Inlierness, Outlierness, Hubness and Discriminability:
an Extreme-Value-Theoretic Foundation
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THE CURSE OF DIMENSIONALITY
As the number of object features (data dimen-
sionality) rises:

Similarity values concentrate around their
expected values.

ltems become less and less distinguishable.

Data analysis based similarity (e.g. clustering
and classification) becomes ineffective.

Some sets have higher intrinsic dimensionality
(ID) than others.

Intuitively, the minimum number of
dimensions or features with which the data
can be represented with minimal distortion.

Many formalizations have been proposed
(such as the Hausdorff dimension, in 1918)).

DiscRIMINABILITY OF DISTANCES

Let X be an absolutely continuous random
distance variable with c.d.f. Fx and p.d.f fx.

Discriminability of the distance measure can
be regarded as a ratio between two quantities
as the distance expands infinitessimally:

(1) the relative increase in distance, and
(2) In probability measure.

The indiscriminability of X at distance r is:

Fx((14 e)r) — Fx(r)
r)

e - Fx(
When Fx(r) > 0, the local intrinsic dimensionality
of X at distance r Is defined as:

In Fx((1 + €)r) — In Fx(r)
In(1+ €)

This definition is an extension for continuous dis-
tance distributions of the Expansion Dimension.

InDiscrx(r) = lim
e—07

LocaL ID

IntrDimx(r) = lim
e—0T

THEOREM (EQUIVALENCE OF ID AND INDISCRIMINABILITY)

Let X be an absolutely continuous random dis-
tance variable. If Fx is both positive and differ-
entiable at r, then

r- fx(r)

Fx(r)

IntrDimyx(7) = InDiscrx(r) = =: IDpg, (7).
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THE PROBLEM

To date, no unifying theory of data mining has been proposed.

Many ad-hoc techniques have been designed for individual problems,
such as classification or clustering.

Solutions involve much invention and reinvention, with few guidelines.

A theoretical framework that ties together different fundamental machine
learning and data mining tasks (including indexing, clustering, classifica-
tion, data discriminability, subspace methods, etc.) could help the disci-

pline, and serve as a basis for future investigation.

ID AND SCALABILITY

Implications for Big Data:

Data mining is greatly concerned with what
happens in neighborhoods of data (clustering,
classification, outlier detection, ...).

As the number of objects increases, the
k-nearest neighbor (k-NN) distance tends to 0.

Indiscriminability of neighborhood distances,
and ID of k-NN query result, tend to IDg, (0).

Limit effect characterizes the complexity of data.

THEOREM (ID REPRESENTATION FORMULA)

Let X be an absolutely continuous random dis-
tance variable such that Fx(r) > 0 whenever
r > 0. Then forany r,w € (0,z),

4 )IDFX(O)

Fx(r) = Fx(w) - (=

w

Gr0w(r) = exp (Jw IDr0) = D (1) dt> .

Furthermore, for any fixed 0 < c < 1, we have
= 1.

- Gr, 0w(7), where

lim Gg,00(7)

w—0T
CWOLTr<w

ExXTREME VALUE THEORY

Profound importance in risk analysis,
economics, civil engineering, operations
research, material sciences, geophysics, ....

Here, adapted for the lower tails of distance
distributions.

One of the three fundamental pillars of
Extreme Value Theory, Karamata
Characterization Theorem (1930):

Fx(x) = x¥*x(1/x) for some constant vy,

where
ex(l/X) = eXp (Tl X(l/X) —I—J EX(j/t) dt) :

ID AND EXTREME VALUE THEORY

ID Representation is a more precise
formulation of the Karamata Characterization,
with:

Yx = IDFX(O) /
nx(1/x) = InFx(w) — IDg, (0) Inw ;
ex(1/t) = IDf,(0) — IDg,(t) .

IDr, (0) is the well-studied EVT index .

Connections also exist between ID and
Hausdorff dimension, and ID and the hubness
phenomenon in data.
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ID AND INLIERNESS / QUTLIERNESS

If IDg, () < IDg,(0) within neighborhood 0 < r <
e of some point p, then:

The growth rate at distance r is less than that
which would be expected within a uniform
distribution of dimension IDg, (0).

The drop in indiscriminabillity (rise In
discriminabillity) indicates a decrease in local
density as the distance from p increases.

The relationship between p and its
neighborhood is therefore that of an inlier.

If instead IDg, (r) > IDg, (0), p is an outlier.

2ND-ORDER ID

Inlierness / outlierness is determined by the

sign of IDy (r) as r — 0.

Strength is obtained by normalizing IDy. (r) for

distance and intrinsic dimensionality:

r-IDg (7)

ID — X
o) = D

However, IDip, (0) = 0 always ... need the
growth rate Dy, (0) of !IDIDFX(r)! Instead.

— IDF;((T) -1 IDFX(T),

ExAMPLE: DiSTANCES TO A (GAUSSIAN

Vector of normally distributed random
variables with means ; and variances o?.

Distance from 0 to a point
X =(X1,Xs,...,X,), defined as

N

— and A =
NS T

IS the normalized distance from 0 to the
Gaussian mean.

IDr,(0) = m and ID,IDIDF (0) =2 whenever

A # /m. Also, as r tends to 0, IDmp, (r) > 0

when A > /m (tail region — outllers) and < 0
when 0 < A < /m (central region — inliers).
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Normalization works! Independent of A & m.
Inlier Region A < /m

REFERENCES

[1] M. E. Houle. “Inlierness, Outlierness, Hubness
and Discriminability: an Extreme-Value-Theoretic Foun-
dation”, NIl Technical Report NII-2015-002E.

[2] M. E. Houle. “Dimensionality, discriminability, density &
distance distributions”, ICDMW 2013.

X —*) §&2-1-2-1403
= :meh@nii.ac.jp



