line) 
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To distinguish between a substantial argument and a quantifier is a nontrivial task. In 
Figure  4-25, the constituent “T beta 5 element” of the sentence “…TCF-1 specifically 
recognizes the T beta 5 element of the TCR beta enhancer…” is a substantial argument; 
even though, this substantial argument is mentioned in this sentence with the same 
surface syntactic pattern (i.e. the pattern X of Y) as the quantifier “multiple isotypes” in 
the previous sentence. 

4.4.2 Semantic role representation 

This impediment factor involves the imperfect identification of a semantic role. The more 
efficient representation of semantic roles agent and theme, as well as the efficient 
representation for semantic roles other than agent and theme are required. 

So far, the best set of features used in this work is capable of representing only 
semantic roles agent and theme. Furthermore, the syntactic features used in the current 
system are still not sufficient even to make distinction between these two semantic roles. 

 

(1) [Donazol]agent decreases [transcription]theme of estrogen 
    receptor gene in human monocytes.  <- Transitive sense 

 (2) [CD40 cells]theme in a resting B-cell preparation from  
     hepatitis B patients decreased to zero after a 5-day  
     culture with sequence I.           <- Intransitive sense 

 
 
Figure  4-26: Sentences showing the using of the predicate decrease in the transitive 

sense (sentence 1) and in the intransitive sense (sentence 2) 
 

Analogous to the examples of the predicate break in Figure  4-17, from sentences: (1) 
“Donazol decreases transcription of estrogen receptor gene in human monocytes” and (2) 
“CD40 cells in a resting B-cell preparation from hepatitis B patients decreased to zero 
after a 5-day culture with sequence I” as shown in Figure  4-26, the system can correctly 
interpret that the constituent “transcription” functioning as the surface object in sentence 
(1) and “CD40 cells” functioning as the surface subject in sentence (2) have the same 
semantic role (i.e. theme). Current set of features (PAS-related features) in representing 
semantic roles consists of predicate’s surface form, predicate’s lemma, voice, surface 
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syntactic role and the feature combined from a subject-object head pair and transitive-
intransitive sense. As mentioned in section 4.2.3, from using this feature set the system 
incorrectly interpret that “John” in the sentence “John ate at the Royal-Host restaurant 
yesterday” plays the semantic role of theme. As the surface object is not mentioned, thus 
the system identify that the corresponding predicate is used in intransitive sense. The 
surface subject will play the semantic role of theme if the predicate is used in intransitive 
sense. However, the predicate eat is used in the transitive sense because the event 
“eating” implies that there must be something is eaten although it is not mentioned. In this 
regard, a predefined PAS frame for each predicate seems to be very important. As a PAS 
frame can clue that whether the predicate can be used in intransitive sense or not. 
Subsequently, the predefined PAS-frame should be represented in a feature set of the 
NER system as well in order to increase the system’s capability in representing the 
semantic roles agent and theme.  

In addition to the insufficiency of features for representing semantic roles agent and 
theme, the representation of other semantic roles is necessary as well. 

 

(3) [The fNF-E2 isoform]Arg3:RNA is transcribed from an         
    alternative promoter. 

 (4) [The plastid genome]Arg1:DNA is known to be transcribed by  
     a plasmid-encoded prokaryoric. 

 
 
Figure  4-27: Sentences showing the using of the predicate transcribe in 2 different senses 
  

From sentences: (3) “The fNF-E2 isoform is transcribed from an alternative promoter” 
and (4) “The plastid genome is known to be transcribed by a plasmid-encoded 
prokaryotic” as shown in Figure  4-27, the constituents “The fNF-E2 isoform” in sentence 
(1) and “The plastid genome” in sentence (2) will be identified by the system as theme 
argument if the system aims to cover only the semantic roles agent and theme58. In this 
case, the using of semantic roles cannot help the NER system to classify “fNF-E2 
isoform” as RNA and “plastid genome” as DNA due to the same semantic role they have. 
                                                      
58 This is based on the simple rule that if a sentence is in passive voice, the subject constituent will have 

semantic role as theme and the object constituent will have semantic role as agent. 
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From the analysis in the process of constructing PASBio database (Wattarujeekrit et al., 
2004), the PAS frame of the predicate transcribe consists of 5 arguments (i.e., Arg0-
Arg4). Each argument has its semantic role: agent, entity transcribed (theme), 
transcription site, transcription product and location (organ or tissue where the 
transcription happen) as shown in Figure  4-28. 

 

Predicate: transcribe = convert DNA into RNA 
 Argument-Semantic role set: 
        Arg0-causer agent 
        Arg1-entity to be transcribed (transcription source) 
        Arg2-transcription site 
        Arg3-entity after transcription (transcription product) 
        Arg4-location as organ/tissue expressing transcription   

 
Figure  4-28: The PAS frame of the predicate transcribe defined in PASBio database 

 
According to the semantic role set in the PAS frame of the predicate transcribe, the 

constituents “The fNF-E2 isoform” plays the semantic role of transcription product and 
“The plastid genome” plays the semantic role of entity to be transcribed (theme). 
According to the domain knowledge, DNA is the only molecular entity that can be 
transcribed and the molecular entity that is a product of transcription process is RNA. 
Therefore, if the system can cover the semantic roles other than agent and theme such as 
Arg1-entity to be transcribed and Arg3-entity after transcription, the semantic roles will 
show more positive effect to the system. 

4.4.3 Named entities outside the argument boundaries 

This impediment factor concerns the named entities found in a sentence at the 
constituents outside a focus predicate’s argument boundaries. So far, a semantic role 
represented by syntactic features (PAS-related features) is assigned for only the argument 
boundaries of one predicate at a time. Thus, in Figure  4-29, the NER system can take 
advantage of semantic roles to classify named entity types of only “gene” and 
“transcription factors”, if the focus predicate is “encode”. As most of sentences found in 
molecular biology literature are not simple sentences, two or more predicates are likely to 
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be found in the same sentence. To apply the semantic roles of all predicate’s arguments in 
a sentence at the same time should help the NER system get better results than to apply 
the semantic roles of the arguments of only one predicate at a time. Concerning to this, 
the critical point to be considered is about the weight or priority of each predicate in a 
sentence. 

 

  … [gene]DNA encoding [transcription factors]protein that bind 

 to the [canonical DNA sequence]DNA … 

 
 
Figure  4-29: An example of sentences containing more than one predicates (hence, 

encode and bind) 
 

For instance, there are two predicates (i.e. encode and bind) found in the sentence 
“…gene encoding transcription factors that bind to the canonical DNA sequence…” as 
shown in Figure  4-29. In this sentence, the constituent “transcription factors” is an object 
of “encoding” and at the same time it is a subject of “bind”. Between to assign semantic 
role as the theme of the predicate encode or to assign semantic role as the agent of the 
predicate bind, which choice will result in better performance must be investigated.  

     

  … we identify the [gene]DNA encoding the [lymphocyte  

 homing and migration protein]DNA … 

 
 
Figure  4-30: An example of sentences containing more than one predicates (hence, 

identify and encode) 
 

In Figure  4-30, it is easy to decide that the constituent “gene” should be assigned the 
semantic role of agent of the predicate “encoding” instead of theme of the predicate 
“identify”. Roughly, the lowest priority should be given to the predicates used to write a 
paper. For each rhetorical zone, the predicates used in composing a paper are, for 
example, Background—suggest and discover; Problem setting—test, evaluate and 
address; Outline—report, ask, find and show (Mizuta and Collier, 2004). 
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4.5 The effectiveness of an argument’s semantic role 

In this work, the use of semantic relationship between a predicate and its argument for 
enhancing NER has been explored. This semantic relationship, the semantic role to be 
precise, is employed in terms of a feature set for the SVM-based NER system. This 
feature set is composed of PAS-related features which are the features pertaining to 
syntactic information capable of semantic role representation. So far, the PAS-related 
features are assigned to only tokens in a boundary of a predicate’s argument functioning 
as a surface subject or a surface object. Therefore, in this work, the use of PAS-related 
features in addition to the lexical-based features directly helps NER system to identify the 
type of a named entity locating at the surface subject or surface object position. 

 

Surf Lem Head Orth Phr PSurf PLem Voice SynR. Head H_NE M_NE 
More
over 

more
over - Ic B-

ADVP O O O O O O O 

, , - Pu O O O O O O O O 
mono
cytes 

mono
cyte 

Mono
cytes Lw B-NP O O O O O B-cell_type O 

expre
ss 

expre
ss - Lw B-VP O O O O O O O 

a a - Lw B-NP O O O O O O O 

novel novel Protei
n Lw I-NP O O O O O O O 

IL-10-
stimul
ated 

il-10-
stimul
ated 

Protei
n Cdh I-NP O O O O O B-protein B-protein 

STAT stat Protei
n 2c I-NP O O O O O I-protein I-protein 

protei
n 

protei
n 

Protei
n Lw I-NP O O O O O I-protein I-protein 

with with - Lw B-
ADVP O O O O O O O 

an an - Lw B-NP O O O O O O O 
M m M Sc I-NP O O O O O O O 
( ( - Pu O O O O O O O O 
r r R lw B-NP O O O O O O O 
) ) - pu B-NP O O O O O O O 
of of - lw B-PP O O O O O O O 

70 70 - 2ds B-NP recog
nized 

recog
nize PAS SSUB

J 
kda_a
b B-protein B-protein 

kDa kda kDa lc I-NP recog
nized 

recog
nize PAS SSUB

J 
kda_a
b I-protein I-protein 

that that That lw B-
SBAR O O O O O O O 

is be - lw B-VP O O O O O O O 
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recog
nized 

recog
nize - lw I-VP O O O O O O O 

by by - lw B-
ADVP O O O O O O O 

the the - lw B-NP O O O O O O O 
anti-
STAT
3 

anti-
stat3 

anti-
STAT
3 

cdh I-NP recog
nized 

recog
nize PAS SOBJ O B-protein B-protein 

Ab ab - ic O recog
nized 

recog
nize PAS SOBJ O I-protein I-protein 

but but - lw O O O O O O O O 
is be - lw B-VP O O O O O O O 

not not - lw B-
ADVP O O O O O O O 

obser
ved 

obser
ve - lw B-VP O O O O O O O 

in in - lw B-
ADVP O O O O O O O 

T t Cells sc B-NP O O O O O B-cell_type B-
cell_type 

cells cell Cells lw I-NP O O O O O I-cell_type I-cell_type 
. . - pu O O O O O O O O 

 
Figure  4-31: An example of classification results from SVMs using PAS-related features 

for a predicate recognize. The result from SVMs is shown in blue, a human-
annotated named entity is shown in column H_NE, the surface subject 
argument is shown in pink, and the surface object argument is shown in 
yellow 

 
With regards to the difficulties of NER in the molecular biology domain, the PAS-

related features have their usefulness mainly for the case of polysemy or sharing names 
among entities (i.e., both systematic polysemy and homonymy). This is because the 
lexical knowledge is totally unlikely to be able to deal with the case of polysemy. Also, 
the PAS-related features can partly handle the lexical difficulty (i.e., the various patterns 
of terminology problem). 

In Figure  4-31, the constituent “70 kDa” is correctly classified as protein name (Red 
square) due to the clue of being an argument theme of the predicate recognize. By using 
only lexical knowledge, the model may interpret “70 kDa” as a mentioning of a particular 
quantity. This misleads the NER system to recognize “70 kDa” as non-NE (shown in 
Figure  4-32, Red square). Similarly, without PAS-related features for semantic relation 
between a predicate recognize and a term “anti-STAT3 Ab” shown in Figure  4-32 (Green 
square), only the word “anti-STAT3” is correctly classified as a part of a protein name  
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Surf Lem Head Orth Phr H_NE M_NE 
Moreover moreover - ic B-ADVP O O 
, , - pu O O O 
monocytes monocyte Monocytes lw B-NP B-cell_type O 
express express - lw B-VP O O 
a A - lw B-NP O O 
novel Novel Protein lw I-NP O O 
IL-10-stimulated il-10-stimulated Protein cdh I-NP B-protein B-protein 
STAT Stat Protein 2c I-NP I-protein I-protein 
protein protein Protein lw I-NP I-protein I-protein 
with With - lw B-ADVP O O 
an An - lw B-NP O O 
M M M sc I-NP O O 
( ( - pu O O O 
r R R lw B-NP O O 
) ) - pu B-NP O O 
of Of - lw B-PP O O 

70 70 - 2ds B-NP B-protein O 
kDa Kda kDa lc I-NP I-protein O 

that That That lw B-SBAR O O 
is Be - lw B-VP O O 
recognized recognize - lw I-VP O O 
by By - lw B-ADVP O O 
the The - lw B-NP O O 

anti-STAT3 anti-stat3 anti-STAT3 cdh I-NP B-protein B-protein 
Ab Ab - ic O I-protein O 

but But - lw O O O 
is Be - lw B-VP O O 
not Not - lw B-ADVP O O 
observed observe - lw B-VP O O 
in in - Lw B-ADVP O O 
T T Cells Sc B-NP B-cell_type B-cell_type 
cells cell Cells Lw I-NP I-cell_type I-cell_type 
. . - Pu O O O 

 
Figure  4-32: An example of classification results of the SVM-based NER system using  
                      only lexical features for a predicate recognize. The result from the SVM- 
                      based NER system is shown in blue, a human-annotated named entity is  
                      shown in column H_NE, the surface subject argument is shown in pink, and  
                      the surface object argument is shown in yellow 
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because its lexical information is obvious hint. However, by using only lexical features, 
the following word “Ab” is incorrectly classified to non-NE. In contrast, the word “Ab” is 
correctly classified as a part of protein name when PAS-related features are used. This 
confirms the importance of semantic relation between a predicate and its arguments for 
NER. 

 

…[transcriptional activators] recognize a [consensus motif]…   
[             O            ]               [       O       ] 
 [          protein         ]               [    protein    ] 
 [          protein         ]               [    protein    ] 

      
Figure  4-33: A sentence showing the answer from the NER system using only lexical 

features (pink line) and using also PAS-related features (blue line), as well 
as named entity class annotated by GENIA corpus’s annotators (green 
line) 

 

Figure  4-33 is another example to show that the using of PAS-related features can 
handle the lexical difficulty. As discussed in the introduction of Chapter 4, a molecular 
entity is not only in the form of a proper noun, but also a descriptive term. In Figure  4-33, 
the constituents “transcriptional activators” and “consensus motif” are the examples of 
named entities in the forms of the descriptive terms. They do not contain any capital 
letters for expressing themselves as the proper nouns. By using only lexical features, the 
NER system incorrectly recognizes them as non-NE (pink line). On the contrary, the 
using of PAS-related features helps the NER system to correctly recognize them as 
protein entities (blue line). 

 

…[VitD3] inhibited the expression of CD23 and CD49…   
[protein]                
 [   O   ] 
 [   O   ]                     

      
Figure  4-34: A sentence showing the answer from the NER system using only lexical 

features (pink line) and using also PAS-related features (blue line), as well 
as named entity class annotated by GENIA corpus’s annotators (green 
line) 
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In Figure  4-34, because the constituent “VitD3” is lexically a proper noun, the NER 
system using only lexical features recognizes this constituent as protein (pink line). But, 
the term “VitD3” actually stands for Vitamin D3 which is not a named entity of interest in 
this work59. Due to the lack of naming conventions in the molecular biology domain, the 
lexical patterns of different types of named entities are overlap across each other. The 
lexical information only is too weak to hint the NER system to correctly identify if a term 
is a named entity of interest. In addition to lexical information, the semantic role 
information will be another important clue. The constituent “VitD3” plays the role of 
agent in the clause “...VitD3 inhibited the expression of CD23 and CD49…”. In 
accordance with the restriction between a named entity type and a semantic role, the 
argument agent of the predicate inhibit is unlikely to be protein. By using together both 
lexical information and semantic role information, the NER system can correctly identify 
“VitD3” as non-NE as shown in the blue line in the Figure  4-34. 

 

…a cDNA encoding the [murine B-cell specific coactivator]…  
[                 DNA                ]    

                       [                protein             ] 
                       [                protein             ]    

      
Figure  4-35: A sentence showing the answer from the NER system using only lexical 

features (pink line) and using also PAS-related features (blue line), as well  
as named entity class annotated by GENIA corpus’s annotators (green 
line) 

 

An example in Figure  4-35 shows that the semantic role has a potential to handle 
polysemy problem. The entity named as “murine B-cell specific coactivator” can refer to 
either DNA or protein. However, in the example, this entity plays the role of theme in the 
encoding event, so this entity is correctly classified as protein by the NER system using 
PAS-related features (blue line). This is because the entity being encoded in the molecular 
event can be only a protein. 

 

                                                      
59 Please see section 4.1.1 for more details. 
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Chapter 5 
Conclusions and Future works 

The aim of this thesis is to prove the hypothesis that the semantic role, the semantic 
information describing the relationships between a predicate and its arguments, can 
enhance molecular NER system. The semantic role seems to be useful for molecular NER 
system due to a key idea that each argument’s semantic role should impose type 
restrictions on the entities within the argument.  

In order to investigate this hypothesis, two main subsidiary tasks were done: (1) the 
construction of PAS frames from analyzing the sublanguage used in the bio-molecular 
literature and (2) the employment of semantic roles in machine-learning based NER 
system. The consequences of doing these tasks are discussed as follows. 

5.1 Concluding Remarks 

5.1.1 Construction of PASBio resource 

The first subtask in this thesis is to analyze the molecular biology sublanguage presented 
in the literature (e.g., MEDLINE, EMBO, PNAS, NAR and JV) for constructing PAS 
frames in this scientific domain. As a consequence, 34 PAS frames for 29 predicates are 
included in PASBio resource 60  as well as about 300 annotated example sentences 
corresponding to the frames.  

Through the analysis, the predicates can be categorized into 4 groups grounded on their 
defined PAS frames in the molecular biology domain (PASBio project) compared to their 
PAS frames in newswire domain (PropBank project). The characteristic of predicates in 
each group is as follows: Group A—predicates have similar senses in the molecular 
biology domain and in newswire domain, but more arguments are required to completely 
express the event in the molecular biology domain; Group B—predicates have similar 
senses in the molecular biology domain and in newswire domain, but less arguments are 

                                                      
60 As each PAS frame is defined for a sense of predicate, the predicates with more than one sense will have 

more than one PAS frames.  
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required to completely express the event in the molecular biology domain because 
unnecessary arguments are counted as the basic knowledge that domain experts must 
have already known; Group C—predicates have the same senses in the molecular biology 
domain and in newswire domain and required the same set of arguments in both domains; 
Group D—predicates are rarely used in newswire domain or have special meaning in the 
molecular biology domain. The percentage of predicates for each group is 30%, 20%, 
20% and 30%, respectively61. From this information, it is worth to note that about 30% of 
predicates (Group D’s predicates) are totally in need to be analyzed specifically for the 
molecular biology domain. On the other hand, only 20% of predicates (Group C’s 
predicates) do not required the construction of PAS frames specifically for bio-molecular 
sublanguage. The PAS frames can be naturally borrowed from what are already defined 
in newswire domain. This result supports the importance of the analysis of PAS frames 
for the molecular biology domain. 

Because in this thesis semantic information between a predicate and its arguments is 
simply applied to NER system (i.e. only a semantic role of an argument with its syntactic 
function as either subject or object is considered), a defined PAS frame showing all 
arguments seem unnecessary thus far. However, the construction of PASBio is important 
for the further step of NER system in future works. In addition, the PASBio frames can 
currently be used as follows62: 

- a reference knowledge in case the annotation of semantic information at the PAS 
level is required 

- a reference knowledge for designing extraction patterns, i.e. a biological 
information extraction system can use PAS frames as a guideline concerning the 
types and numbers of arguments that can be expected from the extraction process 

- a reference knowledge to explain the empirical results 

5.1.2 Employment of semantic roles in machine-learning based NER 

The semantic role is applied to NER system in terms of features for SVM-based NER 
system. In this thesis, only the semantic role of an argument functioning as either subject 

                                                      
61 Please see section 3.4 for the full list of predicates in each group. 
62 Please see section 3.5 for detailed explanation of the usefulness of PASBio’s frames. 
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or object of a target predicate is involved. The syntactic features used to represent the 
arguments’ semantic roles are named ad PAS-related features. With reference to two 
types of evidences for NER (i.e., term internal and term external), the semantic role is 
considered as the term external evidence as same as co-occurrence information. 
Nevertheless, to use semantic role is more consistent than co-occurrence63. The base 
model for evaluating the importance of the semantic roles for molecular NER consists of 
six lexical features: surface word, lemma form, head word of noun phrase, part-of-speech, 
orthographic feature and phrase-chunk. The GENIA corpus V3.02 with five classes (e.g., 
protein, DNA, RNA, cell line and cell type) after conflation is a set of training data used 
in this thesis64. 

As a result, the set of PAS-related features that allows the use of semantic role to show 
its highest positive effect on the NER system is composed of predicate’s surface form, 
predicate’s lemma, voice and the united feature of subject-object head’s lemma and 
transitive-intransitive sense. Moreover, the set of PAS-related features takes effect to 
each predicate differently. Their positive effects can be shown for only the predicates 
conforming to the criteria as follows. A predicate must have its arguments as both agent 
and theme with a higher probability of belonging to a named entity class than non-named 
entity class; otherwise, a predicate must have its arguments as both agent and theme with 
a lower probability of belonging to a named entity class than non-named entity class and 
the number of training examples for this predicate should be large enough. In addition, 
the use of PAS-related features for the predicates fitting into the first criterion gives 
higher improvement in performance. 

5.2 Future directions 

As to apply semantic roles for NER systems is quite new in bio-text mining community, 
this thesis is a kind of pioneer research. Therefore, various problematic aspects still 
remain for being investigation in the future. These aspects are explained separately for 
each subtask as follows. 

• Construction of PASBio resource: In order to broaden usage scope of 
PASBio frame, PAS frames for other predicates besides 30 predicates that have 

                                                      
63 Please see section 2.3 for detailed discussion on the using of semantic role compared to co-occurrence. 
64 Please see section 4.1.1 for detailed discussion about the data set in GENIA corpus. 
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been analyzed should be focused. Also, the number of annotated sentences 
should be increased because so far there are too small to be trained for 
automatic semantic role labeling. 

• Employment of semantic roles in machine-learning based NER: In this 
thesis, the upper bound of the performance of the NER system employing 
semantic roles have not been obtained yet; thus, the future directions for this 
subtask are planed according to the 3 main impediments illustrated in section 
4.4.1.1. First, the sophisticated rules for the NER system to have better ability 
in identifying the argument of a predicate should be done. Second, the set of 
features for representing an argument’s semantic role should be extended to 
increase both correctness and coverage of semantic role representation. Third, 
the semantic roles of multiple predicates found in a sentence should be 
employed at the same time. 
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Appendix A – a list of all acronyms 

The following is a list of acronyms used in this thesis. 

 

ADVP: Adverb Phrase 

EMBO: European Molecular Biology Organization 

FDG: Functional Dependency Grammar 

GO: Gene Ontology  

IE: Information Extraction 

JV: Journal of Virology 

MUC: Message Understanding Conference 

NAR: Nucleic Acids Research 

NER: Named Entity Recognition 

NP: Noun Phrase 

PAS: Predicate-Argument Structure 

PNAS: Proceedings of the National Academy of Sciences of the United States of America 

PP: Prepositional Phrase 

VP: Verb Phrase 

 

Appendix B – PASBio tagging labels 

The following is a list of tagging labels used for annotating predicate-argument structure 
in PASBio project. 
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ADV: An adverb of any types except a manner adverb 

ArgR: An argument giving information about consequences after the occurrence of the 
event denoted by the predicate in focus 

ArgX: An argument number X 

MAN: A manner adverb (e.g., normally, specifically) 

MOD: A modal verb (e.g., will, may, can, shall, must) 

NEG: A negator word (e.g., not or n’t) 

 

Appendix C – PASBio frames 

All PASBio frames and annotated sentences corresponding to each frame are given below 
and are accessible publicly from http://research.nii.ac.jp/~collier/projects/PASBio/. 
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