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Abstract

Most tasks in scientific computing ultimately boil down to the solution of
systems of linear equations. Discretizations of differential or integral equations
usually result in systems of algebraic equations. When these equations are
nonlinear they have to be linearized, e.g., by Newton’s method, and finally we
face the question: What is the solution of Ax = b?

Many linear systems that arise in practical problems (especially those which re-
sult from finite element or finite difference discretizations of partial differential
equations) can be so huge that limited storage space as well as limited comput-
ing time generally prohibit the application of direct solvers such as Gaussian
elimination. Fortunately, large ‘real-life’ matrices are often sparse, i.e., they
have only a few nonzero entries. For practical purposes this means that matrix-
vector products with A can be computed cheaply. Iterative methods generate
a sequence of approximate solutions, where the main computational effort for
constructing the m-th approximant from the previous one consists in one or
a few matrix-vector multiplications with A, and this is why large and sparse
systems are usually solved iteratively.

Krylov subspace methods, the topic of these lectures, form the most important
class of iterative solution method. In the past three decades research on Krylov
subspace techniques has brought forth a variety of algorithms and methods so
large that even specialists in matrix computations have difficulties keeping up.

It is our objective to develop the theory and algorithms on which all Krylov
subspace methods are based in a unified way, to emphasize their connections
to other fields of applied mathematics (such as polynomial approximation),
but to treat also problems one encounters in practise, e.g., their behavior
in finite precision arithmetic and how their convergence can be accelerated
using preconditioners. In addition, we shortly describe how Krylov subspace
methods help to solve other large linear algebra problems such as finding a few
eigenpairs of a matrix, reducing the dimension of a linear model or evaluating
a matrix function.
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Krylov subspace methods and preconditioning. The method of successive
approximation and other classical iterative methods.

. Projection methods on expanding subspaces. Minimal residual

(MR) and orthogonal residual (OR) subspace correction. Projections and
angles. Projections onto nested subspaces. MR and OR approximations
on nested subspaces. Relations between nested MR and OR approxima-
tions.

Coordinate representation and algorithms. Working with coordi-
nates. The orthogonalization process. Angles and the QR-factorization.
The Paige-Saunders basis. Using arbitrary bases. Quasi-minimal and
quasi-orthogonal approximations. Multiple subspace correction.

. Krylov subspaces. Why Krylov subspaces? Shift operator, orthogonal

and kernel polynomials, Gaussian quadrature. Parameterization of the
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(GMRES). The full orthogonalization method (FOM). Restarted and
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The conjugate gradient (CG) method. Some remarks on the history
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CG convergence. CG and normal equations.

Lanczos-based Krylov subspace methods. The nonsymmetric Lanc-
zos process and look-ahead strategies. Lanczos-based equation solvers.
The quasi-minimal residual methods (QMR). The biconjugate gradient
method (BiCG). BiCGStab and other product methods.

Convergence. Linear versus superlinear convergence. Bounds based
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Practical issues. Krylov subspace methods in finite precision. Error
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Krylov methods for singular problems. The minimal polynomial
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Krylov methods for matrix functions. The definition of matrix func-
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