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Abstract— A time-discrete, constrained, Linear Quadratic Gaussian (LQG) production planning problem is formulated to 
develop a production plan with sub-optimal levels of production and remanufacturing for a single product. With the objective to 
define a strategy of remanufacturing used product, estimated return rates are used to provide production scenarios based on this 
plan. Nowadays, specific legislation is applied to many industrial sectors regard to the return of used products. Thus, motivated by 
environmental factors and a shortage of raw materials, partial or total reuse of return products are a high priority on business's 
agenda of many companies. This paper uses an approach of literature to solve a production-planning problem of a dynamic system 
that includes a reverse channel, with a remanufacturing facility. It is assumed that fluctuations of demand for serviceable products 
are approximated by stationary normal random variables. Thus, the constrained LQG problem here considered is converted to an 
equivalent but deterministic that can be solved by any quadratic programming method from literature, providing, as a result, sub-
optimal inventory and production plans. Managers can use such plans as scenarios to evaluate future opportunities as costs’ 
reduction, for instance. A simple usecase illustrates such ideas. 
 

I. INTRODUCTION 

 
In the literature, we found different definitions for reverse logistics. Generally speaking, however, processes related to 

actions of recycling, remanufacturing, solid waste disposal, and handling properly hazardous materials in order to protect 
human being and the environment define reverse logistics. These processes require typical activities of planning and 
controlling of used material flow through the reverse channel of any responsible supply chain. The main goal of reverse 
logistics is to move the used products from their local use to a safe destination, having in mind the possibility of adding 
partial or total value to them. As a result, of this aggregation value, we can understand the reverse logistics as being a 
recycling or remanufacturing process of used products. 

Thus, for today and next future, reverse logistics represents an important part of the supply chain process. There are 
political and economic reasons to recover used products. For example, international severe laws related to destiny of 
unserviceable products; high costs to collect used products from customers; enormous costs to storage or disposal used 
products; and, the fact of returnable products can be converted to reusable product, or some parts can be extracted to repair 
products used by companies. Thus, companies have shown great concern about the destiny of used-products. 

Issues and problems related to reverse logistics are largely found in journals and books of literature. Most of them are 
based on quantitative models that are used to represent remanufacturing and recycling activities in the reverse channel. We 
consider here a classification based on types of problem provided by Fleischmann et al. [1] that are directly related to 
quantitative models for reverse logistics. In their typology, authors focus on three types of problems: (i) reverse distribution 
problems; (ii) inventory control problems in systems with return flows of products; and (iii) production planning problem 
with reuse of parts and materials. In short, the first type is associated to collecting and transporting of used products and 
packages. According to above mentioned authors, “the reverse distribution can take place through the original forward 
channel, through a separate reverse channel, or through combinations of the forward and the reverse channel.” The second 
one is related to production planning and control mechanisms that allow repairing used products and bring them back to the 
marketplace. At last, the third type considers production-planning problems of reusing parts and products without 
remanufacturing. It is worth mentioning that there are different optimization approaches to deal with these types of problems, 
see [3] and [6].  

In this paper, our interest is to discuss how to provide production plans by solving a stochastic optimization problem 
subject to dynamic systems with return flows and physical probabilistic constraints. According to Fleischmann topology [1], 
our paper focuses on inventory and production planning category. In fact, the paper proposes the use of an approach available 
in the literature, see [5], but that is here applied to a problem of planning of a supply chain with reverse channel, which 
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includes a remanufacturing facility. Typical examples of product recovery are tires, toner cartridges, TV sets and distribution 
equipment like bottles, pallets, containers, etc. The paper deals with a typical issue, when sometimes used-products can be 
recovered for reuse. 

Linear Quadratic Gaussian (LQG) problem with constraints on decision variables can be very useful to deal with 
inventory- production planning problems (see Holt et al [2]). The quadratic criterion can penalize both excesses as well 
shortage of inventory, for instance. Another important impact of a LQG formulation is the possibility of using constraints 
explicitly, that is, without penalizing approaches as have been used by other techniques. In our paper, the main objective is to 
satisfy the demand over the periods of the planning horizon, with minimal costs of holding inventories, manufacturing new 
products, and remanufacturing or disposal used-products. We focus on showing that by reusing used-products after 
remanufacturing, companies can obtain competitive advantage due to cost reduction. In the literature, it is possible to find 
numerous contributions related with this kind of model, the majority of them consider the formulation in a time-continuous 
pattern; see, for instance, [3] and [4].  

Sub-optimal inventory-production plans can be provided by the approach here considered. These plans can be used to 
provide different scenarios of production, created due to the dynamic and uncertain nature of the system. Indeed, some 
parameters of the model can change to provide such scenarios. Typical parameters that can be changed to provide these 
scenarios are the return rate of used products, the delay of return, or both, etc. In this paper, the above parameters will be 
maintained as constants. Scenarios will be created as a result of the estimated fluctuation of demand for serviceable products. 
Three situations will be explored: one considering the expected value of demand exactly, while the other two, will take into 
account maximum and minimum estimated errors of demand forecasting. 

 The sections of the paper are organized as follows: Section 2 formulates the optimization model to represent the reverse 
logistics problem. Section 3 discusses a solution for this problem and introduces a simulation scheme for scenarios analysis. 
In sequence, Section 4 introduces a simple use case that illustrates the economic feasibility of finding an optimal balance for 
a recovery system by mean of a structured procedure that considers optimal scenarios. 

II. THE STOCHASTIC PRODUCTION PROBLEM 
Two inventory balance systems are illustrated in Figure 1 through their Distribution Centers (DC): the first one is on the 

forward channel of the supply chain and represents a warehouse of serviceable products (i.e., manufactured and 
remanufactured products), being denoted here by DC1. 

 
Figure 1.Dynamic system of reverse logistics 

The second is on the reverse channel and it represents a warehouse of returnable products, denoted by DC2. Note that the 
serviceable products must fulfill customer demand for products, which is a merge of new and remanufactured products. 

Note that the integrated forward and reverse channels of the supply chain illustrated in the figure 1 can be described as a 
discrete-time stochastic dynamic system. In fact, it encompasses two state variables x1 and x2 (i.e. inventory levels) associated 
respectively to the serviceable unit (DC1) and the remanufacturing unit (DC2); and three control variables that are related to 
manufacturing (u1), remanufacturing (u2), and discard (u3) rates. The stochastic nature of the system is due to demand  d  that 
is not precisely known, and consequently, has impacted the state variable x1 that becomes a random variable, as will be 
discussed later. 

Some points to be considered from figure 1 are: 

− For each period k, a return rate y is estimated from an Autoregressive, Moving-Average model, denoted as ARMA(p,q), 



 

 

 

3 

where  p is the order of the autoregressive part and  q is the order of the moving average part. A time-series of returnable 
products is used to identify the model. 

− Serviceable storage unit (DC1) has lower and upper bound capacity denoted by 11 and xx , respectively. Note that the 
parameter 1x  denotes the safety-stock level defined by the company. Furthermore, returnable storage unit (DC2) has upper 
bound capacity denoted by 2x . Usually, returnable level of safety stock is not considered that means that .x 02 =  

− Manufacturing and remanufacturing rates (i.e., u1 and u2) have upper limits of operational capacity denoted by ,uandu 21
respectively. Sometimes, however, planning strategy can impose lower boundary capacities for u1 and u2. Thus, it is 
reasonable to include 21 and uu into the model to represent these lower levels, respectively. 

− Disposed rate u3 represents returnable products that are spoiled and, therefore, cannot be remanufactured. There are two 
main reasons to discard used-products: the first has a technical justification, which is related to inappropriate returned 
products for remanufacturing activities; and the second has a financial justification, in which remanufacturing all products 
can significantly raise the inventories, and as a result increase production costs. 

The stochastic control system is described by the following two difference equations, which represent the inventory 
balance systems related to forward and reverse channels of the supply chain: 

 

x1(k+1)  =  x1(k)+u1(k)+u2(k)-d(k)                  (1) 

x2(k+1)  =  x2(k)-u2(k)-u3(k)+y(k)                     (2) 

 

The demand d(k) is a Gaussian variable with mean and variance given by )(kd̂ and 2
dσ . As a result of random nature of  d, 

the inventory system (1) is a stochastic process, then the state x1(k) is also a random variable with mean and variance given 
respectively by )(1 kx̂  and 22 )(

1 dx .kk σ=σ .  

The return level y(k) is provided from an Autoregressive ARMA(p,q) process: 
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where sequences },...,,{ p21 φφφ  and },...,,{ q21 ϕϕϕ  denote the parameters of AR and MA processes, respectively. The p and 

q are orders of these respective processes. The input of the ARMA model (see figure 1) is given by the variable )(kε that 
denotes a white noise originated from a normal process. 

The following forecast model for t-periods ahead gives the estimation of returnable products: 
 

)()1()(

)()1()()(

1

1

qtk...tkk
ptky...tkytkyky~

p

pt

−+εϕ++−+εϕ−ε

+−+φ++−+φ=+=

  
(4) 

 

Finally, an optimal sequential production-inventory policy {u1(k), u2(k) and u3(k) with k = 0,1,2,…,T-1} can be provided by 
solving a Linear Quadratic Gaussian (LQG) problem with constraints on decision variable. This problem is considered to 
represent a reverse logistics problem whose system is given by Figure 1. It is formulated as follows: 
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where h1 and h2 denote the holding costs of DC1 and DC2. The coefficient c1, c2 and c3 denote costs for manufacturing, 
remanufacturing and disposal. The symbols E{.} and Prob.[.] denote the expectation and probability operators respectively. 
The index α  is a probabilistic index and represents the customer satisfaction level; see [5]. Note that DC1 and DC2have 
upper and lower boundaries of stock. The safety-stock in DC1 depends on the customer satisfaction α provided by the 
manager. Note also that 1u and 2u  are the upper levels of production capacities. 

 The linearity of systems (1-2), and the convexity of criterion of problem (5) allow us to use the classical certainty 
equivalence principle to replace the stochastic problem (5) by an equivalent deterministic problem [6]. In fact, assuming the 
serviceable inventory system (1) approximated by Gaussian process [7], where x1(k) is a Gaussian variable with first and 
second statistics moments )(1 kx̂ and 2

d.k σ  [8], a constrained Linear Quadratic (LQ) problem, denoted as Mean Value 
Problem (MVP), can be formulated as follows: 

 

 

 

 

 

 

 

 
 

 
 

where 1−Φx  denotes the inverse distribution of probability;  ( ){ }kdEkd̂ =)(  is the mean value of demand; )(ky~t  is given by 

(4); and { } 22
1

2
1 )()( dkkx̂kxE σ⋅+= , dx k)k( σ⋅=σ [8].  

 

At last, it is worth mentioning some advantages of using quadratic cost: a) it penalizes equally, both positive (i.e., excess) 
and negative (i.e., backlogging), variations of decision variables; and b) it induces high penalties for large deviations of the 
decision variables from the origin but relatively small penalties for small deviation, see [6]. 

The equivalent deterministic problem (6) is easier to be solved than the original one (5) that is very time-consuming 
particularly when stochastic dynamic programming is applied, see [6]. This is the main advantage of using such an approach. 
In fact, it provides quasi-optimal (i.e. sub-optimal) solutions. Bertesekas [6] has shown the applicability of this approach for 
practical problems. In next section, we discuss the use of this approach to deal with production scenarios that help managers 
to make their decisions more precisely. 

III. OPTIMAL SCENARIOS  
Figure 2 exhibits a schematic diagram that represents the application of optimal plan provided by the policy for running 

systems (1)-(2). From this diagram, it is possible to visualize the main steps of simulation scheme. From this simulation 
process, it is possible to provide production scenarios related to company resources. Indeed, varying some parameters of the 
problem (5) and running the simulation process (see Figure 2), production scenarios are created in order to help managers to 
make decisions. 

Note that a one-step ahead forecast for rate of returnable products (i.e. )(1 ky~ ) and prices of the criterion given in (6) are 
considered here to generate production scenarios, which allow users evaluating and making proper decisions. Let’s consider 
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some comments: 

(a) Forecasting of returnable products: from a historical of returnable products (time-series), an ARMA(p,q) model (3)can be 
identified. Then a forecasting model of one-steps ahead )(1 ky~  is developed from (4) in order to provide estimations about 
future levels of returnable products. Associated to this estimation, an forecasting interval is considered to determine upper 
and lower limits for future estimated values of y(k), which is given by )(1 ky~ , see (4). A parameter δ ∈ [0,1] should be chosen 
by manager; it allows calculating  the upper and lower limits of forecasting. As a result, three scenarios can be proposed:  

- first scenario follows the estimated values of returnable products, that is { )(1 ky~ , k=0,1,…,T-1};  

- second scenario considers the minimum estimated values given by the sequence { ⋅= )()( 1 ky~ky~min (1-δ), k=0,1,…,T-1}; 

and at last  

- third scenario considers the maximum values given by        { ⋅= )()( 1 ky~ky~max (1+δ), k=0,1,…,T-1}. 

(b) Prices (hi and ci): they allow evaluating price policies related to inventory and production of manufactured and 
remanufactured products; thereby enabling the decision-maker to identify opportunities for business in the medium and long-
term. 

(c) Other important points are: 

- The fluctuation of demand over periods of planning horizon is provided from a random generator, which uses first and 
second statistical moments taken from the history of demand; and   

- The Mean Value Problem module provides optimal update policies (i.e., u1, u2 and u3) that are inputs to serviceable (DC1) 
and returnable (DC2) units. Note that problem (6) can be solved in rolling horizon scheme. Thus for each new period as soon 
as new observations of inventory levels (i.e. x1(k) and  x2(k)) are measured, the problem (5) is solved and, as a result, 
productions and disposal rates for that period (i.e. u1(k), u2(k) and u3(k)} are provided. This policy is immediately applied to 
systems (1)-(2), see Figure 2. 

 

 
 

 

 

 
 
 

Figure 2. Simulation scheme using Mean Value Problem (6) 
 

IV. USE CASE 
Let's consider now a hypothetical situation of a simple company that manufactures a given product that is returned to 

company after being used. It is assumed that the product is collected, checked and then decided if it should be remanufactured 
or disposed. The company runs in a make-to-stock production, having inventories units in forward and reverse channels of the 
supply chain, as showed in Figure 1.  

It is assumed that the demand for this product is stationary, which means that its fluctuation can be estimated with good 
accuracy over periods of the planning horizon. The cost of remanufacturing returnable products that involves disassembling, 
overhaul and replacement is supposed lower than the cost of manufacturing news. 

    In this use case, the constrained LQ problem (6) is considered with an objective of developing a production-inventory plan 
over a planning horizon of T=4 (four months). Production scenarios are provided from (6) by considering a sequence of 
estimated demand and its error deviation.  The idea is to help the manager to analyze the reverse logistics policy of the 
company. The problem’s data are listed below. 

u1, u2 

u2, u3 

(Mean demand) 

x2 

 

 (Forecasting) 

DC1 

DC2 

Mean Value 
Problem 
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TABLE 1       AVERAGE AND STANDARD DEVIATION OF DEMAND 

Periods Jan (1) Feb (2) Mar (3) Apr (4) 
Mean 42 45 43 48 

Deviation σd≈ 3.0 
 

 
Other data: 
 
 

t = 1  month (forecasting horizon) 
δ = 20% (forecasting error) 
x1(0) = 20  initial inventory of manufacturing 
x2(0) = 10  initial inventory of remanufacturing 

1x = 0 (there is no safety-stock on hand) 

h1=2;  h2=1  (inventory costs) 
c1=3;  c2=2; and c3=1 (productions and disposal costs) 

 

  
The customer satisfaction performance index is assumed as α = 0.84, which means that orders of customers for serviceable 
product is attempted 84% of time. This percentage of success is mathematically guaranteed by the establishment of a safety 
stock in the storage unit of serviceable products (DC1), which is calculated from the probabilistic constraint given in (6). This 
safety-stock is given by: 
 

)7(3)()( 1
1 kkkx d ⋅=αΦ⋅σ⋅≥ −

 
 

and3=σdwhere .),( 18401 =Φ−  
 
Evaluation of three scenarios: the estimation of returnable products is given one-step ahead forecasting models derived from 
an autoregressive model (AR(2)). The sequence of forecasting values of returnable products and correspondent sequences 
with upper and lower values based on forecast error δ=0.20 are exhibited in Table 2. From these forecasting sequences, three 
scenarios are analyzed.  

TABLE 2       FORECASTING PRODUCT RETURNS 

Periods Jan (1) Feb (2) Mar (3) Apr (4) 

miny
~  29 32 30 34 

1y
~  37 40 38 43 

maxy~  44 48 45 51 
 
Scenario (1): In this scenario, a one-step ahead forecast sequence 1y~ , given in the Table 2, is considered in the solution of the 

problem (6). As a result, it is observed that the mean demand d̂  is almost entirely met by the reverse chain; see Figure 4 that 
shows the rate of remanufacturing. 
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Figure 3.  Optimal inventoy levels with 1y

~  

 

 
Figure 4. Optimal control policies with 1y

~  

 
Figure 5. Optimal inventory levels with miny

~
 

 
 

 
Figure 6. Optimal production policies with miny

~  
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 This fact becomes clear when comparing the product level remanufactured with the level of new products. In Figure 4, it 
can be observed that in the period of four months, there were 84% of remanufactured products, 7% of new manufactured 
products, and 8% of products placed for disposal. From Figure 3, it is possible to point out that the inventory of used products 
in the unit DC2 was entirely consumed, while the serviceable inventory of unit DC1 preserves a small growing of safety-
stock to accommodate future uncertainties that is, ensuring the customer satisfaction close to 84%. 
 
Scenario (2): this scenario that is illustrated by Figures 5 and 6 considers a sequence of values that represents 80% of 
forecasted values 1y~  (i.e. miny~ sequence available in Table 2).  
Figure 5 shows that the supply policy for DC1 is also based on remanufactured products, but let us point out that from the 
second period (see Figure 6), new manufactured products are required to meet the demand. In fact, taking in percentage 
terms, it can be observed that 82% of serviceable products are remanufactured (i.e., u2) and, while only, 18% are effectively 
manufactured as new products (i.e., u1). Note that some serviceable products are left as safety-stock in DC1 to guarantee the 
customer satisfaction performance related to prompt delivery of products. 
 
Scenario (3):In this scenario is considered that the estimates of return rate of used products are set equal to upper limits maxy~ , 
which is 20% higher than the forecast values in the sequence 1y~ found in the Table 2.Note from Figure 8 that all production is 
oriented to meet the mean demand and it is completely associated with the remanufacturing process. In fact, as shown in 
Figure 7, the demand quickly consumes the initial inventory levels of DC1 and DC2 units. However, the DC1 unit has a 
small, but growing safety stock given by (7) to avoid surprises, such as an unexpected order of customers. It is important to 
see that new products are not manufactured in this scenario (i.e., u1(k) = 0,∀k). 
 
 The costs related with the three scenarios are given bellow: 

TABLE 3.   COSTS VERSUS SCENARIOS ($) 

Costs ($) Scenario 1 Scenario 2 Scenario3 
DC1  $  216   $  216   $  216  
DC2  $      6   $    14  -    

Manufactured cost  $    36   $    87  -    
Remanufactured cost  $  304   $  270   $  328  

Disposal cost  $    16  -     $    34 
Total cost  $  578   $  587   $  578  

 
If we eliminate the reverse channel of the system shown by Figure 1, the total cost will be equal to $ 708. Comparing this 

cost with those provided in Table 3, we conclude that a reverse policy is a profitable activity for the company. However, 
advantages for using reverse logistics channel will depend on the associated costs. In fact, the costs for collection and 
handling of used products are assumed negligible in the evaluated scenarios. Looking at Table 3, we can conclude that 
increasing by 20% in the expected rate of used-products return did not produce any reduction on the total costs of the 
company, which remained at $ 578 (see scenarios 1 and 3). Increasing the return rate by 50% also did not bring any benefit to 
the company that had a total cost of $ 626. Thus, we can deduct that increasing the return collection rate may have an adverse 
effect on reducing the company's costs. 

 

V. CONCLUSION 
 A linear quadratic Gaussian (LQG) model with constraints was formulated to provide optimal plans for manufacturing, 
remanufacturing and disposal variables. Through the analysis of three scenarios generated by these plans, it was possible to 
compare some situations related to the use of a reverse channel with remanufacturing facility. We believe that the use of 
optimization and optimal control techniques can help manager to make strategic decisions related to the process of planning a 
reverse channel to company.  
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Figure 7.Optimal inventory levels with maxy~  

 

 

 
Figure 8. Optimal production policies with maxy~  
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