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Abstract 

 

Middle and long-term inventory-production plans have deserved huge interest of managers of supply chains since the 

80’s. However, from 90’s to now, providing plans to the reverse channel of supply chains become also an important 

business practice. In this report, we are interested in developing long-term plans for closed-loop supply chains that 

allow managers building future production scenarios with minimum costs. In this way, we consider a stochastic 

quadratic problem subject to linear discrete-time inventory-production systems with probabilistic constraints. The 

objective of this problem is to determine long-term optimal production plan that allows managers attending demand 

for a single product. Products can be produced by manufacturing from a forward channel and/or by remanufacturing 

from a backward (i.e. reverse) channel. The demand fluctuation is a random variable, with monthly mean and 

standard deviation previously known. In its turn, the rate of return is deterministic, but with the average monthly rate 

determined from a percentage of the average levels of demand taken with a delay of some period. The random 

fluctuation of demand makes the serviceable inventory system in the forward channel a stochastic process. As a 

consequence, the variance of serviceable inventory grows over the periods of the planning horizon. It is shown that 

such a growing can make the stochastic problem infeasible. In order to mitigate such variability, a feedback gain that 

relates remanufacture rate to serviceable inventory level is provided from a minimum variance problem. As a result, 

an optimal long-term plan is developed from an equivalent Mean Value problem whose constraints are regulated by 

this gain. A simple example shows that optimal plans with gain have better performance than optimal plans that do 

not use a gain.  Based on this example, we also evaluate the concept of the green company. In this case, we assume 

the premise that how less we discard more we are contributing to preserving the environment. Thus, we compare our 

optimal long-term solution with another one where the cost of discarding is three times more expensive; in the 

sequence, we make our conclusions about the benefits of being a green company and how much that can cost. At the 

end of the document, appendixes with additional information about the modeling process and other issues related to 

this study are provided. 
 

Keywords: stochastic process, minimum variance, open-loop system, optimization, supply chain, reverse 

logistics, green company. 
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1. INTRODUCTION 

 

Reverse logistics as it has been shown by Govindan et al (2015) is an important part of the supply chain 

process. Due to many reasons, particularly pulled by environment sustainability aspects, reverse logistics 

is a priority issue for the most part of industries, see Chin et al., (2015), Dekker et al., (2004), and Silva 

Filho (2012). Typical activities of planning, implementing and controlling the flow of material throughout 

the forward channel of the supply chain, is replicated throughout the reverse channel. Generically 

speaking, the main objective of reverse logistics is to move products from their final destination for the 

purpose of capturing value, or proper disposal. Operationally, however, reverse logistics can be 

understood as the process of recycling or remanufacturing used products in order to reduce waste. 

 

Several reports related to reverse logistics issues are found in the literature; see Yang (2013). Part of them 

uses quantitative models to represent remanufacturing and recycling activities in the reverse channel; see 

Fleischmann (2001). A typology of quantitative models for reverse logistics based on three classes of 

problems is proposed by Fleischmann et al (1997). In short, quantitative models can be applied to the 

following classes: (i) reverse distribution problem that considers the collection and transportation of used 

products and packages; (ii) inventory control problem for systems with return flows that takes into 

account control mechanisms for collecting used products, remanufacturing and replacing them into the  

marketplace and (iii) production planning problem with reuse of parts and materials that consider the 

planning process of reusing items, parts, and products without remanufacturing. 

 

The second class of problems of above typology is the main interest in this report. According to 

Fleischmann et al (1997), such problems can be decomposed into two distinct categories of problems, that 

is, repair problem in which failed items are replaced by spares; and product recovery problem in which 

used-products are remanufactured and then replaced into the marketplace. This last category considers 

production-inventory problems with special forward and backward systems; for instance see Zhao et al. 

(2016), Lee et al. (2017). Besides, random nature of the demand fluctuation makes the forward 

production-inventory system a stochastic process. As a consequence, this class of problem can be 

modeled as stochastic optimization problems; see Silva Filho and Andres (2016). In fact, stochastic 

systems are very common inventory-production problems because demand fluctuation is not precisely 

known in long-term. According to Fleischmann et al. (1997), the traditional classification of stochastic 

inventory systems based on discrete or continuous-time review models can be replicated for application in 

product recovery problems; see Silva Filho (2012) and Dobos (2003). 
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Figure 1. Forward and reverse channel of closed-loop supply chain 

 

In this report, we revisit and formulate a chance-constraint, stochastic quadratic problem subject to linear, 

discrete-time inventory-production systems; see Silva Filho (2014). The objective of this problem is to 

develop a long-term production plan to meet a demand for a single product with a minimum cost. 

Forward and backward channels of a closed-loop supply chain are respectively considered to provide this 

optimal plan. The demand fluctuation is a random variable, having mean and standard-deviation known 

over periods of the planning horizon. Paralleling, the return rate of collecting used-product is assumed 

deterministic, but whose value depends on past fluctuating demand, that means that a product after being 

placed on the market can last some periods before being collected again from the marketplace. The 

random fluctuation of demand makes the serviceable inventory system in the forward channel a stochastic 

process. As a consequence, the variance of serviceable inventory grows over the periods of the planning 

horizon. It is shown that the growing of variance over periods can infeasible the solution of the stochastic 

problem. In order to mitigate such variability, a feedback gain, relating remanufacture rate to serviceable 

inventory level, is provided by solving a minimum variance problem. As a result, an optimal plan is 

developed from an equivalent Mean Value problem that has its chance-constraints regulated by this gain. 

The basic idea is to use long-term plans to create inventory-production scenarios that allow managers to 

analyze different possibilities of cost's reduction for their closed-loop supply chains.  Through a simple 

use case, taken as an example, it is possible to show that optimal plans that use the gain have better 

performance than ones that do not. 

 

We also in this report try to define the concept of a green company based on its ability to be sustainable 

with respect to the environment. This feature can be measured in different dimensions, such as the rate at 

which the company recycles its products or the rate of discarding, which are directly related to reverse 

logistics policy. Thus, considering our simple example we try to evaluate how costs for discarding should 

influence the optimal solution of the problem, giving important information for manager’s decision-

making. 
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Finally, at the end of the report, appendixes are found. They bring additional information about this study, 

such as: Appendix A presents a short discussion about chance-constraints and the impact of the free 

evolution of second statistic moments that become larger for each new period of the planning horizon. If 

we do not treat such a growing evolution of variance, the equivalent deterministic constraint, obtained 

from the transformation of stochastic problem, can fail to preserve their boundaries feasible over the 

periods; appendix B discusses the minimum variance problem and shows how an optimal gain can be 

determined and its relation with trade-off parameter; appendix C discusses the use of long-term plan in 

the building of scenarios that enable managers to make decision. In this appendix, we show by simulation 

scheme how the trade-off parameter computed in section 3 is a good approximation for optimal trade-off 

parameter. At last, in appendix D, an excel spreadsheet that contains all data used in this study is shown. 

 

The remainder of this report is organized as follows: Section 2 discusses revising a discrete-time 

stochastic quadratic model with chance-constraints for representing a closed-loop supply chain problem; 

Section 3 shows how to solve this problem by means of a minimum variance problem to reduce the 

variability of serviceable inventory variable. An equivalent deterministic problem is used then to provide 

an optimal open-loop solution. Section 4 presents a simple example where open-loop optimal plans are 

provided and compared as a result of the solution of the problem with and without gain. 

 

 

2. THE STOCHASTIC MODEL 

 

Figure 1 illustrates the forward and reverse channels of a closed-loop supply chain. Note that there are 

two warehouses in this figure: the first one denotes the serviceable inventory unit, being used to storage 

manufactured and remanufactured products for attending the fluctuating demand; and the second denotes 

the returnable unit, being used to storage used-products after being collected from the marketplace. Figure 

1 also shows that used-products storage into the returnable unit can be in sequence remanufactured or 

discarded. 

 

It is worth emphasizing that the demand for the product must be met by the combination of manufactured 

and remanufactured products. Some features and properties of the system exhibited in Figure 1 are:  

a. Demand “d” is a normal random variable that follows a stationary stochastic process. 

b. Return rate “r” is assumed a deterministic variable whose value depends on the past fluctuation of 

monthly mean demand; there is a time-delay τassociated with return products from the market;  

c. Both manufacturing and remanufacturing processes have an upper physical capacity of processing. 

Similarly, upper capacities of storage for serviceable and returnable inventories units are considered. 

d. Used-products may be disposed of as soon as being collected. There are two main reasons to discard 

a used-product: the first one is a technical justification that occurs when the collected product is not 

appropriated to reuse anymore; and the second has a financial justification, in which 
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remanufacturing all products can significantly raise the inventory levels, and, as a consequence, 

increase the costs. 

 

2.1. Inventory-Production System 

 

The forward and backward inventory-production processes, illustrated in figure 1, can mathematically be 

modeled by a discrete-time stochastic system with two state variables that represent serviceable inventory 

levels and returnable inventory levels, and three control variables that are related to manufacturing, 

remanufacturing, and discard rates. These systems are described by the following two difference 

equations, which represent respectively inventory balance equations related to forward and reverse 

channel of the supply chain (Silva Filho, 2014). 

x1(k+1)  = x1(k)+u1(k)+u2(k)-d(k)     (1) 

x2(k+1)  =  x2(k)-u2(k)-u3(k)+rτ(k)     (2) 

 

where, for each period k, we have: 

 

x1(k) = inventory level of serviceable unit; 

x2(k) = inventory level of returnable unit; 

u1(k) = production rate of manufacturing; 

u2(k) = production rate of remanufacturing; 

u3(k) = discard rate; 

d(k)  = demand level (random);  

rτ(k)   = return level (deterministic) . 

 

Some comments related to the process (1)-(2): it is assumed that stationary demand is normally 

distributed with first )k(d̂ and second 02
d >σ statistic moments known for each period k. To assume 

normality hypothesis for production-inventory processes is not usual in practice, but authors – as, for 

instance, Graves (1999) – justify the use in reason of its easy approximation by other discrete 

distributions. As a direct consequence of demand randomness, serviceable inventory level x1(k) is also a 

random variable. Due to the linearity of the balance equation (1), the variable x1(k) follows similar 

distribution to that one of demand d(k). Thus, x1(k) has a mean )k(x̂1 and variance )k(V
1x

 that evolves 

over periods. The return rate is defined as a function dependent on demand, that is, )k(d̂)k(r τ−⋅η=τ ; 

where 0≤η≤1 denotes the percentage of used-products that return, afterτ periods of delay. Note that r(k) is 

a deterministic variable, whose value for each period k is taken from past values of estimated demand, 

that is, )k(d̂ τ− . Generically speaking, return rate is usually independent of demand, but for short life 
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time products (e.g. refurbishing of wood pallets and toner), it is possible to consider a relative association 

between the amount of products sold into the marketplace and amount of products collected and 

submitted for remanufacturing or refurbishing. 

 

2.2. Stochastic Nature of the Closed-loop Supply Chain 

 

The variability of serviceable inventory variable x1(k) can be observed from the evolution of its second 

statistic moment over periods k
	 )).k(V.,e.i(

1x
In open-loop operation of system (1), this variance increases 

over periods, that is, .0k),k(V)1k(V
11 xx ≥∀≥+ Such variability is a result of the uncertainty about 

demand over the future periods. This implies that we can produce more and more new and 

remanufactured products. Since it is assumed that the price for remanufacturing is lower than the price for 

manufacturing new products, a good idea is to collect more used-products and remanufactured. Thus, this 

report tries to relate the supply of serviceable inventory storage with remanufacturing products, that is, to 

associate the inventory (state) variable x1(k) with remanufactured (control) variable u2(k). As a result, 

u2(k) becomes a random variable with mean   and variance   known over time. Note that system (2) 

should be considered a random process, which follows a similar distribution of variable u2(k). Besides, 

the linearity nature of systems (1) and (2) preserves the normal random characteristic for all random 

variables of these systems. 

 

2.3. The Overall Functional Criterion 

 

For each period k, the criterion Ck that represents the overall costs to run processes (1)-(2) is given as 

follows: 

Ck = h1.E{x1(k)2}+h2.E{x2(k)2}+ c1u1(k)2 +c2E{u2(k)2}+c3u3(k)2       (3) 

where h1 and h2 denote the holding prices for inventory maintenances of serviceable and returnable 

inventories units. The c1, c2 and c3 are coefficients that denote prices related to manufacture, 

remanufacture and discard operations, respectively. The symbol E{.} denotes the expectation operator, 

which is here related to x1, x2 and u2 that are random variables.  At last, it is important to add that the total 

production cost is given by ∑
=

=
T

1k
kTZ C . 

2.4. Discrete-time Stochastic Problem 
 

An optimal production-inventory sequential policy {(u_1(k), u_2(k), u_3(k)), with k = 0, 1, 2, …, T-1} 

can be provided from solution of a Linear-Quadratic Gaussian problem with chance constraints described 

as follows: 
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(4) 

 

 

 

 

where Prob.(.) denotes the probability operator related to chance-constraints. Parameters 

2121 uandu,x,x denote upper boundaries of capacity for inventory and production units. The 

probabilistic index α denotes customer satisfaction related to the possibility of ready-delivery of products; 

index β represents the confidence degree of collected products from marketplace, and θ denotes chances 

of satisfying physical boundaries of remanufacturing (or refurbishing). 

 

3. HOW TO SOLVE THE STOCHASTIC PROBLEM 

 

Technically speaking, a closed-loop optimal solution for problem (4) with only two state variables (i.e., x1 

and x2) can be provided by stochastic dynamic programming algorithm. However, numerical drawbacks 

appear as soon as the accuracy of solution is improved by reducing the level of discretization of each 

variable of the problem. As a result, time-consuming and storage capacity of machine processing increase 

enormously. Besides, if the number of state variables increases (i.e. large size problems), the complexity 

to solve the problem via this algorithm increases exponentially. For this reason, closed-loop optimal 

solutions are often discarded, and near-optimal solutions are preferred in practices (Bertesekas, 2005). 

 

3.1. The Proposed Solution 

 

Some characteristics, such as: linearity, convexity, and normal distribution of variables, allow simplifying 

the problem (4) reducing its complexity. Consequently, for instance, considering the Gaussian nature of 

systems (1) and (2), the evolution of decision variables of these systems under uncertainty of demand can 

be evaluated by their first and second statistic moments. As a result, the problem (4) can be disaggregated 

in two other linked problems, that is, Minimum Variance problem and Mean Value problem. These 

problems are discussed below. 
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3.2. Minimum Variance Problem 

 

As mentioned in section 2.2, the open-loop evolution of serviceable inventory variance )k(V
1x

increases 

over the time. Since it is assumed that remanufacturing rate u2(k) is proportionally associated to inventory 

x2  by an adjust gain G (i.e., u2(k) = – G�x2(k)), the variance )k(V
2u

increases proportionally. An 

immediate consequence of this is that the chances-constraints of the problem (4) can have their respective 

lower and upper boundaries violated over a future period k of planning horizon.  

In order to try to understand this statistic characteristic, consider the serviceable inventory chance-

constrain, i.e., ( ) α−≥≤≤ 1x)k(x0.obPr 11 ; since )k()k(x̂)k(x
1x11 ε+= , with ))k(V (0,~)k(

11 xx Nε , 

this probabilistic constraint can be rewritten as follows (Silva Filho and Ventura, 1999): 

( )
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
Φ=ε∂⋅

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ ε
−

π
=≤≤ ∫

−

− )k(V
x

)k(V

)k(

2
exp

)k(V2
1x)k(x0.obPr

1

1

11

1 1

1

1 x

1
x

x̂x

x̂ x

2
x

x
11

1          (5) 

Note that the cumulative distribution of probability 
1xΦ  grows over its domain. Similar characteristic is 

also observed to 
2uΦ . As a consequence, the chance-constraints associated to serviceable inventory and 

remanufactured variables can be violated for a given period k of the planning horizon T. In order to avoid 

such a drawback, we must maximize the chances of non-violation, that is: 

( ) ( ){ } )(2u)k(u0.obPrx)k(x0.obPrMax 2211 θ+α−≥≤≤+≤≤   (6) 

From (5) and with some handle approximation, we can rewrite (6) as follows: 

   ∑
−

= ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⋅⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++

1T

1k
u2

2

2
1

x2
1

)k(V
u
x)1k(V

x
1Min

21
    (7) 

Therefore, the problem (7) means that to maximize chance-constraints problem, as given in (6), is 

equivalent to minimize a parametric variance problem given as follows (Clarke et al, 1975): 

{ }

)k(VG)1k(V

0)0(V;)k(V)G1()1k(V

.t.s

)k(V)1k(VMin

12

111

21

x
2

u

x
2
dx

2
x

ux

⋅=+

=σ+⋅−=+

⋅ρ++

       (8)  
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where ρ is the weighting parameter (i.e., the trade-off of variances) and 2
d

k

1i

)1i(*2
x )G1()k(V
1

σ⋅
⎭
⎬
⎫

⎩
⎨
⎧

−= ∑
=

− , 

and 2
dσ  represents the variance of demand that is finite over periods.  

Note that the maximum growing of variances 
1xV  and 

2uV occurs for k=T; see figure A.2 in the 

Appendix A. Thus, minimizing (8) during period T, a gain that relates 1x  and 2u variables can be 

determined by (for more details, see equation (B.10) in Appendix B): 

ρ+
=
1
1G  (9) 

whereρ∈ (+∞, -1). Note the comparing (7) with (8), we can obtain an approximate value for the trade-off 

parameter ρ, which is given by 
2
2

2
1

u
x

=ρ∗ . Thus, we can finally determine the near optimal gain, that is, 

)ux(
uG 2

2
2
1

2
2*

+
= . 

 

Appendix C exhibits some experiments related to the example, where we use the tradeoff parameter ρ to 

evaluate different solution to the problem (10). In that case we consider the value of ρ in the range from 

10 to –0,5. For different values of ρ, 3D optimal trajectories related to inventory and productions 

variables are provided. The simulation can help to understand the influence of this parameter over the 

optimal solution of the problem. Additionally, optimal costs related to ρ are also provided. We can 

compare the value of ρ selected by our procedure with the one provided by simulation.  The relationship 

between ρ and G is investigated. 

 

3.3. Mean Value Problem 

 

The certainty equivalence principle is used to simplify the problem (4); see Bertesekas (2005). In this 

way, mathematical expectation operator is applied to random variables, that is, { })k(xE)k(x̂ 11 = ;

{ })k(uE)k(û 2= ; and { })k(dE)k(d̂ = . As a result, an equivalent deterministic problem, often called 

Mean Value problem is formulated as follows: 
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where )k(VG)k(V)1k(V
122 x

2
xx ⋅+=+ , with )0(V

2x
=0, and as an immediate consequence we have that: 

(a) )()G1()k(x 1
xd

k

1i

)1i(*2
1
αΦ⋅σ

⎭
⎬
⎫

⎩
⎨
⎧

−= −

=

−
α ∑  denotes the serviceable safety stock; 

(b) )()G1(x)k(x 1
xd

k

1i

)1i(*2
1 1

αΦ⋅σ⋅
⎭
⎬
⎫

⎩
⎨
⎧

−−= −

=

−
α ∑  denotes upper bounds of serviceable inventory unit;  

(c) )()k(V)k(x 1
xx 22
βΦ⋅= −

β  denotes safety stock of returnable inventory unit; 

(d) )()k(Vx)k(x 1
xx2 22
βΦ⋅−= −

β denotes upper bounds of storage in the returnable unit; and  

(e) )(G)G1(kk)k(u 1
ud 2
θΦ⋅σ⋅⋅−⋅⋅= −

θ
 

(f) )(G)G1(kku)k(u 1
ud2 2
θΦ⋅σ⋅⋅−⋅⋅−= −

θ
 

 

3.4. Open-Loop No-updating with Adjust Term (OLN-AT) 

 

Problem (10) is solved by any applicable method of mathematical programming. Thus, an optimal policy 

( )1T,,1,0kwith),k(u)k(u)k(u *
3

*
2

*
1 −= !  is provided from an Open-Loop No-Updating with Adjust 

Term (OLN-AT) approach applied to this problem, see Figure 2.  

 

 

Figure.2. OLN-AT policy applied to Closed-loop Supply Chain 

x1(0), x2(0) k>0	

∗∗∗
321 u,u,u 	 )1k(x),1k(x 21 ++ 	

)k(r),k(d̂ τ 	

Dynamic systems 
(1)-(2) 

Mean Value 
problem p (8) 

Term of 
Adjust (9) 

G 
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The optimal control policy provided by OLN-AT approach depends exclusively on the state of the system 

in the period k=0, that is, x0. Thus, even if, for other periods k>0, further information becomes available, 

these initially computed controls are enacted up to the end of the time horizons. It means that OLN-AT 

provides an optimal open-loop control sequence that is computed once for all periods of the planning 

horizon, taking into account only the initial state of serviceable and returnable units. In order to 

compensate the complete absence of information for periods k>0, an adjust term G is included in the 

problem (10). This adjust term influences the serviceable and returnable inventories (i.e., x1 and x2) 

providing, as a consequence, an impact over the remanufacturing rate (i.e., u2).  

 

4.  USE CASE 

 

Let us consider a use case, as for example, where a company manufactures a kind of product and 

distributes lots of it to specific customers. After two months, 70% of them are collected and storage into a 

returnable unit. In a second moment, they are checked and a decision is taken that involves maintaining 

part of products storage, remanufacturing other part or discard part of them.  The company operates in a 

make-to-stock format, where inventories levels are created both in the forward channel and reverse 

channel of the supply chain, as illustrated in Figure 1. Besides, it is assumed that:  

 

(a) The demand for this product is stationary, which means that the fluctuation of sales can be estimated 

with a good accuracy over time periods of the planning horizon.  

(b) The cost of remanufacturing used-products, which involves disassembling, overhauling and 

replacement, is assumed lower than the cost of manufacturing new products. This means that used-

products can be easily overhauled and replaced to a marketplace. 

 

In the way of developing an annual production-inventory policy, based on manufacturing new products 

and remanufacturing used-products, a quadratic problem with chance-constraints, as formulated in (8), is 

considered. The data of this problem are listed in Tables 1 and 2. 

 

 

Table 1: Average (mean) and standard deviation (std) of demand 

Months 1 2 3 4 5 6 7 8 9 10 

mean 66 58 62 54 67 51 51 54 36 72 

std σd≈ 4.0 
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Table 2: Other data 

Planning horizon:  T=10 months    

Time delay for returningτ = 2 months   

Percentage of used-products collected from customers:   η=70%  

Initial inventory levels:   x01 = 40   and   x02 = 30    

Inventory and production costs:  h1= $1,7;  h2=$1,5;  c1=$1,3;  c2=$1,2; and c3=$1 

Customer satisfaction indexes: α = 95%; and β =50% 

Capacity level: θ = 50% 

Boundaries:  80uu;40xx;0uuxx 21212121 ========  

 

Considering that customer satisfaction level is α=0,95 and the variances tradeoff  index is given by 

25,0u/x 2
2

2
1 ==ρ 	follows immediately that 65,1)95,0(1x1 ≅Φ− and G=0,8. As a result, lower and upper 

boundaries of  serviceable inventory constraint (see (a) and (b)) are respectively described by: 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

−⋅−=

−⋅=

∑

∑

=

−

=

−

k

1i

)1i(*2
195,0
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    (11) 

Note that β=θ=0,5 ⇒ ,0)5,0(1 =Φ−  then results that 22 u)k(u;x)k(x;0)k(u)k(x ==== θβθβ for 

any period k; see Appendix C for more details. 

 

4.1. Evaluating Two Scenarios  

 

In the first scenario, adjust term is not considered (i.e., G=0). It means that there is no relation between 

variables u2(k) and x1(k). Thus, no adjust is applied to the chance-constraints of the problem (10). The 

second scenario considers a gain G that reduces the variances of serviceable inventory level and 

remanufacturing rate, and as a result reduces future uncertainties about demand, as discussed in 

following. 

 

Scenario (1):  OLN (without Adjust Term, i.e., G=0) 

In this scenario, an optimal plan is provided by the solution of problem (10) without considering the gain 

G, that is, G=0. The inventory and production trajectories for forward and reverse channels are 

respectively exhibited in Figures 3 - 4. 

Since no control is used to reduce the growth of the variance of the serviceable inventory x1(k) described 

by the system (1), a large safety stock is projected over periods to protect against the violation of 

constraint of the variable x1(k). In short, once variance of the serviceable variable x1(k) increases over 
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period k, safety stock levels increase proportionally over the same period k. An immediate consequence 

of this is that the manufactured production rates and the remanufactured increase in order to fill up the 

appropriate levels of serviceable inventory; as can be seen comparing figures 3 and 4. Note from figure 4 

that the rate of remanufactured u2(k) e is greater than the manufactured rate u1(k), what is due to the fact 

of assuming the cost for remanufacturing cheaper than cost for manufacturing new products. 

For a more precise evaluation, we present in table 3 the monthly values of units of products held in the 

serviceable inventory (x1)  and units of collected products held in returnable inventory (x2), as well as the 

monthly rates of unit of products manufactured (u1), remanufactured (u2) and discarded (u3),respectively. 

The table also displays the system's monthly operating costs and total costs for each system unit. For 

example, in period 5 (k = 5), the monthly cost of the operation was $ 2,210.40 and the total cost of 

manufacturing was $ 6,939.40. 

 

 

Figure 3. Optimal inventory levels (G=0) 

 

 

 
 

Figure. 4. Optimal production and disposal rates (G=0) 

0 

10 

20 

30 

40 

50 

0 1 2 3 4 5 6 7 8 9 10 

units 

months 

Inventory levels 

serviceable inventory 

returnable inventory 

0 

10 

20 

30 

40 

50 

0 1 2 3 4 5 6 7 8 9 

units 

months 

Production levels and disposal 

Manufacturing Remanufacturing Disposal 



	 14	

 

Table 3 – Optimal trajectories of inventory, production and discard variables                                                         

and associated costs  for G=0 

Months x1 x2 u1 u2 u3 Cost per month 

0 40 30 10 16 5 4.532,20 

1 0 0 25 40 14 2.928,50 

2 7 0 25 39 13 2.890 

3 9 0 22 34 12 2.298,10 

4 11 0 29 40 9 3.300 

5 13 0 21 32 11 2.210,40 

6 15 0 18 34 19 2.551,90 

7 16 0 23 32 8 2.415,70 

8 17 0 12 26 14 1.685,70 

9 19 0 35 38 43 5.788 

10 20 0 0 0 0 680 

Cost per unit 6.036,70 1.350 6.939,40 13.748,40 3.206 31.280,50 

 

 

 

 

Scenario (2): OLN-AT (with G=0,8) 

 

Figures 5 and 6 illustrate an optimal open-loop inventory and production trajectories for forward and 

reverse channels, where the problem (10) is solved using now the adjust term given by gain G=0,8.  

 

 

 

Figure 5. Optimal inventory levels (G=0,8) 
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Figure 6. Optimal production and disposal rates (G=0,8) 

In this scenario, we point out the influence of the gain G in the construction of safety stock of the 

serviceable inventory. In fact, comparing Figure 3 of the previous scenario to Figure 5 of the current 

scenario, it is possible to realize how safety stock of serviceable inventory is reduced by a gain G=0,8. 

There is an immediate consequence that is related to manufacture and remanufacture rates as can be 

observed from Figure 6 when compared to Figure 4. The conclusion is that control the evolution of the 

variances of serviceable inventory levels x1(k) in parallel with the control of remanufacturing rates u2(k) 

bring as main benefit the reduction of uncertainties about the demand fluctuation (i.e. unexpected orders 

reduction). This certainly helps to reduce the costs of the company's total production, see Table 3. 

 

Table 4, given in sequence, exhibits the monthly values of units of products held in the serviceable 

inventory (x1)  and units of collected products held in returnable inventory (x2), as well as the monthly 

rates of unit of products manufactured (u1), remanufactured (u2) and discarded (u3),respectively. 

 

Table 4 – Optimal trajectories of inventory, production and discard variables                                                         

and associated costs for G=0,8 

Months x1 x2 u1 u2 u3 Cost ($) per month 

0 40 30 10 16 5 4.532,20  

1 0 0 22 38 16 2.618,00  

2 2 0 24 38 14 2.684,40  

3 2 0 22 34 12 2.167,20  

4 4 0 27 38 11 2.828,70  

5 3 0 20 31 12 1.832,50  

6 3 0 17 34 19  2.139,20  

7 3 0 23 31 9  1.937,20  

8 3 0 16 28 12 1.432,90  

9 11 0 31 34 43 4.691,20  

10 4 0 0 0 0 27,20  

Cost ($) per unit  3.054,90   1.350,00   6.250,40   12.914,40   3.321,00   26.890,70  

0	

10	

20	

30	

40	

50	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	

units 

months 

Production levels and disposal 

Manufacturing Remanufacturing Disposal 



	 16	

 

4.2. Comparing Scenarios Costs  

 

Tables below show the result of the two evaluated scenarios in terms of costs for scenarios without gain 

G=0 and with gain G=0,8.   

 

Initially, tables 5.a, 5.b, and 5.c compare the monthly costs associated with each operation of inventory 

and production. Table 5.c exhibit the difference between the costs of table 5.a and 5.b. As a result, 

positive values found in table 5.c shows how scenario with G=0 is more expensive than the scenario with 

G=0,8. Negative values show the inverse. Marked cells in table 5.c illustrated where scenario with G=0 is 

better than the scenario with G=0,8. 

Table 5.a – Costs ($) with G=0 

month x1 ($) x2 ($) u1 ($) u2 ($) u3 ($) 

0 2720 1350 130 307,2 25 

1 0 0 812,5 1920 196 

2 83,3 0 812,5 1.825,2 169 

3 137,7 0 629,2 1.387,2 144 

4 205,7 0 1.093,3 1.920 81 

5 287,3 0 573,3 1.228,8 121 

6 382,5 0 421,2 1.387,2 361 

7 435,2 0 687,7 1.228,8 64 

8 491,3 0 187,2 811,2 196 

9 613,7 0 1.592,5 1.732,8 1.849 

10 680 0 0 0 0 

total 6.036,7 1.350 6.939,4 13.748,4 3.206 

 

 

Table 5.b – Costs with G=0,8 

month x1 ($) x2 ($) u1 ($) u2 ($) u3 ($) 

0 2.720 1350 130 307,2 25 

1 0 0 629,2 1.732,8 256 

2 6,8 0 748,8 1.732,8 196 

3 6,8 0 629,2 1.387,2 144 

4 27,2 0 947,7 1.732,8 121 

5 15,3 0 520 1.153,2 144 

6 15,3 0 375,7 1.387,2 361 

7 15,3 0 687,7 1.153,2 81 

8 15,3 0 332,8 940,8 144 

9 205,7 0 1.249,3 1.387,2 1.849 

10 27,2 0 0 0 0 

total 30.54,9 1.350 6.250,4 1.2914,4 3.321 
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Table 5.c – Difference of the costs between scenario with G=0 and G=0,8 

month x1 x2 u1 u2 u3 

0 0 0 0 0 0 

1 0 0 183,3 187,2 -60 

2 76,5 0 63,7 92,4 -27 

3 130,9 0 0 0 0 

4 178,5 0 145,6 187,2 -40 

5 272 0 53,3 75,6 -23 

6 367,2 0 45,5 0 0 

7 419,9 0 0 75,6 -17 

8 476 0 -145,6 -129,6 52 

9 408 0 343,2 345,6 0 

10 652,8 0 0 0 0 

total 2981,8 0 689 834 -115 

 

 

From the analysis of the three tables, we can conclude that the scenario with G=0,8 is more economic for 

the company than scenario with G=0. It is worth observing from the table 5.c that related with production 

(i.e., manufacturing and remanufacturing costs), the scenario with G=0 only had better cost performance 

in period k=8, for other periods scenarios G=0,8 was equal or superior in cost reduction. Besides, it is 

interesting to note that scenario without gain (i.e. G=0) provides less disposed products than the scenario 

with optimal gain. One possible reason for that is that the cost for discarding is lower than the cost for 

remanufacturing and thus all excess of collecting product after checking is sending to disposal instead 

remanufacturing. 

 

Table 6 shows the monthly costs associated with the operation of systems (1) and (2). Note that scenario 

with G=0 provides always more cost than scenario with G=0,8. Positive values exhibited in the third 

column of Table 6 show how the scenario with G=0 increases the monthly cost of the system (1)-(2). 
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Table 6 – Monthly cost of operation of systems (1)-(2) 

Months 
Monthly Cost with 

scenario G=0 

Monthly Cost with 

scenario G=0,8 

Difference between scenarios 

G=0 and G=0,8 

0 4.532,20 4.532,20  0,00 

1 2.928,50 2.618,00  310,50 

2 2.890 2.684,40  205,60 

3 2.298,10 2.167,20  130,90 

4 3.300 2.828,70  471,30 

5 2.210,40 1.832,50  377,90 

6 2.551,90  2.139,20  412,70 

7 2.415,70  1.937,20  478,50 

8 1.685,70 1.432,90  252,80 

9 5.788 4.691,20  1.096,80 

10 680 27,20  652,80 

Total costs 31.280,50  26.890,70  4.389,80 

 

From Table 7is possible to observe that OLU-AT allows the best use of the collected used-products.  

 

Table 7. Total costs associated with two scenarios 

Costs OLU scenario 

with G=0 

OLU-AT scenario 

with G=0.8 

Difference between 

scenarios 

Serviceable Inventory cost  6.036,70 3.054,90 2.981,80 

Returnable inventory cost 1.350,00 1.350,00 0,00 

Manufactured cost 6.939,40 6.250,40 689,00 

Remanufactured cost 13.748,40 12.914,40 834,00 

Disposal cost 3.206,00 3.321,00 -115,00 

Total cost 31.280,50 26.890,70 4.389,80 

 

Note from Table 7 that the cost of the serviceable unit is significantly reduced when we compare the 

application of OLU without gain G. Other costs, shown in this Table, are upper and lower but they do not 

affect significantly the result. The main conclusion is that the gain G reduces the uncertainties about the 

demand over serviceable inventory levels, which allows reducing costs and grows profit. Particularly, the 

total cost of scenarios 2 is 14% lower than the total cost of scenarios 1. 

 

At last, note that is we observing before scenario 1 with G=0 provides an important reduction in a number 

of discarded products. As discussed before the reason for that is that the cost of discard is cheaper than 

the cost for remanufacturing. Consequently, once in scenario 1 the level of serviceable inventory is saved 

in reason of the uncertainty of demand, it is necessary to remanufacture more used-products and thus 

disposal fewer used-products. 
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4.3. The Green Company 

 

Many reasons may justify the need for a company to be called green. Two very significant examples 

define how the company respects its customers and/or how it preserves the environment. Both situations 

have an economic impact on their supply chains. In our example, we consider the company wants to 

ensure economic sustainability through the remanufacturing of used products. In this case, the more it 

remanufactured and the less it discards is a good policy. 

 

Analyzing the optimal solution with G gain, we observed that the company, though remanufacturing 

significantly, have a high rate of discarded products. Considering that this as an indicator of discarding, it 

contradicts the idea of a green company. The reason of this is that the cost of discarding(i.e., c3 = 1)is 

lower than other costs incurred in the problem (see data in Table 2). Thus, the optimal solution of the 

problem always will try to use the disposal process in order to take advantage of this cost. 

 

For the purpose of analysis, we will consider that for optimal solution generated with gain G = 0,8, we 

increase the cost of discarding from $ 1 to $ 3. In this case, figure 7 shows a reduction in the quantity of 

discarded products. 

 

 
 

Figure 7. Comparing rates of discarding for different costs with G=0,8 

 

The question that arises is how the optimal solution of the problem with gain G = 0,8 is affected by the 

increase in the cost of disposal. Table 8exhibits the optimal trajectories of inventory, productions and 
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Table 8 – Optimal trajectories of inventory, production and discard variables and associated costs         

with c3 = $3 and G=0,8 

Months x1 x2 u1 u2 u3 Cost per month 

0 40 30 8 18 3  $    4.569,00  

1 0 0 16 43 11  $    2.914,60  

2 1 0 20 43 9  $    2.983,50  

3 2 0 18 38 8  $    2.352,80  

4 4 0 23 42 7  $    2.978,70  

5 3 0 15 36 7  $    2.010,00  

6 3 0 10 41 12  $    2.594,50  

7 3 0 19 35 5  $    2.029,60  

8 3 0 13 33 7  $    1.688,80  

9 13 0 30 33 43  $    8.311,10  

10 4 0 0 0 0  $         27,20  

Cost per unit  $   3.131,40   $    1.350,00   $  4.326,40   $ 16.332,00   $   7.320,00   $  32.459,80  

 

We can now compare Table 8 with Table 6. The difference between them gives important insights to the 

manager. Table 9 shows the result obtained from this difference. Note that negative values in cells of the 

table imply in the reduction of inventory levels, production rates or amount of used-products to be 

discarded, and also indicate costs reduction. In opposition, positive cells mean growing in these values. 

 

Table 9 – The difference between values of Table 8 (c3=$3) and Table 6 (c3=$1) both with G=0,8. 
 

Months x1 x2 u1 u2 u3 Costs/month 

0 0 0 -2 2 -2 36,8 

1 0 0 -6 5 -5 296,6 

2 -1 0 -4 5 -5 299,1 

3 0 0 -4 4 -4 185,6 

4 0 0 -4 4 -4 150 

5 0 0 -5 5 -5 177,5 

6 0 0 -7 7 -7 455,3 

7 0 0 -4 4 -4 92,4 

8 0 0 -3 5 -5 255,9 

9 2 0 -1 -1 0 3619,9 

10 0 0 0 0 0 0 

Total costs 76,5 0 -1924 3417,6 3999 5.569,1 

 

For instance, a fast glance at Table 9 shows that there was a monthly reduction (negative value) of the 

quantity of used products disposed of for disposal (u3), as already observed in Figure 7. There was an 

increase (positive value) in the amount of remanufactured products (u2) with a reduction of new 

manufactured products (u1). In terms of inventory movement (x1 and x2), little was observed. It is 

observed from this quick analysis that there was an increase in the company's costs of $ 5,569.10. As a 

conclusion we can say that make a company green has a tangible price, that is, it can be computed. 
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Final comment: in terms of return to business we can conclude that the increase in the cost of disposal 

does not bring any economic advantage. On the contrary, it increases the total costs of the company. An 

important conclusion here is to strike a balance between remanufacturing and discarding that brings 

economic benefits and at the same time guarantees a green vision for the company and its supply chain. 

 

5. CONCLUSION 

 

A reverse logistics problem related to a closed-loop supply chain was discussed in this report. Such a 

supply chain is described by a forward production, inventory and distribution channel through which a 

single product flows toward the market and by a backward (i.e., reverse channel) through which used 

product returns after some period to be storage in a returnable inventory unit. These used products after 

an inspection can be remanufactured or disposed of. The overall system was modeled by discrete-time 

state equations and used as the basis for a production-inventory planning study. We defined a stochastic 

optimization problem whose objective is to minimize quadratic costs of inventory and production in the 

two channels of the supply chain taking into account chance-constraints in the inventory and production 

units. In order to facilitate the solution of the stochastic problem, an equivalent, but deterministic model 

was considered; as can be seen in (10). However, the solution of this problem is affected by the evolution 

of the variance of the serviceable inventory variable, which reduces the feasible boundaries of the 

constraints of the problem. As a result, infeasible solutions can be provided by our model. To overcome 

such a drawback effect, a minimum variance problem was considered. An optimal gain G was determined 

by relating the serviceable inventory variance of the direct channel to the variance of remanufactured. The 

objective of this gain was not only to smooth the growth of the variance values but also to connect the 

usable stock level with the remanufacturing rate. The solution of the problem using this gain G is shown 

to be effective in reducing costs and improving the performance of the overall closed loop system. 

 

The efficient performance observed from the solution of the problem with the optimal gain G, led us to 

investigate a new scenario that takes into account a very common situation nowadays. This situation is 

based on the premise that how less we discard, more we take advantage of what has already been used 

and, as a consequence, we are contributing to the preservation of the environment. We can say that this is 

one of the premises among several that can characterize a green company. But a question arises, that is, 

what is the cost of this? Analyzing our initial optimal solution, given in Table 4, we verified that the cost 

for discarding is lower than the others costs. Thus, in order to investigate the influence of the cost, we 

create a new scenario where we raise the disposal cost three times. The solution presented and explained 

in the text through Tables 8 and 9, tell us that increasing the cost of disposing of products, in fact, 

decreases the number of products discarded. However, this increases simultaneously the total cost of the 

closed loop supply chain, because it also increases the quantities to be remanufactured. The main 

conclusion is that for a company to get a green certificate, it will have to raise its costs proportionally to 

the desired green grade. 
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Future studies should be proposed to extend this model to deal with multiple products and also to develop 

suboptimal approaches that are more efficient than open-loop approaches in their application to this type 

of problem. We also can evaluate of gain G in a more realistic solution of the problem (10) using an open-

loop feedback control approach that uses a rolling horizon scheme for update the solution as soon as new 

information is captured from the marketplace. Figure 8 illustrate such an approach to be investigated. 

 

 

 
 

Figure 8. An open loop feedback approach applied to our model with gain G 
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Appendix A – The probabilistic constraints 

 
Consider the expression given in (5) and reproduced bellow: 
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where
1xV

 is the standard deviation; 1x is the upper bound; and 
1xΦ

is the distribution function. 

Let us interpret its meaning. First of all, it is important to note that we are assuming x1(k) is a normal 

variable. As a direct consequence of Chebycheff's inequality (see Papoulis and Pillai, 2002), it is possible 

to show that the maximum value of probability density function for these variables will be occur, exactly, 

when the mean values of these inventory variables (i.e., )k(x̂1 ) reach the centre of their constraints, that 

is, 2x)k(x̂ 11 ≈ , where 1x̂  is the mean value. Figure A.1exhibits this feature; see dark area: 
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Figure A.1. Distribution of probability of a Gaussian random variable x1(k) under constraints 

Thus, it is possible to show that (see Jazwinski (1970)): 
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The statistic construction of our report starts from the Chebycheff's inequality (A.2), but it is worth 

observing that there is course the evolution of the system over time, which follows a stochastic process. 

This evolution can be exhibited in a simplified way as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.2. Time evolution of distribution of probability of a Gaussian random variable x1(k) 

 

The problem here is the evolution of variable x1(k) over periods k. Note from the figure above that in 

measure of period k increases (e.g., j>i), the variance also increases ( )i(V)j(V
11 xx > ). This characteristic 

causes instability to system  (1)-(2) and a main consequence is the possibility of violation of lower and 

upper boundaries of x1(k), see figure A.3. Note that it is reason why we try to use probabilistic 

constraints. In fact, we try to reduce the chance of infeasibility. But, would it be possible to stabilize the 

growing of variance? A possibility is to use a minimum variance gain to reduce the growing of state and 

control variances. We discuss such an issue in the next appendix. 
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Figure A.3. 

 

Appendix B – Minimum variance controller 
 

In the report, we formulated a minimum variance problem from handling (5) and (6) expressions. But 

formally we can reach the same result as follows: 

 

Let us consider the sub-system (1) that denotes the forward channel. We have assumed the u1(k) is a 

deterministic variable that can be used to guaranty a complement to serviceable unit (i.e., x1). So, we can 

write the equation (1) considering only the stochastic component: 

 

δx1(k+1) = δx1(k)+δu2(k)-δd(k)  (B.1) 

 

where δx1(k) = x1(k)−x!(k) ; δu1(k) = u1(k)−u!(k) =0; δu2(k) = u2(k)−u!(k) ; and δd(k) = 

d(k)−d(k).Note that the variables with a hat mark represent variables that assume average values. In this 

study, the variable u1 is assumed deterministic (i.e. u1(k)=u!(k)). 
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A typical problem of minimum variance is written as follows: 

{ }

d(k) -(k)u +(k)x  = 1)+(kx 
)2.B(.t.s

)k(u)1k(xEJMin

211

2
2

2
1u2

δδδδ

δ⋅ρ++δ=
δ

 

 

 

Note that ρ∈ (+∞, -1) denotes the trade-off parameter that allows the equilibrium balance between 

variance of state x1(k) and control u2(k). The next figure shows the behavior of ρ when variances of 

δx1(k) and δu2(k)  evolves over the periods k. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.1. )k(V
1x

versus )k(V
2u

parameterized by ρ∈(+∞, -1) 

 

 

In order to solve (B.2), we need to compute the prediction error. We start writing (B.1) as an input-output  

polynomial equation as follows, (see Clarke et al, 1975): 

δx1(k+1) = B/Aδu2(k) – C/A δd(k)          (B.3) 

where A, B, and C are known polynomials with z-1 operator, that is: A =  1-z-1;  B = +1; and C =  +1. 

 

So now we can write the one-step ahead predictor )(x~1 ⋅δ as follows: 

C )1k(x~1 +δ  = F δx1(k)+ BE δu2(k)          (B.4) 

From the identity C=EA+z-1F, it is possible to verify that E=1 and F=1. As a result (B.4) can be rewritten 

as follows: 

 

)5.B()k(u)k(x)1k(x~ 211 δ+δ=+δ  
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Thus, the prediction error ε(k+1) can be calculated from the difference between (B.1) and (B.5), that is: 

 

ε(k+1) = )6.B()k(d)1k(x~)1k(x 11 δ−=+δ−+δ  
 

Let us include (B.6) into (B.2) to obtain: 

 

( ){ })k(u)1k(x~)1k(EJ 2
2

2
1 δ⋅ρ++δ−+ε=           (B.7) 

 

Considering that ε(k+1) is not correlated to )1k(x~1 +δ , results then: 

{ })1k(E)k(u)1k(x~J 22
2

2
1 +ε+δ⋅ρ++δ=            (B.8) 

 

Since ε(k+1) = - δd(k), we have { })1k(E 2 +ε  = 2
dσ  and (B.7) is rewritten as follows: 

 
2
d

2
2

2
1 )k(u)1k(x~J σ+δ⋅ρ++δ= =  

2
d

2
2

2
21 )k(u))k(u)k(x( σ+δ⋅ρ+δ+δ=         (B.9) 

 

Taking the derivative of J with regard to 2uδ , we obtain that 

 

δu(k) = - 1/(1+ρ)�δx(k) = -G�δx(k)           (B.10) 

 

Note that (B.10) is the control law that minimizes (B.2), being G=1/(1+ρ) the optimal gain. 
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Appendix C – Some scenarios with parameter ρ  
 

I. Preliminaries 

 

In this appendix we study the identification of parameter ρ based on scenarios (i.e. solving the problem 

for different values of ρ. Note that 3D trajectories related to inventory and productions variables are 

exhibited. The relationship between ρ and G are shows graphically and a table with cost for each value of 

ρ are also presented. 

 

We consider the example given in section 4. It is important to understand that the optimization problem 

given in (10) is essentially deterministic and only the transformed chance-constraints are affected by the 

gain G (see in section 3, the constraints of  problem (10)). The value of gain G depends on the weighting 

factor ρ. In addition, depending on the value of gain G, the upper and lower bounds tend to decrease and 

increase over period k, respectively. As a consequence, the feasible area created by this boundary shrinks, 

what can become unfeasible the problem (10). Next, we see an example of this based in section 4 of the 

report. 

 

Let’s consider, for instance, that lower and upper physical boundaries of variable x1(k) are 

respectivelyx!"# = 20  and x!"# = 60. As a result, the dynamic constraint )k(x)k(x̂)k(x 1 αα ≤≤ , as given 

in formulation of problem (10), can be calculated. For this example, we assume here that α=0.95 

implying that ;65.1)95.0(1x1 ≅Φ−
and 8.0G25.0 =⇒=ρ exactly the same we have considered in section 

4 of the report. As a result, )k(xand)k(x 95.095.0
 can be precisely calculated from the equations given 

below: 
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1i
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)G1(2,1340)k(x

)G1(2,1320)k(x

     

 

Considering then a horizon of T=10 periods (i.e. k=0, 1, 2, …, 10), we have a graphic visual for the time 

evolution of these boundaries. Note that upper bound )k(x 95,0
 decreases over the periods, while 

simultaneously lower bound )k(x 95,0
  increases over the same periods. If happens that ,)k(x)k(x 95,095,0 ≤  

problem (10) becomes infeasible.    
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Figure C.1. Feasible area provided by the constraint )k(x)k(x̂)k(x 1 αα ≤≤ shrinks over period k 

 

 

II. Creating scenarios to determine optimal ρ 

 

The objective is to find the optimal value of ρ∈(+∞, 1) by mean of scenarios. In fact, we can solve 

several times the problem (10), given in the report, for different values of ρ. Since the value of ρ=0,25 is 

supposed a good approximation of the optimal value of ρ, we can decide to use the range ρ∈ [10, -0,5] to 

search the best cost of the criterion of problem (10).  

In following we show the results obtained in this study: 

 

1º) Optimal trajectories of serviceable inventory, production and remanufacturing variables with ρ 

assuming the values: 10, 5, 1, 0.25, 0, -0.25, -0.5 

 

 

 

 
Figure C.2. Serviceable Inventory trajectories for ρ∈[10, -0.5] 
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Figure C.3. Production trajectories for ρ∈[10, -0.5] 

 

 
 

Figure C.4. Remanufacturing trajectories for ρ∈[10, -0.5] 

 

We notice from figure C.2 that levels of inventory near to end-period (i.e., k=10) tend to decrease for 

values of ρ near 0. As all trajectories have almost similar shape, we can think that optimal ρ is close to 0. 

The trajectories of production and remanufacturing given by figures C3 e C4 are very similar in their 

shapes, but we can perceive that trajectories of figure C4 are more stable, what signalize to us that the 

remanufacturing process is more intense than the production process. We can observe this in the Table 3 

of section 4 of the report. 

Now we can determine the minimum cost by plotting the relation between costs and weighting factor ρ. 

Figure C.5 illustrates such a behavior and we can determine the minimum cost is $ 26.788 for ρ =0. 
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Comparing our approximate value ρ=0.25 that provides a cost of $ 26.890 with optimal scenario, what 

means a small difference between them of around 0.4%. Our conclusion is when we compared above 

costs with that one where we not consider the gain G (as showed in Table 3, section 4 of the report),we 

observe that difference is greater than 13%. That result is significant in our opinion. 

 
Figure C.5. Relation between cost of problem (10) versus ρ∈[10, -0.5] 

 

Only a title of observation, we exhibit in figures C.6 and C.7 below, the plots of gain G versus weighting 

parameter ρand the feasible areas of constraint )k(x)k(x̂)k(x 1 αα ≤≤ provided by ρ=0 and ρ=0,25. 

 

 
Figure C.6. Values of gain G when ρvaries in the range [10, -0.5] 
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observe from figure C7that feasible areas of constraint decrease proportionally with the increasing ofρ. 

Thus, for ρ> 10, the problem (10) provides no feasible solution, because  ).k(x)k(x αα >  

 

 

Figure C.7. Feasible areas of constraint )k(x)k(x̂)k(x 1 αα ≤≤ for ρ=0, ρ=0.25 and ρ=10. 
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APPENDIX D  Part 1     -    Mathematical Model by Excel
 IFAC'2017   -   LINEAR QUADRATIC PROBLEM VIA EXCEL/SOLVER
DATA:

Forecast  = 64 75 42 67 63 50 57 63 89 82 49 84 66 59 66 58 59 72 71 71 65 50 66 73 Parâmetros de ajustes: PARAMETROS LIMITES

DEMAND  = 64 75 42 67 63 50 57 63 89 82 49 84 66 k = 0,25 alfa = 0,9 Desv = 4 xmin = 0

Estoques iniciais: x01 x02 G  = 0,8 FI   = 1,65 x1max= 40

40 30 %ret 0,8
x11 x12 x13 x14 x15 x16 x17 x18 x19 x1,10 x21 x22 x23 x24 x25 x26 x27 x28 x29 x2,10 u10 u11 u12 u13 u14 u15 u16 u17 u18 u19 u20 u21 u22 u23 u24 u25 u26 u27 u28 u29 u30 u31 u32 u33 u34 u35 u36 u37 u38 u39

0 1,69 2 4,08 3 3 3 3 11,2 4 0 0 0 0 0 0 0 0 0 0 10,3 22,1 24,3 22,1 27,5 19,8 16,9 22,5 16,4 31,1 15,7 37,6 38 34 38,5 31,2 34,1 31,5 27,9 33,7 5,3 16,4 14 12 10,5 11,8 18,9 8,51 12,1 43

1,7 1,7 1,7 1,7 1,7 1,7 1,7 1,7 1,7 1,7 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,3 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1 1 1 1 1 1 1 1 1 1

LED LDD
-1 1 1 26 26

1 1 1 21 21
1 -1 1 1 58 58

-1 1 1 1 54 54
1 -1 1 1 62 62

-1 1 1 1 52 52
1 -1 1 1 54 54
0 -1 1 1 1 46 46

1 -1 1 1 67 67
0 -1 1 1 1 49 49

1 -1 1 1 51 51
0 -1 1 1 1 43 430 -1 1 1 1 43 43

1 -1 1 1 51 51
0 -1 1 1 1 53 53

1 -1 1 1 54 54
0 -1 1 1 1 40 40

1 -1 1 1 36 36
0 -1 1 1 1 40 40

1 -1 1 1 72 72
0 -1 1 1 43 43

1 0 0
1 1,69 1

1 2 2
1 4,08 2

1 3 3
1 3 3

1 3 3
1 3 3

1 11,2 4
1 4 4

1 0 40
1 1,69 39

1 2 38
1 4,08 38

1 3 37
1 3 37

1 3 37
1 3 37

1 11,2 36
1 4 36

1 0 0
1 0 0

1 0 0
1 0 0

1 0 0
1 0 0

1 0 01 0 0
1 0 0

1 0 0
1 0 0



APPENDIX D   Part 2    -   Problem's solution  (via Solver)
  IFAC'2017   -   QUADRATIC PROGRAMMING VIA EXCEL SOLVER
Criterion:

1o) r=.25 2o) r=0

Z   = 22.888,69$
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Nota: Para valores de  superiores a 3 e inferiores a -0.1, a solução do problema é impossível.

Pela simulação o  que produz o menor  custo está no valor 0.

501o) r=.25 2o) r=0

xmin xmax xmin xmax
0 40 0 40
1 39 0 40
2 38 0 40
2 38 0 40
3 37 0 40
3 37 0 40
3 37 0 40
3 37 0 40
4 36 0 40
4 36 0 40

3o) r=10

xmin xmax
0 40
6 34

          Solução Malha-Fechada: 8 32
K X1 X2 U1 U2 U3 10 30
0 20 10 0 1 8 12 28

13 27
15 25
16 24
17 23
18 22

Nota: Para valores de  superiores a 3 e inferiores a -0.1, a solução do problema é impossível.

Pela simulação o  que produz o menor  custo está no valor 0.
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