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デデデーーータタタののの複複複雑雑雑さささはははどどどのののよよようううににに測測測定定定すすするるるのののかかか？？？

現在、データマイニングは統一理論がまだ提案さ

れていない。 個々の問題のためには、分類また、

クラスタリングなどの多くのアドホック技術が設

計されている。我々は、さまざまな基本的な機械

学習とデータマイ ニングタスクを結びつける理論

的な枠組みを提案する。

The Problem

To date, no unifying theory of data mining has been proposed.

IMany ad-hoc techniques have been designed for individual problems,
such as classification or clustering.

ISolutions involve much invention and reinvention, with few guidelines.

A theoretical framework that ties together different fundamental machine
learning and data mining tasks (including indexing, clustering, classifica-
tion, data discriminability, subspace methods, etc.) could help the disci-
pline, and serve as a basis for future investigation.

The Curse of Dimensionality

As the number of object features (data dimen-
sionality) rises:

ISimilarity values concentrate around their
expected values.

I Items become less and less distinguishable.

IData analysis based similarity (e.g. clustering
and classification) becomes ineffective.

Some sets have higher intrinsic dimensionality
(ID) than others.

I Intuitively, the minimum number of
dimensions or features with which the data
can be represented with minimal distortion.

IMany formalizations have been proposed
(such as the Hausdorff dimension, in 1918!).

Discriminability of Distances

I Let X be an absolutely continuous random
distance variable with c.d.f. FX and p.d.f fX.

IDiscriminability of the distance measure can
be regarded as a ratio between two quantities
as the distance expands infinitessimally:

I (1) the relative increase in distance, and

I (2) in probability measure.

The indiscriminability of X at distance r is:

InDiscrX(r) = lim
ε→0+

(
FX((1 + ε)r) − FX(r)

ε · FX(r)

)

Local ID

When FX(r) > 0, the local intrinsic dimensionality
of X at distance r is defined as:

IntrDimX(r) = lim
ε→0+

(
ln FX((1 + ε)r) − ln FX(r)

ln(1 + ε)

)
This definition is an extension for continuous dis-
tance distributions of the Expansion Dimension.

Theorem (Equivalence of ID and Indiscriminability)

Let X be an absolutely continuous random dis-
tance variable. If FX is both positive and differ-
entiable at r, then

IntrDimX(r) = InDiscrX(r) =
r · fX(r)
FX(r)

=: IDFX(r).

ID and Scalability

Implications for Big Data:

IData mining is greatly concerned with what
happens in neighborhoods of data (clustering,
classification, outlier detection, . . . ).

IAs the number of objects increases, the
k-nearest neighbor (k-NN) distance tends to 0.

I Indiscriminability of neighborhood distances,
and ID of k-NN query result, tend to IDFX(0).

Limit effect characterizes the complexity of data.

Theorem (ID Representation Formula)

Let X be an absolutely continuous random dis-
tance variable such that FX(r) > 0 whenever
r > 0. Then for any r, w ∈ (0, z),

FX(r) = FX(w) ·
( r

w

)IDFX(0) · GFX,0,w(r), where

GFX,0,w(r) := exp
(∫w

r

IDFX(0) − IDFX(t)
t

dt
)

.

Furthermore, for any fixed 0 < c < 1, we have
lim

w→0+
cw6r6w

GFX,0,w(r) = 1 .

Extreme Value Theory

IProfound importance in risk analysis,
economics, civil engineering, operations
research, material sciences, geophysics, . . . .

IHere, adapted for the lower tails of distance
distributions.

IOne of the three fundamental pillars of
Extreme Value Theory, Karamata
Characterization Theorem (1930):
FX(x) = xγX`X(1/x) for some constant γX,
where

`X(1/x) = exp
(
ηX(1/x) +

∫w

x

εX(1/t)
t

dt
)

.

ID and Extreme Value Theory

I ID Representation is a more precise
formulation of the Karamata Characterization,
with:

γX = IDFX(0) ;
ηX(1/x) = ln FX(w) − IDFX(0) ln w ;
εX(1/t) = IDFX(0) − IDFX(t) .

I IDFX(0) is the well-studied EVT index γX.

IConnections also exist between ID and
Hausdorff dimension, and ID and the hubness
phenomenon in data.

ID and Inlierness / Outlierness

If IDFX(r) < IDFX(0) within neighborhood 0 < r <
ε of some point p, then:

IThe growth rate at distance r is less than that
which would be expected within a uniform
distribution of dimension IDFX(0).

IThe drop in indiscriminability (rise in
discriminability) indicates a decrease in local
density as the distance from p increases.

IThe relationship between p and its
neighborhood is therefore that of an inlier.

If instead IDFX(r) > IDFX(0), p is an outlier.

2nd-Order ID

I Inlierness / outlierness is determined by the
sign of ID ′FX

(r) as r→ 0+.

IStrength is obtained by normalizing ID ′FX
(r) for

distance and intrinsic dimensionality:

IDIDFX
(r) =

r · ID ′FX
(r)

IDFX(r)
= IDF ′X(r) + 1 − IDFX(r),

IHowever, IDIDFX
(0) = 0 always . . . need the

growth rate ID|IDIDFX
|(0) of |IDIDFX

(r)| instead.

Example: Distances to a Gaussian

IVector of normally distributed random
variables with means µi and variances σ2

i .

IDistance from 0 to a point
X = (X1, X2, . . . , Xm), defined as

Z =

√√√√ m∑
i=1

X2
i

σ2
i
, and λ =

√√√√ m∑
i=1

µ2
i

σ2
i

is the normalized distance from 0 to the
Gaussian mean.

I IDFZ(0) = m and ID|IDIDFZ
|(0) = 2 whenever

λ ,
√

m. Also, as r tends to 0, IDIDFZ
(r) > 0

when λ >
√

m (tail region→ outliers), and < 0
when 0 6 λ <

√
m (central region→ inliers).

INormalization works! Independent of λ & m.

Inlier Region λ <
√

m
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