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Abstract

GMRES is one of the most popular iterative methods for the solution of large
linear systems of equations. However, GMRES generally does not perform
well when applied to the solution of linear systems of equations that arise
from the discretization of linear ill-posed problems with error-contaminated
data represented by the right-hand side. Such linear systems are commonly
referred to as linear discrete ill-posed problems. The FGMRES method, pro-
posed by Saad, is a generalization of GMRES that allows larger flexibility
in the choice of solution subspace than GMRES. This paper explores ap-
plication of FGMRES to the solution of linear discrete ill-posed problems.
Numerical examples illustrate that FGMRES with a suitably chosen solu-
tion subspace may determine approximate solutions of higher quality than
commonly applied iterative methods.
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1. Introduction.

We consider the iterative solution of linear systems of equations,

Ax = b, (1.1)

with a large nonsymmetric matrix A ∈ Rn×n, whose singular values “clus-
ter” at the origin, i.e., A has many singular values of different orders of
magnitude close to the origin. In particular, A is severely ill-conditioned and
may be singular. Linear systems of equations with a matrix of this kind are
commonly referred to as linear discrete ill-posed problems. They arise, for in-
stance, from the discretization of linear ill-posed problems, such as Fredholm
integral equations of the first kind with a smooth kernel.

The right-hand side b ∈ Rn of linear discrete ill-posed problems (1.1) that
arise in applications, e.g., in engineering and physics, represents available
data, and typically is contaminated by an unknown error e ∈ Rn. This error
may stem from measurement inaccuracies and discretization.

Let b̂ ∈ Rn denote the unavailable error-free right-hand side associated
with b, i.e.,

b = b̂+ e, (1.2)

and assume that the unknown linear system of equations with the error-free
right-hand side,

Ax = b̂, (1.3)

is consistent. Let x̂ ∈ Rn denote the solution of minimal Euclidean norm
of this system. We would like to determine an accurate approximation of x̂
by computing a suitable approximate solution of the available linear system
(1.1) with error-contaminated right-hand side with the aid of an iterative
method.

Hanke [8] and Nemirovskii [12] investigated the use of the conjugate gra-
dient method applied to the normal equations

ATAx = ATb (1.4)

associated with (1.1). Here and below the superscript T denotes transposi-
tion. LSQR is a popular implementation of this iterative method; see [15].
This implementation performs well for many linear discrete ill-posed prob-
lems, however, every iteration requires the evaluation of two matrix-vector
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products; one with A and one with AT. This can make the use of LSQR
expensive. This is illustrated in Section 3.

Let xk denote the kth iterate computed by LSQR with initial approximate
solution x0 = 0. Then xk is determined by

‖Axk − b‖ = min
x∈Kk(ATA,ATb)

‖Ax− b‖,

where ‖ · ‖ denotes the Euclidean vector norm and

Kk(A
TA,ATb) = span

{
ATb, ATAATb, . . . , (ATA)k−1ATb

}
(1.5)

is a Krylov subspace, which we assume to be of dimension k.
The GMRES method by Saad and Schultz [21] is one of the most popular

iterative methods for the solution of large linear systems of equations with a
square nonsingular matrix. Every iteration only requires the evaluation of a
matrix-vector product with A; the matrix AT is not needed. Let xk denote
the kth iterate determined by GMRES when applied to (1.1) with initial
approximate solution x0 = 0. Then xk satisfies

‖Axk − b‖ = min
x∈Kk(A,b)

‖Ax− b‖, xk ∈ Kk(A, b), (1.6)

where
Kk(A, b) = span

{
b, Ab, . . . , Ak−1b

}
. (1.7)

The approximate solutions xk, k = 1, 2, 3, . . . , determined by an itera-
tive method applied to (1.1) typically approach x̂ when k increases and is
sufficiently small, but are useless for k large due to severe error contamina-
tion. The latter is caused by propagation of the error e in b and of round-off
errors introduced during the solution process, in combination with the ill-
conditioning of A.

Let xk̂ denote the iterate with smallest index k̂ that best approximates
x̂, i.e.,

‖xk̂ − x̂‖ = min
k≥0

‖xk − x̂‖. (1.8)

We say that an iterative method performs well if the minimum error (1.8)
is small. GMRES performs better than the conjugate gradient method ap-
plied to the normal equations for some linear discrete ill-posed problems but
worse for others; see [3, 4, 5, 9] for computed examples. The range restricted
GMRES (RRGMRES) method performs better than GMRES for many lin-
ear discrete ill-posed problems. The kth iterate determined by RRGMRES
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lives in the Krylov subspace Kk(A,Ab); see [13] for a recent discussion and
implementation.

Flexible GMRES (FGMRES) is an extension of GMRES that makes it
possible to use a more general solution subspace than (1.7). Saad [20] intro-
duced FGMRES to allow the use of different preconditioners while building
up the solution subspace. We will use the flexibility of FGMRES to con-
struct solution subspaces that contain vectors that are well suited to repre-
sent known features of the desired solution x̂. For instance, when x̂ is known
to represent the discretization of a linear or nearly linear function in one
space-variable, it may be beneficial to include the vectors

[1, 1, . . . , 1]T ∈ Rn, [1, 2, . . . , n]T ∈ Rn (1.9)

in the solution subspace. A suitably chosen solution subspace results in a
small minimum error (1.8). This is illustrated in Section 3.

The organization of this paper is as follows. Section 2 reviews the FGM-
RES method, describes some of its properties, and discusses choices of so-
lution subspaces that are suited for the solution of linear discrete ill-posed
problems. We also comment on implementation aspects. A few numeri-
cal examples are presented in Section 3, and Section 4 contains concluding
remarks.

2. FGMRES and discrete ill-posed problems

The solution subspace for FGMRES can be chosen quite freely. Let
z1, z2, . . . , z� be linearly independent vectors in Rn. We may require these
vectors to span the solution subspace after � steps of FGMRES, provided
that the generalized Arnoldi process on which FGMRES is based does not
break down during the �− 1 first steps. In particular, the solution subspace
can be chosen to allow the representation of known features of the desired
solution x̂. The choice of the vectors zj, their computation, and breakdown
will be discussed below.

The following algorithm determines a generalized Arnoldi decomposition
used by FGMRES. For ease of description, breakdown is assumed not to
occur. The number of steps, �, in the algorithm is generally chosen to be
fairly small, say � ≤ 20.
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Algorithm 2.1. Generalized Arnoldi method
1. v1 = b/‖b‖.
2. For k = 1, 2, . . . , �, Do
3. Let zk be a specified vector
4. v = Azk

5. For i = 1, 2, . . . k, Do
6. hi,k = vTvi, v = v − hi,kvi

7. EndDo
8. hk+1,k = ‖v‖, vk+1 = v/hk+1,k

9. EndDo

The standard Arnoldi method, which is used in the most common imple-
mentation of GMRES, is obtained when letting zk = vk for all k in Algorithm
2.1.

The vectors vk and zk in the above algorithm define the matrices

V�+1 = [v1,v2, . . . ,v�+1] ∈ Rn×(�+1), Z� = [z1, z2, . . . , z�] ∈ Rn×�.

Let the scalars hi,j determined in lines 6 and 8 of Algorithm 2.1 be the non-
trivial entries of the upper Hessenberg matrix H̄� = [hi,j] ∈ R(�+1)×�. The
recursion formulas of Algorithm 2.1 yield the generalized Arnoldi decompo-
sition

AZ� = V�+1H̄�. (2.1)

This decomposition is used by FGMRES to determine the �th approximate
solution x� of (1.1). Let the initial approximate solution be x0 = 0. Then
x� is characterized by

‖Ax� − b‖ = min
x∈R(Z�)

‖Ax− b‖, x� ∈ R(Z�), (2.2)

where R(Z�) denotes the range of Z�. This minimization problem is reduced
to a small minimization problem by using the decomposition (2.1). We have

min
x∈R(Z�)

‖Ax− b‖ = min
y∈R�

‖AZ�y − b‖ = min
y∈R�

‖V�+1H̄�y − b‖
= min

y∈R�

∥∥H̄�y − e1‖b‖
∥∥ , (2.3)

where ej denotes the jth axis vector. We solve the minimization problem
(2.3) by QR factorization of the small upper Hessenberg matrix H̄�. Denote
the solution by y�. Then the associated solution of (2.2) is given by

x� = Z�y�.
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Algorithm 2.1 is said to break down at iteration k if hk+1,k = 0 in line
8 of the algorithm, because then the computations cannot be continued in
a straightforward manner. The following result shows that breakdown is a
desirable event when A is nonsingular, because then the solution of (1.1) can
be computed without further iterations with Algorithm 2.1. A similar result
holds for GMRES.

Proposition 2.1. Let the matrix A be nonsingular and assume that break-
down occurs for the first time at iteration k of Algorithm 2.1. Let Hk denote
the leading k × k submatrix of the upper Hessenberg matrix H̄k ∈ R(k+1)×k

available at breakdown. Then the solution of (1.1) is given by

xk = Zkyk, yk = H−1
k e1‖b‖. (2.4)

Proof. Analogously to the decomposition (2.1), we have

AZk = VkHk. (2.5)

Since A is nonsingular, the left-hand side is a matrix of rank k. It follows
that Hk is nonsingular. Substituting (2.5) into (2.2)-(2.3) with � = k shows
(2.4). Saad [20, Proposition 2.2] shows this result under the assumption that
Hk is nonsingular, instead of A being nonsingular.

We remark that when b is contaminated by error and Hk is very ill-
conditioned, the solution (2.4) may be severely contaminated by propagated
error and therefore be a poor approximation of x̂. Regularization may have
to be employed in this situation. We will comment on this further at the end
of this section.

In our numerical experiments, the vectors z1, z2, . . . , z� in Algorithm
2.1 will be chosen to be orthonormal to avoid that the matrices H̄k, k =
1, 2, 3, . . . , are more ill-conditioned than A. We measure the conditioning
of a matrix M by the condition number, κ(M), which is the quotient of the
largest and smallest singular values of M .

Proposition 2.2. Let the vectors z1, z2, . . . , z� in Algorithm 2.1 be orthonor-
mal, and let the index � be chosen small enough for the matrix H̄� in (2.1) to
exist. Let the matrices H̄k for 1 ≤ k < � be defined analogously to H̄�. Then

κ(H̄1) ≤ κ(H̄2) ≤ · · · ≤ κ(H̄�) ≤ κ(A). (2.6)

Moreover, if A is nonsingular, then so are the matrix H1, H2, . . . , H�.
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Proof. Let � = n in Algorithm 2.1 and assume that no breakdown occurs
until the last iteration of the algorithm. Then the algorithm yields the ma-
trices in (2.5) with k = n. Since the matrices Vn and Zn are orthogonal, we
have

Hn = V T
n AZn. (2.7)

It follows that the matrices Hn and A have the same singular values and,
therefore, κ(Hn) = κ(A).

Removing the last column of Hn gives the matrix H̄n−1. The largest
singular value of Hn is larger than or equal to the largest singular value of
H̄n−1; see, e.g., [7, Section 8.6.1]. Similarly, the smallest singular value of Hn

is smaller than or equal to the smallest singular value of H̄n−1. Therefore,
κ(H̄n−1) ≤ κ(Hn). Removing the last row of H̄n−1 gives the matrix Hn−1,
and we obtain analogously that κ(Hn−1) ≤ κ(H̄n−1). Therefore,

κ(H1) ≤ κ(H̄1) ≤ κ(H2) ≤ κ(H̄2) ≤ · · · ≤ κ(H̄n−1) ≤ κ(Hn) = κ(A). (2.8)

This shows (2.6) when no breakdown occurs.
Assume now that a breakdown takes place at iteration k, with � ≤ k < n,

of Algorithm 2.1. Then we may continue the computations with the algo-
rithm by letting vk+1 ∈ Rn be a unit that is orthogonal to the available
orthonormal vectors v1,v2, . . . ,vk. The last subdiagonal entry of H̄k is set
to zero. Thus, we may determine an upper Hessenberg matrix Hn ∈ Rn×n

and an orthonormal matrix Vn that satisfy (2.7) also in the presence of break-
downs. It follows that κ(H̄�) ≤ κ(A) also in this situation. Finally, when A
is nonsingular, (2.7) and the inequalities (2.8) yield that the matrices Hk for
1 ≤ k ≤ n also are nonsingular.

We turn to the choice of vectors zj in Algorithm 2.1 and first illustrate
with a few examples that for certain linear systems of equations (1.1), it is
desirable to use solution subspaces different from the Krylov subspaces (1.7)
used by GMRES.

Example 2.1. The linear system of equations (1.1) with the circulant
downshift matrix

A =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 1
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

...
0 0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎦
∈ Rn×n,
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and right-hand side b = e2 has the solution x = e1.
GMRES with initial iterate x0 = 0 determines approximate solutions of

(1.1) in the Krylov subspaces Kk(A, b) for k = 1, 2, 3, . . . . Since the solution
is orthogonal to the spaces Kk(A, b) for 1 ≤ k < n, GMRES computes the
iterates xk = 0 for 1 ≤ k < n and xn = e1. Thus, GMRES requires n
iterations to produce a better approximation of the solution than the initial
iterate.

The solution can be expressed as ATb. This vector is contained in the
Krylov subspace (1.5) of dimension one used by LSQR. Therefore, the first
iterate of LSQR solves (1.1). When applying FGMRES to the solution of
(1.1) with initial approximate solution x0 = 0, the choice z1 = ATb in
Algorithm 2.1 yields the solution at the first step. �

Example 2.2. Let the matrix A in the linear system of equations (1.1)
be the sum of the circulant matrix of Example 2.1 and the rank-one matrix
ene

T
1 . Define the right-hand side b = e2 + en. Then the linear system of

equations (1.1) has the solution x = e1. The smallest Krylov subspace of
the form (1.7) containing the solution is of dimension n, while the smallest
Krylov subspace of the form (1.5) is of dimension only two. When seeking to
solve (1.1) by FGMRES it would be advantageous to choose the vectors z1

and z2 in Algorithm 2.1 so that they span K2(A
TA,ATb). Then FGMRES

solves (1.1) in two steps. �
In the above examples LSQR performs better than GMRES. Image restora-

tion examples for which GMRES outperforms LSQR both in terms of the
quality of the computed restorations and the number of matrix-vector prod-
uct evaluations required are reported in [3, 5].

The above discussion illustrates that GMRES may perform better than
LSQR and vice versa. It may therefore be beneficial to use vectors from both
the Krylov subspaces (1.7) and (1.5) in the solution subspace for FGMRES
when the cost of evaluating matrix-vector products with AT is not much
higher than the cost of computing matrix-vector products with A. The fol-
lowing subsections describe how bases for solution subspaces for FGMRES
that contain specified vectors, such as (1.9), ATb and (ATA)ATb, or live in
R(A), can be determined efficiently.

2.1. FGMRES I

We consider the situation when we would like a few specified vectors be in
the solution subspace for FGMRES. For definiteness, assume that we would
like the vectors (1.9) to live in the solution subspace. We then let z1 and z2
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be an orthonormal basis for the span of the vectors (1.9). The vectors z1 and
z2 may, for instance, be determined by Gram-Schmidt orthogonalization.

Algorithm 2.1 with � = 2 yields the decomposition

AZ2 = V3H̄2, (2.9)

where Z2 = [z1, z2] and V3 = [v1,v2,v3]; cf. (2.1). We now enlarge the
solution subspace by including v3. To achieve this, we orthogonalize v3

against span{z1, z2}, i.e., we let

z = (I − Z2Z
T
2 )v3. (2.10)

Assume for the moment that z �= 0. Then normalization yields the solu-
tion subspace vector z3. Algorithm 2.1 now gives the decomposition (2.1)
for � = 3 with v4 = V4e4. We orthogonalize v4 against z1, z2, and z3.
Subsequent normalization, if possible, yields z4. We now are in a position
to determine the decomposition (2.1) for � = 4, which can be used to com-
pute a new basis vector, z5, of the solution subspace. The computations
can be continued in this manner until an orthonormal basis for a solution
subspace of desired dimension has been determined. Similarly as for the
standard Arnoldi method, � steps with Algorithm 2.1 as described requires �
matrix-vector product evaluations with A.

We turn to the rare situation when we cannot expand the solution sub-
space as described above, because the new vector we would like to include
already lives in the available solution subspace. For instance, consider the
situation when the vector (2.10) vanishes. We then expand the solution
subspace by a unit vector z3 that is orthogonal to span{z1, z2}.

2.2. FGMRES II

Numerical experiments with numerous linear discrete ill-posed problems,
some of which are reported in [4, 9], show that RRGMRES, which de-
termines approximate solutions in Krylov subspaces Kk(A,Ab) ⊂ R(A),
k = 1, 2, . . . , often yields more accurate approximations of the desired so-
lution x̂ than GMRES, which computes approximate solutions in subspaces
of the form Kk(A, b). We describe how to ensure that the new vector that
is added to the available solution subspace, say span{z1, z2, . . . , zj}, lives in
span{z1, z2, . . . , zj} ∪ R(A).

Assume similarly as in Subsection 2.1 that we would like the solution
subspace to contain the vectors (1.9) and compute the decomposition (2.9)
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as described above. The vector z3 as determined in Subsection 2.1 is not
guaranteed to live in span{z1, z2} ∪ R(A). We therefore apply two Givens
rotations from the left to the matrix H̄2 in (2.9) to obtain an upper triangular
matrix R̄2 ∈ R3×2 with a vanishing last row. Let R2 denote the leading 2×2
submatrix of R̄2. The transpose of the rotations are applied to V3 from the
right to give the matrix Ṽ3 = [ṽ1, ṽ2, ṽ3] with orthonormal columns. Thus,
we have

AZ2 = V3H̄2 = Ṽ3R̄2 = [ṽ1, ṽ2]R2. (2.11)

This relation shows that the column ṽ2 is inR(A) and we use it to expand the
solution subspace. We now determine the vector z3 by first orthogonalizing
ṽ2 against span{z1, z2} and then normalizing the vector so obtained.

To generate the next basis vector z4 of the solution subspace, we de-
termine the decomposition (2.1) for � = 3 and then transform the matrix
H̄3 to upper triangular form with the aid of Givens rotations. We obtain
analogously to (2.11) the relation

AZ3 = V3H̄3 = Ṽ4R̄3 = [ṽ1, ṽ2, ṽ3]R3

and determine the next basis vector of the solution subspace, z4, by orthog-
onalizing ṽ3 against the columns of Z3 followed by normalization. Further
solution space vectors z5, z6, . . . , are computed similarly. Breakdown is
handled as described in Subsection 2.1.

We remark that with the choice z1 = Ab/‖Ab‖, this method yields a new
implementation of the RRGMRES method.

2.3. FGMRES III

We comment on the use of solution subspaces that involve AT. Example
2.1 shows that it may be beneficial to let z1 = ATb/‖ATb‖. Given this initial
vector, we may proceed as described in Subsections 2.1 or 2.2 to generate
further vectors zj j = 2, 3, . . . , without further use of AT.

If we would like to generate solution subspaces that contain the Krylov
subspace (1.5) for some (small) value of k > 1, then it may be attractive to
determine an orthonormal basis

z1, z2, . . . , zk (2.12)

for (1.5) by applying k steps of Lanczos bidiagonalization to A with initial
vector b; see, e.g., [7, Section 9.3.4] for details. These computations also
determine the vectors

v1,v2, . . . ,vk+1. (2.13)
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The computation of the vectors (2.12) and (2.13) requires the evaluation of
k matrix-vector products with each one of the matrices A and AT. Having
computed the vectors (2.12) and (2.13), we may proceed to generate further
basis vectors as described in Subsections 2.1 or 2.2.

We conclude this section with a discussion on how to handle breakdown
in Algorithm 2.1 when the matrix A is singular. We also will comment on
near-breakdown in the algorithm. For definiteness, assume that Algorithm
2.1 breaks down in line 8 for the first time at iteration k. The situation
when the matrix Hk in (2.5) is nonsingular already had been discussed. We
therefore focus on the case when Hk is singular. The following result shows
that the solution of (1.1) cannot be determined from the decomposition (2.5)
in this situation.

Proposition 2.3. Assume that Algorithm 2.1 breaks down for the first time
at iteration k and that the available Hessenberg matrix Hk ∈ Rk×k in (2.5)
is singular. Then b �∈ R(AZk).

Proof. The matrix H̄k−1 is of full rank, because otherwise breakdown
would have occurred in the previous iteration. The right-hand side of (2.1)
with � replaced by k− 1 therefore is of rank k− 1. It follows that the matrix
AZk−1 is of full rank. The right-hand side b �∈ R(AZk−1), because otherwise
breakdown would have occurred in the previous iteration. Since Hk is sin-
gular, it follows from (2.5) that R(AZk) = R(AZk−1) and the proposition
follows.

Proposition 2.3 shows that when breakdown occurs at iteration k and
the Hessenberg matrix Hk is singular, the available Krylov subspace does
not contain a solution to (1.1). The proof of the proposition demonstrates
that the last column of the matrix AZk is superfluous in this situation. We
therefore continue the iterations with Algorithm 2.1 by replacing the vector
zk by a unit vector that is orthogonal to the columns of Zk−1. In the context
of ill-posed problems, a suitable new vector zk often can be obtained by or-
thogonalizing a vector that represents the discretization of a smooth function
against the columns of Zk−1 followed by normalization.

If matrix-vector products with the matrix AT can be computed at a rea-
sonable cost, then the following construction of a replacement for zk can be
attractive. Let xk−1 denote the solution of (2.2) with � = k − 1 and define
the associated residual vector rk−1 = b− Axk−1. Let

zk =
(I − Zk−1Z

T
k−1)A

Trk−1

‖(I − Zk−1ZT
k−1)A

Trk−1‖ . (2.14)

11



This choice of zk is attractive, because the vector ATrk−1 is parallel to the
steepest descent direction for the functional

z → ‖Az − rk−1‖2.

We therefore may expect inclusion of zk in the solution subspace to give
fairly rapid decrease of the norm of the residual error. Further, ATrk−1 is
the residual error for the normal equations (1.4). It may be appropriate to
evaluate this residual error regularly when the linear system (1.1) is inconsis-
tent, because when ATrk−1 is small, xk−1 may be an acceptable approximate
solution of (1.1). Subsequent breakdowns, if they would occur, can be han-
dled similarly as described above.

Proposition 2.4. Let the matrix A be singular and normal. Define the ini-
tial iterate x0 = 0 and let z1 = ATb/‖ATb‖. Generate the solution subspace
as described in Subsection 2.2 and assume that Algorithm 2.1 breaks down in
line 8 for the first time at iteration k. Assume that Hk in the decomposition
(2.5) is nonsingular. Then the solution (2.4) of (1.1) is a least-squares so-
lution of minimal Euclidean norm. If Hk is nonsingular, then continue the
iterations as described above with a new vector zk ∈ R(AT), e.g., with the
vector (2.14). These computations yield a least-squares solution of (1.1) of
minimal Euclidean norm.

Proof. Let Hk be nonsingular at breakdown. Then the solution (2.4) of
(1.1) lives in R(AT), because A and AT commute. Therefore, the solution
subspace is orthogonal to the null space of A and, consequently, of minimal
Euclidean norm. When Hk is singular at breakdown and iterations with
Algorithm 2.1 are continued, the solution subspace is expanded in manner
that secures that it is a subset of R(AT). Therefore, the computed solution
is of minimal norm.

Without the assumption that A be normal, the solution subspace is not
guaranteed to live in R(AT). Nevertheless, the above choices of initial vector
and of vector zk after breakdown may be suitable also for more general
matrices A.

Near-breakdown is the situation when the last subdiagonal entry hk+1,k

of H̄k is positive but tiny. It may be appropriate to treat the situation when
hk+1,k is small enough as breakdown; see [19] for a discussion. Moreover, when
A in (1.1) stems from the discretization of a linear ill-posed problem, then
the condition numbers of the matrices H̄k typically grow rapidly with k. In
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the presence of error in the right-hand side b of (1.1), the best approximation
of the desired solution x̂ often is found after fairly few steps of Algorithm 2.1.
This is illustrated in Section 3. Terminating the iterations with Algorithm
2.1 early is a form of regularization; the severely ill-conditioned linear system
of equations (1.1) is replaced by a reduced problem with a better conditioned
matrix H̄k; cf. Proposition 2.2.

3. Numerical experiments

We illustrate the performance of FGMRES when applied to a few linear
discrete ill-posed problems. The error-vectors e have normally distributed
pseudorandom entries with mean zero in all examples, and they are normal-
ized to correspond to a chosen noise-level

ν =
‖e‖
‖b̂‖ .

We report the minimum error (1.8) achieved by the iterative methods as well
of the smallest index k̂ of an iterate that achieves this error. The minimum
error shows how well a method performs for the problem at hand when we
know how to choose the best of the generated iterates. To make iterative
methods useful for the solution of linear discrete ill-posed problems, they
have to be equipped with a rule for estimating the value k̂. This can be
done in a variety of ways depending on what is known about the error e.
Popular methods for estimating k̂ include the discrepancy principle, the L-
curve, generalized cross validation, and extrapolation; see [2, 10, 11, 17, 18]
and references therein.

In all examples, we let the columns of Z2 ∈ Rn×2 be an orthonormal
basis for the span of the vectors (1.9). We compare LSQR with FGMRES of
Subsections 2.1 and 2.2, and refer to the latter methods as FGMRES I and
FGMRES II, respectively. The performance of RRGMRES, using the code
[14], also is illustrated.

Example 3.1. We would like to determine approximate solutions of a
discretization of the integral equation∫ 1

0

k(s, t)x(t)dt = exp(s) + (1− e)s− 1, 0 ≤ s ≤ 1,

where

k(s, t) =

{
s(t− 1), s < t,
t(s− 1), s ≥ t,

13



Method k̂ ‖xk̂ − x̂‖
LSQR 21 8.14
FGMRES I 3 1.49
FGMRES II 4 2.20
RRGMRES 12 8.21

Table 3.1: Example 3.1: Error in the most accurate computed approximate solutions xk̂

and the index k̂ for LSQR, FGMRES I and FGMRES II with auxiliary vectors in the
two-dimensional space determined by the vectors (1.9), and for RRGMRES.
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Figure 3.1: Example 3.1: Solid black graphs: approximate solutions xk̂ computed by (a)
LSQR, (b) FGMRES I, (c) FGMRES II, and (d) RRGMRES. Dashed red graphs: the
desired solution x̂.

which is a Green’s function for the second derivative on the interval [0, 1];
see, e.g., [6] for a description of the integral equation. It has the solution
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x(t) = exp(t). Discretization by a Nyström method based on the composite
trapezoidal rule yields a nonsymmetric matrix A ∈ R1000×1000. Let x̂ ∈ R1000

be a discretization of x(t) and define b̂ = Ax̂. The error-contaminated right-
hand side b is given by (1.2) with noise-level ν = 1 · 10−3. Table 3.1 displays
the errors in the best approximations xk̂ of x̂ determined by LSQR, FGM-

RES I, FGMRES II, and RRGMRES, where k̂ denotes the number of iter-
ations. We remark that while the errors are fairly large, the relative errors
are acceptable. This is illustrated by Figure 3.1, which shows the computed
approximate solutions xk̂ determined by the iterative methods (solid black
graphs) and the desired solution x̂ (dashed red graphs). The approximate
solution determined by FGMRES II is smoother than the approximate so-
lution computed by FGMRES I. Nevertheless, FGMRES I determines the
most accurate approximation of x̂ with the fewest iterations. Both LSQR
and RRGMRES yield much less accurate approximations of x̂ than FGMRES
I and II.

We remark that LSQR, FGMRES, and RRGMRES require 2k̂, k̂, and
k̂ + 1 matrix-vector product evaluations, respectively. Thus, for the present
example FGMRES I yields the best approximation of x̂ and requires the
fewest matrix-vector product evaluations. �

Method k̂ ‖xk̂ − x̂‖
LSQR 29 5.26
FGMRES I 11 0.24
FGMRES II 18 3.44
RRGMRES 15 1.39

Table 3.2: Example 3.2: Error in the most accurate computed approximate solutions xk̂

and the index k̂ for LSQR, FGMRES I and FGMRES II with auxiliary vectors in the two-
dimensional space determined by the vectors (1.9), and for RRGMRES. The noise-level is
1 · 10−4.

Example 3.2. We would like to compute an approximate solution of the
integral equation

∫ 6

−6

κ(t− s)x(s)ds = b(t), −6 ≤ t ≤ 6,
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Figure 3.2: Example 3.2: Solid black graphs: approximate solutions xk̂ computed by (a)
LSQR, (b) FGMRES I, and (c) RRGMRES. Dashed red graphs: the desired solution x̂.

with kernel

k(s) =

{
1 + cos(π

3
s), if |s| < 3,

0, otherwise.

This integral equation is related to an integral equation discussed by Phillips
[16]. We discretize by a Nyström method based on a composite trapezoidal
quadrature rule with 1000 equidistant nodes. This gives the nonsymmetric
matrix A ∈ R1000×1000. We let x(s) be the sum of k(s) and the linear function
5
6
(t+6). Discretization of x(s) defines the vector x̂ ∈ R1000. Let b̂ = Ax̂ and

add an error vector to obtain the contaminated right-hand side b, similarly
as in Example 3.1. We first let the noise-level be 1 ·10−4. Table 3.2 shows the
errors in the best approximations xk̂ of x̂ computed by LSQR, FGMRES I,
FGMRES II, and RRGMRES. The number of iterations required by LSQR
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Method k̂ ‖xk̂ − x̂‖
LSQR 74 5.03
FGMRES I 15 0.10
FGMRES II 24 0.48
RRGMRES 25 0.70

Table 3.3: Example 3.2: Error in the most accurate computed approximate solutions xk̂

and the index k̂ for LSQR, FGMRES I, and FGMRES II with auxiliary vectors in the
two-dimensional space determined by the vectors (1.9). The noise-level is 1 · 10−5.

is the largest; in fact, LSQR needs about 10 and 6 times as many matrix-
vector product evaluations as FGMRES I and FGMRES II, respectively, and
produces a less accurate approximation of x̂. The computed approximate
solutions determined by FGMRES I, RRGMRES, and LSQR are depicted in
Figure 3.2.

Table 3.3 illustrates the performance of the methods when the noise-level
is reduced to 1 · 10−5. All methods yield more accurate approximations of x̂
than for the noise-level 1 ·10−4, and again FGMRES I and II are competitive.
�

Method k̂ ‖xk̂ − x̂‖
LSQR 4 5.49
FGMRES I 2 0.59
FGMRES II 3 0.28
RRGMRES 4 0.88

Table 3.4: Example 3.3: Error in the most accurate computed approximate solutions xk̂

and the index k̂ for LSQR, FGMRES I and FGMRES II with auxiliary vectors in the
two-dimensional space determined by the vectors (1.9), and for RRGMRES.

Example 3.3. Consider the integral equation

∫ π/2

0

κ(s, t)x(s)ds = b(t), 0 ≤ t ≤ π, (3.1)

with κ(s, t) = exp(s cos(t)). A similar equation is discussed by Baart [1].
The right-hand side is chosen so that the solution is x(s) = sin(s) + 20

π
s. We

discretize (3.1) by a Galerkin method with 1000 orthonormal box functions

17
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Figure 3.3: Example 3.3: Solid black graphs: approximate solutions xk̂ computed by (a)
LSQR, (b) FGMRES II, and (c) RRGMRES. Dashed red graphs: the desired solution x̂.

as test and trial functions to obtain a nonsymmetric matrix A ∈ R1000×1000.
The vector x̂ ∈ R1000 is a discretization of x(s). Define b̂ = Ax̂. The error-
contaminated right-hand side b is given by (1.2) with noise-level ν = 1 ·10−4.
Table 3.4 shows the smallest approximation errors ‖xk̂ − x̂‖ achieved for

LSQR, FGMRES I, FGMRES II, and RRGMRES, where k̂ is the number
of iterations that gives the smallest error. Figure 3.3 displays computed
approximate solutions xk̂ (solid black graphs) as well as the desired solution
x̂ (dashed red graphs). FGMRES II is seen to yield the best approximation
of x̂. �
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4. Conclusion

The most popular iterative methods for the solution of linear discrete ill-
posed problems determine approximate solutions in Krylov subspaces of the
form Kk(A

TA,ATb), Kk(A, b), or Kk(A,Ab). This paper describes how the
latter Krylov subspaces can be generalized. Computed examples illustrate
that the use of generalized Krylov subspaces may increase the accuracy in
the computed approximate solutions and reduce the number of matrix-vector
product evaluations required.
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