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IMPLEMENTATION OF INTERIOR-POINT METHODS FOR LP
BASED ON KRYLOV SUBSPACE ITERATIVE SOLVERS WITH

INNER-ITERATION PRECONDITIONING∗

YIRAN CUI† , KEIICHI MORIKUNI‡ , TAKASHI TSUCHIYA§ , AND KEN HAYAMI¶

Abstract. We apply novel inner-iteration preconditioned Krylov subspace methods to the
interior-point algorithm for linear programming (LP). Inner-iteration preconditioners recently pro-
posed by Morikuni and Hayami enable us to overcome the severe ill-conditioning of linear equations
solved in the final phase of interior-point iterations. The employed Krylov subspace methods do not
suffer from rank-deficiency and therefore no preprocessing is necessary even if rows of the constraint
matrix are not linearly independent. Extensive numerical experiments are conducted over diverse
instances of 125 LP problems including Netlib, QAPLIB, and Mittelmann’s collections. The number
of variables of the largest problem is 434,580. It turns out that our implementation is more stable
and robust than the standard public domain solvers SeDuMi (Self-Dual Minimization) and SDPT3
(Semidefinite Programming Toh-Todd-Tütüncü) without increasing CPU time. As far as we know,
this is the first result that an interior-point method entirely based on iterative solvers succeed in
solving a fairly large number of standard LP instances from benchmark libraries under the standard
stopping criteria.

Key words. linear programming problems, interior-point methods, inner-iteration precondi-
tioning, Krylov subspace methods

AMS subject classifications. 90C51, 90C05, 65F10

1. Introduction. Consider the following linear programming (LP) problem in
the standard primal-dual formulation

min
x
cTx, subject to Ax = b, x ≥ 0,(1a)

max
y
bTy, subject to ATy + s = c, s ≥ 0,(1b)

where A ∈ Rm×n, m ≤ n, and we assume the existence of an optimal solution to this
problem. In this paper, we deal with an implementation of the interior-point method
for LP based on iterative solvers. The main computational task in one iteration of
the interior-point method is the solution of the system of linear equations to compute
the search direction. In spite of the fact that there are two known approaches for
this, i.e., the direct method and the iterative method, the direct method is the only
choice so far and we do not find any known implementation solely depending on an
iterative method. This is because the system of linear equations to be solved becomes
notoriously ill-conditioned towards the end of interior-point iterations and no iterative
solver has managed to resolve this ill-conditioning problem.
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To overcome this difficulty, we apply novel inner-iteration preconditioned Krylov
subspace methods for least squares problems. The inner-iteration preconditioners
recently proposed by Morikuni and Hayami [47, 48] enable us to deal with the severe
ill-conditioning of the system of linear equations. Furthermore, the employed Krylov
subspace methods do not suffer from rank-deficiency and therefore no preprocessing
is necessary even if rows of A are not linearly independent.

Extensive numerical experiments were conducted over diverse instances of 125 LP
problems taken from the standard benchmark libraries including Netlib, QAPLIB, and
Mittelmann’s collections. The number of variables of the largest problem is 434,580.
It turns out that our implementation is more stable and robust than the standard
public domain solvers SeDuMi (Self-Dual Minimization) [56] and SDPT3 (Semidefinite
Programming Toh-Todd-Tütüncü) [58, 59] without increasing CPU time. As far as
the authors know, this is the first result where an interior-point method entirely based
on iterative solvers succeed in solving a fairly large number of standard LP instances
from the benchmark libraries with standard stopping criteria. Our implementation
is yet considerably slower than MOSEK [49], one of the state-of-the-art commercial
interior-point LP solvers, though it is competitive in robustness and stability. On the
other hand, we observed that our implementation is able to solve ill-conditioned dense
problems with severe rank deficiency which the interior-point solver of MOSEK can
not solve.

We emphasize that there are many interesting topics to be further worked out
based on this paper. There is still room for improvement regarding the iterative
solvers as well as using more sophisticated methods for the interior-point iterations.

In the following, we introduce the interior-point method and review the previous
iterative solvers for the interior-point method. The interior-point method that we
deal with is an infeasible primal-dual predictor-corrector interior-point method. This
is one of the state-of-the-art interior-point methods which evolved from the original
primal-dual interior-point method [57, 35, 43, 60] incorporating several innovative
ideas, e.g., [62, 39].

The optimal solution x(∗),y(∗), s(∗) to problem (1) must satisfy the Karush-Kuhn-
Tucker (KKT) conditions

ATy(∗) + s(∗) = c,(2a)
Ax(∗) = b,(2b)

X(∗)S(∗)e = 0,(2c)
x(∗) ≥ 0, s(∗) ≥ 0,(2d)

where X(∗) := diag(x(∗)
1 , x

(∗)
2 , . . . , x

(∗)
n ), S(∗) := diag(s(∗)

1 , s
(∗)
2 , . . . , s

(∗)
n ), and e :=

[1, 1, . . . , 1]T. The complementarity condition (2c) implies that at the optimal point,
one of the elements x(∗)

i or s(∗)
i must be zero for i = 1, 2, . . . , n.

The infeasible primal-dual interior-point method gives the following system by
relaxing (2c) to XSe = µe with µ > 0:

(3) XSe = µe, Ax = b, ATy + s = c, x ≥ 0, s ≥ 0.

The interior-point method solves the problem (1) by generating approximate solutions
to (3) repeatedly. Along with the progress of iterations, µ is decreased to zero. In
this way (2) is satisfied within some tolerance level at the solution point. Therefore,
the search direction at each interior-point step is obtained by solving the Newton’s
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equations

(4)

0 AT I
A 0 0
S 0 X

 ∆x
∆y
∆s

 =

 rd
rp

−XSe+ σµe

 ,
where rd := c−ATy−s ∈ Rn is the residual of the dual problem, rp := b−Ax ∈ Rm is
the residual of the primal problem, µ := xTs/n is the duality measure, and σ ∈ [0, 1)
is the centering parameter which is dynamically chosen to govern the progress of
the interior-point method. Once the kth iterate (x(k),y(k), s(k)) is given and New-
ton’s equations (4) are solved, we define the next iterate as (x(k+1),y(k+1), s(k+1)) :=
(x(k),y(k), s(k)) + α(∆x,∆y,∆s), where α ∈ (0, 1] is a proper step length to en-
sure the nonnegtivity requirement (2d), and then reduce µ by σ to seek for the next
solution by solving (4) again.

At each interior-point iteration, the solution of (4) dominates the total CPU time.
The choice of linear solvers depends on the way of arranging the coefficient matrix of
(4). Aside from solving the (m + 2n) × (m + 2n) system (4), one can also solve its
reduced equivalent form of size (m+ n)× (m+ n)

(5)
[
X−1S AT

A 0

] [
∆x
−∆y

]
=
[
−c+ATy + σµX−1e

rp

]
,

or a more condensed equivalent form of size m×m

(6) AXS−1AT∆y = rp −AXS−1(−c+ATy + σµX−1e),

both of which are obtained by performing block Gaussian eliminations on (4). We are
concerned in this paper with solving the third equivalent form (6).

It is known that the coefficient matrix of the normal equations (6) is not symmetric
positive definite when any of the following cases is encountered. Firstly, when the
constraint matrix A is rank-deficient, the coefficient matrix of (6) is singular. There
exist presolving techniques that can detect and remove the linear dependent rows in
A, see, e.g., [2, 24]. Secondly, in the late phase of the interior-point iterations, the
diagonal matrix XS−1 has both very tiny and very large diagonal values as a result of
convergence. Thus, the coefficient matrix may become positive semidefinite, or even
slightly indefinite, due to rounding error. In particular, the situation becomes harsh
when primal degeneracy occurs at the optimal solution. One can refer to [27, 63] for
more detailed explanations.

Thus, when direct methods that compute symmetric factorization, such as the
Cholesky decomposition, are applied to (6), some diagonal pivots encountered during
decomposition can be zero or negative, causing the algorithm to break down. Most
direct methods adopt a strategy of replacing the problematic pivot with a very large
number. See, e.g., [63] for the Cholesky-Infinity factorization which is specially de-
signed to solve (6) when it has a positive semidefinite, but not definite, coefficient
matrix. Numerical experience (see, e.g., [1, 37, 19, 38, 3, 61, 12]) indicates that direct
methods provide sufficiently accurate solutions for the interior-point methods to con-
verge regardless of the ill-conditioning of the coefficient matrix. However, as the LP
problems become larger, the significant fill-ins in decompositions make direct methods
prohibitively expensive. It is stated in [25] that the fill-ins are observed even for very
sparse matrices. Moreover, the coefficient matrix can be dense such as in quadratic
programs arising in support vector machine training [18] or linear programs arising
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in basis pursuit [7], and even when A is given as a sparse matrix, AXS−1Aᵀ can
be dense or have a pattern of nonzero elements that renders the system difficult for
direct methods. The expensive solution of the KKT systems is a usual disadvantage
of second-order problems including interior-point methods.

These drawbacks of the direct methods and the progress in preconditioning tech-
niques motivate researchers to develop stable iterative methods for solving (6) or
alternatively (5). The major problem in iteratively solving (6) or (5) is that as the
interior-point iterations proceed, the condition number of the term XS−1 increases
and their solution tends to be expensive. The ill-conditioning property makes the sys-
tem of linear equations intractable. One way to deal with this is to employ suitable
preconditioners. Since our main focus is on solving (6), we explain preconditioners
for (6) in detail in the following. We mention [8, 20, 21, 4, 50] as literature related to
preconditioners for (5).

For the iterative solution of the normal equations (6), the conjugate gradient (CG)
method [31] was applied together with diagonal scaling preconditioners [6, 52, 36], or
incomplete Cholesky factorization preconditioners [39, 34, 8, 42]. The LSQR method
preconditioned by an approximation to the coefficient matrix was used in [22]. A
matrix-free method of using the CG for least squares (CGLS) preconditioned by a
partial Cholesky decomposition was proposed in [26]. In [10], a preconditioner based
on Greville’s method [11] for generalized minimal residual (GMRES) method was
applied. Suitable preconditioners were also introduced for particular fields such as
the minimum-cost network flow problem in [53, 32, 44, 45]. One may refer to [13] for
a review on the application of numerical linear algebra algorithms to the solutions of
KKT systems in the optimization context.

In this paper, we propose to solve (6) by using Krylov subspace methods pre-
conditioned by stationary inner-iterations recently proposed for least squares prob-
lems in [30, 47, 48]. In section 2, we briefly describe the framework of Mehrotra’s
predictor-corrector interior-point algorithm and the normal equations arising from
this algorithm. In section 3, we specify the application of our method to the normal
equations. In section 4, we present numerical results in comparison with a modified
sparse Cholesky method and three direct solvers in CVX, a major public package for
specifying and solving convex programs [29, 28]. In section 5, we conclude the paper.

Throughout, we use bold lower case letters for column vectors. We denote quan-
tities related to the kth interior-point iteration by using a superscript with round
brackets, e.g., x(k), the kth iteration of Krylov subspace methods by using a sub-
script without brackets, e.g., xk, and the kth inner iteration by using a super-
script with angle brackets, e.g., x〈k〉. R(·) denotes the range space of a matrix.
κ(A) denotes the condition number of matrix A, i.e., κ(A) = σ1(A)/σr(A) where
σ1(A) and σr(A) denote the maximum and minimum nonzero singular values of A.
Kk(A, b) = span{b, Ab, . . . , Ak−1b} denotes the Krylov subspace of order k.

2. Interior-point algorithm and the normal equations. We implement an
infeasible version of Mehrotra’s predictor-corrector method [40] which has been estab-
lished as a standard in this area [37, 38, 60, 41]. Note that our method is not limited
to this version of interior-point method and can also be applied to other interior-
point methods (see, e.g., [60] for more interior-point methods) whose directions are
computed via the normal equations (6).

2.1. Mehrotra’s predictor-corrector algorithm. In Mehrotra’s predictor-
corrector method, the centering parameter σ is determined by dividing each step into
two stages.
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In the first stage, we solve for the affine direction (∆xaf ,∆yaf ,∆saf)

(7)

0 AT I
A 0 0
S 0 X

 ∆xaf
∆yaf
∆saf

 =

 rd
rp
−XSe

 ,
and measure its progress in reducing µ. If the affine direction makes large enough
progress without violating the nonnegative boundary (2d), then σ is assigned to a
small value. Otherwise, σ is assigned to a larger value to steer the iterate to be more
centered in the strictly positive region.

In the second stage, we solve for the corrector direction (∆xcc,∆ycc,∆scc)

(8)

0 AT I
A 0 0
S 0 X

 ∆xcc
∆ycc
∆scc

 =

 0
0

−∆Xaf∆Safe+ σµe

 ,
where ∆Xaf = diag(∆xaf), ∆Saf = diag(∆saf) and σ is determined according to the
solution in the first stage. Finally, we update the current iterate along the linear
combination of the two directions.

In our implementation of the interior-point method, we adopt Mehrotra’s
predictor-corrector algorithm as follows.

Algorithm 1 Mehrotra’s predictor-corrector algorithm.
1: Given (x(0),y(0), s(0)) with (x(0), s(0)) > 0.
2: for k = 0, 1, 2, . . . until convergence, do
3: µ(k) := x(k)T

s(k)/n // the predictor stage
4: Solve (7) for the affine direction (∆xaf ,∆yaf ,∆saf).
5: Compute αp, αd.
6: if min (αp, αd) ≥ 1 then
7: σ := 0,

(
∆x(k),∆y(k),∆s(k)) := (∆xaf ,∆yaf ,∆saf)

8: else
9: Set µaf and σ := a small value, e.g., 0.208. // the corrector stage
10: Solve (8) for the corrector direction (∆xcc,∆ycc,∆scc).
11:

(
∆x(k),∆y(k),∆s(k)) := (∆xaf ,∆yaf ,∆saf) + (∆xcc,∆ycc,∆scc)

12: end if
13: Compute α̂p, α̂d.
14: x(k+1) := x(k) + α̂p∆x(k),

(
y(k+1), s(k+1)) :=

(
y(k), s(k))+ α̂d

(
∆y(k),∆s(k))

15: end for

In line 5 in Algorithm 1, the step lengths αp, αd are computed by

(9) αp = ηmin
(

1, min
i:∆xi<0

(− xi

∆xi
)
)
, αd = ηmin

(
1, min

i:∆si<0
(− si

∆si
)
)
,

where (∆x,∆s) = (∆xaf ,∆saf), η ∈ [0.9, 1).
In line 9, the quantity µaf is computed by

µaf =
(
x(k) + αp∆xaf

)T (
s(k) + αd∆saf

)
/n.

In the same line, the parameter σ is chosen as σ = min
(

0.208,
(
µaf/µ

(k))2) in the
early phase of the interior-point iterations. In the late phase of the interior-point
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iterations, the parameter σ is chosen approximately as 10 times the order of the error
measure which is defined in (19). Here the distinction between early and late phases
is in the error measure more or less than 10−3.

In line 13, we first compute trial step lengths αp, αd using equations (9) with
(∆x,∆s) = (∆x(k),∆s(k)). Then, we gradually reduce αp, αd to find the largest
step lengths that can ensure the centrality of the updated iterates, i.e., to find the
maximum α̂p, α̂d which satisfy

min
i

(xi + α̂p∆xi)(si + α̂d∆si) ≥ φ(x+ α̂p∆x)ᵀ(s+ α̂d∆s)/n,

where φ is typically chosen as 10−5.
2.2. The normal equations in the interior-point algorithm. We con-

sider modifying Algorithm 1 so that it is not necessary to update y(k). Let A :=
AS−1/2X1/2. Since we assume the existence of an optimal solution to problem (1),
we have b ∈ R(A). Then, the problem in the predictor stage (7) is equivalent to

AAT∆yaf = b+AS−1Xrd,(10a)
∆saf = rd −AT∆yaf ,(10b)
∆xaf = −S−1X∆saf − x.(10c)

The equations (10a) with ∆waf := AT∆yaf (the normal equations of the second kind)
are equivalent to

min ‖∆waf‖2, subject to A∆waf = faf ,(11)

where faf := b + AS−1Xrd. Then, (10b) can be computed by ∆saf = rd −
S1/2X−1/2∆waf .

On the other hand, the problem in the corrector stage (8) is equivalent to

AAT∆ycc = AS−1∆Xaf∆Safe− σµAS−1e,(12a)
∆scc = −AT∆ycc,(12b)
∆xcc = −S−1X∆scc − S−1∆Xaf∆Saf + σµS−1e.(12c)

The equations (12a) with ∆wcc := AT∆ycc are equivalent to

min ‖∆wcc‖2, subject to A∆wcc = fcc,(13)

where fcc = AS−1∆Xaf∆Safe−σµAS−1e. Then, (12b) can be computed by ∆scc =
−S1/2X−1/2∆wcc.

Thus, by solving (11) and (13) instead of (10a) and (12a), we can compute ∆saf ,
∆xaf , ∆scc, and ∆xcc and can save one matrix-vector product in (10b) and another
in (12b) if a predictor step is performed per interior-point iteration. Note that in the
predictor and corrector stages, the problems (11) and (13) have the same coefficient
matrix but different right-hand sides. We will introduce methods for solving (11) and
(13) in the next section.

3. Application of inner-iteration preconditioned Krylov subspace
methods. In lines 4 and 10 in Algorithm 1, the linear systems (10a) and (12a),
and hence (11) and (13) need to be solved. The coefficient matrices of (11) and (13)
become increasingly ill-conditioned as the interior-point iterations proceed. In this
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section, we focus on applying inner-iteration preconditioned Krylov subspace methods
to (11) and (13), since they are advantageous in dealing with ill-conditioned sparse
matrices. The methods to be discussed are the preconditioned CG and MINRES
methods [31, 51] applied to the normal equations of the second kind ((P)CGNE and
(P)MRNE, respectively) [9, 48], and the right-preconditioned generalized minimal
residual method (AB-GMRES) [30, 48].

Firstly, the conjugate gradient (CG) method [31] is an iterative method for solving
linear systems of equations Ax = b, where A ∈ Rn×n is a symmetric and positive
(semi)definite coefficient matrix and b ∈ R(A). CG starts with an initial approximate
solution x0 ∈ Rn and determines the kth iterate xk ∈ Rn by minimizing ‖xk − x∗‖2A
over the space x0 +Kk(A, r0), where r0 = b−Ax0, x∗ is a solution of Ax = b, and
‖xk − x∗‖2A := (xk − x∗)ᵀA(xk − x∗).

Secondly, the MINRES method [51] is another iterative method for solving linear
systems of equations Ax = b, where A ∈ Rn×n is a symmetric coefficient matrix.
MINRES with x0 determines the kth iterate xk by minimizing ‖b −Ax‖2 over the
same space as CG.

Thirdly, the generalized minimal residual (GMRES) method [55] is an iterative
method for solving linear systems of equations Ax = b, where A ∈ Rn×n is a square
matrix. GMRES with x0 determines the kth iterate xk by minimizing ‖b − Ax‖2
over x0 +Kk(A, r0).

3.1. Application of inner-iteration preconditioned CGNE and MRNE
methods. We first introduce CGNE and MRNE. Let A = AAT, x = ∆yaf , b = faf ,
and ∆waf = AT∆yaf for the predictor stage, and similarly, let A = AAT, x = ∆ycc,
b = fcc, and ∆wcc = AT∆ycc for the corrector stage. CG and MINRES applied
to these systems are CGNE and MRNE, respectively. With these settings, let the
initial solution ∆w0 ∈ R(AT) in both stages, and denote the initial residual by
g0 := f −A∆w0. CGNE and MRNE can solve (11) and (13) without forming AAT

explicitly.
Concretely, CGNE gives the kth iterate ∆wk such that ‖∆wk − ∆w∗‖2 =

min∆w∈∆w0+Kk(ATA,ATg0) ‖∆w−∆w∗‖2, where ∆w∗ is the minimum-norm solution
of A∆w = f for ∆w0 ∈ R(AT) and f ∈ R(A). MRNE gives the kth iterate ∆wk

such that ‖f −A∆wk‖2 = min∆w∈∆w0+Kk(ATA,ATg0) ‖f −A∆w‖2.
We use inner-iteration preconditioning for CGNE and MRNE methods. We give

the expressions for the inner-iteration preconditioning and preconditioned matrices.
LetM be a symmetric nonsingular splitting matrix of AAT such that AAT = M−N .
Denote the inner-iteration matrix by H = M−1N . The inner-iteration precon-
ditioning and preconditioned matrices are C(`) =

∑`−1
i=0 H

iM−1 and AATC(`) =
M
∑`−1

i=0(I −H)HiM−1 = M(I −H`)M−1, respectively. If C(`) is nonsingular, then
AATC(`)u = f , z = C(`)u is equivalent to AATz = f for all f ∈ R(A). For ` odd,
C(`) is symmetric and positive definite (SPD) if and only if the inner-iteration split-
ting maxrit M is SPD [46, Theorem 2.8]. For ` even, C(`) is SPD if and only if the
inner-iteration splitting matrix M +N is SPD [46, Theorem 2.8]. We give algorithms
for CGNE and MRNE preconditioned by inner iterations [48, Algorithms E.3, E.4].

3.2. Application of inner-iteration preconditioned AB-GMRES meth-
od. Next, we introduce AB-GMRES. GMRES can solve a square linear system
transformed from the rectangular system A∆waf = faf in the predictor stage and
A∆wcc = fcc in the corrector stage by using a rectangular right-preconditioning ma-
trix which does not necessarily have to be AT. Let B ∈ Rn×m be a preconditioning
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Algorithm 2 CGNE method preconditioned by inner iterations.
1: Let ∆w0 be the initial approximate solution, and g0 := f −A∆w0.
2: Apply ` steps of a stationary iterative method to AATz = g0, u = ATz to

obtain z0 := C〈`〉g0 and u0 := ATz0.
3: s0 := u0, γ0 := (g0, z0)
4: for k = 0, 1, 2, . . . until convergence, do
5: αk := γk/(sk, sk), ∆wk+1 := ∆wk + αsk, gk+1 := gk − αkAsk

6: Apply ` steps of a stationary iterative method to AATz = gk+1 to obtain
zk+1 := C〈`〉gk+1 and uk+1 := ATzk+1.

7: γk+1 := (gk+1, zk+1), βk := γk+1/γk, sk+1 := uk+1 + βksk

8: end for

Algorithm 3 MRNE method preconditioned by inner iterations.
1: Let ∆w0 be the initial approximate solution, and g0 := f −A∆w0.
2: Apply ` steps of a stationary iterative method to AATu = g0, s = ATu to

obtain s0 := ATC(`)g0.
3: p0 := s0, γ0 := ‖s0‖22
4: for k = 1, 2, . . . until convergence, do
5: tk := Apk

6: Apply ` steps of a stationary iterative method to AATu = tk, v = ATu to
obtain vk := ATC(`)tk.

7: αk := γk/(vk,pk), ∆wk := ∆wk +αkpk, gk+1 := gk−αktk, sk+1 := sk−αkvk

8: γk := ‖sk+1‖22, βk := γk+1/γk, pk+1 := sk + βkpk

9: end for

matrix for A. Then, AB-GMRES corresponds to GMRES [55] applied to

ABz = f , ∆w = Bz,

which is equivalent to the minimum-norm solution to the problem

min ‖∆w‖2, subject to A∆w = f(14)

for all f ∈ R(A) if R(B) = R(AT) [48, Theorem 5.2], where ∆w = ∆waf or ∆wcc,
f = faf or fcc, respectively. AB-GMRES gives the kth iterate ∆wk = Bzk such
that zk = argminz∈z0+Kk(AB,g0) ‖f − ABz‖2, where z0 is the initial iterate and
g0 = f −ABz0.

Specifically, we apply AB-GMRES preconditioned by inner iterations [47, 48] to
(14). This method was shown to outperform previous methods when dealing with
ill-conditioned and rank-deficient problems. We give the expressions for the inner-
iteration preconditioning and preconditioned matrices. Let M be a nonsingular split-
ting matrix of AAT such that AAT = M − N . Denote the inner-iteration matrix
by H = M−1N . Letting C(`) =

∑`−1
i=0 H

iM−1, the inner-iteration preconditioning
and preconditioned matrices are B(`) = ATC(`) and AB(`) =

∑`−1
i=0(I − H)Hi =

M(I − H`)M−1, respectively. If the inner-iteration matrix H is semiconvergent,
i.e., limi→∞Hi exists, then AB-GMRES determines the minimum-norm solution of
A∆w = f without breakdown for all f ∈ R(A) and for all ∆w0 ∈ R(Aᵀ) [48, Theo-
rem 5.5]. The inner-iteration preconditioning matrix B(`) works on A in AB-GMRES
as in the following algorithm [48, Algorithm 5.1].
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Algorithm 4 AB-GMRES method preconditioned by inner iterations.
1: Let ∆w0 ∈ Rn be the initial approximate solution, and g0 := f −A∆w0.
2: β := ‖g0‖2, v1 := r0/β
3: for k = 1, 2, . . . until convergence, do
4: Apply ` steps of a stationary iterative method to AATp = vk, z = ATp to

obtain zk := B〈`〉vk.
5: uk := Azk

6: for i = 1, 2, . . . , k, do
7: hi,k := (uk,vi), uk := uk − hi,kvi

8: end for
9: hk+1,k := ‖uk‖2, vk+1 := uk/hk+1,k

10: end for
11: pk := arg minp∈Rk ‖βe1 − H̄kp‖2, qk = [v1,v2, . . . ,vk]pk

12: Apply ` steps of a stationary iterative method to AATp = qk, z = ATp to
obtain z′ := B〈`〉qk.

13: ∆wk := ∆w0 + z′

Here, v1,v2, . . . ,vk are orthonormal, e1 is the first column of the identity matrix,
and H̄k = {hi,j} ∈ R(k+1)×k.

Note that the left-preconditioned generalized minimal residual method (BA-
GMRES) [30, 47, 48] can be applied to solve the corrector stage problem (12a) which
can be written as the normal equations of the first kind

AAT∆ycc = A(SX)−1/2 (∆Xaf∆Safe− σµe) ,

or equivalently

(15) min
∆ycc
‖AT∆ycc − (SX)−1/2 (∆Xaf∆Safe− σµe) ‖2.

In fact, this formulation was adopted in [26] and solved by the CGLS method precon-
ditioned by partial Cholesky decomposition that works in m-dimensional space. The
BA-GMRES also works in m-dimensional space.

The advantage of the inner-iteration preconditioning methods is that we can avoid
explicitly computing and storing the preconditioning matrices for the coefficient ma-
trices of the constraints of (11) and (13). We present efficient algorithms for specific
inner iterations in the next section.

3.3. SSOR inner iterations for preconditioning the CGNE and MRNE
methods. The inner-iteration preconditioned CGNE and MRNE methods require
a symmetric preconditioning matrix. This is achieved by the SSOR inner-iteration
preconditioning which works on the normal equations of the second kind AATz = g,
u = ATz, and its preconditioning matrix C(`) is SPD for ` odd for ω ∈ (0, 2) [46,
Theorem 2.8]. This method exploits a symmetric splitting matrix by the forward
updates, i = 1, 2, . . . ,m in lines 3-6 in Algorithm 6 and the reverse updates, i =
m,m − 1, . . . , 1, and can be efficiently implemented as the NE-SSOR method [54],
[48, Algorithm D.8]. See [5] where SSOR preconditioning for CGNE with ` = 1 is
proposed.

By applying Algorithm 5 to lines 2 and 6 of Algorithm 2 and lines 2 and 6 of
Algorithm 3, the normal equations of the second kind are solved approximately.
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Algorithm 5 NE-SSOR method.
1: Let z〈0〉 = 0 and u〈0〉 = 0.
2: for k = 1, 2, . . . , `, do
3: for i = 1, 2, . . . ,m, do
4: d

〈k− 1
2 〉

i := ω[gi − (αi,u
〈k−1〉)]/‖αi‖22

5: z
〈k− 1

2 〉
i := z

〈k−1〉
i + d

〈k− 1
2 〉

i ,u〈k−1〉 := u〈k−1〉 + d
〈k− 1

2 〉
i αi

6: end for
7: for i = m,m− 1, . . . , 1, do
8: d

〈k〉
i := ω[gi − (αi,u

〈k−1〉)]/‖αi‖22
9: z

〈k〉
i := z

〈k− 1
2 〉

i + d
〈k〉
i ,u〈k−1〉 := u〈k−1〉 + d

〈k〉
i αi

10: end for
11: u〈k〉 := u〈k−1〉

12: end for

3.4. SOR inner iterations for preconditioning the AB-GMRES method.
Next, we introduce the successive overrelaxation (SOR) method applied to the normal
equations of the second kind AATp = g, z = ATp with g = vk or qk which is used
in Algorithm 4. If the relaxation parameter ω satisfies ω ∈ (0, 2), then the iteration
matrix H of this method is semiconvergent, i.e., limi→∞Hi exists [16]. An efficient
algorithm for this method is called NE-SOR and is given as follows [54], [48, Algorithm
D.7]. Let αi be the ith row of A.

Algorithm 6 NE-SOR method.
1: Let z〈0〉 = 0.
2: for k = 1, 2, . . . , `, do
3: for i = 1, 2, . . . ,m, do
4: d

〈k〉
i := ω[gi − (αi, z

〈k−1〉)]/‖αi‖22, z〈k−1〉 := z〈k−1〉 + d
〈k〉
i αi

5: end for
6: z〈k〉 := z〈k−1〉

7: end for

By applying Algorithm 6 to lines 4 and 12 of Algorithm 4, the normal equations
of the second kind are solved approximately.

3.5. Row-scaling of the coefficient matrix. Let D be a diagonal matrix
whose diagonal elements are positive. Then, the problem (14) is equivalent to

(16) min ‖∆w‖2, subject to D−1A∆w = D−1f .

Denote Â := D−1A and f̂ := D−1f . Then, the scaled problem (16) can be written as

(17) min ‖∆w‖2, subject to Â∆w = f̂ .

If B̂ ∈ Rn×m satisfies R(B̂) = R(Âᵀ), then (17) is equivalent to

(18) ÂB̂ẑ = f̂ , ∆w = B̂ẑ

for all f̂ ∈ R(Â). The methods discussed earlier can be applied to solve (18). In the
NE-(S)SOR inner iterations, one has to compute ‖α̂i‖2, the norm of the ith row of
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the coefficient matrix Â. However, this can be omitted if the ith diagonal element of
D is chosen as the norm of the ith row of A, that is, D(i, i) := ‖αi‖2, i = 1, . . . ,m.
With this choice, the matrix Â has unit row norm ‖α̂i‖2 = 1, i = 1, . . . ,m. Hence,
we do not have to compute the norms ‖α̂i‖2 inside the NE-(S)SOR inner iterations
if we compute the norms ‖αi‖2 for the construction of the scaling matrix D. The
row-scaling scheme does not incur extra CPU time. We observe in the numerical
results that this scheme improves the convergence of the Krylov subspace methods.

4. Numerical experiments. In this section, we compare the performance of
the interior-point method based on the iterative solvers with the standard interior-
point softwares. We also developed an efficient direct solver coded in C to compare
with the iterative solvers. Therefore, for the sake of completeness, we briefly describe
our direct solver first.

4.1. Direct solver for the normal equations. To deal with the rank-
deficiency, we used a strategy that is similar to the Cholesky-Infinity modification
scheme introduced in the LIPSOL solver [63]. However, instead of penalizing the
elements that are close to zero, we removed them and solved the reduced system. We
implemented this modification by an LDLT decomposition. We used the Matlab
built-in function chol to detect whether the coefficient matrix is symmetric positive
definite. We used the ldlchol from CSparse package version 3.1.0 [14] when the
coefficient matrix was symmetric positive definite, and we turned to the Matlab
built-in solver ldl for the indefinite cases.

4.2. Implementation specifications. In this section, we describe our numer-
ical experiments.

The initial solution for the interior-point method was set using the method de-
scribed in LIPSOL solver [63]. The initial solution for the Krylov subspace iterations
and the inner iterations was set to zero.

We set the maximum number of the interior-point iterations as 99 and the stop-
ping criterion regarding the error measure as

(19) Γ ≤ εout = 10−8, Γ := max
{
µ,
‖b−Ax‖2

max {‖b‖2, 1}
,
‖c− s−ATy‖2
max {‖c‖2, 1}

}
.

For the iterative solver for the normal equations (10a) and (12a), we set the
maximum number of iterations for CGNE, MRNE and AB-GMRES as m, and relax
it to a larger number for some difficult problems for CGNE and MRNE. We set the
stopping criterion for the scaled residual as

‖f̂ − Â∆w‖2 ≤ εin‖f̂‖2,

where the value of εin is chosen to start from 10−6 and is kept to be in the range
[10−14, 10−4] during the process. We adjusted the value of εin according to the progress
of the interior-point iterations. We truncated the iterative solving prematurely in the
early phase of the interior-point process, and pursued a more precise direction when
approaching the solution to the LP problem. The progress was measured by the error
measure Γ. Concretely, we adjusted εin as

ε
(k)
in =

{
ε
(k−1)
in × 0.75 if log10 Γ(k) ∈ (−3, 1],
ε
(k−1)
in × 0.375 if log10 Γ(k) ∈ (−∞,−3].
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As there were steps where iterative solvers failed to converge within the maximum
number of iterations, we slightly increased the value of εin by multiplying by 1.5 for
the next step in such cases.

We adopt the implementation of AB-GMRES preconditioned by NE-SOR inner-
iterations [33] with the additional row-scaling scheme (subsection 3.5). No restarts
were used for the AB-GMRES method.

For the direct solver, the tolerance for dropping pivot elements close to zero was
10−16 for most of the problems; for some problems this tolerance has to be increased
to 10−6 to overcome breakdown.

The experiment was conducted on a MacBook Pro with a 2.6 GHz Intel Core
i5 processor with 8 GB of random-access memory, OS X El Capitan version 10.11.2.
The interior-point method was coded in Matlab R2014b and the iterative solvers
including AB-GMRES (NE-SOR), CGNE (NE-SSOR), and MRNE (NE-SSOR), were
coded in C and compiled as Matlab Executable (MEX) files accelerated with Basic
Linear Algebra Subprograms (BLAS).

We compared our implementation with the standard solvers available in CVX
[29, 28]: SDPT3 version 4.0 [58, 59], SeDuMi version 1.34 [56], and MOSEK ver-
sion 7.1.0.12 [49], with the default interior-point stopping criterion (19). Note that
SDPT3 and SeDuMi are non-commercial public domain solvers, whereas MOSEK is
a commercial solver known as one of the state-of-the-art solvers. These solvers were
implemented with the CVX Matlab interface, and we recorded the CPU time as in
the screen output of each solver. However, it usually took a longer time for the CVX
to finish the whole process. The larger the problem was, the more apparent this extra
CPU time became. For example, for problem ken_ 18, the screen output of SeDuMi
was 765.3 seconds while the total processing time was 7,615.2 seconds.

4.3. Typical LP problems: sparse and full-rank problems. We tested
on 125 problems which are a subset of the typical LP problem collections: Netlib,
Qaplib and Mittelmann, which can be found in [15]. These problems usually have
sparse and full-rank constraint matrix A (except problems bore3d and cycle).

The overall numerical experience is summarized in Table 1. MRNE (NE-SSOR)
and MOSEK were the stablest in the sense that they solved all the 125 problems.
CGNE (NE-SSOR) method solved all the problems except for the largest Qaplib
problem which was solved to a slightly larger tolerance level of 10−7. AB-GMRES
(NE-SOR) was also very stable and it solved the problems accurately enough. How-
ever, it took longer than 20 hours for two problems that have 154,699 and 23,541 un-
knowns, respectively, although it succeeded in solving larger problems such as pds-80.
The other solvers were less stable. The modified Cholesky solver solved only 93% of
the problems due to numerical instabilities, although it was fast for the problems that

Table 1
Overall performance of the solvers on 125 testing problems.

Status Solved Solved† Unsolved Expensive
AB-GMRES (NE-SOR) 123 0 0 2

CGNE (NE-SSOR) 124 1 0 0
MRNE (NE-SSOR) 125 0 0 0
Modified Cholesky 117 2 6 0

SDPT3 76 19 25 5
SeDuMi 103 16 6 0
MOSEK 125 0 0 0
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it could successfully solve. SDPT3 solved 61% and SeDuMi 82% of the problems.
Here we should mention that SeDuMi and SDPT3 are designed to solve LP, semidef-
inite programming (SDP), and second-order convex programming (SOCP), while our
code is (currently) tuned solely for LP.

Notice that the MOSEK solver is embedded in a multi-corrector interior-point
method [23] while our implementation is a single corrector (i.e., predictor-corrector)
method. This led to different numbers of interior-point iterations as given in the
tables. Thus, there is still room for improvement in the efficiency of our solver based
on iterative solvers if a more elaborately tuned interior-point framework such as the
one in MOSEK is adopted.

In order to show the trends of performance, we use the Dolan-Moré performance
profiles [17] in Figures 1 and 2, with the notations: π(τ) := P (log2 rps ≤ τ) the
proportion of problems for which log2-scaled performance ratio is at most τ , where
rps := tps/t

∗
p, tps is the CPU time for the solver s to solve the problem p, t∗p is the

minimal CPU time for the problem p. The comparison indicates that the iterative
solvers, although slower than the commercial solver MOSEK in some cases, were often
able to solve the problems to the designated accuracy.

In Tables 2 and 4, we give the following information:
1. the name of the problem and the size (m,n) of the constraint matrix,
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Fig. 1. Dolan-Moré profiles for the proposed solvers, public domain and commercial solvers.
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Fig. 2. Dolan-Moré profiles for the proposed solvers and public domain solvers.

2. the number of interior-point iterations required for convergence,
3. CPU time for the entire computation in seconds. For the cases shorter than

3, 000 seconds, CPU time is taken as an average over 10 measurements. We
indicate in red boldface and blue underline the fastest and second fastest
solvers in CPU time, respectively.

Besides the statistics, we also use the following notations:
† inaccurately solved, i.e., the value of εout was relaxed to a larger level. For our
solvers, we provide extra information at the stopping point: †a, a = blog10 Γc
in the iter column, and †b, b = blog10 κ(AAᵀ)c in the time column, where b·c
is the floor function; the CVX solvers do not provide the condition number
but only the relative duality gap,

- the iterations diverged due to numerical instabilities,
� the iterations took longer than 20 hours.

Note that all zero rows and columns of the constrained matrix A were removed
beforehand. The problems marked with # are with rank-deficient A even after this
preprocessing. For these problems we put the rank(A) in the bracket after m.
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Table 2

Experiments on Netlib problems.

AB-GMRES CGNE MRNE Modified SDPT3 SeDuMi MOSEK
(NE-SOR) (NE-SSOR) (NE-SSOR) Cholesky

Problem m n Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time
25fv47 821 1,876 25 4.62 25 5.00 25 4.60 25 3.67 59 2.50 29 2.30 26 3.90
adlittle 56 138 12 0.03 13 0.03 13 0.05 12 0.09 16 0.16 14 0.10 10 1.98

afiro 27 51 8 0.02 8 0.01 8 0.01 8 0.03 11 0.11 7 0.10 9 1.91
agg 488 615 21 0.72 21 0.88 24 0.79 21 1.49 34 0.61 32 0.90 18 2.24
agg2 516 758 21 0.64 21 0.56 23 0.53 21 1.55 32 1.28 23 1.00 13 2.12
agg3 516 758 19 0.68 19 0.52 21 0.58 19 1.38 32 1.24 22 1.10 12 2.06

bandm 305 472 18 0.73 19 0.62 19 0.74 17 0.90 42 1.52 20 0.50 15 2.17
beaconfd 173 295 13 0.07 13 0.07 13 0.07 12 0.41 15 0.22 10 0.20 8 1.97

blend 74 114 12 0.06 14 0.07 13 0.08 12 0.11 15 0.16 11 0.10 9 1.98
bnl1 643 1,586 25 2.53 25 4.66 25 4.92 25 1.95 †−5 † 64 2.50 20 2.51
bnl2 2,324 4,486 32 44.98 32 23.37 32 27.63 32 12.41 †−4 † 38 5.80 25 2.66

bore3d# 233 (232) 334 19 0.35 19 0.23 19 0.21 19 0.63 35 1.92 18 1.50 19 3.00
brandy 220 303 17 0.43 18 0.86 18 0.86 17 0.59 46 1.02 19 0.40 12 2.04
capri 271 482 19 0.80 19 0.88 19 0.91 19 1.04 47 3.22 33 1.60 14 2.63
cre_a 3,516 7,248 30 186.77 30 48.43 31 35.79 31 105.60 †−7 † 28 8.70 20 2.69
cre_b 9,648 77,137 43 787.95 42 611.11 42 455.04 53 1,143.90 †−6 † †−7 † 19 3.63
cre_c 3,068 6,411 30 268.84 32 47.92 33 46.12 33 79.67 - - 28 7.70 17 2.56
cre_d 8,926 73,948 37 387.17 37 316.81 37 213.69 37 847.00 - - 34 42.10 16 3.06
cycle# 1,903 (1,875) 3,371 30 61.87 31 50.44 61 185.12 - - †−6 † 30 5.30 20 2.76
czprob 929 3,562 39 1.51 38 1.60 39 1.73 39 10.45 †−5 † 39 2.80 27 2.91
d2q06c 2,171 5,831 32 132.75 33 581.83 36 750.06 32 24.09 84 6.43 29 4.10 21 2.85
d6cube 415 6,184 23 3.77 24 7.41 23 7.12 26 2.68 34 1.65 - - 11 2.50
degen2 444 757 15 1.26 16 1.13 16 1.18 21 2.27 17 0.41 13 0.40 8 2.12
degen3 1,503 2,604 19 27.30 21 13.26 21 13.38 19 27.52 †−6 † 15 2.00 12 2.18
dfl001 6,071 12,230 48 4,336.35 50 2,044.54 55 2,205.16 91 3,131.77 - - †−5 † 22 7.46
e226 223 472 21 0.64 20 0.61 21 0.82 20 0.59 61 1.17 22 0.60 14 1.97
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Table 2
(cont.) Experiments on Netlib problems.

AB-GMRES CGNE MRNE Modified SDPT3 SeDuMi MOSEK
(NE-SOR) (NE-SSOR) (NE-SSOR) Cholesky

Problem m n Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time
etamacro 400 816 30 1.23 31 1.58 31 1.43 30 2.30 - - 30 2.80 20 2.82

fffff800 524 1,028 32 4.11 30 6.29 33 6.39 32 3.31 44 0.86 46 1.60 22 2.55
fit1d 24 1,049 21 0.78 21 0.45 21 0.49 19 0.38 36 2.11 18 0.80 13 0.67
fit1p 627 1,677 16 4.01 16 5.31 16 5.14 16 3.56 25 1.78 53 2.00 17 0.73
fit2d 25 10,524 20 3.40 21 3.54 21 3.72 20 2.40 41 3.10 15 2.60 18 0.79
fit2p 3,000 13,525 19 1,103.13 32 1,755.13 32 1,831.13 19 102.02 27 3.69 40 8.90 17 0.82

ganges 1,309 1,706 18 8.21 18 27.73 21 33.06 18 3.80 22 0.90 26 1.60 15 0.91
gfrd_pnc 616 1,160 21 1.15 22 1.04 21 0.88 21 0.98 27 0.85 20 1.00 29 0.90
grow15 300 645 19 0.43 19 0.35 20 0.37 17 0.40 21 0.80 25 1.00 13 0.89
grow22 440 946 20 0.68 20 0.59 22 0.59 18 0.53 22 0.93 26 1.40 14 0.95
grow7 140 301 18 0.12 18 0.16 18 0.12 16 0.16 19 0.66 19 0.70 12 0.69
israel 174 316 24 0.99 27 0.94 27 1.06 25 1.12 34 0.51 20 0.60 15 2.14
kb2 43 68 16 0.09 17 0.08 17 0.08 15 0.11 26 0.71 15 0.50 16 0.75

ken_07 2,426 3,602 17 4.14 18 2.39 17 2.24 16 1.07 33 1.74 18 1.80 15 0.79
ken_11 14,694 21,349 22 636.24 23 123.23 23 85.95 22 7.83 †−4 † 38 10.60 31 1.87
ken_13 28,632 42,659 27 2,633.00 28 365.15 29 348.51 27 23.90 - - 43 29.50 20 2.83
ken_18 105,127 154,699 � � 38 12,893.63 46 21,315.47 38 324.89 - - 59 765.30 20 24.98

lotfi 153 366 16 0.28 16 0.24 16 0.32 16 0.39 37 1.14 20 1.20 15 2.47
maros_r7 3,136 9,408 15 57.78 15 29.69 15 31.68 15 11.14 21 5.39 15 4.80 12 3.29
modszk1 687 1,620 23 2.70 23 3.60 23 3.48 22 2.54 29 0.85 23 1.00 22 0.92
osa_07 1,118 25,067 34 12.35 32 6.26 36 8.51 27 5.85 31 3.90 31 4.90 14 2.55
osa_14 2,337 54,797 38 11.41 32 9.11 37 11.81 37 16.07 37 7.65 36 7.30 18 3.03
osa_30 4,350 104,374 39 22.69 41 19.08 38 17.16 36 28.98 37 12.49 40 11.50 17 3.36
osa_60 10,280 243,246 30 48.25 40 40.12 33 37.26 34 67.90 39 26.73 41 21.70 17 5.10
pds_02 2,953 7,716 29 4.43 29 3.43 29 4.16 29 3.16 †−5 † 30 6.90 18 0.82
pds_06 9,881 29,351 48 49.77 48 44.17 51 45.85 48 44.65 - - 51 61.50 23 1.45
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Table 2

(cont.) Experiments on Netlib problems.

AB-GMRES CGNE MRNE Modified SDPT3 SeDuMi MOSEK
(NE-SOR) (NE-SSOR) (NE-SSOR) Cholesky

Problem m n Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time
pds_10 16,558 49,932 51 91.60 52 87.75 50 79.22 52 130.17 - - 74 157.20 28 2.54
pds_20 33,874 108,175 61 1,365.98 64 1,155.95 62 683.72 62 665.05 - - †−7 † 34 11.02
perold 625 1,506 36 4.71 36 6.71 36 6.97 37 2.82 †−6 † †−7 † 24 0.87
pilot 1,441 4,860 33 31.54 33 51.15 33 49.36 33 16.18 - - 81 19.70 39 1.73
pilot4 410 1,123 30 2.11 30 2.12 30 2.29 30 2.26 †−7 † - - 27 0.78
pilot87 2,030 6,680 39 55.59 39 105.77 39 102.58 39 33.13 88 11.54 76 12.60 38 2.45

pilot_ja 940 2,267 35 13.02 37 19.51 36 14.79 37 4.84 - - - - 29 0.71
pilot_we 722 2,928 35 5.67 39 8.58 38 7.62 35 2.42 †−7 † 44 4.90 31 0.71
pilotnov 975 2,446 24 5.70 25 5.02 27 4.07 22 2.90 - - - - 17 0.73
qap12 3,192 8,856 19 758.92 21 144.74 20 99.35 19 50.45 26 21.78 †−7 † 17 6.09
qap15 6,330 22,275 23 5,530.52 25 789.81 24 581.25 24 335.83 52 330.31 †−7 † 17 21.11
qap8 912 1,632 11 1.73 12 1.09 11 0.98 10 2.75 13 1.25 8 1.10 7 2.16
sc105 105 163 10 0.05 10 0.04 10 0.04 10 0.02 20 0.50 10 0.20 8 2.13
sc205 205 317 11 0.17 11 0.09 11 0.07 10 0.05 18 0.61 12 0.30 10 2.16
sc50a 50 78 10 0.03 10 0.00 6 0.02 10 0.02 12 0.17 8 0.20 8 2.13
sc50b 50 78 7 0.01 7 0.02 7 0.02 7 0.03 11 0.26 7 0.20 6 1.94

scagr25 471 671 18 0.93 18 0.69 18 0.71 17 0.20 35 0.84 21 0.70 21 2.63
scagr7 129 185 14 0.15 15 0.11 15 0.11 14 0.07 33 0.71 17 0.50 19 2.52
scfxm1 330 600 18 1.03 19 1.05 20 1.14 18 0.70 52 1.40 20 0.80 15 2.42
scfxm2 660 1,200 21 2.44 22 4.73 23 4.71 21 1.35 58 1.59 24 1.30 18 2.56
scfxm3 990 1,800 22 5.94 23 12.64 24 12.10 22 1.64 59 1.79 25 1.50 16 2.53

scorpion 388 466 15 0.28 16 0.23 16 0.26 15 0.20 17 0.39 11 0.30 11 2.21
scrs8 490 1,275 25 0.91 26 0.78 25 0.77 25 0.61 37 1.06 35 1.70 14 2.41
scsd1 77 760 9 0.06 9 0.05 9 0.03 9 0.04 12 0.23 8 0.20 8 2.02
scsd6 147 1,350 11 0.17 12 0.12 11 0.13 11 0.07 15 0.32 11 0.40 10 2.06
scsd8 397 2,750 12 0.76 12 0.71 12 0.64 11 0.16 13 0.32 10 0.60 7 1.93
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Table 2
(cont.) Experiments on Netlib problems.

AB-GMRES CGNE MRNE Modified SDPT3 SeDuMi MOSEK
(NE-SOR) (NE-SSOR) (NE-SSOR) Cholesky

Problem m n Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time
sctap1 300 660 17 0.31 19 0.38 19 0.36 17 0.12 20 0.46 20 0.50 11 2.15
sctap2 1,090 2,500 20 1.36 20 1.21 21 1.04 19 1.75 21 0.48 12 0.60 9 2.05
sctap3 1,480 3,340 19 1.33 19 1.14 20 1.22 18 2.31 23 0.94 13 0.40 9 2.11

share1b 117 253 23 0.50 24 0.51 24 0.48 23 0.16 27 0.52 22 0.50 23 2.74
share2b 96 162 12 0.16 14 0.20 16 0.21 12 0.09 26 0.60 19 0.30 15 2.47

shell 536 1,777 19 0.61 19 0.57 19 0.58 19 1.68 - - 31 1.10 22 0.56
ship04l 402 2,166 14 0.26 14 0.26 14 0.26 15 1.00 20 0.74 17 0.80 10 1.86
ship04s 402 1,506 15 0.78 15 0.30 15 0.21 14 1.14 20 0.67 17 0.70 11 0.48
ship08l 778 4,363 16 0.82 17 1.33 17 1.28 16 2.47 21 0.51 18 0.90 11 1.93
ship08s 778 2,467 15 0.44 16 0.46 16 0.60 15 1.82 20 0.32 16 0.40 10 1.88
ship12l 1,151 5,533 20 1.48 19 2.21 20 2.01 19 4.66 22 0.65 23 1.90 14 2.04
ship12s 1,151 5,533 17 0.90 19 1.00 19 0.94 17 2.66 22 0.41 17 0.90 12 1.96
sierra 1,227 2,735 17 1.28 19 1.37 19 1.05 21 1.60 - - 29 3.50 16 0.59
stair 356 614 22 1.43 22 1.63 22 1.87 22 0.96 †−6 † 18 0.70 15 0.52

standata 359 1,274 18 0.63 17 0.34 17 0.38 17 0.86 - - 19 0.70 9 0.48
standgub 361 1,383 17 0.35 17 0.30 17 0.37 17 0.91 - - 19 0.70 9 0.51
standmps 467 1,274 25 0.81 24 0.68 25 0.82 24 1.71 - - 15 0.70 17 0.53
stocfor1 117 165 19 0.13 21 0.13 20 0.20 19 0.09 30 0.71 17 0.50 11 2.21
stocfor2 2,157 3,045 23 37.36 24 18.00 24 17.59 21 13.43 53 1.95 †−4 † 17 2.54
stocfor3 16,675 23,541 � � 38 4,590.71 37 4,071.37 †−7 †32 80 11.05 - - 26 3.37

truss 1,000 8,806 19 6.62 21 10.22 22 10.59 19 3.29 21 1.12 19 1.90 12 2.27
tuff 333 628 21 1.63 22 1.27 24 2.03 21 1.39 †−7 † 21 0.80 18 0.60

vtp_base 198 346 24 0.69 24 0.52 24 0.61 24 0.77 39 1.26 42 1.30 12 0.69
wood1p 244 2,595 17 1.75 17 1.34 17 1.19 - - 38 2.75 19 2.00 10 2.17
woodw 1,098 8,418 25 5.12 27 6.72 28 7.34 22 3.73 - - 33 3.20 17 2.47
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Table 3

Experiments on Qaplib problems.

AB-GMRES CGNE MRNE Modified SDPT3 SeDuMi MOSEK
(NE-SOR) (NE-SSOR) (NE-SSOR) Cholesky

Problem m n Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time
nug05 201 225 7 0.16 7 0.09 7 0.09 7 0.27 12 0.36 5 0.20 5 1.81
nug06 372 486 10 0.56 10 0.31 10 0.25 8 0.83 11 0.22 6 0.10 6 1.84
nug07 602 931 12 1.83 13 0.96 12 0.72 12 2.02 18 1.48 10 0.70 8 2.09
nug08 912 1,632 10 3.27 11 1.03 12 1.06 10 3.26 16 2.08 8 1.00 7 1.96
nug12 3,192 8,856 19 1,287.19 20 427.16 19 355.36 20 73.13 †−7 † †−7 † 17 5.57
nug15 6,330 22,275 23 9,521.25 25 809.23 24 773.55 23 559.88 33 171.64 †−5 † 17 22.13
nug20 15,240 72,600 25 60,223.29 †−7 †28 33 16,650.52 †−7 †28 †−7 † †−5 † 19 243.71

Table 4
Experiments on Mittelmann problems.

AB-GMRES CGNE MRNE Modified SDPT3 SeDuMi MOSEK
(NE-SOR) (NE-SSOR) (NE-SSOR) Cholesky

Problem m n Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time
fome11 12,142 24,460 47 6,900.09 48 14,156.31 53 12,270.84 - - - - †−5 † 23 8.97
fome12 24,284 48,920 48 12,568.26 48 38,138.98 52 28,159.85 - - - - †−7 † 21 33.17
fome13 48,568 97,840 47 25,726.58 50 37,625.03 54 63,301.06 - - - - †−7 † 24 61.01
fome20 33,874 108,175 61 1,510.85 64 1,240.23 62 689.71 62 692.71 - - †−7 † 34 8.96
fome21 67,748 216,350 74 12,671.62 74 3,185.03 84 3,822.02 75 1,617.71 - - †−6 † 39 18.47

nug08-3rd 19,728 29,856 12 5,833.97 11 259.01 10 237.02 - - - - - - 7 257.82
pds-30 49,944 158,489 69 1,964.48 72 1,105.42 70 788.98 69 1,659.21 - - 103 2,014.70 34 19.93
pds-40 66,844 217,531 66 4,878.49 68 1,551.30 77 1,904.76 67 4,012.71 � � 105 4,832.20 34 31.15
pds-50 83,060 275,814 73 13,860.17 73 3,274.74 80 3,960.55 73 7,196.51 � � 111 11,433.90 38 49.74
pds-60 99,431 336,421 72 25,592.33 75 5,024.43 83 7,535.99 72 11,609.01 � � †−7 † 36 94.28
pds-70 114,944 390,005 80 22,564.32 82 4,980.04 85 7,405.50 84 17,575.97 � � 126 44,946.8 46 136.50
pds-80 129,181 434,580 80 25,752.26 83 6,279.08 86 9,853.86 85 21,077.53 � � 119 58,286.40 42 157.64
rail507 507 63,516 43 1,039.09 51 1,138.80 51 475.47 48 14.98 †−7 † 34 7.10 17 2.69
rail516 516 47,827 39 496.60 43 700.58 39 536.36 38 11.82 †−7 † 19 3.70 11 2.48
rail582 582 56,097 44 1,296.56 46 971.35 47 1,422.62 41 17.52 †−7 † 40 8.60 16 2.43
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In order to give an idea of the typical differences between the methods, we present
the interior-point convergence curves for the problem ken_ 13. The problem has a
constraint matrix A ∈ R28,632×42,659 with full row rank and 97, 246 nonzero elements.

Different aspects of the performance of the four solvers are displayed in Figure 3.
The red dotted line with diamond markers represents the quantity related to AB-
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(b) Duality measure µ.
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(c) Relative residuals for (10a).
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(d) Relative residuals for (12a).
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(e) CPU time for each interior-point step.
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Fig. 3. Numerical result for problem ken_13.
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GMRES (NE-SOR), the blue with downward-pointing triangle CGNE (NE-SSOR),
the yellow with asterisk MRNE (NE-SSOR), and the dark green with plus sign the
modified Cholesky solver. Note that for this problem ken_ 13, the modified Cholesky
solver became numerically inaccurate at the last step and it broke down if the default
dropping tolerance was used. Thus, we increased it to 10−6.

Figure 3a shows κ(AAT) in log10 scale. It verifies the claim that the least squares
problem becomes increasingly ill-conditioned at the final steps in the interior-point
process: κ(AAT) started from around 1037 and increased to 1070 at the last 3-5 steps.
Figure 3b shows the convergence curve of the duality measure µ in log10 scale. The
value of µ successfully attained the stopping criterion (19) for all the solvers. Although
it is not shown in the figure, we found that the interior-point method with modified
Cholesky with the default value of the dropping tolerance stagnated for µ ' 10−4.
Comparing with Figure 3a, it is observed that the solvers started to behave differently
as κ(AAT) increased sharply.

Figures 3c and 3d show the relative residual norm for the normal equations
‖faf − AAᵀ∆yaf‖2/‖faf‖2 in the predictor stage and ‖fcc − AAᵀ∆ycc‖2/‖fcc‖2 in
the corrector stage, respectively. The quantities are in log10 scale. The relative resid-
ual norm for modified Cholesky tended to increase with the interior-point iterations
and sharply increased in the final phase when it lost accuracy in solving the normal
equations for the steps. We observed similar trends for other testing problems and,
in the worst cases, the inaccuracy in the solutions prohibited interior-point conver-
gence. Among the iterative solvers, AB-GMRES (NE-SOR) and MRNE (NE-SSOR)
were the most stable in keeping the accuracy of solutions to the normal equations;
CGNE (NE-SSOR) performed similarly but lost numerical accuracy at the last few
interior-point steps.

Figures 3e and 3f show the CPU time and number of iterations of the Krylov
methods for each interior-point step, respectively. It was observed that the CPU time
of the modified Cholesky solver was more evenly distributed in the whole process while
that of the iterative solvers tended to be less in the beginning and ending phases. At
the final stage, AB-GMRES (NE-SOR) required the fewest number of iterations but
cost much more CPU time than the other two iterative solvers. This can be explained
as follows: AB-GMRES (NE-SOR) requires increasingly more CPU time and memory
with the number of iterations because it has to store the orthonormal vectors in
the modified Gram-Schmidt process as well as the Hessenberg matrix. In contrast,
CGNE (NE-SSOR) and MRNE (NE-SSOR) based methods require constant memory.
CGNE (NE-SSOR) took more iterations and CPU time than MRNE (NE-SSOR).
Other than the coefficient matrix and the preconditioner, the memory required for k
iterations of ABGMRES is O(k2 +km+n) and that for CGNE and MRNE iterations
is O(m + n)[30, 48]. This explains why ABGMRES (NE-SOR), although requiring
less iterations, usually takes longer time to obtain the solution at each interior-point
step.

From Figure 3, we may draw a few conclusions. For most of the problems, the
direct solver gave the most efficient result in terms of CPU time. However, for some
problems, the direct solver tended to lose accuracy as interior-point iterations pro-
ceeded and, in the worst cases, this would inhibit convergence. For the problems that
the direct method broke down, the proposed inner-iteration preconditioned Krylov
subspace methods worked until convergence. It is acceptable to iteratively solve for
an approximate step in the early phase of the interior-point method and then increase
the level of accuracy in the late phase.
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4.4. Rank-deficient problems. Most of the problems tested in the last section
have a sparse and full-rank constraint matrix A. In this section, we enrich the exper-
iment by adding artificial problems with a dense, rank-deficient and ill-conditioned
constraint matrix, which challenge some of the solvers.

We first present an experiment to investigate the effect of rank-deficiency on CPU
time. Since MOSEK was the most efficient and stable standard solver as presented in
the previous section, here we only compare our solvers with MOSEK. We randomly
generated a set of constraint matrix A whose rank ranged from 50 to 100 with a step
of 5. The elements of x and c were uniformly distributed random numbers, generated
by using the Matlab function rand. The location of zero elements of x was also
subject to the random uniform distribution. Then, b was generated as b = Ax. More
details are given in Table 5.

In Figure 4, we plot the CPU time required for each solver to achieve the interior-
point convergence versus rank(A). In order to give an averaged information, we took
an average of the CPU times for 5 different randomly generated problems for each
rank, where the CPU time was taken as an average of 10 measurements for each
problem.

All the solvers succeeded in solving the problems. Iterative solvers performed
better than modified Cholesky as the rank decreased.

Next, we present an experiment for problems that were both rank-deficient and
ill-conditioned. We randomly generated a set of problems, each had a constraint
matrix A with information given in Table 6. The sparsity of A was around 50%.

Table 5
Information on artificial problems: completely dense with different rank.

Problem m n Nonzeros Rank κ(A)
Artificial 100 300 30,000 [50, 100] 102
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Fig. 4. CPU time for artificial problems: completely dense with different rank.

Table 6
Information on artificial problems: ill-conditioned with different rank.

Problem m n Nonzeros Rank κ(A)
Artificial 100 300 15,000 [50, 100] 108
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In Figure 5, we plot the CPU time required for each solver to achieve the interior-
point convergence versus rank(A). The graphs for modified Cholesky and MOSEK
are disconnected since there were failed cases. For example, MOSEK (green line with
circles) failed at the point rank(A) = 88 and rank(A) = 90, and hence the points at
rank(A) = 86 and rank(A) = 92 were not connected.

This result shows that, MOSEK, although fast and stable for the full-rank prob-
lems, failed for 7 out of 26 ill-conditioned rank-deficient problems and was almost
always slower than the proposed solvers. The modified Cholesky solver broke down
due to numerical errors for 21 problems. However, the three iterative solvers overcame
this difficulty and solved all the problems.

Note that when the interior-point solver with MOSEK failed to converge, it au-
tomatically switched to a simplex method. Although this re-optimization process can
usually give an optimal solution to the LP problem, we consider the interior-point
method to have failed.

Similar experiments were carried out on larger problems. We tested the solvers on
problems of size 1, 000× 1, 500 with condition number 108 and sparsity around 50%.
The result is presented in Table 7. The notations † and - have the same meaning as
explained in the previous section. The table shows that only AB-GMRES (NE-SOR)
succeeded in solving the problems.

5. Conclusions. We proposed a new way of preconditioning the normal equa-
tions of the second kind arising from the interior-point methods for LP problems. The
resulting interior-point solver is composed of three nested iteration schemes. The
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Fig. 5. CPU time for artificial problems: ill-conditioned with different rank.

Table 7
Experiments on artificial problems.

AB-GMRES CGNE MRNE Modified MOSEK
(NE-SOR) (NE-SSOR) (NE-SSOR) Cholesky

Problem Rank(A) Iter Time Iter Time Iter Time Iter Time Iter Time
Rand1 1,000 22 120.04 †−4 †18 †−6 †21 - - 26 6.50
Rand2 999 28 483.85 †−4 †18 †−6 †31 - - 27 11.04
Rand3 998 21 336.19 †−4 †21 †−6 †20 - - - -
Rand4 997 24 392.52 †−4 †18 †−6 †20 - - - -
Rand5 996 31 441.28 †−4 †19 †−6 †20 - - - -
Rand6 995 21 305.69 †−4 †21 †−6 †20 - - - -
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outer-most layer is the predictor-corrector interior-point method; the middle layer
is the Krylov subspace method for least squares problems, where we may use AB-
GMRES, CGNE or MRNE methods; on top of that, we use a row-scaling scheme
which does not incur extra CPU time; the inner-most layer, serving as a precondi-
tioner for the middle layer, is the stationary inner iterations. Among the three layers,
only the outer-most one runs towards the required accuracy and the other two are
terminated prematurely.

The advantage of our method is that it does not break down, even when the
coefficient matrices become (nearly) singular. The method is competitive for large
and sparse problems and may also be well-suited to problems in which matrices are
too large and dense for direct approaches to work. Extensive numerical experiments
showed that the stability and efficiency of our method outperform the open-source
solvers SDPT3 and SeDuMi, and can solve the rank-deficient and ill-conditioned prob-
lems where the MOSEK interior-point solver fails. There is still room for improve-
ment regarding the iterative solvers as well as using more sophisticated methods for
the interior-point iterations such as a multi-corrector interior-point method. It would
also be worthwhile to extend our method to solve problems such as convex quadratic
programming and SDP.
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