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Abstract

Estimating Intrinsic Dimensionality (ID) is of high interest in many machine
learning tasks, including dimensionality reduction, outlier detection, similarity
search and subspace clustering. Our proposed estimation strategy, ALID, makes
use of a subset of the available intra-neighborhood distances to achieve faster
convergence with fewer samples, and can thus be used on applications in which the
data consists of many natural groups of small size. Moreover, it has a smaller bias
and variance than state-of-the-art estimators, especially on nonlinear subspaces.
We provide a theoretical analysis of the properties of the ALID estimator, and a
thorough experimental framework that shows its faster convergence, smaller bias,
and smaller variance compared with state-of-the-art estimators of ID.

1 Introduction

Over the past decades, many characterizations of the intrinsic dimensionality (ID) of data sets have
been proposed, each with its own estimators. Topological models estimate the basis dimension of the
tangent space of the data manifold [8, 14, 30]. This class of estimators includes Principal Component
Analysis (PCA) and its variants [8, 14, 22], and multidimensional scaling (MDS) [3, 9]. Graph-based
methods attempt to preserve the k-nearest neighbor graph [9, 12]. Fractal models, very popular in
physics applications, are used to estimate the dimension of nonlinear systems — these include the
popular estimators due to Hein [17], Takens [29], and Grassberg & Procaccia [15]. In addition to
more traditional areas such as manifold learning and feature extraction, ID has found application in
the design and analysis of similarity search methods [20, 23] and outlier detection methods [13].

The aforementioned estimators can be described as ‘global’, in that they provide a single ID measure-
ment for the full dataset, as opposed to ‘local’ ID estimators that assign a different dimensionality
to each point in the dataset. Commonly-used local estimators of ID include: topological methods
that measure the dimension of the space locally tangent to the manifold, such as locally linear
embedding [27], Laplacian and Hessian eigenmaps, and Brand’s Method [7]; measures of the rate of
expansion of the neighborhood size with increasing radius [19, 23]; and probabilistic methods that
view the data as a sample from a hidden distance distribution, such as the Hill estimator [18], Levina
and Bickel’s algorithm [25], the minimum neighbor distance (MiND) framework [28], and the local
intrinsic dimensionality (LID) framework [2].

A global estimator can be adapted for local estimation of ID simply by applying it to the subset of
the data lying within some region surrounding a point of interest. Global methods typically make
use of many (if not most or all) of the pairwise relationships within the data; however, ‘clipping’
of the data set to a region, by discounting some of these relationships while preserving others, may
lead to estimation bias whenever the boundary shape is not properly accounted for in the ID model
or estimation strategy. On the other hand, implicit in their design, local estimators of ID avoid the
negative affect of clipping, by considering only the direct relationships between a reference point and



its nearest neighbors. The sample boundary is usually set to the distance from the reference point to
the farthest object in the neighborhood. With this distinction in mind, application of global estimators
within the neighborhood of a given reference point should not be regarded as truly ‘local’.

Local estimators of ID can potentially have significant impact when used in subspace outlier detection,
subspace clustering, or other applications in which the intrinsic dimensionality is assumed to vary
from location to location. However, in practical settings, the natural groups within the data are
often too small to provide the number of samples necessary for accurate estimation of ID — in
the LID framework, for example, approximately one hundred distance values are usually required
for convergence [2]. Simply choosing a number of samples sufficient for the convergence of the
estimator can lead to a violation of the locality constraint, as the sample could consist of points from
several different natural groups, each with their own intrinsic dimensionalities. When the cluster
memberships and size are not known in advance, in order to ensure that the majority of the points are
drawn from the same group, it is necessary to use estimators that can cope with the smallest possible
sample sizes [2, 28]. Thus, the development of local ID estimators with faster convergence properties
is essential for the effectiveness and the efficiency of subspace-based applications.

One possible strategy for improving the convergence properties of estimation without violating
locality is to draw more measurements from smaller data samples — however, for the case of distance-
based local estimation from neighborhood samples, this would require the use of distances between
pairs of neighbors, and not merely the distances from the reference point to its neighbors. Indeed,
the global distance-based correlation dimension (CD) [29], if restricted to a neighborhood, would
use all pairwise distances within the neighborhood to achieve its estimate. Although for a given
neighborhood size this local use of CD would be expected to converge much faster than true local ID
estimators, the result would be biased due to the clipping.

In this paper, we show that the convergence properties of LID estimation can be improved by augment-
ing it with distance measurements from members of the neighbor set to their own nearest neighbors.
The sizes of these ‘auxiliary’ neighborhoods is restricted so that they are completely contained within
the original, ‘primary’ neighborhood, thus preserving the locality of the estimation. Within a given
primary neighborhood of k elements, the number of distance measurements thus could range between
a minimum of k and a maximum of k(k+ 1)/2. We show that under certain assumptions, the number
of measurements available depends on the local ID itself, with the greatest number of auxiliary
distance measurements being available when the ID is small. The main contributions of this paper
include:

• the augmented local ID estimator, ALID;
• for the case of uniform data distributions in Euclidean space, a theoretical analysis of the

expected number of auxiliary distances available in terms of ID;
• an experimental comparison of the bias, variation, and convergence properties of ALID with

LID and other local and global estimators of ID, on both synthetic and real data sets.

The remainder of the paper is structured as follows. In Section 2 we introduce our proposed estimator,
and present a theoretical analysis relating the expected number of auxiliary distances with the intrinsic
dimensionality. In Section 3 our experimental framework is described in detail, and in Section 4
we present our experimental comparison of ALID with existing local and global ID estimators. In
this latter section we also validate our theoretical analysis empirically, by showing the number of
auxiliary measurements available and comparing them to the numbers predicted by the theory. We
conclude the discussion in Section 5.

2 Augmented Local ID Estimation

2.1 Local ID estimation and extreme value theory

The LID model has its foundations in extreme value theory (EVT), which is concerned with the
asymptotic behavior of continuous distributions in their extreme tails [2]. The choice of a neighbor-
hood of radius w based at the test point is equivalent to the lower tail of the distribution of distances
on [0, w). Given a distance variable X and using the transformation Y = −X, the distribution of the
distance excess Y − (−w) (conditioned on Y > −w) over the threshold w tends to a distribution
in the family of Generalized Pareto Distributions FGPD, as w tends to the lower endpoint of the
cumulative distribution function FX . Accordingly, as w tends to zero, the distribution in the tail
[0, w) can be restated as follows [2, 11].
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(a) Pairwise distances that remain within internally tan-
gent balls can be used in the ID estimation without
introducing distortions. In this figure we consider only
one nearest neighbor (i) and the corresponding usable
auxiliary distances (in blue).
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(b) Neither auxiliary nor direct distances (in orange)
to neighbors that are outside the locality can be used.
Moreover, auxiliary distances where the corresponding
ball (in red) crosses over the original locality can not
be used for the estimation.

Figure 1: State-of-the-art local ID estimators use only direct distances (in black). The proposed
estimator IDALID uses additional distances between pairs of neighbors. Some of these distances (in
blue) can be used, while others (in orange and red) cannot.

Lemma 1. Let X be an absolutely continuous random distance variable with support [0,∞) and
cumulative distribution function FX such that FX(x) > 0 if x > 0. Let c ∈ (0, 1) be an arbitrary
constant. Let w > 0 be a distance threshold, and consider x restricted to the range [cw,w). As w
tends to zero, the distribution of X restricted to the tail [cw,w) satisfies, for some fixed ξ < 0:

(x/w)−
1
ξ

FX,w(x)
→ 1

The parameter ξ < 0 is related to the LID through the following theorem [2]:
Theorem 1. Let X be an absolutely continuous random distance variable with support [0,∞), and
w > 0 be a distance threshold. Then, as w tends to zero,

IDX(w)→ −1

ξ
=: IDX.

Lemma 1 and Theorem 1 allow us to approximate the asymptotic cumulative distribution of distances
in the tail [cw,w) as

(x/w)IDX

FX,w (x)
→ 1. (1)

Maximum Likelihood Estimation (MLE) is a popular method in statistics for estimating parameters
of probability distributions. The MLE has no optimality guarantees for finite samples, but is shown
to be asymptotically consistent, optimal, and efficient. For a given sample of neighborhood distances
x1, x2, . . . , xk following the asymptotic distance distribution given in Equation 1, the MLE (or Hill)
estimate ÎDMLE is [2, 18]

ÎDMLE = −
(

1

k

∑k

i=1
ln
xi
w

)−1

.

The variance is asymptotically given by the inverse of the Fisher information, defined as

I = E[−∂
2L(IDX)

∂ ID2
X

] =
n

ID2
X

,

where E[·] denotes the expectation.

2.2 MLE estimation for ALID

Global estimators based on correlation dimension use the smallest pairwise distances within the data
in order to measure the global ID. In particular, the Takens estimator [29] uses all pairwise distances
within balls of a fixed radius and evaluates ID using the same Hill estimator. With this approach,
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intracluster distances are likely to dominate intercluster distances that may occur whenever the radius
is too high.

Restricting the computation of correlation dimension to a neighborhood is not a satisfactory estimation
strategy for local ID. Consider a neighbor i at distance xi from the center, where the radius of the
neighborhood is w. To avoid the negative effects of clipping, ALID makes use of an auxiliary distance
measurement xi,j from i only if the ball of radius xi,j centered at i is entirely contained within the
original neighborhood (see Figure 1). This condition can be stated as xi,j ≤ w − xi.
The proposed auxiliary-distance estimator (IDALID), like the Hill estimator (IDMLE), is based on the
method of maximum likelihood estimation. We assume that the ID is constant within a small radius
w around the supplied test point.

Let Xi be the random distance variable from the neighbor i in the range [0, w−xi), and let fXi,w−xi
and FXi,w−xi be respectively the pdf and cdf associated with Xi. To simplify the notation, we assign
the rank i = 0 to the test point. The log-likelihood function is:

L(IDX) = ln

[ ∏
xi,j+xi<w
i,j∈[0,k]

fXi,w−xi(xi,j)

]

= ln

[ ∏
xi,j+xi<w
i,j∈[0,k]

IDX
FXi,w−xi(w − xi)

w − xi

(
xi,j

w − xi

)IDX−1
]

= (k + ρ(w)) · IDX

+ (IDX − 1)
∑

xi,j+xi<w
i,j∈[0,k]

ln

[
xi,j

w − xi

]
+

∑
xi,j+xi<w
i,j∈[0,k]

ln

[
FXi,w−xi(w − xi)

w − xi

]
,

where ρ(w) =
∑
i,j∈[1,k] 1[xi,j + xi < w] denotes the number of auxiliary distances used in the

estimation. Accordingly, our auxiliary-distance MLE estimator is

ÎDALID = −
(

1

k + ρ(w)

∑
xi,j<w−xi
i,j∈[0,k]

ln

[
xi,j

w − xi

])−1

. (2)

The number of available auxiliary distance measurements ρ(w) varies from data set to data set, and
even from one locality within the set to another. However, under certain simplifying assumptions,
it is possible to show that this quantity depends on the local intrinsic dimensionality. If the data
distribution is locally uniform in the vicinity of the test point, the expected number of points within a
volume would be proportional to the volume itself. Accordingly, the following theorem determines
the cumulative volume of all maximal ball placements centered at locations within a neighborhood
ball — or in other words, the cumulative volume of all internally tangent balls.
Theorem 2. In a Euclidean manifold of dimensionality α, let us consider a ball of radius w, and
volume Vα(w). The total volume of all internally tangent balls is:

ρα(w) =
Vα(w)2

2
· Γ(α)Γ(α+ 1)

Γ(2α)
.

Proof. In order to measure the total volume of all internally tangent balls, it is possible to integrate
the volumes of all balls of volume Vα(w− r) with centers located on the surface of a sphere of radius
r, over values of r ∈ [0, w]. The total volume is given by

ρα(w) =

∫ w

0

Aα(r) · Vα(w − r) dr,

where Aα(r) is the surface area of a sphere of radius r in a manifold of intrinsic dimensionality α.

Given that the manifold is Euclidean, the surface area and volume formulas are:

Aα(r) =
2πα/2

Γ(α2 )
rα−1, and Vα(r) =

πα/2

Γ(α2 + 1)
rα.
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By replacing Aα(r) and Vα(w − r) in the expression of ρα(w), we obtain:

ρα(w) =
2πα

Γ(α2 ) · Γ(α2 + 1)
·
∫ w

0

rα−1 · (w − r)α dr

=
απα

Γ(α2 + 1)2
·
∫ w

0

rα−1 · (w − r)α dr

=
αVα(w)2

w2α
·
∫ w

0

rα−1 · (w − r)α dr.

It therefore suffices to show that∫ w

0

rα−1 · (w − r)α dr =
w2α

2
· Γ(α)2

Γ(2α)
.

The variable change r = u+ w
2 yields∫ w

0

rα−1 · (w − r)α dr =

∫ w
2

−w2

(
w

2
+ u

)α−1

·
(
w

2
− u
)α

du

=

∫ w
2

−w2

(
w2

4
− u2

)α−1

·
(
w

2
− u
)
du

=

∫ w
2

−w2

w

2

(
w2

4
− u2

)α−1

du−
∫ w

2

−w2
u

(
w2

4
− u2

)α−1

du.

Noting that the function in the first integral is even while the function in the second integral is odd,
we use the variable change u = w

2 sin θ to obtain∫ w

0

rα−1 · (w − r)α dr = w

∫ w
2

0

(
w2

4
− u2

)α−1

du

=
w2

2

∫ π
2

0

(
w2

4
− w2

4
sin2 θ

)α−1

cos θ dθ

= 2

(
w

2

)2α ∫ π
2

0

cos2α−1 θ dθ.

Using the following relationship between Euler’s β and Γ functions [1],

β(x, y) ,
∫ π

2

0

cos2x−1 θ · sin2y−1 θ dθ =
Γ(x)Γ(y)

Γ(x+ y)
,

we conclude that: ∫ w

0

rα−1 · (w − r)α dr =

(
w

2

)2α Γ(α)Γ( 1
2 )

Γ(α+ 1
2 )

=
√
π

(
w

2

)2α
Γ(α)

Γ(α+ 1
2 )

=
w2α

2
· Γ(α)2

Γ(2α)
.

Under the assumption that the expected number of points in a volume is proportional to the volume
itself, Theorem 2 implies that the expected number of distances ρ(w) in a neighborhood of radius
w = xk is k2

2
Γ(ID)Γ(ID+1)

Γ(2ID) .
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2.3 Complexity of the auxiliary-distance ID estimator

The auxiliary-distance estimator has a higher complexity than most local estimators of ID. From
Theorem 2 and under the same assumptions, we can infer that CIDALID

= O(k · (1+k Γ(ID)Γ(ID+1)
Γ(2ID) )).

Thus, the complexity is linear when the estimated ID is high, matching the complexity of IDMLE and
IDMoM. When the estimated ID is low, CIDALID

becomes quadratic in the number of neighbors like
IDGED or Levina & Bickel estimator.

Complexity considerations may restrict the use of our estimator in situations that do not require the
computation of ID for all data but for specific query points only. Nonetheless even within algorithms
where ID has to be estimated for all data, our estimator can be used without increasing the overall
asymptotic computational costs as long as these costs are higher than linear in the data volume. In
particular, such algorithms include all applications where the full distance matrix is evaluated (for
example in order to compute the nearest neighbors).

3 Experimental framework

Method Parameters
IDALID k = 100
IDMLE [2] k = 100
IDMoM [2] k = 100
kNNG [12] k = 100,

γ = 1,
M = 1,
N = 10

l-PCA [22] k = 100,
θ = 0.025

MiNDml1 [28] None
MiNDmli [28] k = 100
PCA [22] θ = 0.025

Table 1: Parameter choices for the
methods used in the experiments.

Manifold d D Description
h-d d d Uniformly sampled hypercube.
m1 10 11 Uniformly sampled sphere.
m2 3 5 Affine space.
m3 4 6 Concentrated figure

confusable with a 3d one.
m4 4 8 Non-linear manifold.
m5 2 3 2-d Helix
m6 6 36 Non-linear manifold.
m7 2 3 Swiss-Roll.
m8 12 72 Non-linear manifold.
m9 20 20 Affine space.

m10a 10 11 Uniformly sampled hypercube.
m10b 17 18 Uniformly sampled hypercube.
m10c 24 25 Uniformly sampled hypercube.
m11 2 3 Möbius band 10-times twisted.
m12 20 20 Isotropic multivariate Gaussian.
m13 1 13 Curve.
Table 2: Artificial datasets used in the experiments.

3.1 Competing estimation methods

In this framework, to show the advantages and limitations of ALID, we compared our proposed
estimator IDALID with other popular estimators, both local and global. The fractal methods used
in our experiments (Grassberger-Procaccia’s Correlation Dimension (CD), Hein, and Takens) do
not require any parameters to be set, while the parameter choices for the remaining methods are
summarized in Table 1. We denote by l-PCA the estimator obtained by applying PCA on the
respective neighborhoods of size k = 100.

It must be noted that PCA variants and methods from the MiND family must be provided with
knowledge of the representational dimension, which may give them an advantage in head-to-head
comparison with other methods. Moreover, when applied to synthetic data sets, PCA variants and
MiNDmli can often return the exact dimension, since they can return only integer-valued estimates.
While it may be claimed that the intrinsic dimension should ideally be an integer, for real data
this is not always the case. For example, LID has been shown to be equivalent to a measure of
the indiscriminability of the distance measure, which is in general not an integer [2]. Furthermore,
non-integer values of ID can indicate non-linear properties of an underlying manifold, such as
convexity.
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3.2 Synthetic data

Our study includes two families of synthetic datasets. For each manifold we generated 20 sets of
103 and 104 points, and in each experiment we report the average ID measures over the 20 sets. The
first family (h) is a set of hypercubes meant to evaluate the convergence of local ID estimators. The
second (m) is a benchmark of various types of manifolds [2, 28].

3.3 Real data
The use of real-world datasets lacks
the ground truth available for syn-
thetic data. Therefore, to evaluate our
proposed estimator on such sets, we
must compare the convergence, bias,
and variance characteristics directly
against competing methods. In particu-
lar, we test the consistency of IDALID

for the same suite of experiments pro-
vided for IDMLE in [2], using the 8
real datasets listed in Table 3.

Dataset Instances Dimension Classes
ALOI [6] 110250 641 1000
ANN_SIFT1B [21] 109 128 3 · 107

BCI5 [26] 31216 96 3
CoverType [5] 581012 54 7
Gisette [16] 7000 5000 2
Isolet [10] 7797 617 26
MNIST [24] 70000 784 10
MSD [4] 515345 90 90

Table 3: Artificial datasets used in the experiments.

• The ALOI (Amsterdam Library of Object Images) data consists of 110250 color photos of
1000 different objects. Photos are taken from varying angles under various illumination
conditions. Each image is described by a 641-dimensional vector of color and texture
features [6].

• The ANN_SIFT1B dataset consists of 109 128-dimensional SIFT descriptors randomly
selected from the dataset ANN_SIFT which contains 2.8 · 1010 SIFT descriptors extracted
from 3 · 107 images. These sets have been created for the evaluation of nearest-neighbor
search strategies at very large scales [21].

• BCI5 [26] is a brain-computer interface dataset in which the classes correspond to brain
signal recordings taken while the subject contemplated one of three different actions (move-
ment of the right hand, movement of the left hand, and the pronunciation of words beginning
with the same letter).
• CoverType [5] consists of 581012 geographical locations (a surface of 30 by 30 meters)

described by 54 attributes. each location is majorly covered by one of seven tree species.
• Gisette [16] is a subset of the MNIST handwritten digit image dataset [24], consisting of

50-by-50-pixel images of the highly confusable digits ’4’ and ’9’. 2500 random features
were artificially generated and added to the original 2500 features, so as to embed the data
into a higher-dimensional feature space.

• Isolet [10] is a set of 7797 human voice recordings in which 150 subjects read each of the
26 letters of the alphabet twice. Each entry consists of 617 features representing utterances
of the recording.

• The MNIST database [24] contains of 70000 recordings of handwritten digits. The images
have been normalized and discretized to a 28× 28-pixel grid. The gray-scale values of the
resulting 784 pixels are used to form the feature vectors.

• MSD [4] is a subset of the ‘Million Song Database’ which is a set of radio recordings (from
the years 1922 to 2011) described by 12 timbre averages and 78 timbre covariances.

For all of these datasets, we set the locality parameter k of both IDMLE and IDALID to 100. We extend
our experiment using the ALOI dataset by studying the effect of varying k in {50, 100, 200, 400} on
the estimated ID values.

4 Results

4.1 Experiments with synthetic data

In Figures 2 and 3, we examine the convergence properties of the local ID estimators on two artificial
data sets. As the neighborhood size k increases, IDALID is the first estimator to stabilize. For the
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(a) h1 (b) h4 (c) h16

Figure 2: Convergence of local ID estimators in 1000-point-sets uniformly sampled from d-
dimensional hypercubes.

(a) h1 (b) h4 (c) h16

Figure 3: Convergence of local ID estimators in 10000-point-sets uniformly sampled from d-
dimensional hypercubes.

(a) Local ID estimators (b) Global ID estimators

Figure 4: Comparison of IDALID with state-of-the-art ID estimators on 10000-point manifolds of
various dimensionalities.

lower-dimensional manifolds, IDMLE requires in the order of 100 neighbors to converge [2], whereas
the many auxiliary distance measurements allow IDALID to converge much faster — it requires
fewer than 10 neighbors to draw within 10% of the true dimensionality. Meanwhile, as predicted by
Theorem 2, as the dimensionality increases , the performance of IDALID tends to that of IDMLE.

For the experiment shown in Figure 3, we evaluated the cumulative absolute error e =∫ k=1000

k=2
(ÎD/d) d log k (the normalized difference between the estimate and the true ID value).

For data set h1, IDALID has the smallest error (8.78), with IDMLE coming in second (9.28). As
the dimensionality increases, IDALID converges to IDMLE, since fewer legal auxiliary distances are
encountered in the neighborhood. This is reflected in the respective errors achieved for h4 (7.50 and
7.54) and h16 (7.46 and 7.54).

Overall, the results lead us to two conclusions: (i) our estimator converges faster than its competitors,
and (ii) our estimator is amongst the least affected when the neighborhood size k is large.

In the second experiment, we estimated the ID on various types of manifolds, with different dimension-
alities as summarized in Table 3. As shown in Figure 5, local estimators consistently underestimate
the dimensionality on linear manifolds (m1, m2, m9, m10, and m12), due to clipping bias. However,
local estimators tend to overestimate the dimensionality of nonconvex manifolds (m7, m11, and m13).
In both cases, this bias is reduced as the sample sizes increase (Figure 4a). As shown in Figure 6, on
nonlinear and nonconvex manifolds, IDALID has the smallest bias and variance, with the exception

8



(a) Local ID estimators (b) Global ID estimators

Figure 5: Comparison of IDALID with state-of-the-art ID estimators on 1000-point manifolds of
various dimensionalities.

(a) m6 (b) m7 (c) m8 (d) m11

Figure 6: Bias and standard deviation of local ID estimators on nonconvex and nonlinear manifolds.

of MiNDmli on linear manifolds, due to its advantage in having been provided the representational
dimension.

In convex and linear manifolds, l-PCA appears to provide consistently accurate estimates with the
least bias and variance. However, in realistic data where the manifolds are not convex, probabilistic
local ID methods provide the best trade-off (c.f. Figure 6). When PCA is used locally, the variance
along a given component coincides with the global variance only if the manifold is linear and
homogeneous. Whenever the manifold is nonlinear or nonconvex, the local components are very
likely to be different from the global components, due to clipping.

Global estimators can be split into two groups based on the experimental results shown in figure
4b. Topological estimators (PCA) return the exact dimensionality only when the manifold is linear.
However they always overestimate the ID on nonlinear manifolds, and are easily mistaken when the
manifold is nonconvex. The remaining global estimators tend to behave similarly to local estimators
in both their dependency on the linearity and convexity and their better estimation with larger samples.

4.2 Experiments with real-world data

As a first step, we evaluated ID on 8 publicly available datasets using IDMLE and IDALID (see
Figure 7). In all of the real-world datasets, the results are consistent with the theory, in that the
estimates of IDALID are much sharper than those of IDMLE when the ID is small, but tend to those
of IDMLE as ID increases.

In a second experiment, we show the stability and robustness of IDALID across various values of k,
as compared to IDMLE. Figure 8 shows the ID estimates on the ALOI data set, which consists of
1000 image classes of size approximately 110. The proportion of IDALID estimates smaller than 4
consistently increases with k from 83% when k = 50 to 94% when k = 400. Meanwhile, IDMLE

estimates in the range [0, 4] decrease from 61% when k = 50 down to to 27% when k = 400.
While 50 neighbors are probably not sufficient for the convergence of IDMLE, using more than 110
neighbors results in using points from outside the cluster. For example with 400 neighbors, distances
to neighbors from at least 4 different clusters are used in the estimation process. IDMLE estimates use
only direct distances that reflect the intercluster dimensional properties of the data, whereas IDALID

uses auxiliary distances as well which predominate at low ID to enhance the detection of the local
dimensional properties of the data.
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(a) ALOI (b) ANN_SIFT (c) BCI5 (d) CoverType

(e) Gisette (f) Isolet (g) MNIST (h) MSD

Figure 7: Histograms of LID values across each dataset, obtained using the IDMLE and IDALID

estimators on the size-100 neighborhoods of the individual reference points.

(a) k = 50 (b) k = 100 (c) k = 200 (d) k = 400

Figure 8: Histograms of LID values across ALOI dataset, obtained using the IDMLE and IDALID

estimators on the size-100 neighborhoods of the individual reference points.

5 Conclusion

Pairwise distances have been used in order to estimate dimensionality in some global models such
as the Correlation Dimension. However, to the best of our knowledge none of the local models
proposed in the literature takes advantage of the distances from neighbors to their nearest neighbors
in order to increase the size of the distance sample. The proposed estimator which uses auxiliary
distances converges faster, and thus can be used when the depth of the nearest neighbor graph is
limited. Moreover, it has a smaller bias and variance than state-of-the-art estimators especially on
nonlinear subspaces. Consequently, this estimator can achieve more accurate ID estimates within
a smaller locality than the traditional estimators. This has the potential to improve the quality of
algorithms where locality is an important factor, such as subspace clustering and subspace outlier
detection.

As future work, it is possible to develop a similar auxiliary-distance estimator using the Method
of Moments instead of the MLE. In cases where the neighborhood is very small is also possible to
develop a heuristic using points from outside the locality in order to increase the distance sample size,
but that would be at the cost of bias.
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