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Abstract. Weir [34] proved a Chomsky-Schiitzenberger-like representa-
tion theorem for the string languages of tree-adjoining grammars, where
the Dyck language D,, in the Chomsky-Schiitzenberger characterization
is replaced by the intersection Dz, N g_l(Dgn), where g is a certain bi-
jection on the alphabet consisting of 2n pairs of brackets. This paper
presents a generalization of this theorem to the string languages that
are the yield images of the tree languages generated by simple (i.e., lin-
ear and non-deleting) context-free tree grammars. This result is obtained
through a natural generalization of the original Chomsky-Schiitzenberger
theorem to the tree languages of simple context-free tree grammars. We
use Rogers’s [24,23] notion of multi-dimensional trees to state this latter
theorem in a very general, abstract form.

Keywords: Context-free tree grammar; Multi-dimensional tree; Dyck
language; Chomsky-Schiitzenberger theorem

1 Introduction

Weir [34] showed that every string language L generated by a tree-adjoining
grammar [11] can be written as

L =h(RN D2y Mg~ (D2n)),

where h is a homomorphism, R is a regular set, n is a positive integer, Dy,
is the Dyck language over the alphabet I, consisting of 2n pairs of brackets
[1,11,,..., [2n,]2n, and g is the bijection on I%,, defined by

g([2¢+1) = [2i+17 9(] 2i+1) = ]2i+27 g([2i+2) = ]2i+17 g(] 2¢+2) = [2i+27

for i = 0,...,n — 1. The effect of the intersection with g~!(Ds,) on the Dyck
language Ds, is to make the consecutive odd-numbered and even-numbered

* This work was in part supported by the Japan Society for the Promotion of Science
Grant-in-Aid for Scientific Research (KAKENHI) (25330020).
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brackets [2;4+1,12i+1, [2i42,]2i+2 always appear as a group, in the configu-
ration [2;41 [2i4212i4212:11. When two such groups, say, [1,11, [2,]2 and
[3,]13, [4,]4, overlap, the only possible configurations are

[1 (3041413021214,
(1 2120304141374,
[1 [3 04212147314,

and those with the positions of the two groups interchanged. As Weir [34] showed,
Dy, N g~ 1(Dy,) is a non-context-free tree-adjoining language for every n > 1.

In this paper, we prove a generalization of Weir’s theorem for simple (i.e.,
linear and non-deleting) context-free tree grammars' [26,8,15]: if L is the string
language generated by a simple context-free tree grammar of rank ¢ — 1, then L
can be written as

L=h(RN Dy Ng (D)),

where h, R, and n are as before, Dy, is the Dyck language over the alphabet
Iy, (containing gn pairs of brackets), and g is the bijection on I, defined by

9(Lgit1) = Lgit1, 9(gi+1) = lgitq,
9(Lgits) = Vgitj-1, 9Qqi+i) = Loitss
fori=0,...,n—1and j =2,...,q. This result generalizes Weir’s [34] because

tree-adjoining grammars generate the same string languages as simple context-
free tree grammars that are monadic (i.e., of rank 1) [21,10,16]. As in the original
Chomsky-Schiitzenberger theorem [4,3], we can take R to be a local set and h
to be alphabetic in the sense that h maps each symbol either to a symbol or to
the empty string.

It is known [12,13] that the string languages of simple context-free tree gram-
mars are exactly those generated by multiple context-free grammars [29] that are
well-nested in the sense of [13]. For multiple context-free grammars in general,
Yoshinaka et al. [36] have proved a Chomsky-Schiitzenberger-like representation
theorem, but the analogy to the Chomsky-Schiitzenberger theorem is somewhat
weak because their notion of a multiple Dyck language is given only by reference
to a certain multiple context-free grammar, and does not seem to have other in-
dependent characterizations, analogous to the characterization of ordinary Dyck
languages in terms of the cancellation law [;]; ~» €. Our result is obtained via a
natural generalization of the Chomsky-Schiitzenberger theorem to the tree lan-
guages of simple context-free tree grammars. This intermediate result is stated
in terms of Dyck tree languages, which are exactly analogous to the original Dyck
languages in that they have two equivalent definitions, one in terms of inductive
definitions and one in terms of rewriting with cancellation laws.

In order to emphasize the analogy between the string case and the tree
case, we use the notion of a multi-dimensional tree introduced by Rogers [24,23]

! The term “simple context-free tree grammar” is taken from [7].
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and state many lemmas as general facts about m-dimensional trees. We use 3-
dimensional trees to represent derivation trees of simple context-free tree gram-
mars. We note that our notion of the yield of an m-dimensional tree will be
different from Rogers’s, because Rogers’s definition was specifically tailored for
the monadic case.?

2 Preliminaries

2.1 First-Child-Next-Sibling Encoding of Ordered Unranked Trees

In an ordered unranked tree, a node may have any number of children, and the
children of the same node are linearly ordered. We do not consider unordered
trees in this paper, so we call ordered unranked trees simply unranked trees. In
the usual term notation for unranked trees [32], the unranked trees over a set X
of labels are defined inductively as follows:

— If ¢ € X, then ¢ is an unranked tree over X.
— If ty,...,t, are unranked trees over X' (n > 1) and ¢ € X, then ¢(t1 ...t,) is
an unranked tree over .

There is a well-known way of encoding unranked trees into binary trees [17],
often called the first-child-next-sibling encoding. We refer to a node in a binary
tree by a string over the set {1,2}. Thus, the set of nodes of a binary tree forms
a prefix-closed subset T' of {1,2}*. (Note that we do not assume binary trees
to be full in the sense that each node has 0 or 2 children.) We write u - v for
the concatenation of two strings u,v € {1,2}*. In the first-child-next-sibling
encoding of unranked trees, the relation -2 = v represents the relation “v is the
first child of u”, and the relation w - 1 = v represents the relation “v is the next
sibling of w”. The child relation is then represented by the first-child relation
composed with the reflexive transitive closure of the next-sibling relation. In
this way, any non-empty finite prefix-closed subset T' of {1,2}* such that 1 ¢ T
encodes the set of nodes of some unranked tree. In general, an arbitrary non-
empty finite prefix-closed subset of {1,2}* encodes the nodes of a hedge, a finite,
non-empty sequence of unranked trees.? In this encoding, € (empty string) is the

2 When the present work was nearing completion, the author learned of a recent
paper by Sorokin [30], in which he states (without proof) a result similar to Theo-
rem 42 below (Theorem 3 of [30]). (The statement of his theorem is actually closer to
Lemma 39 below.) As will be clear to the reader, the emphasis of the present paper
is very different from Sorokin’s. The merit of the present work lies not so much in
Theorem 42 itself as in the method of obtaining it though a natural generalization
of the constructions that can be used to prove the original Chomsky-Schiitzenberger
theorem. (Sorokin’s own emphasis is on the use of monoid automata to characterize
the string languages of simple context-free tree grammars.)

Sometimes the empty sequence of unranked trees is also allowed as a hedge, but we
exclude it here in order to be able to encode all hedges into binary trees. Note that
Knuth [17] and Takahashi [31] used forest instead of hedge, the term we adopt here
following [5].
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root of the first tree, 1 is the root of the second tree, 1-1 is the root of the third
tree, and so on.

Trees and hedges we consider in this paper are all labeled. Labeled unranked
trees and hedges over X are represented by pairs of the form T = (T, ¢), where
T is a non-empty finite prefix-closed subset of {1,2}* and ¢ is a function from
T to .

2.2 Dyck Languages

Forn > 1, let I}, = U, {[;,1:}. For each i, the two symbols [;,]; are regarded
as a matching pair of brackets. Define a binary relation ~» on I by

~={(ul;liv,w) |u,vel}1<i<n}.
The Dyck language D, is defined by
D,={vely|v~"e},

where ~~* denotes the reflexive transitive closure of the relation ~. An alterna-
tive way of defining D,, is by the following context-free grammar:

S —e| AS,
A—>[1S]1|"'|[nS]n~

The set D}, of Dyck primes is defined by
Dj, = (Dy —{e}) — (Dn — {e})*.

Alternatively, the set D!, is defined by the nonterminal A in the above context-
free grammar.

Unranked trees and hedges can be represented by elements of Dyck languages.
If X is a set of symbols, let

I's = | J{L.1.}-

ceXr

We write Dy, and D%, for the Dyck language and the set of Dyck primes over this
alphabet. Using the standard term notation for labeled unranked trees, define
the string encoding function enc from labeled unranked trees and hedges over
2’ to strings over I's; by

enc(c) = [ 1.,
enc(c(ty...tn)) = [ enc(ty ...t,) 1q,

enc(t; ...t,) = enc(t)enc(ty...t,) forn>2.

It is clear that the function enc maps any unranked tree over X to an element of
D', and any hedge over X' to an element of Dy — {e}. Conversely, it is easy to
see that any element of D, encodes a tree over X, and any element of Dy, — {¢}
encodes a hedge over Y. These correspondences are bijections.
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2.3 Context-Free Tree Grammars

We deviate from the standard practice and let a context-free tree grammar
generate a set of unranked trees. Thus, the terminal alphabet of a context-free
tree grammar will be unranked. In contrast, the set of nonterminals will be a
ranked alphabet, as in the standard definition.

A ranked alphabet is a union T = |J, oy T of disjoint sets of symbols. If
f €T, ris the rank of f. If X is an (unranked) alphabet and 7" a ranked
alphabet, let Tx r be the set of trees T' € Txyr such that whenever a node of
T is labeled by some f € T, then the number of its children is equal to the rank
of f.

For convenience, we use the term representation of trees. The set Ty r can
be defined inductively as follows:

LI feXurO then f € Txy;
2. f fe XUT™ and ty,...,t, € Ty (n>1), then f(t...t,) € Tx r.

In order to define the notion of a context-free tree grammar, we need a
countably infinite supply of variables x1,xs,3,.... The set consisting of the
first n variables is denoted X, (i.e., X, = {x1,...,2,}). The notation Ty »(X,)
denotes the set Ty rux, , where members of X,, are all assumed to have rank
0. A tree in Ty r(X,,) is often written ¢[z1,...,x,], displaying the variables. If
tlxy,...,zn) € Tor(X,) and t1,...,t, € Ty, then ¢[t1,...,t,] denotes the

result of substituting ¢i,...,t, for x1,...,x,, respectively, in t[x1,...,2z,]. An
element t[z1,...,2,] of Ty r(X,) is an n-context if for each ¢ = 1,...,n, z;
occurs exactly once in t[x1, ..., x,]. (In the literature, an n-context is sometimes

called a simple tree.)
A context-free tree grammar [26,8] is a quadruple G = (N, X, P, S), where

1. N is a finite ranked alphabet of nonterminals,
2. X is a finite unranked alphabet of terminals,
3. S is a nonterminal of rank 0, and

4. P is a finite set of productions of the form

B(xy...xp) = tlxy, ..., Znl,
where B € N™ and t[z,...,z,] € Te n(Xn).

The rank of G is max{r | N # & }.

For every s,s' € Ty N, s =¢ ' is defined to hold if and only if there is a
1-context c[z1] € Ty n(1), a production B(zy ...2z,) — t[r1,..., 2] in P, and
trees t1,...,t, € Tx n such that

s=c[B(t1...tn)],
s =cltlt1, ..., ta]-
The relation =¢, on Ty y is defined as the reflexive transitive closure of

=¢. The tree langauge generated by a context-free tree grammar G, denoted by
L(G), is defined as follows:

L(G)={teTs|S=5t}



6 Makoto Kanazawa

The string language generated by G is

y(L(G) ={y(t) |t € L(G) },

where y(¢) is the yield of ¢ in the usual sense.
A context-free tree grammar G = (N, X, P, S) is said to be simple if for every
production
B(zy...xn) = tzy, ..., T4)

in P, t[x1,...,zy] is an n-context. We let CFTy,(r) stand for the family of tree
languages L such that L = L(G) for some simple context-free tree grammar G
whose rank does not exceed 7. We write yCFT (r) for the corresponding string
languages {y(L) | L € CF T (r) }.

Let {y1,...,yr} be a ranked alphabet, where for ¢ = 1,... k, r; is the rank
of y;. Let ti[x1,..., 2] be an ri-context. For a tree t € Tx (y, . 4,3 (Xn), we
define t[t;[x1, ..., 2., ]/y;] inductively as follows:

c(ur - um)[tilen, oz /ys] = cluitilzy, . wn ] yil - oumltilz, - 2] /i)

ifce X,
zjltilzr, .- @] /yi] = 2,
yi(ug .o oup) Bz, - @)y = tilua[tilza, oo 2n)/Yi)s - o ur [t - 2] /Y]]
yi(ur . oue)[ilon, . mys] = yi(uats(e, oo ]yl w2 fya])
if j #£1.

(Here, the notation c¢(uy ... up) stands for ¢ when m = 0, and likewise with
yj(ur...up,).)

Let G = (N, X, P,S) be a simple context-free tree grammar. The derivation
trees of G and their tree yield are defined inductively as follows:

— Let m = B(z1...x,) = t[z1,...,2,) be a production in P with no nonter-
minal occurring in ¢[z1,...,2,]. Then d = 7 is a derivation tree of sort B
and its tree yield is ty(d) = t[x1,. .., x,].

— Let m=B(z1...2,) = t[z1,...,z,] be a production in P with at least one
nonterminal occurring in t[z1,...,z,]. Let vq, ..., v be the pre-order listing
of the nodes of t[zy,...,z,] labeled by nonterminals. Let B; be the label of
v;, for i =1,..., k. If d; is a derivation tree of sort B; for i = 1,...,k, then

W(dl...dk)

is a derivation tree of sort B. If t[zy,...,z,] is a tree just like t[z1,...,z,]
except that the label of v; is changed to y;, where y1, . .., yx are new symbols,
then the tree yield ty(d) of d = n(d...dg) is defined by

ty(d) = tlzy, ..., zo][ty(di)/m] - - - [ty(dr)/ys]-

Note that if d is a derivation tree of sort B and n is the rank of B, then ty(d)
is an n-context, so the right-hand side of the above equation is well-defined if y;
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is regarded as a symbol whose rank equals the rank of B;. It is well known that
if G =(N,X,P,S) is a simple context-free grammar, then

L(G) = {ty(d) | d is a derivation tree of G of sort S }.

Ezample 1. Consider a simple context-free tree grammar G = (N, X, P,95),
where N = NO UN® = {S}U{B}, ¥ = {a1,az,as,a4,as,as,¢,9,h}, and
P consists of the following rules:

m1: S — Blee),
DM B($1$2) — h(a1B(h(aleag)h(a412a5))a6),
73: B(z12a) = g(x122).

The following trees are derivation trees of this grammar:

m1(ma(73)) m1(m2(ma(73)))
We have

=g SEliEQ),
= h(ai1g(h(asxia3)h(aszaas))ag),
(

ty(ms (
(a19(
h(a1g(h(azeaz)h(aseas))as),
(arh(
(arh(

ty(ma(ms3)
ty(mi(ma(ms))
ty(m2(m2(ms))
)

ty (m1(m2(m2(ms)

h(a1h(a;g(h(agh(azzias)as)h(agh(aszaas)as))as)ag),

)
)
)
)
)=nh

arh(a1g(h(azh(azeas)as)h(ash(aseas)as))ag)ag).
The string language generated by this grammar is
y(L(G)) = { alazeazajeagag [ n > 0}.

The string languages of simple context-free grammars are the languages gen-
erated by non-duplicating macro grammars [9], studied by Seki and Kato [28].4
They also coincide with the languages generated by well-nested multiple context-
free grammars [13].

3 The Chomsky-Schiitzenberger Theorem

There are many different proofs of the Chomsky-Schiitzenberger theorem for
context-free languages offered in the literature. Here, we give a proof based on
the relation between context-free languages and local sets of unranked trees.’?

4 At the level of string languages, simple context-free tree grammars correspond
to non-duplicating and argument-preserving (i.e., non-deleting) macro grammars,
which are equivalent to non-duplicating macro grammars (Lemma 7 of [28]). Seki
and Kato [28] called non-duplicating macro grammars variable-linear.

5 Among the proofs found in well-known textbooks, the one closest to our proof seems
to be the one given by Kozen [18].
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This will serve as a starting point for our generalization of the theorem to simple
context-free tree grammars.

Let T' = (T, ¢) be a first-child-next-sibling encoding of an unranked tree. We
define three binary relations on 7':5

{%:{(u,’u)ETXTMLQZU},
{f:{(u,v)éTXTML'l:U},
T ={(u,v) €T xT|u=<%o (=) v}

The relation <17 is the child relation on the nodes of T.

Let Tyx be the set of all unranked trees over X', encoded as binary trees over
Y.IfA,ZC Yand I C X x Xt are finite sets, define Loc(4, Z, ) to be the set
of all trees T = (T,¢) in T that satisfy the following conditions:

L1. ¢(e) € A.
L2. u € T — dom(<¥) implies £(u) € Z.
L3. u =<3 v <T ... <T v, ¢ dom(<T) (n > 1) implies ({(u), (vy) ... L(v,)) € 1.

A set L C Ty is local [33,31] if there are finite sets A,Z C X and [ C ¥ x X
such that L = Loc(A, Z,I).

We introduce a more restrictive notion of locality. If A, Z)Y C Y and K, J C
Y x X, define SLoc(A4, Z, K, Y, J) to be the set of all trees T = (T, ¢) in Ty that
satisfy the following conditions:

SL1. {(¢e) € A.

SL2. u € T — dom(=<%) implies ¢(u) € Z.

SL3. u <I v implies (¢(u),{(v)) € K.

SL4. u # ¢ and u € T — dom(=<T) imply £(u) € Y.
SL5. u <T v implies (¢(u),€(v)) € J.

We call L C Ty, super-local if there are finite sets A, Z,Y C Y and K,J C Y x X
such that L = SLoc(A, Z, K, Y, J).”
A set of strings L C X7 is local® if there are finite sets A, Z C ¥ and I € X?
such that
L=AX"NX*Z — (¥*(2% - 1)x™).

In this paper, we allow the alphabet X to be infinite, but any local subset
of X7T is included in EJ for some finite subset Y of X; likewise, any local or
super-local subset of Ty is included in Ty, for some finite Xy C X.

We extend the string encoding function enc to a function from Z(Ty) to
P(I'Y) by enc(L) = {enc(T) | T € L}.

5 When R and S are binary relations on some set, we write Ro S for the composition
of R and S, and write R* for the reflexive transitive closure of R.

7 This notion of super-locality was called F -locality by Takahashi [31].

8 This notion of a local set is slightly different from McNaughton and Papert’s [20]
notion of a strictly 2-testable language. In the literature, a local set of strings is
sometimes called strictly 2-local (for example, [25]). Eilenberg [6], Takahashi [31],
and Perrin [22] use “local” in the present sense. Local sets of strings were called
“standard regular events” by Chomsky and Schiitzenberger [3].
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Lemma 2. Let L C Tyx. If L is super-local, then there is a local set of strings
L' C I'{ such that enc(L) = L' N D’,.

Proof. Suppose that A, Z)Y C XY K,J C X' x X are finite sets such that L =
SLoc(A, Z, K, Y, J). Let

A ={l.|ce A},

Z'={1.|ce A},

I={[l.la|(c,d) e K}U{[1c|ceZ}U{1l.la]|(c;d)eJ}U
{114 ceY,de X}.

Let L' C F; be the local set of strings defined by
L' =ATsNTsZ — (Ts(Té — 1) Try).

We show that enc(L) = L' N D%..

To prove enc(L) C L' N D%, suppose T = (T,¢) € L. Since we know that
enc(T) € DY, it suffices to show enc(T) € L. If ¢ is the label of the root of T,
then by the definition of L, ¢ € A, so the first and last symbols of enc(T") must
be [ € A" and 1. € Z', respectively. So enc(T) € ATy, N I's.Z'. Now suppose
ab € I'% is a substring of enc(T'). We need to show ab € I. From the definition
of enc, it is clear that there are two nodes u, v of T labeled ¢ and d, respectively,
such that one of the following conditions holds:

—a= [, b= [4, and u <I v. In this case, T € L implies (c,d) € K.

a= [, b=14 u=0v¢dom(<1). In this case, T € L implies c=d € Z.
—a=1. b= [4, and u <T v. In this case, T € L implies (c,d) € J.
a=1.,b=14 u#e¢, and u € dom(<T). In this case, T € L implies c € Y.

In each case, we have ab € I. This shows that enc(T) & I's(I's — I)*I'sx.. We
have shown that enc(T') € L'.

To prove L' N D%, C enc(L), suppose s € L' N D%,. Since s € DY, there is
some T' € Ty such that enc(T) = s. We show that T satisfies the conditions
SL1-SL5 for membership in L = SLoc(A4, Z, K,Y, J).

SL1. Let ¢ be the label of the root of T'. Then s = enc(T') starts with [ and
ends with ].. Since s € L/, it must be that [. € A’ and 1, € Z’. It follows that
ceA.

SL2. Let ¢ be the label of any node u € T — dom(<2). Then from the
definition of enc, the string [.]. must be a substring of s. Since s € L', it must
be that [.]. € I. It follows that ¢ € Z.

SL3. Let u,v be nodes of T labeled ¢ and d, respectively, such that u <% v.
By the definition of enc, it is easy to see that [ [4 is a substring of s and hence
in I. It follows that (c,d) € K.

SL4. Let u be any non-root node of T labeled ¢ such that u ¢ dom(<7T).
Let d be the label of the parent of u. By the definition of enc, 1.1; must be a
substring of s and hence in I. It follows that c € Y.
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SL5. Let u,v be nodes of T labeled ¢ and d, respectively such that u <7 v.
By the definition of enc, 1. [ must be a substring of s and hence in I. It follows
that (¢,d) € J.

We have shown that T € L = SLoc(A, Z, K, Y, J). O

Note that the converse of the above lemma does not necessarily hold,
because L’ can place a restriction on ]g that can follow ].. For example,
L = {a(bc),a(bd),e(be)} is not super-local, even though enc(L) is local.

A mapping 7: X — X’ is called a projection. A projection 7 is extended to a
function from Ty to Txs and to a function from (Tx) to #(Tx/) in obvious
ways.

Lemma 3. Let L C Ty be a local set. There exist a finite alphabet X', a super-
local set L' C Ty, and a projection w: X' — X such that L = n(L"). Moreover,
m maps L' bijectively to L.

Proof. Let T € L. We change the label of each node v of T' by a pair (¢; ... ¢p, ©),
where ¢; ...c, is the string of labels c1,..., ¢, of the siblings of v, including v
itself, in the order from left to right, and ¢ is the position of v among its siblings.
The relabeled trees obtained this way form a super-local set, and we can get
back the original trees by a projection.

Formally, let?

X'={(w,i) |we X, 1<i<|w|},
and define a projection w: X" — X by
w((c1...cn)yt) = ¢

Suppose that A, Z C X and I € X x X are finite sets such that L = Loc(A4, Z, I).
Let

F=Au{we Xt |(c,w)el},
Y ={(w,i) e X" |weF}.

Note that Y is a finite subset of X”. Let

A'={(c,1)|ce A},

Z'={(c1...cnyi) €X' |c;€ Z},

K= {((drdii)(c1- cos 1)) | (dr . dpi) € 5, (diyer.ocn) €1}
Y={(c1...cn,i) €X' |i=n},
J={((c1...cnyi),(c1..Cnyi+1))|(c1...Cni) EXi<m—1}.

9 If w is a string, we write |w| for the length of w. We use | - | both for the length of
a string and for the cardinality of a set. The context should make it clear which is
intended.
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These sets are all finite. Let L’ C Ty~ be the super-local set defined by L' =
SLoc(A’, Z', K.Y, J). Clearly, L' C Tx,. We show that L’ and 7 (restricted to
X' satisty the required properties.

For each T = (T,/T) € Ts, define a tree T' = (T, €T) € Txn by
() = (17(e), 1), (1)
217 = (w20 (u-2-1) .. AT (w-2-1"71),4) (2)
ifu-2-1""1 €T —dom(<{)and 1 <i<n.
It is clear that 7(T) = T for all T € Tx. Our goal is to show
L'={T|TeL}.

This clearly implies that 7 is a bijection from L’ to L.
We begin by showing that for all T' € Ty,

T eLifand only if T € L. (3)
This follows from five observations. Firstly, note the following:

— Suppose u € T — dom(<7T). Then ET(U) is of the form (¢ ...cp,n), which
means that (T (u) € Y if T (u) € 3.
— Suppose u <7 v. Then (¢T (u), €T (v)) is of the form ((cy ... cpy4), (c1 - .. Cn, i+

1)), which means that (ff(u),ﬁf(v)) e Jif ET(u) e

Thus, T satisfies the last twoAconditions SL4 and SL5 for membership in
SLoc(A’, Z',K,Y,J) whenever T' € Tx. Secondly, the following biconditional
always holds:

— (T () € A if and only if (Te)e A
Thirdly, the following biconditional holds whenever ¢T (v) € X':
— (T(v) € Z if and only if (T (v) € Z'.

Fourthly, if u-2-1""1 € T — dom(<7¥) and KT(u) € X', then the following
biconditional holds:

— (0T () 0T (u-2)0T (u-2-1) .. T (u-2-1""1)) € I if and only if (¢T(u), €T (u-
2)) e K.

Lastly, it is easy to see that T' € L implies T € Ts. Combining these five
observations, we get (3).

It follows from the “only if” direction of (3) that {T' | T € L} C L'. To
establish the converse inclusion, we show that

if "€ L' and T = 7(T"), then T" = T'.
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This together with the “if” direction of (3) clearly implies L' C {T' | T € L}.
So suppose T' = (T,/T') € I/, and let T = (T,(T) = n(T"). All we need
to show is that the equations (1) and (2) hold with T” in place of T'. As for
(1), it follows from the fact that ¢T () € A’. As for (2), suppose u-2-1""! €
T —dom(<7). Since (/T (u), 4T (u-2)) € K, we have (T’ (u2) =(c1...¢m,1) for
some ¢ ...c¢pm € F. Since for all i < n— 1 we must have (6T (u-2-171) (T (v -
2.19)) e J, we get £T (u-2-171) = (¢c1...¢m,i) € &' for i = 1,...,n. This
implies n < m. But T (u-2-1""1) = (¢1...¢m,n) must be in Y, so m = n.
Since 7((c1...¢n,i)) = ¢; = T (u-2-171), it follows that (2) holds with T” in
place of T. |

We assume the standard definition of the yield function y: Ty — XT. Using
the tem notation for unranked trees, we can define it as follows:

yle)=¢
yie(ty .. .tn)) =y(t1) ... y(tn).
As is well known, a set of strings is a context-free language if and only if it is
the yield image of a local set of trees.
Let us call a tree T = (T,¢) € Ty disjointly labeled with Yo, Xy if (i) Xy
and X, are disjoint subsets of X, (ii) u € dom(=<%) implies ¢(u) € ¥y, and (iii)
u € T — dom(=<1) implies £(u) € . Let X, X be disjoint sets and let

Ty = {T € Tx,ux, | T is disjointly labeled with o, ) }.
On ng, the yield function y: Tg; — ES' can be expressed as the composition
y =hy, x ocenc

of the string encoding function enc and an alphabetic homomorphism
hy, 2, : (I's,us,)* — X5 defined by

c ifce Xy,
e ifce Xy,

hZ()vEl ( [C) = {
hEmEl (] C) =E&.

Lemma 4. Let L C X* be a context-free language. There exist a set T disjoint
from ¥ and a local set K C TY such that L =y(K) = hx r(enc(K)).

Proof. Let G = (N, X, P, S) be a context-free grammar for L. Clearly, the parse
trees of G form a local subset K of TY, and L = y(K) = hyx y(enc(K)).1° O

10 This also follows from the fact that a local set of trees is always obtained from a
local set of disjointly labeled trees by a projection that does not change the labels
of leaves.
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Conversely, h(enc(K)) is always a context-free language whenever K is a local
set of trees and h is a homomorphism.
A projection 7: X’ — X induces a projection 7: I'sy — I's; in an obvious
way:
%( [c) = [TK'(C)7 %(] c) = ]TI'(C) .

Lemma 5. Let w: X' — X be a projection and L C Txr. Then enc(w(L)) =
m(enc(L)).

We can use Lemmas 2 through 5 to show that every context-free language
L can be represented as L = h(R N D)) with some alphabetic homomorphism
h and local set R. The Chomsky-Schiitzenberger theorem, however, is stated in
terms of the Dyck language D,, rather than the set D) of Dyck primes. The
following lemma bridges the representation in terms of D], and that in terms of
D,.

Lemma 6. Let L C F; be a local set of strings. Then there exist a finite
alphabet X', a projection m: X' — X, and a local set L' C Iy, such that
LN D5 =7(L'NDs). Moreover, @ maps L' N Dy bijectively to L N D¥,.

Proof. Let A,Z C I's,I C I'Z be finite sets such that L = Az N 52 —
(I's(I'E —1)I'y). We may assume without loss of generality that X is finite. Let
Y=XuU{c|lce X} Let

A/Z{[EH:CEA},
Z/:{]a|]c€Z},
I'=TU{ld|[.del}uU{dlz|dl.el}uU{l:1z][.1.€1},

and put
L' = ATy NI5Z — (Ty(T% —INTE).

Define 7: X/ — X by
m(c)=¢, w(c)=c

for each ¢ € X. Then it is clear that 7(D%,) = D, and L'NDyx, = L'NDf,,. Also,
since T maps A’, Z', I’ to A, Z, I, respectively, it is easy to see that w(L') C L.
This establishes 7(L' N Dx/) € L N D%. Now suppose w € L N D%. Then
w = [.v], for some ¢ € ¥ and v € Dyx. Let w' = [zv]1s Then w' € D%,
and T(w') = w. Since w € L, [ € A and 1, € Z, so it follows that [z € A’
and ]z € Z'. It is also easy to see that if ajas is a substring of w’', ajas € I'.
Therefore, w’ € L', and this shows that L N D%, C (L' N DY) = 7(L' N Dx).
It is also easy to see that w’ is the unique element of L’ that 7 maps to w. 0O

Lemma 7. If L C Ty is a local set, then there exist a finite alphabet X', a
projection w: X' — X, and a local set L' C I'st, such that enc(L) = 7(L'NDsy).
Moreover, enc™' o7 maps L' N Dx» bijectively to L.
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Proof. By Lemma 3, there exist a projection my: Y3 — X and a super-local
set L1 C Ty, such that L = m1(L1) and m; is a bijection from L; to L. By
Lemma 2, there exists a local set Ly C I's, such that enc(Ly) =Ly N D’El. By
Lemma 6, there exist a projection m3: X' — X7 and a local set L' C Iy, such
that Ly N DY, = 73(L' N D) and 73 is a bijection from L' N Dy to Ly N DY .
By Lemma 5, enc(L) = enc(m(L1)) = 71(enc(Lq)). Since enc is injective, 71
is a bijection from enc(L;) to enc(L). Taking these all together, we get

enc(L) = enc(mi(Lq))
mi(enc(Ly))

T1(L2 N DY)

— R (@ (L 0 D3)
(w1 oms) (L N Dyr)
=7(L' N Dx),

where m = 1 o 3. Since 73 is a bijection from L' N D5y to Ly N D’Z1 =enc(L)
and 77 is a bijection from enc(L;) to enc(L), 7 is a bijection from L' N Dy to
enc(L), and the second statement of the lemma follows. O

Theorem 8 (Chomsky and Schiitzenberger). A language L C X* is
context-free if and only if there exist a positive integer n, a local set R C I,
and an alphabetic homomorphism h: I — X* such that L = h(RN D,,).

Proof. The “if” direction is by standard closure properties of the context-free
languages. For the “only if” direction, let L C X* be a context-free language.
Then Lemma 4 gives an alphabet 7" disjoint from X and a local set K C Ty r
such that L = hy r(enc(K)). By Lemma 7, there are a projection 7: 7/ — YUY
and a local set R C I}, such that enc(K) = #(RN Dy). We have

L = hyry(enc(K))
= hgj(%\(R n DT/)),

so the required condition holds with n = |Y’| and h = hyx y o 7.1 O

In the proof of Theorem 8, enc™!o7 is a bijection from RNDy to K. (See the
second statement in Lemma 7.) If K is the set of derivation trees of a context-
free grammar for L, then an element s of R N Dy represents both the element
t = enc™!(7(s)) of K and the element hyx r(7(s)) = hx r(enc(t)) = y(t) of L.
Moreover, every pair (¢,y(t)) with ¢ € K is so represented. This is an important
consequence of the theorem explicitly noted by Chomsky [4, page 377], though
rarely emphasized since.!?

" Here, |Y'| denotes the cardinality of the set ¥”’. See footnote 9.
12 Tnstead of a super-local set of trees, Chomsky [4] used the notion of a modified normal
grammar, a restricted kind of grammar in Chomsky normal form.
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We took a rather long route to the Chomsky-Schiitzenberger theorem. Our
generalization of the theorem to multi-dimensional tree languages follows a sim-
ilar path, except that an analogue of Lemma 4 is not needed, since the multi-
dimensional counterpart of the function enc is not exactly a generalization of
the usual notion.

4 Multi-dimensional Trees

Multi-dimensional trees were introduced by Rogers [24,23]. In an ordinary (la-
beled, ordered unranked) tree, the set of children of a node forms a linearly or-
dered sequence of labeled nodes, i.e., a string. In an m-dimensional tree (m > 1),
the set of children of a node (if non-empty) forms an (m — 1)-dimensional tree.
A 0-dimensional tree just consists of a single labeled node.

Unlike Rogers [24,23], who introduces the higher-dimensional tree as a new
kind of object, we prefer to define an m-dimensional tree as a special kind of
ordinary m-ary tree.!> The first-child-next-sibling encoding of unranked trees
will be a special case of this definition for m = 2.

We use finite strings of elements of [1,m] = {1,...,m} to represent nodes of
m-ary trees. We write u - v for the concatenation of finite strings u, v over [1,m],
and write ¢ for the empty string.

An m-ary tree domain is any non-empty, finite, prefix-closed subset of [1, m]*.
(Since @* = {e}, the only 0-ary tree domain is {e}.) If T' is an m-ary tree domain,
we write u <7 v to mean u,v € T and u-i = v. If ¥ is a (possibly infinite) set of
symbols, an m-ary tree over X' is a pair (T, £), where T is an m-ary tree domain
and { is a function from 7T to X.

If T = (T,¢T) is an m-ary tree and U C T is an m-ary tree domain, then
the restriction of T to U is the m-ary tree

T U= (U |U).

When u € T, let
T/u={v|uweT}.

Then T'/u is an m-ary tree domain and the subtree of T rooted at u is defined
by
T/u=(T/u,?),

where £(v) = (T (uv).

Recall that a first-child-next-sibling encoding of an unranked tree is a binary
tree (T, /) such that 1 ¢ T. Analogously, an m-dimensional tree is an m-ary tree
(T, ¢) such that T is an m-ary tree domain included in a certain special subset of

13 To be precise, our m-dimensional trees form a special class of m-ary cardinal trees
in the sense of Benoit et al. [2]. In m-ary cardinal trees, each node has m slots for
children, each of which may or may not be occupied, independently of the other
slots. Cardinal trees are also known as tries.
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[1,m]*. For each natural number m, define a subset P, of [1, m]* by recursion,
as follows:
IEDO = {6},

P, =(m-P, )" form> 1.

In other words, w € P, if and only if w =4 v impliest =mand w=u-7-j-v
implies j > ¢ — 1. For m > 0, an m-dimensional tree (over X) is an m-ary tree
(over X)) T = (T,¢T) such that T C P,,. For m > 1, an m-dimensional hedge
(over X)) is an m-ary tree (over X) T = (T,¢T) such that T C P,,_1 - P,,,. We
write T and HY: to denote the set of all m-dimensional trees over X' and the set
of all m-dimensional hedges over X, respectively. For m > 1, all m-dimensional
trees are m-dimensional hedges. Note that a 1-dimensional hedge is just a 1-
dimensional tree.

Note that a O-dimensional tree is a structure T. = ({e},{(¢,¢)}) consisting
of a single node labeled by some ¢ € Y. We may identify T, with c¢; under this
convention, T} = X. Note that if m # n, then T'% N T% = TY..

A 1-dimensional tree is a non-empty, linearly ordered sequence of labeled
nodes. We may use a string c¢;...c, € X7 to denote the 1-dimensional tree
T., ., = ({&1,...,1"71} ¢), where ¢(1°"!) = ¢; for i = 1,...,n. Under this
convention, T = X+,

The first-child-next-sibling encodings of unranked trees and unranked hedges
coincide with the 2-dimensional trees and the 2-dimensional hedges, respectively;
we have T% = Tsx.

Henceforth, we use T, T’, U, etc., as variables ranging over m-dimensional
trees and m-dimensional hedges. Unless we indicate otherwise, we assume T =
(T, 6T, T = (T' 4T"), U = (U, 1Y), etc.

Let T be an m-dimensional hedge. We can see that if u € T, then

ST (T,u)=(T/u) [{veP;|uweT}
is always an i-dimensional tree, and
SHl(T,U,) = (T/u) r {U eP,_q-P; ‘ uv € T}

is always an i-dimensional hedge. In particular, when w - m € T, the subtree
T/(u-m)= SHp,(T,u-m) is always an m-dimensional hedge.
For i > 1, we write u <1} v to mean

UGTQU'Z.']P)i_l.

When u <7 v, we say that v is a child of u in the i-th dimension (in T). If
u <I v, then v is the first child of u in the i-th dimension. Define

Clu)y={veP,_ |u-i-veT}y={v|u<lu-i-v}.

If u-i €T, that is, if u & dom(<!), then CI'(u) = @. If u-i € T, define

CT (u) = ST, (T,u-i) = T/(u-i) | CF (u).

2
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Then CF (u) is always an (i — 1)-dimensional tree.

We assume that elements of [1,m]* are alphabetically ordered, with & + 1
alphabetically preceding k. We write u 43?]- v to mean v is the j-th node, under
this ordering, among the children of w in the ¢-th dimension. The degree of a
node v € T is the number of children of v in the m-th (i.e., highest) dimension.

A subset of T% is an m-dimensional tree language. We allow X to be an
infinite set, but are usually interested in m-dimensional tree languages over some
finite subset of X.

We call a set L C T degree-bounded if there exists a k such that for all
T € L and for all v € T, the degree of v does not exceed k.

It is sometimes helpful to use term-like notations for m-dimensional hedges
and trees. Let P be an (m — 1)-ary tree domain included in P,,,_1 (i.e., a finite,
non-empty, prefix-closed subset of P,,_1), and let uq,...,u; be the elements of
P, in alphabetical order (which implies u; = ¢). If Ty,..., Ty € T'Z, then we
write

P(Tla"'aTk)
to denote an m-dimensional hedge U = (U, /Y) € H'% such that

U=Juw T,y  STm(U,u)="T.

(As a degenerate case, we have {¢}(T) =T for any T € T%.) If T € H and
c € X, then we write
c—mT

to denote an m-dimensional tree V' = (V,£V) € T such that
V={_{etum-T, Vi) =c, SH,,(V,m)=T.
Combining the two notations,
¢c—m P(TY,...,Tk)

denotes the m-dimensional tree T = (T,¢T) such that (T(c) = ¢, CL(e) = P,
and ST,,(T,u;) = T;, where uq, . .., ug is the alphabetical listing of the elements
of P.14

Ezxample 9. Derivation trees of a simple context-free tree grammar G =
(N, X, P,S) can be represented as 3-dimensional trees over the alphabet N U X.
In these 3-dimensional trees, a node has children in the third dimension if and
only if it is labeled by a nonterminal. For instance, the derivation tree m (w2 (73))
of the grammar from Example 1 may be represented by the 3-dimensional tree
T in Fig. 1. In this tree, the node labeled by S is the root; the edges in the
third dimension are colored red, those in the second dimension blue, and those
in the first dimension green. For instance, the node 3 (i.e., the child of the root

14 An equivalent notation for m-dimensional trees has been used by Kasprzik [14].
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Fig. 1. A derivation tree of a simple context-free tree grammar represented as a 3-
dimensional tree.

in the third dimension) is labeled by the nonterminal B, and its children in the
third dimension form a 2-dimensional tree corresponding to the right-hand side
of the rule my = B(z122) — h(a1B(h(agzias)h(aszaas))as). The numbering of
variables in the rules are eschewed in favor of a single variable a; the alphabetic
ordering of the nodes labeled by @ among the children in the third dimension of
a nonterminal-labeled node is assumed to correspond to the numbering.!® This
tree can be represented in the term notation as follows (omitting the dots in the
strings over {1, 2} representing nodes):

S —3 {E, 2, 21}(
B —3{e,2,21,212,2122,21221,212211, 2121, 21212, 212121, 2121211, 211 }(

hv a1, B -3 {67 27 21}(97 ZB,IZI), hv a2,,as, ha Q4,I, 05, 06

We have

C7(3-3:-2:1)=g—2{c,1}(z,z)
= g(zx),
CT(3-3-2-1)=h—1h
= hh,
15 Tt is known that simple context-free tree grammars satisfying this condition consti-

tute a normal form. This use of a single variable instead of numbered variables is
not crucial for our purposes.
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using both the notation introduced just above and the standard term and string
representations for 2-dimensional and 1-dimensional trees.

5 Local and Super-local Sets of Multi-dimensional Trees

IfAZ C Xand I C X x ’]I";f1 are finite sets, we let Loc™ (A4, Z,I) denote
the set of all m-dimensional trees T' = (T, ¢T) in T'® that satisfy the following
conditions:

L1. (T(e) € A,

L2. v € T — dom(=<L) implies (T (v) € Z, and

L3. v € dom(<ZL) implies (/T (v),CT (v)) € I.

A set L C T is local [24,23] if there exist finite sets A, Z C X and I C X' x T’;_l

such that L = Loc™(A, Z,I). Note that if L C T% is local, then L must be

degree-bounded; for, if L = Loc™ (A, Z,I), the degree of any node v of T € L is

bounded by the maximal size of U such that (¢,U) € I for some c. Clearly, the

notion of locality coincides with the usual notion [22,33,31] when m € {1, 2}.
Let m > 2. Write N for N—{0} (the set of positive integers). If A, Z)Y C X,

KCY¥YxX and JC X x{P CP,_o| Pisan (m— 2)-ary tree domain } x

Ny x X are finite sets, then we let SLoc™(A, Z, K,Y,J) denote the set of all

trees T = (T,¢T) in T'® that satisfy the following conditions:

SL1. ¢T(e) € A,

SL2. v € T — dom(=<ZL) implies ¢T(v) € Z,

SL3. u <L v implies (/T (u), (T (v)) € K,

SL4. v#eand v € T — dom(<L_,) imply ¢T(v) € Y, and

SL5. w e dom(<], ;) and u <], ; v imply (¢T (u), CL_; (u),i, (T (v)) € J.

We call aset L C T': super-local if there exist finite sets A, Z,Y C ¥, K C Xx X,

and J C ¥ x {P C P,,_2 | Pisan (m— 2)-ary tree domain } x Ny x X such

that L = SLoc™(A,Z,K,Y,J). For m =2, P,,_o =Py = {e}, and u <11T,¢ v only

if # = 1, so this definition generalizes our earlier definition of super-locality for

subsets of Ty, = T%. It is easy to see that a degree-bounded super-local language

must be local. Although we allow Y to be infinite, any local or super-local set

L C T must be an m-dimensional tree language over some finite subset of X.
Projections from X to X’ are naturally extended to m-dimensional trees and

hedges over Y and to m-dimensional tree languages over Y. The next lemma

generalizes Lemma 3 to the higher-dimensional case. The proofs of two lemmas

to follow (Lemmas 11 and 35) will be adaptations of the proof of this lemma.

Lemma 10. Let m > 2. For any local m-dimensional tree language L C T,
there exist a finite alphabet X', a degree-bounded, super-local m-dimensional tree
language L' C T, and a projection w: X' — X such that L = w(L’). Moreover,
m maps L' bijectively to L.
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Proof. The proof parallels that of Lemma 3. The idea is to change the label of
each non-root node v of T' € L to

(Cr (), "),

where u - m - v = v and v’ € P,,_1. For uniformity, we change the label of the
root from ¢ € X to (T, ¢), where T, = ({e}, {(g,¢)}) is the single-node tree that
we identified with c¢. The relabeled m-dimensional trees obtained this way form
a super-local set, and we can get back the original m-dimensional trees by a
projection.
Let
"= {(T,0) | T=(T (") €Ty veT},

and define a projection w: X" — X by
m((T,v)) = (¥ (v).

Suppose that A,Z C X and I C X x T’;_l are finite sets such that L =
Loc™(A, Z,I). Let

F={T.|ce AYu{T|(c,T) eI},
Y ={(T,v)eX" | TeF}
Note that X’ is a finite subset of X”. Now define
A ={(T.e)|ce A},
Z'={(T,v)e X |{T(v) e Z},
K ={((T,v),(T",¢)) | (T,v) € &', ((T(v),T") € T},
Y = {(Tv)EE’\vgdom( <m0}
(T, ), Cry_y ()i, (T, 0)) | (Tyu) € &'u <y ;v )

These are all finite sets. Let L' C T, be the super-local set defined by L =
SLoc™(A’, Z', K, Y, J). It is quite clear that L' C T'%,. We show that L’ and 7
(restricted to X') satisfy the required properties.

For each T € T'2, define an m-dimensional tree T' = (T, ™) e T, by

T(e) = (Ter(e), €), (4)

ET(u m-v) = (CE(u),v), if u € dom(<T)andve CL_ (u). (5)

It is clear that (1) = T for all T € T':. Our goal is to show
L'={T|TelL}

This clearly implies that 7 is a bijection from L’ to L.
We show that for all T € T,

T e Lifand only if T € L. (6)

This follows from five observations. Firstly, note the following;:
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— Suppose u € T —dom(=<L _ ). If €T(u) = (U,v), then v ¢ dom(<Y,_;). This
means that (T (u) € Y if T (u) € X'.

— Suppose s <l u = s-m-u < v =wu-(m—1)-v". Then we have

m—1,¢
u QSE({? uw - (m—1)-v and
(T (u) = (CE(s),u),
(T(v) = (CE(s),u - (m — 1) -0),
cT (s
Ol _i(u) = ComP ().

This means that (¢T(u),CT_,(u),i, (T (v)) € J if (T(u) € 5.

Thus, T satisfies the last two conditions SL4 and SL5 for membership in
SLoc™(A’, Z', K, Y, J) whenever T' € T'%,. Secondly, the following biconditional
always holds:

— (T(g) € A if and only if ET(E) e A

Thirdly, the following biconditional holds whenever ¢ (v) € X'
— (T(v) € Z if and only if (T (v) € Z'.

Fourthly, if v <%, v and KT(u) € X', then the following biconditional holds:
— (6T (u),CT (u)) € I if and only if (/T (u), (T (v)) € K.

Lastly, it is easy to see that T" € L implies T' € T'%,. Combining these five
observations, we get (6).

It follows from the “only if” direction of (6) that {7 | T € L} C L'. To
establish the converse inclusion, we show that

if "€ L' and T = 7(T"), then T" = T'.

This together with the “if” direction of (6) clearly implies L' C {T' | T € L}.

So suppose T" = (T, ET/) € L',and let T = (T, 4T) = w(T"). All we need to
show is that the equations (4) and (5) hold with T" in place of T'.

As for (4), it follows from the fact that (T (¢) € A’

As for (5), suppose u € dom(<7). Since (¢T" (u), £T (u-m)) € K, (T (u-m) =
(V,¢) for some V € F. We show two things:

v e CT (u) implies v € V and T (u-m - v) = (V,v). (7)
V CCp(u). (8)

It then easily follows that V' = CT (u) and (5) holds whenever v € CT (u).
We show (7) by induction on v € CF (u). For v = ¢, we already know that
eeVand (T (u-m) = (V,e). If v # e, we can write v = v/ - (m — 1) - v”

with v” € Pp,—2. Suppose u-m - v < _;; u-m-wv. Since v’ € CF(u), by
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induction hypothesis, v' € V and (T (u-m -v') = (V,v'). Since T € L/,
T (w-m-v"),CT_(u-m-v'),i, 4T (u-m-v)) € J. By the definition of J, we
must have CF,_ (u-m-v') = C)_(v), which implies v' <), _;, ; v € V. The
definition of J then implies ¢T (v -m - v) = (V,v).

Having established (7), we proceed to show (8) by induction on v € V. For
v = ¢, we have ¢ € CL(u) since u € dom(=<L). If v = v/ - (m — 1) - v" with
v" € Py,_a, then v' € CL (u) by induction hypothesis. Since v’ € dom(<Y _;),
(T (u-m-v') = (V,v') ¢ Y. Since T € L/, this means that u-m-v" € dom(<7_))
and so (T (u-m -v'),CT_(u-m-v'), 1,07 (u-m -0 - (m —1))) € J. Since
(T (u-m-v') = (V,0'), the definition of .J implies CL_ | (u-m -v') = CY._, (V).
Since v = v’ - (m — 1) -v"” € V, it follows that v € CL_,(u-m-v') and hence
v=2v"(m—1)-v" € CL(u).

This concludes the proof of the lemma. a

6 Encoding and Yield at Higher Dimensions

In order to prove an analogue of the Chomsky-Schiitzenberger theorem for the
m-dimensional yields of local (m + 1)-dimensional tree languages, we need to
define the higher-dimensional counterparts of the mappings enc,y, and of the
Dyck languages. Since we use 3-dimensional trees to represent derivation trees
of simple context-free tree grammars, the yield function mapping 3-dimensional
trees to 2-dimensional trees must be consistent with the relation between deriva-
tion trees and their tree yield of simple context-free tree grammars.

We set aside a special symbol & and use it to extend a given set X of sym-
bols. The intended role of  in m-dimensional trees over X U {x} is that of a
placeholder; the encoding function erases all occurrences of . We write T (n) to
denote the set of m-dimensional trees in T} | (a} in which « labels exactly n nodes
and none of these nodes have a child in the m-th dimension. Let T € T'%(n),
T,...., T, € TG and let uq,...,u, be the nodes of T labeled by «, in the

Yu{x}’
alphabetical order. Then we write

TIT,,...,T,]
for the tree T' € Tgu{w} such that

T’:TUul-Tlu--~Uun-Tn,
T () = {KT(U) ifveT —{u,...,un},

W) ifo=u 0.

Given an m-dimensional hedge T' € HY; | (x} define a binary relation 4;-'1“ on
T for each positive integer 4, as follows: u <nTm v if and only if v is alphabetically
the i-th node in {w | u <, w, (T (w) =z }.

Let m > 2. An m-dimensional hedge T € ng{m} is well-labeled if
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— for all v € T, /T (v) = x implies v € dom (<L) Udom(<% _,), and

m—1

— for all v € dom(<D), CT(v) € T *(n) implies |Cp—1 (v)| = n.

We write HY: , to denote the class of well-labeled m-dimensional hedges over
YuU{z} If T € HY ,, then for each node v € dom(=<T), there is a bijection
between {u € T | v <% wand ¢T(u) =x} and {u € T | v <L _; u}, namely,
U¢>1((<£,¢)710 Q%q,i)- We write H’;w(n) for

{T € HY; , | there are exactly n nodes v € T'N P, such that (Tw)==x}.

Note that if T' € HY; ,(n), T may have more than n nodes labeled by .

We write TY; , for HT: ,(0) N T . We will give suitable definitions of en-

coding and yield for elements of T%; , shortly. Before that, here is a variant
of Lemma 10 for languages consisting of well-labeled m-dimensional trees. If
m: X' — X is a projection, we extend it to a projection 7: X' U {x} — X U {x}
by letting 7(x) = x.
Lemma 11. Let m > 2. For any local m-dimensional tree language L C T
there exist a finite alphabet X', a degree-bounded, super-local m-dimensional
tree language L' C T, ., and a projection mw: X' — X such that L = m(L').
Moreover, m maps L' bijectively L' to L.

Proof. Since the case where L C T} is covered by Lemma 10, we assume L ¢
Tt Without loss of generality, we may assume that L = Loc™ (4, Z, I), for some
ACX, ZC¥u{z}, I C ¥ xTy], such that

—x €z,
— (¢,T) € I implies ¢ € ¥ and (T (v) € ¥ for all v € dom(<Z _,), and
— there exist (¢, T) € I and v € T such that (T (v) = .

We modify the construction in the proof of Lemma 10 slightly. The difference
is that where (T, v) would appear in the earlier construction, & appears instead
just in case ¢T(v) = . Otherwise, the proof is essentially the same.

The definition of X" is changed as follows:

X'={(T,v)|Te ’]I"ggml,v eT, (Tv)e x}.
The definition of 7: X" — X remains the same:
7((T,v)) = 1T (v).

As before, let
F={T.|ce A}y u{T|(c,T)e I},
Y ={(T,w)eX"|TeF}

The definitions of Z’, K, Y, J are modified as follows:

A ={(T.,e)|ce A},
7' ={z}u{(T,v) € &' | F(v) € Z —{=}},
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K ={((T,v),(T",¢) | (T,v) € &', ({T(),T") € [{T (¢) € X} U
{((T,v),z) | (T,v) € X', (T (v), T) € I},

Y ={z}U{(T,v) € X' | v ¢ dom(=/,_1) }

J={((T,u),CL_,(u),i,(T,v)) | (T,u) € X', u< v,T(v)e ¥} U

m—1,%

{((T,u),CLE_(u),i,z) | (T,u) € X' u <l v, 0T (v) == }.

m—1,%

These are finite sets. As before, let L' C T, | (a} be the super-local set defined
by L' = SLoc(A’, Z', K, Y, J). It is easy to see that L' C Tg/u{w}'

For each T' € T | {a} define an m-dimensional tree T' = (T, ET) eT
by

m
ru{z}

ET(E) = (TZT(E)a‘S)v (9)
(CT(u),v) iffT(u-m-v)ex,

m

ET(u “m-v) = for ve CL_,(u). (10)

T if (T(u-m-v) =,
It is clear that 7(T') = T for all T € T (a} - Our goal is to show
L'={T|TelL}.

This clearly implies that 7 is a bijection from L’ to L.

We show that for all T € T | (e}

T e Lif and only if T' € L. (11)
This follows from five observations. Firstly, note the following:

— Suppose u € T —dom(=<L ;). If ET(u) = (U,v), then v ¢ dom(<Y ;). This
means that (T (u) € Y if T (u) € X' U {x}.
— Suppose s <% u = s-m-u <t v =u-(m—1)-v. Then we have

m—1,3
C
! m’”(ﬁ)i u’~(m— l)-v’ and

Eﬁm{wﬂqw)ﬁﬂwex,

T if (T (u) = =,

po J(CE(s) - (m—=1) ") if (T (v) € X,
&) = {w if (T(v) =z

Choi(w) = Cpri (),
This means that (¢€(u),CT_ (u),i, (T (v)) € J if (T(u) € 5.

Thus, T satisfies the last two cgnditions SL4 and SL5 for membership in
SLoc™(A', Z', K.Y, J) whenever T' € T%, .. Secondly, the following bicondi-
tional always holds:
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— (T(g) € A if and only if ET(E) e A
Thirdly, the following biconditional holds whenever (T (v) € X' U {z}:
— (T(v) € Z if and only if ZT(U) ez

Fourthly, if u <% v, (T(u) € 5', and either v ¢ dom(=<Z _,) or ET(U) e X
then the following biconditional holds:

— (0T (u), CT(u)) € I if and only if (/T (u),/T(v)) € K.

Lastly, it is easy to see that T' € L implies T € T . Combining these five
observations, we get (11).

It follows from the “only if” direction of (11) that {T' | T € L} C L'. To
establish the converse inclusion, we show that

if "€ L' and T = 7(T"), then T" = T'.
This together with the “if” direction of (11) clearly implies L' C {T' | T € L}.
So suppose T' = (T,(T") € L', and let T = (T,4T) = n(T"). All we need to
show is that the equations (9) and (10) hold with T” in place of T'.
As for (9), it follows from the fact that (T (c) € A’.
As for (10), suppose u € dom(<T). Since (/T (u), £T (u-m)) € K, (T (u-m) =
(V,¢) for some V € F. We show two things:

(V,v) iftV(v) e X,
x if £V (v) = x.
V C CE (u). (13)

v e CF (u) implies v € V and €T (u-m - v) = { (12)

It then easily follows that V' = CZT (u) and (10) holds whenever v € CL (u).
We show (12) by induction on v € CZ (u). For v = ¢, we already know that
eecVand (T (u-m) = (V,e). If v # ¢, we can write v = v’ - (m — 1) - v" with
V" € Ppy_y. Suppose u-m - v <f _;;u-m-v. Since v’ € C (u), by induction
hypothesis, v’ € V and (T (u-m-v') is either (V,v') or & depending on whether
¢V (v') € X ornot. Since T' € L', ((T (w-m-v'), CT_ (wm-'), i, €T (u-m-v)) € J.

By the definition of .J, we must have (T (u-m-v') = (V,v') and CT_, (u-m-v') =
CY,_1(v"), which implies v' <), _;; v € V. The definition of J then implies

(T (u-m - v) is either (V,v) or & depending on whether £V (v) € X or not.

Having established (12), we proceed to show (13) by induction on v € V.
For v = ¢, we have ¢ € CL (u) since u € dom(<L). If v = o' - (m — 1) - 0"
with v € Py,_a, then v/ € CL (u) by induction hypothesis. Since V' € F and
v € dom(<Y, ), by the assumption about I, ¢V (v') € ¥ and so (T (u - m -
v') = (V,v') € Y. Since T’ € L', this means that u - m - v € dom(=<Z% ;)
and so (T (u-m -v'),CT_(u-m-v), 1,07 (w-m -0 - (m —1))) € J. Since
(T (u-m-v') = (V,0'), the definition of .J implies CL_ | (u-m -v') = CY._ (V).
Since v = v’ - (m — 1) - 0" € V, it follows that v € CL_;(u-m-v') and hence
v=2v"(m—1)-v" € CL(u).

This concludes the proof of the lemma. O
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Fix m > 2 and Y. For each ¢ € X' and each (possibly empty) finite prefix-
closed subset P of P,,,_1, define

Ip={(c,Pi) | 0<i<|P|}.

We consider I, p to be a group of symbols that match with each other; this
notion of a matching group of symbols generalizes the notion of a matching pair
of brackets. Let

ry=xu U{FC,p | c € X and P C P,,_; is finite and prefix-closed }.

Note that X is an infinite set.'
Let T € HE 'l Foru € CL(e), let T, = {v € Ppy - Pryy [ m-u-veT}, ie,
the domain of SHp,4+1(T,m - u). Then we have

_ {e} UUuecr (oym-u-Ty ifm+1¢T,
{eyu(m+1)-(T/(m+1)) UUuecrm-u-Tu fm+1eT.

Thus, T is completely determined by the following pieces of information:

- ET(€>7

- 077‘111(5)7

SH 1 (T, m - u) for each u € CZ (e),

— whether or not m+1 €T, and

in case m + 1 € T, the (m + 1)-dimensional hedge SH 41 (T, m + 1) =
T/(m+1).

Let P = CJ(¢), k = |P|, and for i = 1,...,k, ¢ <} ; m-u; and T; =
SH 1 (Tym-u;). Incasem+1€Tork>1 (e, meT),letc=(T(c) € X.
The m-dimensional encoding of T, enc,,(T) in symbols, is defined as follows:

Tyr (. ifm+1¢T and k=0,

¢ —m P(enc,,(Ty),...,enc,,(Tk)) ifm+1¢T and k> 1,

(¢, P,0) —p, (ency,(Tp))] ifm+1e€T and
enc,(T) = (¢, P,1) —p ency,(Th), To= SHpi1(T,m+1).

ey

(C, P7 k) -_m encm(Tk)

]

(The substitution notation in the last clause presupposes enc,,(Ty) € Tg(k),
and this is indeed the case as shown by the following lemma.)

16 When we define 3, from ¥ in this way, we assume that YNNI, p = @ for all c € ¥ and
all finite and prefix-closed P C P,,_1. Technically, this assumption may not always
be satisfied; nevertheless, we always regard the symbols in I, p as “new” symbols.
If more rigor is desired, it can be achieved by complicating the definition of I p.
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Fig. 2. A well-labeled 3-dimensional tree and its 2-dimensional encoding (P = {g,1}).

Ezxample 12. Fig. 2 shows the 3-dimensional tree T' from Example 9, which is
in T} 5, where N = {S,B} and ¥ = {h,g,a1,az,a3,a4,as, a6}, along with
ency(T). Here, P = {g,1}. As before, the edges in the third dimension are
colored red, those in the second dimension blue, and those in the first dimension
green.

Lemma 13. If T € H’;;l (n), then enc,,(T) € ']T%L(n)

Proof. Induction on the size of T'. Let ¢, P, k, and T; be as above. Suppose T' €
H5t (n). If ¢T(e) = @, then T = Ty, € Hi 11 (1), and enc,,,(T) = Ty, € T2(1).
If (T(e) = c€ X, then T; engl(ni) fori=1,...,k, where n =ny + - + ny.
By induction hypothesis, enc,,(T;) € T’;(nz) Suppose m + 1 ¢ T. Then
it is easy to see enc,,(T) € ']T’g”(n) Now suppose m + 1 € T. Since T is
well-labeled, Ty € Hg;l(k) By induction hypothesis, enc,,(Ty) € Tg(k)
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Also, (¢, P,i) —p, enc,,(T;) is in ']I‘g (n;) for ¢ = 1,...,k. It easily follows
that enc,,,(T') = (¢, P,0) —p, (enc,,,(Tp))[(¢c, P, 1) —p ency, (Th), .. ., (¢, P k) —p,
enc,,(Ty)] € Tg(n) |

Note that in enc,,(T"), every node with a label of the form (¢, P,i) (i > 0)
has exactly one child in the m-th dimension. There is a simple way of deleting
any collection of such nodes from an m-dimensional tree to produce another
m-~dimensional tree.

Let T be any m-dimensional tree, and assume that U C T only consists of
nodes v such that |CZ (v)| = 1. Define a function fi;: T — [1,m]* by

fu(e) =¢,
fow-i) = fu(v)-i for i < m,

o) m ifvgu,
fulv-m) = {fU(v) itvel.

Let T =ran(fy) = { fu(v) |v € T} and f; = fu | (T —U). Then it is easy to
see that 7" = ran(f{;), T” is a non-empty prefix-closed subset of P,,, and f; is
a bijection from T' — U to T’. Define

del,,(T,U) = (T, ¢'),

where

' (v) = T ((f) 7 (v))
Since T” is a non-empty prefix-closed subset of P,,, it follows that del,,(T,U)
is an m-dimensional tree.

Let T C X and T € T%. We define
del,, r(T') = del,,, (T, U),

where
U={veT|{F(v)eT and |CL(v)|=1}.

Now let T € ngcl (m > 2). The m-dimensional yield of T is defined as
follows:
ym(T) = delm)g_z(encm(T)).

It is easy to see that y,,(T) € T®.
It is of course straightforward to define y,,: Hg‘;l (n) = T%(n) directly:

T. ifm+1¢T and k=0,
¢—m P(ym(Th),...,ym(Tk)) ifm+1¢Tand k> 1,

Ym(T) = .
(Y (Toym(T1), - ym(Tx)] ifm+1€T and
TO = SHmH(T,m + 1),
where, as before, ¢ = (T (e), P = C},(¢),k = |P|, and for i = 1,...,k, e <, ; m-

u; and T; = SHp,1(T, m-u;). The indirect definition through enc,,, however, is
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Fig.3. The 2-dimensional encoding and 2-dimensional yield of a well-labeled 3-
dimensional tree (P = {e,1}).

useful for our generalization of the Chomsky-Schiitzenberger theorem for multi-
dimensional tree languages.

The case m = 2 of the above definition of y,, is meant to capture the notion
of the (tree) yield of a derivation tree of a simple context-free tree grammar,
which we represent as a (well-labeled) 3-dimensional tree. The definitions of
enc,,,del,, r,y., are all applicable to the case m = 1 as well, but the resulting
definitions of enc; and of y; will not be equivalent to the standard ones, so we
will continue to treat m = 1 as a special case.

Ezxample 14. Fig. 3 shows ence(T) (the same tree as the lower tree in Fig. 2
with the nodes rearranged) and yo(T'), where T is the 3-dimensional tree from
Example 9 (the upper tree in Fig. 2).

7 Multi-dimensional Dyck Languages

We continue to work with the alphabet
Yy =xu U{ I'.p|ce X and P is a finite prefix-closed subset of P,,,_1 },

as defined in the previous section. The range of the function enc,,: Hy (0) —
']Tg forms a special subset of ’]I‘;J similar to Dyck languages.

Let us define a rewriting relation ~» on ’]I‘TE”:

T~~T

holds if there exist some v, v1,...,v, € T (n > 0), c € X, and finite prefix-closed
subset P of P, such that!”

17 Note that for u,v € T, u (<%)" v is equivalent to v € u - P, and u (<1TTH)Jr
equivalent to v € u-m - Pp—1 - Pps.

v is
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— T =del,,,(T,{vo,v1,...,0n}),
— |CE(v;)| =1 for i =0,1,...,n,
— 0T (v;) = (¢, Pi) fori =0,1,...,n,

- n= |P|7

— v1,..., 0y, is the alphabetical listing of {v1,...,v,},

— v (<1£)Jr v fori=1,...,n,

— for every i,j € {1,...,n}, if v; (4%)* vj, then ¢ = j, and

— for every u € T, if vy (<£)+ u and there is no ¢ € {1,...,n} such that
v; (<2)" u, then (T (u) € X.

Using the term notation, we can write

T ~ T’ if and only if
T =U|[(c, P,0) —p, To[(¢c, P, 1) =, T1, . . ., (¢, P,n0) —p, T0o]],
T =U[TH[Ty,...,T,]))
for some U € Tg(l),TU e T (n),T; € TS (t=1,...,n),
¢ € X, finite and prefix-closed P C P,,_; with |P| = n.

Define the m-dimensional Dyck tree language over X by'8
DTG ={TeT:|T~"T €Ty }.

Note that the alphabet of DTy (i.e., the set of labels that appear in elements
of DT'}) is infinite.

Just like the ordinary Dyck language D,, of strings over I, has an alternative
inductive definition in terms of a context-free grammar, so too the m-dimensional
tree language DTS admits an inductive definition. First, let us extend the defi-
nition of ~» to a rewriting relation on ’]I‘g (n) by taking the exact same definition

as before, requiring (T (u) € X rather than (T (u) € X U {z} in the consequent
of the last condition. Note that this relation is confluent:

Lemma 15. Let T, T,,T5 € Tg(n) If T ~ Ty and T ~ Ty, then there exists
some T" € Tg(n) such that Ty ~ T and Ty ~ T".

For each n € N, we define DT'5(n) by
DTg(n) ={T e T%(n) | T ~" T € T%(n) }.

Clearly, DT (0) = DT's.

Then we can prove that (X, )nen = (DT%(n))nen is the least (in terms of the
partial order defined by componentwise inclusion) sequence of sets that satisfies
the following closure conditions:

18 For dimension m = 2, analogous notions of Dyck tree language have been proposed
by Matsubara and Kasai [19] and by Arnold and Dauchet [1] to capture the tree
languages generated by tree-adjoining grammars and by (general) context-free tree
grammars, respectively.
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I1. T.€ Xg for all c € X.

2. T, € X,.

I3. If ¢ € X, P is a finite, non-empty, prefix-closed subset of P,,_1, & = | P,
TeXpnyy.o s T € Xp,, and n = Zle n;, then

¢—m P(Ty,...,T}) € X,.

I4. If ¢ € X, P is a (possibly empty) finite prefix-closed subset of P,,,_1, k = | P|,
Ty € Xn,,oo s Th € X, To € Xy, and 0= 32F | n;, then

(¢, P,0) —pn Tol(c, P,1) —py Ty .., (¢, Py k) —i Ti] € X,
Lemma 16. (X,)nen = (DT (n))nen satisfies 11-14.
Lemma 17. If T € DT (n), then one of the following conditions holds:

Cl. n=0 and T =T, for some c € X.
C2.n=1and T =T,.
Cs. n:Zleni for some k> 1,nq1,...,n, >0 and

T=c—p P(Ty,...,Ty)
for some ¢ € X, some finite prefiz-closed subset P of P,,_1 such that |P| =

k, and some Ty € DT (nq),..., Ty € DT (nyg).
C4. n= Zle n; for some k> 0,n1,...,n, >0 and

T:(C,P,O) 7mT0[(67Pa1) 7mT17"'7(CaP7k) 77YLTk’}

for some ¢ € X, some finite prefiz-closed subset P of P,,_1 such that |P| =
k, and some Ty € DT'%(n1),..., T, € DT (ng), To € DT (k).

Proof. Suppose T' € DT5:(n). If |T| = 1, then clearly, either C1 or C2 holds.

If (T(e) e Yand CL(e) = P # @, let k= |P|. Then T = ¢ —,,, P(Ty,. .., T})
for some T} € Tg(nl), oI € Tg(nk) such that Zle n; = n. Since T ~* T’
for some T" € T%(n), it is clear that for ¢ = 1,...,k, T; ~* T/ for some
T/ € T'%(n;). Therefore, C3 holds.

Now suppose (T (g) = (¢, P,i). Since T ~* T" € T'%(n), it is easy to see that
i=0and CI(e) = {e}. Let k = |P| and let T, € T'2(k), T}, ..., T} be such that
T ~* (¢, P,0) —p, Tg[(c, P, 1) =i TY, ..., (¢, Py k) —p T7)

~ To[TY, ..., T}

~* T,
Then it is easy to see that for i = 1,...,k, T} ~* T} € T'%(n;) for some n; such
that n = Zle n;. Also, we must have

T = (¢, P,0) —, To[(¢, P, 1) =, T1, ..., (¢, Py k) —p, Ti]

for some Ty € T’;(k),Tl € Tg(nl), LTy € Tg(nk) such that Ty ~* T} and
fori=1,...,k, T, ~* T]. It follows that Ty € DT (k) and for i = 1,...,k,
T, € DT (n;), i.e., C4 holds. |
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Theorem 18. (DT (n))nen is the least sequence of sets that satisfies 11-14.

Proof. By Lemma 16, we know that (DT'5:(n)),en satisfies I1-14. Let (X,,)nen
be any sequence of sets satisfying I1-14. To establish that DT5:(n) C X,, holds
for all n € N, we prove by induction on the number of nodes of T € (J,, ']I‘g(n)
that T € DT (n) implies T € X,,. f T € DT%(n), by Lemma 17, one of
C1-C4 holds. In case C1 or C2 holds, T' € X,, by I1 or I2. If C3 holds, then
by induction hypothesis, T' = ¢ —,,, P(Ty,...,T}), where T; € X,,, for i =
1,...,k. Then by I3, T € X,,. If C4 holds, then by induction hypothesis, T =
(¢, P,0) = To[(¢, P,1) = Th, . . ., (¢, P k) = T3], where n = S0 ny, Tpy € Xy,
and T; € X,,, fori=1,... k. Then by I4, T € X,,. O

Just as in the case of ordinary Dyck languages, the inductive definition of
DT%:(n) in terms of the closure conditions I1-14 is unabmiguous in the sense
that every T € DT'5(n) can be written in the form of one of the equations in
C1-C4, in exactly one way. This follows from the next lemma:

Lemma 19. Let U € DT%(k), U’ € DT%(). If Ul(c,Pi1) —m
Tl,...,(C,P,’ik) -m Tk] = U/[(Cap,jl) -m T{,...7(C,P,jl) -m T'l/] with
il,...,ik,jl,...,jl > 1, then U =U".

Proof. This can be proved by straightforward induction on the size of U, using
Lemma 17. O

Lemma 20. {enc,,(T)|T € H’;Zl(n) } = DT'%(n).

Proof. (C). We show by induction on the size of T' € H’;;l that T € Hp ' (n)
implies enc,,(T) € DT%(n). Let P = CL(¢), and k = |P|. Assume that for i =
1,...,k ¢ <1£’Z- m-u; and T; = SH 11 (T, m - u;). Clearly, for each i = 1,.. .k,
T, € H’g‘;l (n;) for some n; such that n = Zle n;. By induction hypothesis,
enc,,(T;) € DT (n;).

Case 1. m +1 € T. Then (T(e) = ¢ for some ¢ € X. Let Ty =
SH 1 (T, m + 1). Then Ty € HY ! (k). By induction hypothesis, we also have
enc,,(Ty) € DT'% (k). Then enc,,(T) = (c, P,0) —,, (enc,,(To))[(c, P, 1) —p,
enc,,(Ty),..., (¢, P,k) —p, enc,, (Ti)] € DTS (n) by the closure condition I4.

Case 2. m+1 ¢ T.If P # @, then ¢T(g) = ¢ for some ¢ € X, and enc,,(T) =
¢—m Plenc,,(T1), ... ,enc,,(T})) € DT (n) by the closure condition I3. If P =
&, then T € H’;;l (0)or T € H’;‘fcl(l) depending on whether (T (¢) = c € X or
(T (¢) = x. In the former case, enc,,(T) = T. € DT%(0) by the closure condition
I1. In the latter case, enc,,(T') = T € DT'5:(1) by the closure condition 12.

(D). By Theorem 18, it suffices to prove that (X, )neny = ({enc,,(T) | T €
Hg;l (n) }nen satisfies the conditions 11-14.

11 is satisfied since T, = enc,,(T¢.) and T, € H’;;l(O).

12 is satisfied since T, = enc,,(Ty) and Ty, € H’;;l(l)

To check that I3 is satisfied, let ¢ € X, P be a finite, non-empty, prefix-
closed subset of P,,,_1, k = |P|, and foreach i = 1,...,k, T; € H’;f;l(ni), where
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n = Zle n;. Let uy,...,u; be the elements of P, in alphabetical order. Define
T by

k
T:{e}UUm~ui'Ti,
i=1
o) =,
(T'(m - -v) =T (v) forveT.
Then T € Hg‘;l(n) and T; = SHy 11 (T, m-u;) for i = 1, ..., k. By the definition
of enc,,,
enc,,(T) = ¢ —,, Plenc,,(T),...,enc,,(Tk)).

This shows that 13 is satisfied.

To check that 14 is satisfied, let ¢ € X', P be a finite, possibly empty, prefix-
closed subset of P,,,_1, &k = |P|, Tp € H’;;l(k), and for each i = 1,...,k,
T, € H’;';l(nl), where n = Ele n;. Let wy,...,u; list the elements of P, in

alphabetical order. Define T' by

k
T={c}u(m+1)-ThyulJm-u-T,

i=1
(Tle) =,
T((m+1)-v) =T () forve Ty,
T(m-u; -v) =T (v) forveT;.

Then it is easy to see T' € H’;;l (n), Ty = SHpnt1(T,m+1),and fori =1,... k,
T, = SH41(T,m - u;). By the definition of enc,,,

enc,,(T) =

(¢, P,0) —p (ency, (To))[(c, P, 1) —p, (ency, (TY)), ..., (¢, P k) —p, (enc,, (Tk))].

This shows that 14 is satisfied. O
Lemma 21. For each m > 2, enc,, is an injection.

Proof. This follows from the unambiguity of the inductive definition of DTSy (n).
O

It is useful to define a function g;wm from the nodes of T' € Hg;l to
the nodes of T' = enc,,(T). Let P = CL () and k = |P|. Let uy,...,uy list
the elements of P in alphabetical order, and let T; = SH,,1(T,m - wu;) for

i=1,....k Define fL. :T — T by

(1) fone, (e) =e.
(ii) fm+1 €T and Ty = SHpp41(T,m + 1), then

fone, (m+1)-w) =m- f&, (w) where w € T,
g;mm (m-u;-w)=m- f;j';?cm (v;) -m - g;;’cm (w) where w € T; and & 4£+1,i v;.
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(iii) f m+1 ¢ T, then
f;ﬂmm (m-u;-w)=m-u; - f,;";jcm (w) where w € T;.
It is easy to check that fX.. (v) € T" indeed holds for all v € T'.

Example 22. Consider the 3-dimensional tree T" and its 2-dimensional encoding
ency(T), depicted in Fig. 2. In these diagrams, the nodes that are related by
fg;lcm are placed in roughly the same geometrical positions.

Lemma 23. Let T € H’;;l and T'" = enc,,,(T). For each v € T, we have

c if v ¢ dom(<2 1) and (T(v) =ce X,
eT’(fT (’U)) _ ( 30) if ve dom(<£,+1)} ET(U) =c, and Cz;(v) =U,
enc,, (

-

¢,

¢, Uyi) if (T(v) =, u<af, ;v (T(u)=c, and CL(u) =U,
x if (T(v)=x and v € TNP,,.
Proof. This is easy to see from the definition of enc,,. O
T

The function fg,. ~allows an alternative definition by recursion with respect
to the alphabetical order on the nodes of T'.

T

enc,,

Lemma 24. The function satisfies the following equations:

fg;lcm (E) =g,

f;cm(u ' (m + 1)) = g;lcm,(u) -m,

and for v € Pp,_1,

feq;lcm (u)-m-v if u¢g dom(%Z@H),
ey (W m-v) = ¢ fL (u-(m+1)-w)-m if uedom(<F,,),

U <1§m- v, and u <£+1’Z— w.

Proof. The first equation is true by definition. The remaining two equations can
be proved by induction on the length of u. O

Lemma 25. Forall T € H’;:ﬁcl, feq;lc s a bijection from the nodes of T to the
nodes of ency,(T).

Proof. That feq;lcm is injective can be shown by induction with respect to the
alphabetical order on T Suppose f&. (t1) = [, (t2). If fE. (t1) =, then
clearly ty =ty = . If fX. (t1) € Py -m v for v € Pp_1 — {e}, then we must
have t; = uy -m-v and t3 = ug - m - v with fE. (uy) = fI. (uz). By the
induction hypothesis, u; = us and hence t; = to. If g;wm (t1) € Py, - m, then for
each j € {1,2}, one of the following holds:

(i) t; =u;- (m+1) and fE. (t;) = fEe. (u;)-m.
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(i) t; =uj-mand fE. (t;) = f&. (u;)-m, where uj & dom(<I ).

(iii) t; = u; - m-v; and fEo () = fEe, (uj - (m+1) - w;) - m, where u; €
dom (<%, 1), u; <, ; vy, and u; «F ) ; w;.

m,i
If the same case applies to both ¢; and to, then the induction hypothesis implies
t1 = to. If (i) applies to ¢; and (ii) applies to t2, then fX. (u1) = f&. (u2),
but since u; € dom(<%,, ) and up ¢ dom(<Z ), the induction hypothesis says
this is impossible. If (i) applies to t; and (iii) applies to ¢2, then fX. (u;) =
Loe, (ug-(m—+1)-ws). Since uy € dom(<}, ;) and ug-(m~+1)-ws & dom (<% )
(by the fact that T' € H’;;lL the induction hypothesis says this is impossible. If
(ii) applies to ¢; and (iii) applies to to, then f& . (u1) = fZ. (uz-(m+1)-wy).
Since u; € dom(=<ZL) and ug - (m + 1) - wy € dom(<1) (again by the fact that
T € H’;;l), the induction hypothesis says this is impossible. The remaining
cases are symmetric.
We have shown that (:j';lcm is injective. Since T" and T" have the same number
of nodes, I

enc,, is indeed a bijection. O

The m-dimensional counterpart DT'5: of the set of Dyck primes (m > 2) is
defined by

DTy ={(¢,?,0) =T |c€ X, T € DTR}U{T. | c€ X }.
Lemma 26. Forall T € H’;:'El (0), T € 'H";:;l if and only if enc,,(T) € DT'..
Define a function p: £ — X U {z} by

plc)=c force X,
p((c,U,0
p((e, U,

Then for every T € HE: 1! and v € T, if T' = enc,,(T), we have

,

PUT (fone,, (v)) = €7 (v).

The following is a generalization of Lemma 2 to higher dimensions:

)=¢
y=a forl<i<|U|

— —

Lemma 27. Let L C T’;;I. If L is super-local, then there exists a local set
L' CT% such that enc,,(L) = L' N DT'S..

Proof. Let L be a super-local subset of ']I‘ngl. Without loss of generality, we
may suppose that L = SLocm+1(A, Z,K.,Y,J) for some finite sets

AC Y,

Z C X U{x},

KCXYx(Xu{x}),

Y C XU {x},

JCEXx{PCP,_1|Pisan (m— 1)-ary tree domain } x Ny x (YU {x}).
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Let

Y=ZnX)YUWHTlv|lzeYNnZ(cUdia)€ J(c,b) € K}U
{(¢,2,0) | c€e AUY,(c,a) € K }.

Note that %' is a finite subset of %. Define finite sets A7 C X and I C
S x Tyt by

A'=(ANnZ)u{(¢,2,0)|c€ A, (c,a) € K},
Z'=(AuY)nZnJx,
I={((c,U,0),Ty) | (c,U,0) e X', de ZN X, (c,d) € K} U
{((c,U,0), Tiq,v,0)) | (c,U,0),(d,V,0) € X, (c,d) € K,and
either V£ ordeY } U
{((¢,U,0), Tieuy) [ (¢,U, 1) € X, Ul =1, (¢c,x) € K }U
{{(c,U,2),Ty) | (¢, U,3) € X', (¢, Uyi,d) € J,de ZNX U
{(e,U,4), Tiav,0)) | (c,U,i) € X, (c,U,i,d) € J,(d, V,0) € &', and
either V@ ordeY U
{((c,U,1), Tavj) | (¢,U,i) € X', (e, Ui, ) € J,j > 1,(d,V,j) € X'} U
{(c,U)|cezn2,U T ™,
fori=1,...,|U|, if u; is the i-th node of U, then
(c,U,i,p(fY (u;))) € J, and £Y (u;) = (d, @,0) implies d € Y }.

We show that L' = Loc™(A’, Z', I) satisfies the desired property.

To prove enc,,(L) C L' N DTy, suppose T € L and let T' = enc,,(T). By
Lemma 26, T' € DT'5:, so it suffices to show T” € L'.

L1. First we show (T () € A’. Let ¢ = (T(¢). Since T € L, ¢ € A. Suppose
first ¢ ¢ dom(<Z ;). Then since T € L, ¢ € Z. By the definition of enc,,,
(T'(¢) = ¢ € A’. Now suppose ¢ € dom(=<% ). Then since T € L, (¢, {T(m +
1)) € K. Since T is an (m + 1)-dimensional tree, C% (¢) = @. By the definition
of enc,,, (T () = (¢,2,0) € A’

L2. Suppose v € T' — dom(<%). Let u = (fE.. )" (v). By the definition of
L ,itis clear that u & dom(<7, ,;)Udom(<?) and ¢T(u) € ¥. By Lemma 23,

(T (v) = (T(u). Since T € L, {T(u) € (AUY) N Z, and this implies that
T (v)e Z'.
L3. Suppose v € dom(<7") and U’ = CT' (v). Let u = (fEe, ) t(v).

Case 1. u € dom(<Z ;). In this case, (T’ (v) = (¢, U,0), where ¢ = (T (u) and
U = CL(u). Since T € L, we have (¢,/T(u-(m +1))) € K. If u ¢ dom(=<%),
then U = @, and either u = ¢ and ¢ € A or ¢ € Y. If u € dom(=<1), then
(¢,U,1,{T(u-m)) € J. In either case, we have (c,U,0) € X’. Note that U’ = {e}
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and v-m = fZ . (u-(m+1)). We have
d if (T(u-(m+1))=de X and
w-(m+1) € dom(<Z ),
Tw-m)={(d,V,0) ifT(u-(m+1)=de X, u-(m+1)ecdom(<L,,),
and CL(u-(m+1)) =V,
(c,U,1) if T (u-(m+1)) ==

Since T € L, we have d € Z N X C X' in the first case. In the second case,
(d, T (u-(m+1)-(m+1))) € K and either V=@ andd € Y or (d,V, 1,47 (u-
(m +1)-m)) € J, which implies (d,V,0) € X’. In the third case, since T is
well-labeled, we have |U| = 1 and u - (m + 1) ¢ dom(<%), and T € L implies
x €YNZand (c,U,1,¢T(u-m)) € J. It follows that (c,U,1) € X’. In each case,
we have ((¢,U,0),U") = ((¢,U,0), Tyr' (.1ny) € 1.

Case 2. u ¢ dom(=<% ).

Case 2a. (T (u) = ¢ € X. In this case, (T (v) = c€ YN Z C 5’ and it is easy
to see from Lemma 24 that U’ = C} (u) and fE. (u-m-w)=v-m-w for all
w e Cl(u). Since T € L, if u <} ; u-m - uy, then (¢, CF(u), i, 4T (u-m - u;)) =
(e, Ui, p(T (v -m - w;))) = (¢, Ui, p(0Y (u;))) € J. Also, if €Y (u;) = €T (v -
m-u;) = (d,2,0) for some d € X, then u-m - u; ¢ dom(<L) and hence d € Y.
It follows that (¢,U’) € I.

Case 2b. /T (u) = @. In this case, for some w,z € T—{e}, w «¥ | ; u,w <,
z. By Lemma 24, we have U’ = {e} and v-m = fI. (2). Let ¢ = (T(w) € ¥
and U = CL (w). Since T € L, (¢,{T(w-m)) € K and (c,U,4,¢T(2)) € J. Also,

m

(T(u) =2 €Y N Z, since T is well-labeled. Hence (T (v) = (¢,U,i) € £’ and

d if (T(z) =d e X and z ¢ dom(<Z ),
T'(v-m) =1 (d,V,0) if(T(z)=de X, zedom(<L,,),and CL(z) =V,
(d,V,5) iftT(z) ==, t <%+17j 2, 0T (t) =d,and CL(t) = V.

In the first case, since T € L, d € Z. In the second case, (d, (T (z-(m+1))) € K,
and if V = &, then z ¢ dom(<Z) and hence d € Y. In the third case, (d, ¢T (¢ -
(m+1))) € K. It follows that in each case, ((c,U,4),U") = ((¢,U, %), Ty’ (.mm)) €
I

We have proved that T” satisfies the requirements L1-L3 for membership in
L' = Loc™(A, Z',I).

To show L' N DT C enc,, (L), let T € L'’ N DT'%:. By Lemma 26, there is
a T € Tet! such that TV = enc,,(T). It suffices to prove that T € L.

We show that T satisfies all requirements for membership in L =
SLoc™ (A, Z, K.Y, J).

SL1. The fact that ¢T () € A’ easily implies (T (¢) = p({T" (€)) € A.

SL2. Let v € T — dom(<% ;).

Case 1. {T(v) = ¢ € X. Then (T'( L, () =ce X C Z, and it follows
that c € Z.
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Case 2. (T (v) = . Then (T'( L, (v) = (d,V,i) € X' for some V # & and
i > 1, and it follows that © € Z.

SL3. Let v € dom(=<%,,). We show ((T(v),(T(v-(m +1))) € K. By
Lemma 24, we have fE . (v-(m+1)) = fI. (v)-m. Let c=(T(v) and U =
C;I;L('U) Then ET ( g;ncm ('U)) = (67 U’ 0) and Cg ( e’I‘ncm (U)) = TZT/(fZ;Cm (v)-m)*

Since TV € L', it holds that ((c, U, O),TZT/(fT (U)_m)) el
Case 1. {T(v-(m+1)) =d € X. Then (T (fT . (v)-m) is either d or (d, V,0)

enc,,

for some V' depending on whether v - (m + 1) € dom(<7, ;) or not. Either way,
((Cv U, O)7TZT’(fe7;w (v)m)) el anheb (ET(U)’KT(U ' (m + 1))) = (C, d) € K.

Case 2. {T(v- (m+1)) = . Then |U| =1 and (T'( L, (v)-m) = (c,U,1).
Since ((c, U, 0)’T£T/(j';€wm(v)-m)) € I, we have ({T(v),fT(v-(m+1))) = (¢, x) €
K.

SL4. Suppose v # ¢ and v € T — dom(=<Z). We show (T (v) € Y.

Case 1. {T(v) =ce X.

Case la. v € dom(<}, ;). Then ET/(feq;lcm(v)) = (¢,2,0). Since v # ¢,
[, (v) # ¢ and there are some u € T’ and w € Py, such that u-m-w =

T . (v). Since T" € L', (/T (u), CT (u)) € I. Since (¢, @,0) =T (fT. (v)) =

éczl(")(w), the definition of I implies c € Y.

Case 1b. v € dom(<Z ;). Then (T'( L, (v)) = c. Since v ¢ dom(<],) and
(T (v) # @, Lemma 24 implies fX. (v) ¢ dom(<T"). Since T" € L', ¢ € 7',
which implies ¢ € Y.

Case 2. (T (v) = . Then (T (fI . (v)) = (d,V,j) € £’ for some V # @ and
j > 1, which implies ¢ € Y.

SL5. Let u <1} ; v, CL(u) = U, ¢ = {7 (u). We show (c,U, 4, (T (v)) € J.

Case 1. u € dom(<%_ ;). Then (' ( L, (1) (¢,U,0) and for some

w, u <£+1,i w, ZT,(fg;‘lcm(w)) = (Ca U7i)7 fe’l;lcm(v) = fg;lcm(w) - m, and
CTE( T ('lU)) = TeT/(fT (v))* Since T/ S L/7 ((C, U,i),TéT’(fg;m (’U))) S I.

enc,, e

We have

d if (T (v)
(d,V,0) if £T(v)
(d,V,§) if (T(v) =

CL(z)=V.

€ X, vedom(<},,), and CL(v) =V,

d € ¥ and v ¢ dom(<}, ),
x, z 45, 0, T(z) =de X, and

T (fhe, () =

In each case, ((¢,U, 1), Tyzr/(pr_ (,y)) € I implies (c, U,i, /T (v)) € J.

Case 2. u ¢ dom(<7 ). In this case, (T (fL_ (u)) =c, fE, (u-m-t) =
e, (u)-m-tforallte CkL(u),and oT( Lic, (u) = CL(u) = U. In particular,

T (u) <, fT_ (v). Since T' € I, (¢,CT (fT. (u))) € I. Let u; be the

enc,, m,i Jency, enc,,

i-th node of U, so that f&. (v) = fE. (u)-m-u;. Then (c,U,i,(T(v)) =

(e, Uiy p(T (. (0))) = (&, CT (fToe (w)), i, p(£Cm Uenen ) () € J, by
the definition of I.
This establishes T' € L = SLoc™ (A, Z, K, Y, J). i
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The converse of the above lemma does not hold for a reason similar to the
one for the case of the standard enc function for dimension 1.9 B

A projection 7: X’ — X naturally induces a projection 7: X/ — X in an
obvious way:

Clearly, if T € DTY,, then 7(T') € DTY. Also, if T' € T’;,J;7 then
enc,, (m(T")) = w(enc,,(T)).

Here is a generalization of Lemma 6 to multi-dimensional Dyck languages:
Lemma 28. Let L C ']I‘g be a local set. Then there exist a finite alphabet X',
a projection w: X' — X, and a local set L' C TT»E”V/ such that LN DTy =
7(L' N DT'S). Moreover, @ maps L' N DT's, bijectively to LN DT 5.

Proof. Let A, Z C Y and I - Y x ']I‘571 be finite sets such that L =

Loc™(A, Z,T). Since we are interested in the intersection of L and DTy, we
may assume without loss of generality Z C Y. Define

Yo=ZU{ceX|(c,T)el},
S =Sou{clce ANZ},
A'={clece ANZ}U{(c,2,0)|ce X, (c,2,0)€ A},
Z'=7Zu{elce ANZ}.
Then A’ and Z’ are finite subsets of 5”. Let 7: X’ — X be the projection defined

by
m(c)=¢c, mw(d)=d

for each c€ Yy and d € AN Z. Let
L' =TLoc™ (A", Z',I).

It is easy to see that L N DT = 7(L' N DT'%) and for each T € LN DT'y.,
there is a unique T” € L' such that =#(T') =T. |

Lemma 29. If L C T’;;l is a local set, then there exist a finite alphabet X', a
projection w: X' — X, and a local set L' C ']I"EE, such that

enc,, (L) =7(L'NDT%).

1

Moreover, enc,.! o maps L' N DT, bijectively to L.

!9 There is also an additional reason. L = {a —3 a} is not super-local even though
enca(L) = {(a,2,0) —2 a} is local.
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Proof. By Lemma 11, there exist a projection 7: Xy — X and a super-local
L, C T’;Jri such that L = 71 (L1). By Lemma 27, there exist a local set Ly C T’”

such that enc,,(Li) = La N DT’ZI. By Lemma 28, there exist a pI"O_]eCtIOH
me: X' — X1 and a local set L' C Tg{ such that Ls N DT";1 =m(L' NDTT).
So
enc,, (L) = enc,,(m1(L1))
=71 (enc,,(L1))
=m (LN DT'Y,)
T (m2(L' N DT))
7(L'N DTS,
where m = w1 oy, Since my is a bijection from L, to L and encm is injective, w1

maps ency, (L1) bljectlvely to encm( ). Since w3 maps L' N DT, bijectively to
Lon DT 5, =ency, (L), T =momy maps L'N DT, bljectlvely toenc(L). O

8 A Multi-dimensional Generalization of the
Chomsky-Schiitzenberger Theorem

Let m > 2. We call L C T simple context-free if there exist a finite alphabet 7"
and a local set K C Tm+1 such that L = y,,(K).
For a finite alphabet X and r > 0, we define the finite alphabet

Y, =xU U{ I'.p|ce X, P is finite and prefix-closed, |P| < r}.
For any alphabet 7 and p > 1, let
Yp=1T €T} | |ICT ()| < pforallve T},
Clearly, if T is finite, T4, is a local subset of Ty'. Also, any local subset L

of Ty is included in Ty, for some p, which is just another way of saying L is
degree bounded.

Lemma 30. Let X be a finite set. For m > 2, DTS N ']I‘%I is simple contert-

L)

free.

Proof. We adapt the inductive definition of DT'y;(n) to obtain the required local
set. Let T = X, U {Xo,..., X, }. We write Uy, for the set {e,(m —1),...,(m —
1)¥=1} C Ppy_y. Let
A, ={X,} forn=0,...,7,

Z =3, U{z},
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I = {(X(th)a (X17Tw)} U
c—m P(

P - ]P)m—lv
Koy =m Uny (2, @), P is finite and prefix-closed,
Xny ool U
) ng — m YUnyg geeey O§n:n1++nk§7"
(caPaO)_ka_mUk( PCP L
b (&P 1) =m Xny = Un, (..., @), P is finite and prefix-closed,
e 0<I|Pl=Ek<m,
: (¢, Pyk) —m Xnp, —m Un, (..., ) 0<n=nyt - tny<r
Here, the number of occurrences of x in Up,,(x,...,x) is |U,,| = n;. When
j = 0, we understand the notation X; —,, U;(x,..., ) to mean Xy, i.e., the

tree consisting of a single node labeled by Xy. Note that A,, and Z are (finite)
subsets of 7" and [ is a finite subset of T x T¥, . It is straightforward to prove
that

DT (n)NTE (n) = Ym(Loc™ (A, Z, 1))

holds for n =0,...,r. The case of n = 0 gives the statement of the lemma. We
omit the details. O

The following lemma is straightforward.
Lemma 31. If L is simple context-free, there are finite sets A, Z, I such that
L=ym(Loc™ (A, Z, 1)) and Zn{c|(¢,T) eI} =@.

Recall the definition of del,,(T,U) for U C {v € T | |CL (v)| = 1}, which
was given in terms of the function fy: T — [1, m]*:

fU(E) =6,

fulv-i) = fu(v) -4 for i < m,

o) om ifvgu,
Julv-m) = {fU(v) ifvel.

For T9 and T C X, del,, r(T') was defined to be del,,(T,U), with U = {v €
T (v) €T,|C(v)| =1}
For T € T’;:;l, let f)?: _ be the mapping from the nodes of T' to the nodes of
Ym(T) defined by
v (W) = fu(fne,, (W),
where
U= fg;c({u eT|ue dom(%?nﬂ) or (T(u) =x1}).

It is clear that if u € T — dom(<y+1) and (T(u) # x, then (T(u) =
O (fE (u)).20

(T) gencm (T)

20 Here and in the proof of the next lemma, we use the notations Y™ and

with their obvious meaning.
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Lemma 32. Let L C T be a simple context-free set.

(i) If L' C T is local, then LN L' is simple context-free.
(ii) For every projection 7w: X — X' (L) is simple context-free.
(i) If X' C X, then del,, s/(L) is simple context-free.

Proof. Let L = y,,(Loc™ (A, Z, 1)), where Y C T and ACY,Z C YU{x}, I C
T x T (4 are finite sets. By Lemma 31, we may assume Z C X'U {x} and
{c|(c,T)eI} CY —X. Let r =max{n| (¢,T) € I,T € TH(n) }. We only
prove (i), since (ii) and (iii) are straightforward.?!
Let L' = Loc™ (A, Z',I'), where A, Z' C X' C X' x ']I”;*1 are finite sets.
Let
T ={(c,d,er,....en) | c€T — X der,...,ep € Xn<r}

Define projections my: YUY} — 7 and mo: Y UT; — X by

m(c)=c force X,

mi((e,d,e1,...,en)) =c for (c,d,eq,...,e,) €11,
ma(c) =c force X,
ma((c,d,er,...,en)) =d for (c,d,eq,...,e,) €17.

Let
n=mny'({d}) forde X,
Z"=7"u{(c,d,e1,...,en) €11 |n=0},
I"={(c,T) € £ x Ty, | (c,;ma(T)) € I' }U
{((e,d,e1,...,en), T) €Ty X T’E”J%l
|T| = n and if u; is the i-th node of T', then w2 (¢T (u;)) = e; }.

Define
A =(AnAnZYUu{(c,d) e |ce A, de A"},
7 =7,

L ={((c,dse1,...,en),T) | (c;d,e1,...,e) €11, T € TY 1y, (n), (c, 1(T)) € I,
T[(c,e1),...,(c,en)] € Loc™ (AL, Z", 1") }.

Note that A, Z1, I, are finite sets. We show ym(Locm+1(A1, Zy,I)=LNnL.

We first note some useful facts about members of Locm+1(A17Z1,Il). To
state this, we need another projection and a certain relabeling defined on some
subset of Tg’&lﬂhw. Define a projection w3: XU (77 — 711) — X by

m3(c)=c ifce X,
m3(((c,d,e1,...,e,), P,0)) =d,
m3(((c,d,e1,...,e,),Pyi)) =¢; if1<i<n.
2! This proof is very long and laborious. An alternative approach would be to use the

notion of a recognizable (equivalently, MSO-definable) set of m-dimensional trees
[24,23] and rely on the fact that the yield mapping is an MSO-definable transduction.
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Let
M={T T}y .|
for all v € T, (i) v € dom(=<}, ;) if and only if /T*(v) € 7y
and (ii) £T1 (v) = (¢, d, e1,. .., e,) implies CE%{H(U) € Ty, (n) }.

It is clear that LocmH(Al,Zl,Il) C M. For Ty = (T,¢T) € M, define TlT =
(T, (™) by

P (v) = {KTl (v) ifM(v) e XU,
(ce;) if 4T (v) =, u dmi1, v, and 1 (u) = (¢, d, €1, ..., e,).
(14)
It is easy to see that for all u € T, we have

w07 (W) = ma(eonen P ([ R, (u): (15)
Now let Ty = (T,¢T) € Locm+1(A1, Z1,1h). Since Ty € Locm'H(Al7 Z1, ),

it is also easy to see the following:
u € dom(<% ) implies (€71 (u)) = m (T (u - (m + 1)), (16)
u <£1+1’Z- v and u 4%,1’ w imply WQ(KTIT (v)) = 7T2(€T1Jr (w)). (17)
It follows from (15), (16), and (17) that if u € dom(<% ) or £T'(u) = x, then
({7 (fape,, (1) = ({1 (faie,, (w) - m)). (18)

ency, ency,

Let U = f&. (dom(<l ) U{v € T | (M(v) = =x}). Note that if
u € T and ETl(u) € X (or, equivalently, if fZi. (u) € U), then (T (u) =
genem(T1) (f&. (w) = T (fh (y)). By (18), we can see that for all nodes
w,t of enc,,(T1), fu(w) = fu(t) implies m3(£e2¢m (T (w)) = mg(renem(Ti)(t)),
So if w’ is the unique node such that w’ € U and fy(w) = fu(w'), then

(€m0 1) = g (22 (T ()
= m3 (T (fyr (w'))
= £ Ty )
= B (fy(w)).
It follows from this and (15) that for all u € T', we have
(07 (u) = T (T (). (19)

Now for T € Loc™ (4, Z, 1), define T = (T, () € TR}, , by

0T (u) if u & dom(<7 1),
(C, d7617"'aen) ifue dom(<an+1)7 CZZT(U)’
d= DT (), |CL ()] = n, u < ; w;,
e; = gym(T)( ym( w;)) fori=1,...,n.

T () =

(20)
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Then for all T' € Loc™ (A, Z, 1), we have T € M, m(T) = T, and y,,(T) =
Ym(T).
We claim that

if Ty € LOCerl(Al,Zl,Il) and T = 7T1(T1), then
T € Loc"™ (A, Z,)and Ty, =T. (21)

The definition of Aj,Z;,I; easily implies 7T1(LOCm+1(A1,Z1,Il)> -
Loc™*1 (A, Z,I). Suppose Ty € Loc™ " (Ay, Z1,I1) and let T = m; (Ty). Clearly,
we have yp,(T) = ym(Ti) and f' = fI' . To prove Ti = T, all we need
to show is that (20) holds with T} in place of T. If u ¢ dom(<7_,), then
M) € 2, = Z C YU {z}, so (T(u) = m (T (u)) = ¢Tr(u). Suppose
u € dom(<I ), [CL(w)| = n,and for i = 1,...,n, u <fj+17i vi, u <AL wg.
Since T3 is well-labeled, Cg;ﬂrl(u) € TPy, (n). Since (¢T (u),CﬁH(u)) e I,
(T (u) = (c,d,eq,...,e,) for some c € T — X and d, ey, ...,e, € X. By (19),d =
72 (07 () = m(0T () = BT (fTs () = (D (fT (). By (17), we have
ei = mo(£T3 (v3)) = mo(£7) (w;)). By (19) again, m(¢T! (w,)) = &= T (£I (w;)),
so e; = O T(fI () = D (fT (w;)). We have shown that (20) holds
with T} in place of T'. This proves (21).

We next prove that the following equivalence holds for all T € L =
Loc™ (A, Z,1):

ym(T) € L if and only if T € Lochrl(Al7 71, 1). (22)

It easily follows from (21) and (22) that L N L' = y,,(Loc™**(Ay, Z1,1;)) and
hence L N L’ is simple context-free.
We prove (22). Let T € Loc™ (A, Z, 1) and V = y,,,(T) = y.u(T). Since
T € M, the relabeling Tt = (T, ¢T") of T' given by (14) is defined. From the
way T is defined, it is clear that for all u € T', we have
mo (€7 () = (] (w)). (23)

Ym

For the “only if” direction of (22), suppose V' € L’. We show that T satisfies
the requirements L1-L3 for membership in Loc™ ! (A4y, Z1, ).

L1. We have ET(e) € A; if and only if either ¢ ¢ dom(<Z, ) and (T(e) =
V{e) € ANA'NZ ore e dom(<L,)), (T(e) € A, and ¥ (fT (¢)) =
(V(e) € A'. Since T € Loc™ (A, Z,1) and V € L' = Loc™(A', Z',I'), clearly
one of these conditions holds. .

L2. Suppose u € T — dom(<? ;). Then (T (u) = (T(uv) € Z = Z;.

L3. Suppose u € dom(<%,,). Let (c,d,e1,...,e,) = (T(u) and
W = CIL.  (u)(c,er),....(cen)] = C},:ll(u) We need to show W €

Loc™(Alj, 2", I").

— We show (W () € A). By (23), m(W(¢)) = m(T (u- (m + 1)) =
OO (w- (m+1))) = O (T (u)) =d. So (W (e) € A,
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— Let w € W — dom(<). We show (W (w) € Z”. Note that since w ¢
dom(=<"), we have u - (m + 1) - w € dom(=<7L).
Case 1. u- (m+ 1) - w € dom(<Z ;). Then ET(u -(m+1) w) # x and
W (w) = (T(u-(m+1) w). Since CL(u-(m+1)-w) = @, (W (w) =
ET(u- (m+1)-w) is of the form (¢/,d’) and hence is in Z”.
Case 2. u-(m+1)-w ¢ dom(=<7, ;). In this case, either /" (w) = éT(U’ (m+
1)-w) =T (u-(m+1) -w) = ¢ for some ¢’ € ¥ or ET(u-(m+1)-w) = x and
W (w) = (c, e;) for some i. In the latter case, /" (w) € Z” by the definition
of Z". In the former case, Cl (u- (m+1)-w) = CY.(fy (f-(m+1) w)),
and since u- (m+1) - w & dom(<%), fF (u-(m+1)-w) ¢ dom(<},). Since
Vel , Ww) =T(u-(m+1)-w) =Y (ff (u-(m+1) -w)) ez CZ.

— Let w € dom(<Y). Then u-(m+1)-w € dom(<ZL) and Tlu-(m+1)-w) £
z, so MW (w) = (F(u- (m+1)-w). We show ((W (w),CW (w)) € I". Let
p = |CW(w)| and for i = 1,...,p, let w; be the i-th node of C¥ (w).
Case 1. u- (m+ 1) - w & dom(<% ;). Then (" (w) € ¥ and (W (w) =
(T (- (m+ 1) - w) = V(T (u- (m+1) - w)). Also, O (w) =
Ch(u-(m+1)-w)=CY(fF (u-(m+1)-w)). Fori=1,...,p, m({W (w-
mew;)) = m(T (u- (m+1) - w-m-w;)) = (fF (- (m+1)-w-m-w;))
by (23). Since u - (m+ 1) - w & dom(<2 1), fT (u-(m+1)-w-m-w;) =

Ym

T (u-(m+1)-w) m-w;. Hence m(CY (w)) = CY (fF (u-(m+1)-w)).

Since V € L' = Loc™ (A", Z', I'), ({™ (w), w2 (CW (w))) = (¢V (fT (u- (m+
1)-w)), CY(fF (u-(m+1)-w))) € I'. Therefore, ((W (w), CW (w)) € I".

Case 2. u- (m+1)-w € dom(<% ;). Then by the definition of T', /"W (w) =
Tlu-(m+1)-w) = (¢,d,e},...,€}), where fori =1,...,p, e;A: YV (fF (u-
(m+1)-w-m-w;)). We have £€% @ (w;) = W (w-m-w;) = X" (u-(m+1)-
w-m-w;), and by (23), mo(£Cm () (w;)) = (Y (fT (u-(m+1)-w-m-w;)) = €,
so (W (w),CW (w)) € I".

For the “if” direction of (22), suppose T e Loc™ (A, Z1,I;). We show that
ym(T) = V satisfies the requirements L1-L3 for membership in Loc™ (A’, Z’, I').

For each v € V, let h(v) be the unique node in 7' — dom(<2, ;) such that
(T (h(v)) #  and f (h(v)) = v. We have (T (h(v)) = KT(h(v)) =0V ex
and CT (h(v)) = OV (v).

L1. Since (T (¢) € Ay, either e ¢ dom(=<7 ;) and (T(c) =V (e) € ANA'NZ,
or e € dom(<7, 1), €T(e) € A, and £V (fF ()) =€V (e) € A’. So in either case,
we have ¢V (g) € A’.

L2. Let v € V — dom(=<y,). If h(v) = e, then ¢ ¢ dom(<% ;) and
ET(E) =(Vv) € ANANZ, sotV(v) € Z'.If h(v) # ¢, let u € T be
such that u <X, h(v) = u-(m +1) - w. Let ZT(u) = (¢, d,eq,...,e,) and
W = C};H(u)[(c, e1),...,(c,en)]. Since @ = CY (v) = CL (h(v)) = CW(w), w ¢
dom(<Y). Since ((c,d,e1,...,e,), W) € I, we have W € Loc™(A/}, 2", 1"),
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and hence (Y (v) = ET(h(U)) = (W (w) € Z". Since ¢V (v) € X, it follows that
V(v)eZ.

L3. Let v € dom(=<Y). Since CY (v) = CL(h(v)) # &, h(v) #e. Let u € T
be such that v < ;= h(v) = u- (m+1) - w. Let éT(u) = (¢, d,e1,...,ep).
Then W = CZ_ (w)[(¢,e1), ..., (¢, en)] € Loc™ (A4, 2", I"). We have CY.(v) =
CT( (v)) = C¥(w). Let p = |CY (v)| and for i = 1,...,p, let v; be such that
v <y, v-m - v, We must have (¢W (w), CW (w)) € I", and since (W (w) =
¢V (v) e X, we get ({W (w), m(CW (w))) € I’ By (23),

T (6™ (w-m - v;)) = (6 (u- (m+1) - w-m - v;))
_gV(
iéV

T (u-(m+1)-w-m-v;))

(fy., (h(v) - m - v;))
—ZV( ( (
e (

V

)
v)) -m - vi)
)-

v-m v,

So (V(v),CY (v)) = ((W (w), ma(CJY (w))) € I".
We have established (22). This concludes the proof. O

Clearly, T € DTY; implies del = (T) € T%. We obtain the following
generalization of the Chomsky-Schiitzenberger theorem:

Theorem 33. Let L C T%. The following are equivalent:

(i) L 4s simple context-free.
(ii) There exist finite alphabets 1V, T, a projection 7: T — T, and a local set

RCTZ such that L = delmj_r(?r(R N DTY,)).

Proof. (ii) = (i). Suppose R C T is a local set. Clearly, R C TZ for some
P

p,q. So RNDTY, = RNDTY N Tm . By Lemma 30, DT} N Tm is simple
context-free. It then follows by Lemma 32 that L = del (7m(R ﬁpDT 7)) =
delm,T_T( T(RNDTY N ']I‘m p)) is simple context-free.

(i) = (ii). Let K C ']I‘m;1 be a local set such that L = y,,(K). By Lemma 29,
there exist a projection 7: 7/ — 71", and a local set R C T;"v, such that enc,, (K) =
T(RN DTY,). So

m -1\

L=ym(K)

= delmj_r(encm (K))

= delm_fiT(%(R N DTY)). O

As was the case with the original Chomsky-Schiitzenberger Theorem, in the
proof of Theorem 33, enc_! o 7 is a bijection from RN DTY, to K. (See the
second statement in Lemma 29.)
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9 A Chomsky-Schiitzenberger-Weir Representation
Theorem for Simple Context-Free Tree Grammars

We are now going to use Theorem 33 to obtain a generalization of Weir’s repre-
sentation theorem about the string languages of tree-adjoining grammars to the
string languages of simple context-free tree grammars. First, we prove a lemma
that generally holds of m-dimensional Dyck tree languages.

The following lemma is straightforward.

Lemma 34. Let X’ be a finite alphabet and w: X' — X be a projection. If L is
a super-local subset of T'%, then m—*(L) is a super-local subset of T'%,.

Lemma 35. Let m > 2. For any local set L C Tg, there exist a finite alphabet
X', a degree-bounded, super-local L' C T’ZE/, and a projection w: X' — X that
satisfy the following conditions:

(i) #(1) C L.
ii) LN DTS = 7(L' N DT%). Moreover, ® maps L' N DT, bijectively to
b b b
LN DTY.

Proof. By Lemma 10, there are a finite alphabet X1, a super-local subset L
of Tz , and a projection 71: Xy — X such that m; maps L; bijectively to L.
Since 71 (L N DTY}) is not a subset of an m-dimensional Dyck tree language,
we have to relabel some nodes of %\Ifl(T) for T € LN DT to get a set of the
form L' N DTS,

For d € X, P a finite prefix-closed subset of P,,,_1, and ¢ € [0, |P]], let

Agpi={06€ X |m(6) = (d,Pi)}.

Define
Yy =21 - U Ad, P,
d,Pyi
Ad)p = {(60,51,...,(5|p‘) | (51' - Ad)p’i for 1 = 1,,|P|},
A= UAd,P7
d,p
Y =Xy UA.

Note that X’ is a finite alphabet. Define a projection 7: X/ — X' by

w(c) =m(c) if c€ Xy,
7T(6) d if d € Ad)p.

Then 7™ maps m-dimensional trees over X’ to m-dimensional trees over X. Let

A ={(8,Pi)eX|b6e Ayp,0<i<|P|},
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and define a projection mo: Yo U A" — X by

ma(c) =c¢ if c € Xy,
772(((50,51,...,(5|p‘),P,Z'))2(51' if(50,51,...,(5k)EA(LPandOSZ’S‘P‘.

Then for T' € T, o/, N
7(T) = mi (m2(T)).
Let
L'=7"YL)NTE, -
Then
L' =my (n (L))
=y ' (La).
By Lemma 34, L' is a super-local subset of T%, 4 and hence of T’Eﬁl.
Clearly, (L) C L, so (i) holds. Since 7(DT%,) C DT’ always holds for any
projection m: X' — X, we also have 7(L' N DTs,) C LN DTY,.
It remains to show that for each T € L N DT, there is a unique TV €
L' N DTY, such that 7(T") = T.
Let T € LN DTY%. We relabel the nodes of T to turn it into a T' € DT%,,.
Recall that w1 maps L; bijectively to L, so we have T} = wl_l(T) € Ly. Let

V = (V,£V) = enc;;}(T). Define V = (V, 5‘7) by

o (f(xlc (v)) ifveV —dom(<y,,) and £V (v) # =,
x it ¢V(v) ==,
0V (0) =4 (50,61,...,0%) ifvedom(<Y,,), |CY.(0)] =k,
So =T (fY . (v)), and

v 4%-{-1,1‘ v;, 0 = 1T ( (me(vi)) fori=1,...,k.
Let
T = enc,, (V).

If v € V—dom(<V ;) and EV(U) # x, it is easy to see that EV(U) =
T(f¥e (v) € Yo C X' Let v € dom(=<y,,,),P = CY(v),k = |P|, and

enc,,

v 4V v fori=1,... k. Let (6,01,...,0) = év(v) and d = ¢V (v). Then

m1(d0) = €7 (fone,, (v)) = (d, P,0)

enc,,

and fori=1,...,k,
T1(8;) = 07 (e, (i) = (d, P,i).

This implies that (do,d1,...,05) = EV(U) € Agp C A C 2. We have
Ty . (v)) = ((50,01,-.,0k), P,0) € A" and for i = 1,...,k, (T(f¥ _  (v;)) =

enc,, enc,,

((60,61,...,0k), P,i) € A’. Therefore, Ve T’;f; and T € DT, NTE A It
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is also easy to see that mo(T) = T}, so T € my '(L;) = L'. We have shown
T € L' N DT, Since mo(T) = Ty, 7#(T) = w1 (mo(T)) = m (T1) = T.

Now to show uniqueness, suppose TV € L' N DT, and T = 7(T"). Let
Ty = 7 }(T). Then we have T} = my(T"). We prove T" = T. Let V' = (V,£V') =
enc, ' (T") and V = (V, EV) = m(V"’). Then it is clear that enc,, (V) =T. So it
suffices to prove V! = V. Let v € V. If ¢V (v) = x, then clearly, KV,(U) =x =
V). IfveV— dom(<Y 1) and £V (v) # @, then (V' (v) = (T (f¥'. (v)) €

encm,

5y, since V' € TRYL and T € L' C T, 5. So £V (v) = (T'(f¥. (v) =
m(fT/(femm( ) =T (¥, () = €V (v). I v € dom(<Y,,,) and CY, (v) = P,

enc,,

then ¢T'( encm(v)) = (V' (v),P,0) € A, so (V' (v) = (50,51,...,(5k), where
k= |P| and (00,01,...,0) € Ay p for some d. For i = 1,...,k, let v; be such

that v <m+“ v, or, equivalently, v <m+1l v;. Then for | = Lk, 0

7-(-2((50’617" 6k) PZ) - WQ(ZTI(fencm( ))) ETI( encm( ) e also have
b0 = m2((G0, 01, -+ 04), P,0) = mallT (f¥re (1)) = (P (S, <>> S0 £V (v) =
(507517"'7616) ZEV/(’U)' o

Next we prove a lemma about DTQT. Recall that there was an implicit de-
pendence on the dimension m in the definition of f', which is the alphabet
of the language DT%; when a symbol of the form (¢, P,i) is in 7', it is as-
sumed that P is a finite, possibly empty, prefix-closed subset of P,,_1. In what
follows, we assume that the alphabet~f is defined from 7 with respect to di-
mension m = 2, so that (¢, P,i) € T implies P = {e,1,...,1%"1} for some
k > 0. We abbreviate (¢, P,) by (¢, k, i), where |P| = k. Under this convention,
T,=TU{(c,k,i)|cel,0<k<q0<i<k}.

Recall that for any alphabet X', the alphabet I's; consists of symbols of the
form [, or 1. with ¢ € X.

We let TTT , stand for the set of trees T' € Tx such that for every v € T',

(T(v) € T — 7 implies |CT (v)| = 1. (In other words, T — 7 is regarded as a
ranked alphabet all of whose symbols have rank 1.)

Lemma 36. Let n: I’% — F% be the alphabetic homomorphism defined as fol-

lows:
n(le) =e¢,
n(le)=¢ force?,
U([(c,k,o)) = [(c,k,0)7
n( (c,k,o)) Tk m)
n([(c,k,i)) ](ck:z 1)>
N (e,k,i)) = Liek,) for 1 <i<k.
Then
DT% = TT,%;T N encil(nfl(D?)).

(Here, enc is the standard encoding function defined on ordinary 2-dimensional
trees.)
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Proof. (C). Suppose T € DT%. Clearly, T € T, 5 . so it suffices to prove
n(enc(T)) € Dx. This is proved by induction on the length of the reduc-
tion T ~* T € Ty. If T € Ty, then clearly, n(enc(T)) = ¢ € D=
Suppose T ~» T"” ~* T' € Ty. Then T = Ul(c, k,0) —2 Tol(c, k,1)
Ti,...,(c,k k) —2 Ty]] and TV = U[Tp[Th,...,Ty]] for some ¢ € T, k > 0,
U € Tx(1), To € Tr(k), and T; € Tx (i = 1,...,k). Then n(enc(T)) =
21 Lie 0y Yieks0) 91 Liekon) T(eaks1) 92 - - Yk Lieseoi) ey 22 and m(enc(T))
21Y1Y2 - .- yrz2 for some z1,20,y1,y2,. ..,y € (I _,)*. By induction hypoth-
esis, n(enc(T")) € Dz, and this easily implies n(enc(T')) € D5.

(2). Suppose T' € T,. 5 .. and n(enc(T)) € Dz f T € Ty, then T € DT%.
Suppose that T ¢ Ty. First, we claim that T must have a node labeled by
(¢,k,0) for some ¢ € T and k > 0. For, if T has a node v such that (T (v) =
(c,k,i) for some c € T, k > 1, and ¢ > 1, then enc(T') = 21 [ k) T2 1 (e h) 23
and n(enc(T)) = n(w1) (e ki—1) N(@2) Lie,k,i) n(x3) for some w1, 29,73 € F%.
Since n(enc(T')) € Dz, [(ck,i—1) must occur in n(z1). If i —1 = 0, this implies
that [(cx,0) occurs in x; and it follows that T" has a node labeled by (c, k,0).
Otherwise, 1. x,i—1) occurs in xy, and it follows that T' has a node labeled by
(¢c,k,i — 1). Repeating this reasoning, we see that T' must have a node labeled
by (e, k,0).

We show that T € DT% by induction on the number of nodes of T' that
are labeled by a symbol of the form (¢, k,0). Let v be a node of T labeled by
(¢, k,0) such that no node v with v (<12T)Jr v’ is labeled by a symbol of the
form (d,1,0). Then enc(T) = x1 [(¢k,0) Y] (c,k,0) 22 for some 1,20 € F% and

y € enc('H‘QT 177T). (Note that |CT (v)| = 1.)

Case 1. k = 0. We show y € Dk, ie., the subtree Ty of T rooted at v -
2 is in Ty. Suppose otherwise, and take the alphabetically first node of Tj
labeled by some (d,l,j) € T =Y. Then y = ¢ [(4,,,)y" for some y' € I'y and
Yy’ e F%. By our assumption about v, j > 1 and [ > 1. We have n(enc(T)) =
n(z1) [(c,o,o) n(y)] (¢,0,0) n(x2) = n(x1) [(c,o,o) ] (d,l,5—1) n(y")1 (¢,0,0) n(xz2), which
contradicts the assumption that n(enc(T')) € Dx. So Tp is in Tr, and we can
write T' = U[(c,0,0) —2 Tp]. So T ~ U[Tp] € T, 5 .. We have n(enc(T)) =
(1) Le,0,0) 1 (c,0,0) n(w2) and n(enc(U[Tv])) = n(w1)n(x2). Since n(enc(T)) €
Dz, n(z1)n(x2) € D5 as well, and U[Tp] € DT% by induction hypothesis. Since
T ~ U|[Ty)], we conclude T € DT5.

Case 2. k£ > 1. We show

Yy =20 Liee,) Y1 Tek,1) 21 Lieyh2) W2 Y (ek,2) - - - 2h—1 Lie kb)) Uk 1 e,k k) 2

for some 2o, 21, ..., 2k € Iy and y1, ¥y, ..., yx € enc(T . First, we show by

7 r)
rY-r
induction that the following condition holds for i = 0,..., k:

y has a prefix of the form 2o Licr,1) ¥1 1 (k1) -+ - Zic1 ey Yi Tehy)- (24)

The case of ¢ = 0 is trivial. Suppose we have shown (24) for i < k, i.e.,
Y = 20 Ly V1 denn) -+ Zim1 Lepyi) i T ey ' With 20,...,2:1 € Iy and
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Y1,y € enc(T . Since

T,?—T)

n(enc(T)) = n(x1) Lick,0) 1Y) T (e k) 1(72)
0(21) Lieyk,0) T (ek,0) W) Lien) -+ - Viekyim1) 1) Liessi) 1) Vo)
we must have n(y’) # e. Let z be the longest prefix of ¥ in Iy. Since

20,---5%i—1 € Iy and y1,...,y; and y are all in enc(T it is easy to
)and 1,5 > 1.

T,?—T)’
see that y' = z; [(a,1,5) Yi+11(a,,5) y" for some y; 41 € enc(T

We have n(y’) =] (d,l,j—1) N(Yit1) [(d,l,j) n(y"), and so

rTT-1

n(enc(T)) =
n(21) Lieyk,0) 1 (ee0) MWL) Licyion) -+ - eksim1) M(Wi) Lieskiy 1 (atj—1) MWit1) Lay 1Y) ek i)
which implies d = ¢, Il = k, and j = i + 1. This shows that (24) holds with ¢ + 1

in place of 4. By induction, (24) holds with ¢ = k.
We have

Y =20 ey Y1 1 ety - 2=1 Lieo) Uk T ey ¥

with 29,...,25—1 € I’} and y1,...,yx € enc(TT,T—T)' We show that y' € I

Suppose otherwise. Then we must have y' = 2z [(4,1,j) Yr+11(a4,5)y" for some
de?,j,l>1, z, € Iy, and yp41 € enc(']I‘Tjir). Then n(enc(T')) contains as
a substring [(c k)1 (d,1,j—1), Which is a contradiction since n(enc(T')) € Dz and
j — 1 < l. Therefore,

Y =20 Lick ) Y1 1 ek,1) -+ - 2h—1 Lie,keob) Uk J (o ,k) 2

with zg,...,2r € Iy and y1,...,yr € enc(T . This means that T is of the

T,?—T)
form

T = U[(C7 k, 0) —2 T}][(C, k, ].) —2 Tl, ey (C, k7 ]ﬂ) —9 TkH,
where Ty € Ty (k). So

T ~~ T/ = U[TQ[Tl, e ,Tk]].

Clearly, T € T d

ry—r> 31
n(enc(T")) = n(z1)n(y1) - - n(ye)n(z2).

Since

n(enc(T)) =

N(®1) Liek,0) T (ek,0) MW1) L) T ey 1(Y2) -+ - Lieskesk—1) T eokk—1) M(W) Lickk) T ety M(2)

is in D, it follows that n(enc(T")) is in D5 as well, and the induction hypothesis
gives T' € DT%. Since T ~ T’, we conclude T' € DT%. |
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Lemma 37. If L C T?i’,m 1s a local set, then there exist a finite alphabet T, a
projection w: T — X, and a local set R C F% such that

enc(ency(L)) = %(R NDxN nfl(D;)),

where n is the alphabetic homomorphism defined in Lemma 36. Moreover,

enc, ! oenc™!' o7 maps RN Dzn n_l(Df) bijectively to L.

Proof. By Lemma 29, there exist a finite alphabet 77, a projection 71: 77 — X,
and a local set L; C T% such that ency (L) = H(LlﬁDT%) and 77 is a bijection
1

from L; N DT%1 to encg(L). We may assume Ly C T, 7 _y,- By Lemma 35,

there exist a finite alphabet 15, a projection mo: 75 — 17, and a super-local
set Ly C ’]I‘% such that m2(L2) C Ly and ma(Lo N DTY,) = Ly N DT%,. Since
L, C Tn,ﬁfn’ it follows that Lo C TTQ;ﬁsz' We have
enc(ency(L)) = enc(wi(L; N DT%,))

= enc(mi(m2 (L2 N DT%)))

= T (T2(enc(Ly N DT,)))

— 1 (w2 (enc(L2) Nenc(DT,))), (25)
since enc is injective. By Lemma 36,

enc(DT%) = enc(’]I‘Tz,fz_TZ) N 772_1(sz),

where 72 : F%z — Fi::, is an alphabetic homomorphism defined like 7. Since Lo C

TT2,f2*T27
enc(Lz) N enc(DT2T2) =enc(Lz) N nz_l(Dﬁ).

By Lemma 2, enc(Ls) = Ry N D% for some local set Ry C FTi. So we have
2 2
enc(Ls) Nenc(DT7,) = Ro N D%Q N n;l(Dﬁ). (26)

Given (25) and (26), all we need is to turn Ry N D% N ngl(Dﬂ) into the

form %(R NDzN n’l(D?)). For this, we can use a method similar to the one
we used in the proof of Lemma 6. Let

r="u{clcelr}
and define 73: 7 — 15 by
ms(c) =¢, m3(c) =c,
for each c € 15. Let
Ay ={¢|lcel}U{(EP0)]|(c,P0)eLr},
Ay =T, U{(cP,i)|(c,Pi) €Vo,i>1}.
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Then Ay, A, is a partition of 7. Let

—~—1
R=({lulde A }Ih,{lalded})Nms (Ry).

Then R is a local subset of F%F,QQ and it is easy to see

ﬁermeﬁn*%D;D::Rgm[é;mn;%Df), (27)

2

where ™! is as defined in Lemma 36. It is also easy to see that % maps RN

Dz Ny~ (D5) bijectively to Ry N D%? N ngl(Dﬁ ).
We obtain the statement of the lemma from (25), (26), and (27) by letting
T = T3 O Ty O Tq. ]

Recall that when Xy and X are disjoint alphabets, Tgé consists of all (or-
dinary 2-dimensional) trees in Tx,x, that are disjointly labeled with Xy, 2.

Lemma 38. If L C TZ » s a local set, then there exist an alphabet X' disjoint

from X, a projection w: XU X" — X, and a local set L' C T%, 5, , that satisfy
the following conditions:

(i) 77( Y=c forall ce X.
=qx(L"). Moreover, m maps L’ bijectively to L.

(i) L
§ yva2(L') C TZ
)

(iii
(iv) y2(L) = w(yg(L')). Moreover, m maps yo(L') bijectively to yo(L).

i
i
(V) ¥y(y2(L)) = y(y2(L))-
Proof. Let L = Loc*(A, Z,I) be a local subset of T3 o Let X' ={c|ce ¥}.
Define a projection 7: Y U X’ — X by
m(c)=¢c, m(c)=c,
for each c € X. Let
Z'=Zu{clceZ}
I'={(c,T") | (c,T) € I, T €T3(0) }U{ (6, T") | (¢,T) € I,T € T3, (n),n > 1},

where for T = (T, () € T3y, T' = (T, (T") is defined by
() = c if (T(v) =c € ¥ and v € dom(=<¥),
| ¢T(v) otherwise.

Note that T" € T3, 5,y Define a local subset L' of TS, v,y by L
Loc®(A, Z',I"). Then it is easy to see that 7 and L’ satisfy the required proper-
ties. a

22 Although F; is an infinite alphabet, only finitely many symbols in it appear in

1
w3 (R2) since Ry is local.
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Lemma 39. If L C T?i’,m 1s a local set, then there exist a finite alphabet T, a
local set R C F%r, and an alphabetic homomorphism h: F% — X* such that

y(y2(L)) = h(RN Dy Ny~ (D5)),

where T is defined with respect to dimension 2 and n is the alphabetic homo-
morphism defined in Lemma 36.

Proof. Let L C 'JI‘%@ be a local set. Applying Lemma 38 to L, we obtain a
projection 7’': X U X’ — X and a local set L' C T%UZ,@ such that 7’ maps L'

bijectively to L, yo(L') C T% , and y(y2(L)) = y(y2(L')). By Lemma 37,

enc(ency(L')) = %(R NDzN Uﬁl(D}'))

for some finite set 7", projection w: 7" — XU X", and local set R C F%r. We have

y(y2(L)) = y(ya2(L"))
= hx,,z, (enc(del, %, (ency(L")))))

= hEo,Zﬁ (hFT,F;_T (enc(encz (L/))))

= hsow (e, (R(RNDzN n H(D5)))),
so the statement of the lemma holds with h = hsx, 5, chp, e © 7. O
-7

Note that in the above proof, the set RﬂD?ﬁnfl(Df) is mapped bijectively
to L by n’ oenc, o enc™! o7
The following lemma is analogous to the corresponding characterization of

context-free (string) languages.

Lemma 40. Let L C Tyx. Then L € CFTy,(r) if and only if there exist a finite
alphabet T and a local set K C T%. , such that

(i) L=ys(K), and
(ii) for all T € K and all v € T, if v € dom(=<1), then |CT (v)| < r.

Lemma 41. For every L € CFTg,(r), there is an L' € CFTg,(r) such that
enc(L) =y(L).

Proof. Let K C T%w be a local set satisfying condition (ii) of Lemma 40. By
Lemma 38, we may assume K = Loc®(A4, Z,I) with Zn{c| (¢,T) €I} = .
Let

A'=Au{clce ANZ},

Z'=z20\J{{le. 1} | ce 2},
I'={(c,p(M) | (¢.T) € I}U{ (G, c([1.) | c€E ANZ}.
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where for each ¢ € AN Z, ¢ is a new symbol, and

p(x) =,
c(lc1.) ifceZ,

wle) = {c otherwise,
c(le p(Th)...0(Tn) 1.) ifceZ,
c(p(Th)...p(Ty)) otherwise.

Then it is easy to see K’ = Loc®(A,Z',I') also satisfies condition (ii) of
Lemma 40, and we have enc(y2(K)) = y(y2(K')). We omit the details. O

Recall that I, = {[1,11,..., [4,]1»} and D, is the Dyck language over I,,
where [; and ]; form a matching pair of brackets for ¢ = 1,...,n.

Theorem 42. Let ¢ > 1 and M C X*. The following are equivalent:

(i) M € yCFT,,(¢—1).

(ii) There exist a positive integer n, a local set R C I'Y, . and an alphabetic
homomorphism h: I, — X* such that M = h(R N Dy N g~ (Dgn)),
where g is the bijection on Iy, defined by

9(Lgit1) = Lgit1, 9(giv1) = Jgitqs
9(Lgivs) = Tgitj—1, 9 givs) = Lgivs)

fori=0,....n—1andj=2,...,q.

Proof. (ii) = (i). By Lemma 41 and the fact that yCFT,(¢—1) is a substitution-
closed full abstract family of languages [28], it suffices to show that there are some
L € CFT4,(q—1) and homomorphism h such that h(enc(L)) = Dy Mg~ (Dyn).

Let m=2,Y={c1,...,cn},r=q—1,p=2,and T = Y,_1 U{Xo,...,Xq-1}-
Lemma 30 gives finite sets A C 71,2 = ¥,_1,1 C {Xo, ..., X,-1} x T% such that

DT% N T%qihz = ya(Loc*(A, Z,1)).

Let L = DTQE N '11‘2E . Inspection of the proof of Lemma 30 also shows that

for all T € Loc*(A, Z,I) and all v € T, v € dom(<3) implies |CJ (v)] < ¢ — 1.
SoL € CFTy,(g—1). Let & = {(c;,q—1,5) |1 <i<n,0<j<qg—1} We
identify I'p = U{{l4,]a} | d € @} with Iy Let h: (5 )" — (I'y,_ )" be
the homomorphism that erases all symbols that are not in I7g,. Our goal is to
show
h(enc(L)) = Dyn N g™ (Dyn)-
To show h(enc(L)) C Dy, Mg~ (Dgyn), suppose T € L. Since L € TZ , it

g—1,2
is clear that

h(enc(T)) € Dyn,. (28)
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Since L € DT%, by Lemma 36,

n(enc(T)) € ng o

where 7): F; — I“; is as defined in Lemma 36, with X' in place of 7. So
h(n(enc(T)) € h(ngil) = Dy,.

Note that 7 restricted to Iy, coincides with g. So we have

h(n(enc(T)) = n(h(enc(T)))
= g(h(enc(T))).
This shows that
h(enc(T)) € g~ (Dyn). (29)
By (28) and (29), h(enc(L)) C Dy, N g~ H(Dyn)-
Now we show the converse inclusion. Let s € Dy, N g~ (D). Then there

is a hedge T' € H3 such that s = enc(T'). We turn T into a tree T = p(T) €
TieyeN ng . where symbols in ¢ are assumed to have rank 1:
q—15

e((ci,q—1,7)) = (Cuq »J)(er),
o((cirq LJ)(T1 T.)) = (¢ig = 1,7)(p(Th ... T0)),
(T1 T =ca(e (Tl) (Ty...T,)) wheren > 2.

Then s = h(enc(T")). We have
Henc(T")) = g(s) € Dyn C Dy,

Since T' € Tyc,y.0 € Ty, 5., Lemma 36 implies that T € DT%. So T € L
and s = h(enc(T")) € h(enc(L)). We conclude Dy, N g~ (Dyn) C h(enc(L)).
We have shown h(enc(L)) = Dy, N g~ (Dyy).
(i) = (ii). Let L € CFTs(g — 1) be such that M = y(L). By Lemma 40,
L = y3(K) and ency(K) C T2 for some finite set ¥ and some local set

Vg1
K C ’]I‘;m. By Lemma 37, enc(ency(K)) = 7(R' N Dz N nfl(D )) for some
local set R’ C I’y and projection m: 1" — W. Since ency(K) C ']T~ , it easily

Vg1
follows that enc(encs(K)) = %(R”ﬂDiﬁn_l(Di)), where R = R'N( ?q_1)+’
which is a local subset of (Fi_l)Jr. Using this in the proof of Lemma 39, we
easily obtain

M =R (R"N Dy N nfl(DYH)), (30)
where h': (I'y 1)* — X* is an alphabetic homomorphism. In order to obtain
the statement of the lemma, there are three things we need to fix:

— for c €7, n erases [. and 1.,
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— when ¢ > 2, the number of pairs of brackets in the group [.,].is 1 < ¢, and
— when £k < ¢ — 1, the number of pairs of brackets in the group
Lie,k,0)0d (ek0)s Liek1)s J(es1)s -+ 5 Lieskok)s J(eyky 18 K+ 1 < g

We introduce the following new brackets:
[c,la ] c,ly--- [c,qfla ] c,qg—1,
[(c,k,k+1)a ] (c,k,k+1)s > [(c,k,q—l)a ] (¢,k,q—1)>

for each ¢ € 7 and k < ¢ — 1. We now have an alphabet I, consisting of n
groups of g pairs of brackets:

[C7]C7 [0,17]C,1a IR [c,q—ly:lc,q—la

Lie,0)5 1 (k005 -+ 5 Lieskig—1)5 3 (ekyqg—1)

where n = |T| x (¢ + 1). Define a homomorphism % (I’x )= Iy, by

P(Le) = Le Lo,
Y(Ae)=T1cale2lea - Leg—11g-11c,
V(Liek0) = Liek,0)0
Y1 er,0) = Lekkr) Tekha1) - Lieka—1) I (ekig—1) T (e 1,005
V(Lieki)) = Loy
V(A ki) = Vesksi) for 1 <i<k.

Now it is easy to see that v is injective and ¥)(R") is a local subset of I;;,. Also,
we can show that all x € (I’x 1)"‘ satisfy the following properties:
'

x € Dirl if and only if (z) € Dy, (31)
9 (@) ~" P(n(x)).

These properties combined ensure that
n(z) € Dx _ if and only if g((z)) € Dgn. (32)
a

Let x: I, = (I » )* be the alphabetic homomorphism that erases all new
brackets. Clearly, x restricted to the range of v is the inverse of ©. Now observe
XW(R"YN Dy N g~ (Dyn)) = R N Dy N n Dz ). (33)

Indeed, if = € R”, ¢(z) € Dyy, and g(¢¥(x)) € Dyp, then x(¢(x)) = = €
R" N Dx by (31), and n(x(¢(z)) = n(z) € D5 by (32). Conversely, if
r € RN Dx _, and n(z) € Dz, then P(x) € Y(R") N Dy by (31) and
9(¥(2)) € Dy by (32), and so x = x(¢(x)) € X(P(R") N Dgp N g~ (Dyn))-

We obtain the statement of the lemma from (30) and (33) by taking R =
P(R")and h=h'ox. |
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As before, in the direction (i) = (ii) of the above proof, RN Dy, Ng ™ (Dyp) =
P(R") N Dy, N g7 (Dyy) stands in one-one correspondence with the local set
K C Tf},’w. Thus, each derivation tree T' of a simple context-free tree grammar
for M is uniquely represented by an element s of RN Dy, N g~ (Dy,) such that
enc(ency(T)) is the image of s under a certain alphabetic homomorphism, and
vice versa. This is exactly analogous to the situation with the original Chomsky-
Schiitzenberger representation theorem.

As in the case of context-free languages, we can take a fixed Dyck language
Dy, instead of D, with varying n, and use a rational transduction to represent
any string language that is the yield image of some L € CFTg,(q — 1):23

Corollary 43. For any M € yCFTSp(q — 1), there is a rational transduction T
such that M = 7(Dag N g~ (Day)), where g is as defined in Theorem 42.

10 Conclusion

We have generalized Weir’s [34] characterization of the string languages of tree-
adjoining grammars to the string languages of simple context-free tree grammars
of arbitrary fixed rank. We obtained this result via a natural generalization of
the original Chomsky-Schiitzenberger theorem to simple context-free tree gram-
mars. We represented derivation trees of simple context-free tree grammars as
3-dimensional trees, and proved this latter result as a general fact about simple
context-free sets of m-dimensional trees, for arbitrary m > 2. This generality is
of course an overkill for the purpose of obtaining our generalization of Weir’s
theorem, but it may be of independent interest. Moreover, all the complexity of
the general case is essentially already present in the 3-dimensional case; proving
only the special case of our lemmas that are needed for the generalization of
Weir’s theorem will not be substantially simpler.

In order to define the m-dimensional yield of an (m + 1)-dimensional tree,
we placed a restriction on the occurrences of a special label & that serve as
targets for substitution. If we wish to iterate the process of taking the yield,
i.e., if we are interested in the yield of the yield of an (m + 2)-dimensional tree,
etc., we will need more than one variable as placeholders, with each variable
providing targets for substitution at a different step of the iterative process of
taking yields. Although we did not attempt to do so in this paper, it may be
interesting to study the resulting hierarchy of classes of tree languages (and their
yield images), the first three levels of the hierarchy being the local tree languages,

23 Also, when string languages over a fixed alphabet ¥ with |X| = k are considered,
we can use Dg42) and a fixed alphabetic homomorphism h so that every M €
yCFT_,(¢ — 1) can be written as M = h(R N Dy(y2y N 97 (Dy(i42))) for some
reqular set R. (This will require modification of the constructions used in several
lemmas.) See [36] for an analogous characterization of string languages of ¢-MCFGs
of rank r, and, e.g., [27] for the case of context-free languages.
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the simple context-free tree languages, and the yields of the simple context-free

sets of (well-labeled) 3-dimensional trees.

24
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