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Intrinsic Dimensional Outlier Detection in
High-Dimensional Data

Jonathan von Brünken, Michael E. Houle, Arthur Zimek

Abstract—We introduce a new method for evaluating local outliers, by utilizing a measure of the intrinsic dimensionality in the vicinity
of a test point, the continuous intrinsic dimension (ID), which has been shown to be equivalent to a measure of the discriminative
power of similarity functions. Continuous ID can be regarded as an extension of Karger and Ruhl’s expansion dimension to a statistical
setting in which the distribution of distances to a query point is modeled in terms of a continuous random variable. The proposed
local outlier score, IDOS, uses ID as a substitute for the density estimation used in classical outlier detection methods such as LOF.
An experimental analysis is provided showing that the precision of IDOS substantially improves over that of state-of-the-art outlier
detection scoring methods, especially when the data sets are large and high-dimensional.

F

1 INTRODUCTION

THE goal of outlier detection, one of the fundamental
data mining tasks, is to identify data objects that do

not fit well in the general data distribution. Applications
include areas as diverse as fraud detection, error elimina-
tion in scientific data, or sports data analysis. Examples
of successful outlier detection could be the detection of
stylistic elements of distinct origins in written work as
hints of plagiarism; or deviations in scientific data as
indicators of equipment malfunction, of human error in
data processing, or of a sub-optimal experimental setup.

Algorithmic approaches to outlier detection are as
diverse as their application scenarios. A major — and
very successful — family of methods relies on den-
sity estimation based on k-nearest-neighbor distances, in
which the points with the lowest density estimates are
reported as the strongest outlier candidates [1], [2], [3].
As a refined technique, the well-known method LOF [4]
compares density estimates in a local context. This notion
of locality has led to a large number of variants adapted
to different contexts [5].

One problem commonly faced in outlier detection
is the deterioration of the quality of density estimates
as the dimensionality of the data increases. A recent
survey [6] discusses several aspects of the ‘curse of
dimensionality’, such as the phenomenon of distance
concentration [7], [8], [9]. This effect, however, is not
directly connected to the representational data dimen-
sion (the number of attributes); rather, it is better ex-
plained by notion of intrinsic dimensionality, measures
of which can account for the data complexity and re-
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sulting performance loss of many data mining tasks in
high-dimensional settings [6], [10], [11], [12].

In this paper, we demonstrate how a measure of
intrinsic dimensionality can be used to improve outlier
detection in data with strongly varying intrinsic dimen-
sionality. Based on an adaptation of LOF [4], we present
an efficient new method for outlier ranking, IDOS (In-
trinsic Dimensionality Outlier Score), that is especially
suitable for large and high dimensional datasets. We
show how the density estimation performed by LOF can
be explained in terms of the intrinsic dimensionality of
continuous distance distributions, thereby allowing us to
demonstrate the advantages of our approach in discrim-
inating between inliers and outliers. IDOS, in its reliance
on estimates of intrinsic dimensionality rather than den-
sity, will be shown to better address the challenges of
the ‘curse of dimensionality’ for outlier detection [6].

The paper is organized as follows. In the next section,
we will discuss different approaches to outlier detection,
and their applicability to large and high dimensional
data. In Section 3, we provide an overview of a model
of continuous intrinsic dimensionality, and develop and
explain our proposed outlier ranking method, IDOS.
In Section 4, we evaluate our algorithm on different
data sets, comparing its performance to state-of-the-art
competitors on data sets whose dimensions span more
than four orders of magnitude. Concluding remarks are
presented in Section 5.

2 RELATED WORK

Models for outlier detection have been categorized as
‘global’ or ‘local’, based on the scope of the background
against which they perform their assessment. However,
locality is not a binary predicate but rather a matter
of degree [5]: ‘global’ distance-based outlier detection
models such as DB-Outlier [1] or k-NN Outlier [2], [3]
compare a local property of a data point — such as a
local density estimate calculated as the number of points
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in a predefined ε-neighborhood, or as the distance to the
k-th nearest neighbor — to the corresponding property
of all other data points. That is, the outlier ranking
is based on a comparison of a local model with the
complete (global) dataset as a reference set.

So called ‘local’ methods, such as LOF [4] and its
many variants [13], [14], [15], [16], [17], compare the local
density estimate with a local reference set. Typically, the
same set of neighbors (such as the ε-neighborhood or
the k nearest neighbors) is used both as a context set
for the density estimate and as a reference set for model
comparison, but this is not necessarily so. Schubert et
al. [5], [18] demonstrated the improved applicability of
local outlier detection in a more general setting, using
different sets for model context, and as a reference for
model comparison. We follow this pattern of ‘general-
ized’ local outlier detection [5], as we will indeed require
two neighborhood sets with considerably different roles.

There exist particular challenges for outlier detection
in high-dimensional data [6]. One recent offshoot in the
line of investigation was to treat the problem as ‘sub-
space’ outlier detection [6], [19], [20], [21], [22], [23], [24],
[25], or to define models that are more stable with in-
creasing data dimensionality, such as an angle-based out-
lier model [26]. Ensemble methods for outlier detection
can also be seen as variants particularly useful for high-
dimensional data [27]. Another branch of investigation
is more concerned with efficiency issues, using sophis-
ticated acceleration mechanisms for high-dimensional
data, such as random projections [28], [29] or locality
sensitive hashing (LSH) [30]. These approaches all tackle
some aspects of the ‘curse of dimensionality’, but none
provides a comprehensive and satisfying solution [6].

To summarize, the challenges that arise with increas-
ing intrinsic dimensionality of datasets have been treated
in different ways and to differing degrees by these spe-
cialized approaches, but none has been proved to excel
with high-dimensional data. The classic LOF method [4]
can still be seen as a competitive state-of-the-art method.
In this paper, instead of attempting to merely cope with
the curse of dimensionality, we show for the first time
how one may make use of estimates of the local intrin-
sic dimensionality for outlier detection, simultaneously
improving effectiveness and efficiency.

3 OUTLIER DETECTION AND INTRINSIC DI-
MENSIONALITY

In this section, we present a new outlier ranking strategy
that makes use of a measure of intrinsic dimensionality
of the data set in the vicinity of candidate objects. We
begin by giving an overview of the various forms of
intrinsic dimensionality that have been studied in the
past. Next, we show how local estimates of intrinsic
dimensionality can be used as a substitute for the density
estimation traditionally used by the popular LOF outlier
scoring function. We conclude the section by showing
how local intrinsic dimensionality can be estimated from

data samples, while accounting for stability problems
when the sample size is small.

3.1 Intrinsic Dimensionality
Intrinsic dimensionality (ID) can be regarded as the
number of latent variables or degrees of freedom needed
to describe a given data set. It serves as a more realistic
measure of the complexity of data, and as a predictor
of the degradation in performance of fundamental data
mining operations (such as search, classification, and
clustering) for high dimensional applications, as well as
determining an appropriate target dimension for dimen-
sional reduction.

3.1.1 Overview
Many models of intrinsic dimensionality have been pro-
posed over the past few decades. Using local data sam-
ples, topological models estimate the basis dimension of
the tangent space of the data manifold [31], [32], [33],
[34]. Projection models construct a subspace to which a
data sample could be projected while minimizing the er-
ror of fit; the dimension of the resulting subspace is taken
to be the intrinsic dimension. Examples include PCA and
its variants [35], [36], manifold learning [37], [38], [39],
and other non-linear extensions [40]. Multidimensional
scaling attempts to determine a projection that preserves
local pairwise distances within the data sample [37], [41].
Fractal models estimate an intrinsic dimension from the
degree of self-similarity of the data, or the capacity of the
data to fill the space within which it is contained [42],
[43], [44]. Shattering models estimate dimensionality
from the number of subconfigurations of data points
that can be distinguished using a collection of split-
ters — a famous example is the Vapnik-Chervonenkis
(VC) dimension [45]. Statistical estimators of intrinsic
dimension can often be derived via parametric modeling
and estimation of distribution [46], [47]. More recently
proposed intrinsic dimensionality models, such as the
expansion dimension [10] and the generalized expan-
sion dimension [12], quantify intrinsic dimensionality in
terms of the rate at which the number of encountered
data objects grows as the range of distances expands.
Expansion models of dimensionality have recently been
applied to the design and analysis of index structures for
similarity search [10], [48], [49], [50], and the analysis of
a projection-based heuristic for LOF [28].

3.1.2 Continuous Intrinsic Dimensionality
Very recently, an expansion model of intrinsic dimen-
sionality has been introduced for continuous distance
distributions [51]. The distance from a given reference
object is modeled in terms of an absolutely continuous
random variable X with support [0,∞). Let fX denote
the probability density of X, and FX denote the cor-
responding cumulative density function. Whenever X
is absolutely continuous at x, FX is differentiable at x
and its first-order derivative is fX(x). With respect to
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this distribution, the continuous ID of X at distance x is
defined to be

IDX(x) :≡ limε→0+
lnFX ((1 + ε)x)− lnFX(x)

ln(1 + ε)

With respect to the generalized expansion dimen-
sion [12], the above definition can be regarded as the
outcome of a dimensional test of neighborhoods of radii
x and (1 + ε)x in which the role of neighborhood cardi-
nalities is filled by the expected number of neighbors.
Continuous ID also turns out to be equivalent to a
formulation of the (lack of) discriminative power of a
distance measure at distance x from the reference object,
as both formulations can be shown to have the same
closed form [51]:

IDX(x) =
xfX(x)

FX(x)
. (1)

Another quantity of interest is the limit of the contin-
uous ID as the distance x tends to zero:

IDX = lim
x→0+

IDX(x).

This quantity, simply referred to as the ‘continuous
intrinsic dimensionality’ without mention of distance,
has been shown [52] to be directly related to the shape
parameter of the generalized Pareto distribution from
extreme value theory, for the case of bounded distribu-
tional tails. Also shown is that for data distributed within
any d-dimensional manifold within an m-dimensional
space, IDX = d.1

Figure 1 illustrates the ability of the continuous ID
score of a reference point to reveal the dimension of
the local manifold containing that point. With respect
to a 3-dimensional domain, data points were generated
within five manifolds, three of dimension 1 and two of
dimension 2. A substantial proportion of noise points
was also generated. Inlier points were associated with
continuous ID scores that were in strong agreement with
the dimensions of the manifolds to which they belonged.
On the other hand, most of the outlier (noise) points
had ID scores substantially larger than those of the inlier
points. From the vantage of an outlier point q, the distri-
bution of distances suffers from a lack of discriminability
(or equivalently, a high continuous ID) due to the large
numbers of inlier points (manifold points) having similar
distances to q. The example shows that a relatively large
continuous ID score has the potential to reveal an outlier
in the vicinity of a cluster of inlier points.

3.2 Intrinsic Dimensionality Outlier Score
Our proposed outlier ranking function, IDOS, can be
regarded as a reworking of the well-established Local
Outlier Factor (LOF) score [4], in which the local density
estimation performed by LOF is replaced by the local

1. For more on properties of continuous ID, and on its connection
to extreme value theory and the manifold structure of data, we refer
the reader to [51], [52].
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(a) Visualization by bubble sizes. A larger bubble radius
indicates a higher estimated value of the continuous ID.
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(b) Visualization by box plots of the different types of
clusters. The horizontal line in the middle of each box
denotes the median intrinsic dimension value, while the
limits of the box are at the upper and lower quartiles.
The whiskers (dotted lines) denote the range of intrinsic
dimensional values within 1.5 times the inter-quartile
distance. All measurements falling outside this larger
range are displayed as individual dots.

Fig. 1: Visualization of the continuous ID of a 3-
dimensional data set using the estimator presented in
Section 3.3.

estimation of intrinsic dimensionality. Before presenting
the details of IDOS, we first show how LOF can be
reinterpreted in terms of the continuous intrinsic dimen-
sionality.
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Based on the k-distance distk(p) — the radius of the
smallest ball centered at p that captures its k nearest
neighbors — the k-reachability distance from point p to
point o is:

rdistk(p, o) = max{distk(o),dist(p, o)}

LOF uses this asymmetric distance measure for the
estimation of the data density in the vicinity of a point p,
defined as the data mass within the context set Nk(p) of
size k for p (this mass being k), divided by the average
k-reachability distance avg rdistk(p) over the context set:

lrdk(p) =
k

avg rdistk(p)
, where

avg rdistk(p) =
1

k
·
∑

rdistk(p, o)
o∈Nk(p)

.

This density measure, referred to as the local reachability
density, provides more stability as compared to the
often-used simple density sdk(p) = k/ distk(p). It should
be noted that in the original formulation of LOF [4],
lrdk(p) was defined as 1/ avg rdistk(p) — justifiable
whenever k is a fixed constant, as the omission of the
mass factor k would lead to equivalent results. Since we
wish to leave open the possibility of comparing results
while varying the neighborhood size k, in this paper we
have opted for the more traditional treatment of radial
data density as the ratio between measures of data mass
and radial distance.

The use of reachability distance in the formulation
of density leads to estimates with different tendencies,
depending on whether the test point p is an inlier or an
outlier. For outliers in the vicinity of some cluster of in-
liers, distk(o) can be expected to be smaller than dist(p, o)
– in which case lrdk(p) tends to sd′k(p) = k/ dist′k(p),
where dist′k(p) is the average of the distances from p
to the members of its context set. On the other hand,
for inliers located within a cluster, the local reachability
density tends to sd′′k(p) = k/ dist′′k(p), where dist′′k(p) is
the average of the k-distances of the members of the
context set of p (which are very likely to be inliers).

The LOF score contrasts the density model of a query
object q with those of a reference set local to q. More
precisely, in LOF the reference sets are identical to the
context sets within which the local reachability densities
are measured. The LOF score is the ratio between the
average density taken over the reference set, and the
density based at q:

LOFk(q) =
1

k
·

∑
lrdk(p)

p∈Nk(q)

lrdk(q)

Inliers can be expected to have LOF scores near 1,
whereas those having scores significantly higher than 1
would be deemed to be outliers. For many applications,
due to the high cost of computing neighborhoods of
context set items, it is often convenient to compute a
simplified version of LOF in which the simple density

sdk is used in place of the local reachability density lrdk
[5].

By letting the context sets also serve as the reference
sets for the comparison of density models, LOF ensures
that the determination of outliers is purely with respect
to the local context associated with the test object. This
insistence on locality is the reason why LOF works well
with data having more than one generation mechanism.
However, since it is a distance measure subject to the
‘curse of dimensionality’, the local reachability density
loses its explanatory power when the local intrinsic
dimension is high.

The model of ID introduced in [51] establishes a
relationship among the continuous intrinsic dimension-
ality IDX(x), and the probability density fX(x) and
cumulative density FX(x)/x of the underlying distance
distribution (as expressed in Equation 1). Given a sample
of n data points, the simple density

1

n
sdk(p) =

k

n · distk(p)

can be viewed as an estimator for the distributional cu-
mulative density at distance distk(p); this in turn implies
that the cumulative density can be approximated by
1
n lrdk. The LOF formula can then be regarded as an ap-
proximation of the ratio between the average cumulative
density of the reference set objects and the cumulative
density of the query object, all taken at the k-distances
of the respective points involved:

LOFk(q) ≈ 1

k
·
∑ Fp(distk(p))

distk(p)
p∈Nk(q)

/
Fq(distk(q))

distk(q)

=
1

k
·
∑ fp(distk(p))

IDp(distk(p))
p∈Nk(q)

/
fq(distk(q))

IDq(distk(q))

where IDp is the continuous ID based at object p.
The reformulation of LOF in terms of continuous ID

reveals the degree to which it is sensitive to variations
in the probability density at various distances from the
query and reference objects. When the reference set
consists mainly of inlier points belonging to a common
cluster manifold, significant variation in the probabil-
ity density models would tend to reduce the contrast
between the reference objects and the query object, in
terms of their contributions to the LOF score. However,
as indicated by the example in Figure 1, if the density
models were replaced by estimations of the local intrinsic
dimensionality, the contributions of the reference objects
would tend to be more uniform, improving the contrast
between the query object and reference objects.

Eliminating from LOF the variation due to distance
suggests the following transformation:

LOFk(q) ≈ 1

k
·
∑ fp(distk(p))

IDp(distk(p))
p∈Nk(q)

/
fq(distk(q))

IDq(distk(q))
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−→ 1

k
·
∑ 1

IDp
p∈Nk(q)

/
1

IDq
= IDq ·

1

k

∑ 1

IDp
p∈Nk(q)


This leads to our proposed outlier scoring function based
on intrinsic dimensionality:

IDOS(q) :≡ IDq
|Nrq |

·
∑ 1

IDp
p∈Nr

q

(2)

As with the original LOF score, IDOS would tend to
assign inlier objects scores close to 1, while outliers
would tend to receive substantially higher scores.

Here, Nrq denotes the reference set for query q. The con-
text sets are not stated in this formulation, since it does
not specify the intrinsic dimensionality to be estimated.
In principle, any definition of intrinsic dimensionality
could be considered, provided that stable estimates can
be calculated in a reasonably efficient manner.

3.3 Estimation of Intrinsic Dimensionality
In our treatment we will make use of the continuous
ID, not only for the theoretical properties discussed ear-
lier, but also since several efficiently-computable statisti-
cal estimators have been proposed and evaluated [52].
For our implementation, we chose one of the best-
performing estimators, a maximum-likelihood estimator
(MLE) following the form of the well-known Hill esti-
mator for the scaling exponent of a bounded power-law
tail distribution [53]:

ÎDX = −
(
1

k

∑k

i=1
ln
xi
xk

)−1
(3)

We assume that the sample consists of a sequence
x1, . . . , xk of observations of a random distance variable
X with support [0, w), in ascending order, i.e., x1 ≤ x2 ≤
· · · ≤ xk.

The sample can be regarded as the context set for
an ID-based outlier model building step analogous to
the model building step [5]. If the context set is a
neighborhood of q, the observations can be regarded as
being derived from a distance tail distribution. While the
MLE is known to be only asymptotically unbiased [54]
for tail distributions, for our applications the bias may
be neglected, provided that the reference set sizes are
kept constant.

The asymptotic variance of the Hill estimator is known
to increase with decreasing sample size, and with in-
creasing intrinsic dimensionality [55]. Special attention
must therefore be given when the sample sizes are small.

The experimental evaluation in [52] indicates that the
MLE estimator generally produces stable estimates once
the sample size reaches approximately 100. For samples
of this size, the MLE estimator is used directly. However,
all data points coinciding with the query object are first
removed from the sample, as even a single distance
value of zero would force the estimation of ID to be
zero.

Algorithm 1: Algorithmic specification of IDOS.
Data: Database D
Input: context set size kc ≥ 3
Input: reference set size kr ≥ 1
Result: Outlier score IDOS(q) for each q ∈ D
// Preprocessing
forall the p ∈ D do

Compute reference set Nr
p of size kr ;

Compute context set Nc
p of size kc;

end
// Model building step
forall the p ∈ D do

if kc ≥ 100 then
Compute intrinsic dimensionality ÎDp directly
from Equation 3;

else
Compute ÎDp,2;
for i = 3 to kc do

compute ÎDp,i from ÎDp,i−1 using Equation 5;
end
Compute ÎDp as the weighted harmonic mean of
all previously computed ÎDp,i, using Equation 4;

end
end
// Model comparison step
forall the q ∈ D do

Compute ÎD
−1

N as the arithmetic mean of ÎD
−1

p for all
p ∈ Nr

q ;
Compute IDOS(q) = ÎDq · ÎD

−1

N ;
end

Estimation of continuous ID with sample size smaller
than 100 can lead to unacceptably high variance.
Smoothing the estimation by averaging over subsamples
can help to lower this variance [54]. MLE (Equation 3)
is used to obtain values of continuous ID for each
subsample of the form Nq,j = {x1, . . . , xj}, for 1 ≤ j ≤ k.
A weighted harmonic mean of these ID values is re-
cursively computed, using weights depending on the
sample size, as follows:

ÎDq =

 k∑
j=1

(
wj ·

1

ÎDq,j

)−1 (4)

ÎDq,j+1 =
j + 1

j
·

(
1

ÎDq,j
+ ln

(
xj+1

xj

))−1
(5)

where ÎDq,j is the estimated intrinsic dimensionality
computed over the subsample Nrq,j , and

wj = (j − 1)

/
k−1∑
i=1

i =
2j − 2

k2 − k

is the weight of the j-th term.
Equation 4 can trivially be computed for all objects

in O(k2 · |Nrq |) by computing each of the k − 1 in-
dividual intrinsic dimensionalities in O(k) time. The
execution cost can be reduced to O(k · |Nrq |) by re-
cursive exploitation of Equation 5. If the sizes of the
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reference sets and context sets are fixed at kr and kc,
respectively, the cost of computing an outlier score for
each database object is in O(n ·max{kr, kc}). To prevent
unnecessary recomputations, the nearest neighbor dis-
tances and intrinsic dimensionalities need to be stored,
resulting in O(n ·max{kr, kc}) complexity for the storage
requirements as well. The full outlier detection process
is summarized as Algorithm 1.

4 EVALUATION

4.1 Competitors and Evaluation Measures
We compare against state-of-the-art competitors, namely
the Local Outlier Factor (LOF) [4], as well as two differ-
ent models targeting high-dimensional data: SOD [19], as
a representative of subspace outlier detection algorithms,
and FastABOD [26], the quadratic-time approximation
variant of angle-based outlier detection (ABOD) [26].

All algorithms and experiments were implemented
and executed in the ELKI framework [56]. We com-
pare the results based on the commonly-used Euclidean
distance, as well as on the arc cosine distance that is
often preferred for sparse, high-dimensional data. We
report the precision of the outlier ranking, as assessed
by the ratio of outliers correctly assigned to the top-
t listed objects, where t is the total number of out-
liers in the respective dataset. In addition, we report
the performance for each dataset by the area under
the curve of the receiver operating characteristic (ROC
AUC). ROC curves plot the true positive rate against
the false positive rate. The resulting monotone curves are
converted into a performance measure by computing the
area under this curve (AUC). This allows several results
to be displayed in a single graph, as well as a numerical
comparison of the results. ROC curves and ROC AUC
analysis inherently treat the class imbalance problem by
using relative frequencies, which makes them popular
for the evaluation of outlier detection strategies.

4.2 Datasets
For benchmarking our method, we designed four
datasets, varying the representational dimensionality
over four orders of magnitude (see the summary in
Table 1).

The ALOI dataset is based on the Amsterdam Library
of Object Images [57], a collection of 110,250 images
of 1000 objects, taken under systematically varied con-
ditions. We used the Object View Collection as source
for the inlier set, resulting in 1000 small clusters, each
containing 72 photographs of the associated object taken
from different angles. To produce the local outlier set, for
each object we selected images taken under markedly
different illumination conditions. The final vectors were
generated as a combination of RGB, HSV, YCbCr and
edge-direction histograms. Despite the high representa-
tional dimensionality, the objects of the resulting dataset
are associated with relatively low intrinsic dimensional-
ity scores: typically less than 5 for inliers, and between

10 and 20 for outliers, as indicated in Figure 2a. The
intrinsic dimensionalities of inliers and of outliers are
well distinguished.

The FMA dataset was created from 190 public-domain
mp3 files, downloaded from freemusicarchive.org in
January 2013. The files were divided into 16 groups
according to their meta tags and featured instrumen-
tation. Inliers were created by concatenating segments
randomly selected from files within a common group,
whereas outliers were created by concatenating seg-
ments from different groups. The resulting sound files
were converted into 1380-dimensional rhythm patterns
[59]. This construction resulted in a dataset of relatively
high intrinsic dimensionality, exhibiting a considerable
overlap between the range of intrinsic dimensional val-
ues for inliers and the range for outliers (Figure 2b).

The Amazon dataset is based on the Amazon Com-
merce reviews set from the UCI Machine Learning
Repository [58]. We used convex combinations of all
pairs of distinct points belonging to the same reviewer to
form the inlier set. To create the outlier set, for each pair
of users, a convex combination was created from two
reviews chosen at random (one per user). The typical
range of intrinsic dimensional values is between 10 and
20, with an even stronger overlap between the ranges
for inliers and outliers (Figure 2c).

The Reuters dataset was created from the Reuters
RCV1-RCV2 Multilingual data corpus [60] available
from the UCI Machine Learning Repository [58]. It con-
tains 111,740 vectorized documents in 5 languages from
the RCV1 and RCV2 collections of Reuters news agency
articles. Also included in the corpus are document vec-
tors representing machine translations of each original
document into all four other languages. Each document
is assigned to one of six possible classes. To generate
an inlier data set, for each article we concatenated
the vectors for each of its 5 language versions into a
single vector. The resulting inlier set possesses a high
correlation between corresponding words in different
translations. Outliers were generated by the combination
of five vectors corresponding to 5 documents, each of a
different language, and from distinct article classes. Both
inlier and outlier document vectors were normalized,
so as to allow meaningful application of the Euclidean
distance measure as well as the more traditional cosine
similarity [61]. The resulting set is represented by 107,756
dimensions; however, the representation is very sparse,
with the maximum number of non-zero dimensions be-
ing 5,387 for inliers, and 751 for the outliers. As shown in
Figure 2d, while being the highest over our four datasets,
the median intrinsic dimensionality is still surprisingly
low considering the very high representational dimen-
sion.

4.3 Results

Much like the kr parameter of IDOS, the competing
methods all require that a parameter value k be supplied



VON BRÜNKEN, HOULE, AND ZIMEK: OUTLIER DETECTION IN HIGH-DIMENSIONAL DATA BASED ON INTRINSIC DIMENSIONALITY 7

TABLE 1: Summary of the datasets. The datasets are available at
https://drive.google.com/file/d/0BwdAgJeKIbgEc1BJaFM5cF9kMEU/edit?usp=sharing .

Name Dimension Instances Outliers Proportion of Outliers Representation
ALOI [57] 612 73,000 1,000 1.37% color & edge histograms
FMA 1,380 77,000 1,000 1.30% rhythm patterns
Amazon [58] 10,000 22,975 1,225 5.33% combined occurrence counts
Reuters [58] 107,756 106,701 720 0.67% combined word vectors
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Fig. 2: Box plots for the intrinsic dimensionality of inliers and outliers in the evaluation datasets, as measured at
the context set size kc for which IDOS performed best (in the experimentation of Section 4). The horizontal line in
the middle of each box denotes the median intrinsic dimension value, while the limits of the box are at the upper
and lower quartiles. The whiskers (dotted lines) denote the range of intrinsic dimensional values within 1.5 times
the inter-quartile distance. All measurements falling outside this larger range are displayed as individual dots.

to determine the size of neighborhoods used as reference
sets. We tested as parameter values for k the complete
range from 1 to 300. In the result plots, the changing
value for k = kr spans the x-axis. The parameter of
IDOS defining the size of the context set (neighborhood)
used for the estimation of continous ID, kc, was set to
values between 50 and 5000 depending on the data set:
for ALOI, FMA, and Amazon we computed results for
neighborhood sizes of 50, 100, 200, and 300, while for the
very high dimensional Reuters dataset we chose values
of 500, 1000, 2000, and 5000. For each choice of kc, we
plot a different curve.

In general, the estimation of continuous ID performed
by IDOS can be expected to yield good results for
sufficiently large kc, subject to the following two re-
strictions: kc should be less than 5% of the dataset, to
ensure that the resulting sample retains the properties
of a distribution tail; and less than the average inlier
cluster size, to minimize spurious impact from unrelated
clusters. We note that the latter restriction was discussed
in the original LOF publication [4], and is a restriction
for virtually all neighborhood-based outlier detection
models. For the ALOI and Amazon sets, the limiting
condition is the cluster size (72 and 435, respectively).
For FMA and Reuters, the 5% limit on the sample
proportion is more restrictive.

For the ALOI dataset, we display the results using
Euclidean distance in Figures 3a and 3b, while Figures 3c

and 3d show the performance for the arc cosine distance.
FastABOD performs excellently on ALOI, while SOD
detects outliers especially well when k is smaller than the
cluster sizes. As one might expect due to the relatively
small cluster sizes impeding the accurate estimation of
intrinsic dimensionality, IDOS does not outperform Fast-
ABOD, and deteriorates with increasing kc. On the other
hand, IDOS does perform comparably to LOF, especially
in terms of precision. SOD exhibits very good ROC AUC
values, but its precision is not competitive to that of other
algorithms, especially when using Euclidean distance.

On the FMA dataset, from the results shown in Fig-
ures 4a to 4d, we see that LOF performs comparably to
IDOS when the continuous ID is estimated over context
sets of size kc between 100 and 200. When this size is
increased to more than 200 objects, IDOS outperforms all
other competitors. The gain between kc=200 and kc=300
indicates that IDOS has the potential for even better
performance for higher values. SOD and FastABOD both
appear to struggle over this dataset, with the latter per-
forming barely better than would a random ranking. The
precision values achieved by IDOS are also significantly
higher than those achieved by its competitors.

On the 10,000-dimensional Amazon dataset, in ac-
cordance with our expectations due to the size of its
clusters (435), IDOS performs best for the larger choices
of context set size kc. The ROC AUC results in Figures 5a
and 5c show that only SOD achieves comparable results,
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Fig. 3: Performance of IDOS, LOF, SOD, and FastABOD on the ALOI dataset for Euclidean and arc cosine distances,
in terms of precision and ROC AUC.
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Fig. 4: Performance of IDOS, LOF, SOD, and FastABOD on the FMA dataset for Euclidean and arc cosine distances,
in terms of precision and ROC AUC.

especially with arc cosine distance and a reference set
size of k ≈ 20. For most of the range of choices of k,
the performance of IDOS dominates that of FastABOD,
which in turn dominates that of LOF. The superiority of
IDOS is even more clear from the plots of precision val-
ues (Figures 5b and 5d). However, the relatively low gain
in performance between the choices kc=200 and kc=300
indicates that further increases in kc will not likely result
in a significant improvement in performance.

On the large and very high-dimensional Reuters
dataset, FastABOD and SOD could not be tested. Both
would need massive parallelism to accommodate their
time complexities (quadratic in the dataset size, and
linear in the dataset dimensionality). In addition, Fast-
ABOD requires the storage of a similarity matrix for
efficient computation, which for the Reuters set would be

at the expense of 80 GB of main memory over and above
the already high memory requirements for the storage of
the dataset. For LOF and IDOS, we computed the nearest
neighbors required in a preprocessing step, and stored
them for later use by both algorithms. In all cases the
performance using the arc cosine similarity was far better
than using Euclidean distance — not unexpectedly, given
that the use of Euclidean distances on text data is not
considered to be appropriate in practice [61]. In the
experiments using arc cosine similarity, the large context
set sizes required by IDOS are commensurate with the
large dataset and cluster sizes. For IDOS, a context set
size of 5000 (roughly 5% of the dataset) leads to near-
perfect ROC AUC values of 0.9967, and a precision
of 0.8069 (581 of 720 outliers found). Although LOF
also achieves reasonably high ROC AUC results, its
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Fig. 5: Performance of IDOS, LOF, SOD, and FastABOD on the Amazon dataset for Euclidean and arc cosine
distances, in terms of precision and ROC AUC.
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Fig. 6: Performance of IDOS and LOF on the Reuters dataset, for Euclidean and arc cosine distances, in terms of
precision and ROC AUC.

performance is generally dominated by that of IDOS,
particularly for the smaller values of the reference set
k = kr. However, the precision scores achieved by LOF
are far lower than those achieved by IDOS.

4.4 Efficiency
We compare the CPU time of the algorithms. IDOS, LOF,
SOD, and FastABOD, all implemented in the unified
framework ELKI [56], were benchmarked at neighbor-
hood sizes k = 500, 1000 and 2000 on synthetic datasets
containing a single, normally distributed cluster of size
n = 5000, 10,000 or 20,000, with representational dimen-
sion of m = 500, 1000 or 2000. In the case of IDOS, both
parameters kc and kr were set to the same value, k. All
tests were run on the same machine, equipped with an
Intel Core i5-3570 CPU and 16GB RAM, without the use

of any form of parallelism in the code. Every test was run
100 times to generate 100 scores (execution costs), from
which the fastest and slowest 10% were discarded. From
the remaining 80 scores, we report the arithmetic mean.
We excluded the time required for the computations of
shared nearest neighbors (SOD), k-nearest neighbor sets
(IDOS, LOF), or the similarity matrix (FastABOD), as
the efficiency of these steps depends on the employed
approximation or indexing strategies, and is thus outside
the scope of this paper.

As expected, when varying the dataset size, IDOS,
LOF, and SOD all show a linear increase in running
time. The computational cost of FastABOD implementa-
tion increases approximately quadratically (Figures 7a),
which is consistent with its O(n2+nk2) asymptotic time
complexity. Figure 7b shows the resulting increase in ex-
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ecution time as the parameter k is doubled. Again, IDOS,
LOF, and SOD all show a linear increase in running time,
while the computational cost of FastABOD increases
approximately quadratically (Figures 7b). The dimen-
sionality has linear influence on the runtime of SOD,
while for the other algorithms no significant changes are
observed (Figure 7c). Overall, we find that FastABOD
and SOD are considerably more time-consuming than
LOF and IDOS. For lower dimensionalities, SOD usually
requires less computation time than FastABOD, but still
far more than LOF and IDOS. Of the two faster methods,
LOF requires roughly double the execution time of IDOS.

To conclude, we note that while computing the results
for the Reuters dataset shown in Figure 6, the gap
between the running times of LOF and IDOS widened
substantially as k increased. This is likely due to the need
for LOF to compute k + 1 lookups of object k-distances
for each lookup of an object k-distance by IDOS, during
the construction of the outlier model.

5 CONCLUSION

We have presented a novel outlier scoring method, IDOS,
that takes advantage of variations in local intrinsic di-
mensionality (ID) to distinguish between inliers and out-
liers. ID allows for inlier members of a subspace cluster
to come to a better agreement with other members of the
same cluster, and for better distinguishability from non-
members. Local outliers tend to experience proximity to
a cluster as an increase in the estimated value of their
continuous ID.

As a comparison, we argued that the well-known LOF
outlier score can be reinterpreted in light of the model
of continuous intrinsic dimensionality introduced in [51].

In comparison with IDOS, LOF is revealed to have the
potential for more variability in its assessment of local
density within clusters (groups of inliers) than IDOS
has in its assessment of local intrinsic dimensionality,
which would make it harder to distinguish outliers in
the vicinity of such clusters. These claims are borne out
by experimental results presented for high- to very high-
dimensional datasets (up to 107,756 dimensions), that
show the superiority of our method over the state-of-
the-art competitors LOF, ABOD and SOD, in terms of
both effectiveness and efficiency.
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