ISSN 1346-5597

National Institute of Informatics

NII Technical Report

Completeness of Pointer Program Verification by
Separation Logic

Makoto Tatsuta, Wei-Ngan Chin, and Mahmudul Faisal Al Ameen

NII-2009-013E
June 2009

URL: http://www.nii.ac.jp/ Tokyo 101-8430, JAPAN  +81-3-4212-2000 FAX:+81-3-3556-1916



Completeness of Pointer Program Verification by Separation Logic

Makoto Tatsuta Wei-Ngan Chin
National Institute of Informatics Department of Computer Science
2-1-2 Hitotsubashi, 101-8430 Tokyo, Japan National University of Singapore
tatsuta@nii.ac.jp chinwn@comp.nus.edu.sg

Mahmudul Faisal Al Ameen
Department of Informatics
Graduate University for Advanced Studies
2-1-2 Hitotsubashi, 101-8430 Tokyo, Japan
alameen@nii.ac.jp

Abstract that some programs are not proved to be correct by the sys-
tem even though they are indeed correct. The completeness
Reynolds’ separation logical system for pointer program is the converse of the soundness. The completeness of the
verification is investigated. This paper proves its complete- system guarantees that if a program runs correctly, then the
ness theorem as well as the expressiveness theorem of Peargystem surely proves the program is correct. The complete-
arithmetic language for the system under the standard in- ness of the system shows how powerful the systemis. If the
terpretation. This paper also introduces the predicate that completeness for the system is proved, we do not have to
represents the next new cell, and proves the completenesworry about theoretical power of the system. If we have the
and the soundness of the extended system under determirgompleteness for the core of the system with some restric-
istic semantics. tions, we know what kind of limitation this system has, and
how to use and improve the system.

Our contributions are: (1) the completeness theorem of
1 Introduction separation logic for the first time, (2) the expressiveness the-
orem of Peano arithmetic for the separation logic, and (3)
the predicate that represents the next new cell for complete-

Program verification for while programs has been inten- ness under deterministic semantics.

sively studied [1]. However, pointer program verification , ) o
has not been fully studied, since there was difficulty to de- VW& will prove completeness by extending the original
sign an appropriate logical system for asserted pointer pro-completeness results for while programs [1] to pointer pro-
grams. Reynolds gave a breakthrough for it by using sep-9rams and separation logic. We choose backyvard; reason-
aration logic [10] and proposed a new logical system for ing in Reynolds’ system for logical rules. Main difficulty
pointer program verification. It enables us concise specifi- IS Proving the expressiveness theorem. We will also prove
cation of program properties and a manageable proof Sys_completeness for deterministic semantics as well.
tem. Separation logic is successful in a theoretical sense The expressiveness theorem says that Peano arithmetic
as well as a practical sense. By using separation logic,with the standard interpretation is expressive for the sep-
some pointer program verification systems have been im-aration logic. That is, the weakest precondition of every
plemented [8, 2]. For example, the system in [8] automati- program is definable in Peano-arithmetical language. This
cally proved the correctness of a pointer version of the quick result is obtained by coding the heap information as well
sort program in a second. as the store information by natural numbers, and simulat-
One of the most important theoretical questions for a ver- ing program executions as well as the truth of assertions
ification system is its completeness. The soundness of a sysby using Peano arithmetic. At first sight, the expressive-
tem guarantees that if the correctness of a program is provediess may look trivial, but it is indeed a subtle problem
in the system, then the program will indeed run correctly. and some pathological counterexamples are known [3]. We
The soundness of those existing practical systems has beeoan have natural numbersandm that encode the given
proved. However, it does not mean the system can prove allstore s and heaps, respectively. We will construct the
correct programs are correct, that is, there is a possibility formula Heaiym) that exactly specifies the current heap



so that Heapn) is true at the current state, ) if and 2 Languages
only if the numberm encodes the heap. We can con-

struct a Peano-arithmetical formula HEyain) for a sep- This section defines our programming language and
aration logic assertiond such thatA is true at(s, i) if our assertion language. Our language is obtained from
and only if HEvaly(m) is true ats when the numbern Reynolds’ paper [10].

represents the healp. For program execution, we will We first define our base language, which will be used
have a Peano-arithmetical formula Exeg (n1,n2) for a later for both our programming language and our assertion
given programP and its variablesz such that the exe- |language. It is essentially a first-order language for Peano
cution of P at the state; terminates with the state, if arithmetic. We call its formula a base formula. We will
and only if Exeg, > (n1,72) is true where the numbers; usei, j, k,1,m,n for natural numbers. Our base language
andn. represent the states andr, respectively. Combin-  is defined as follows:

ing Heagm), HEvals (), and Exeg, - (n1, n2), we will Variablesz, y, z, w, . . ..

define the weakest precondition for each given progfam Constantg: ::= 0, 1, null.

and assertiom. Though this result relies on heavy number Function symbok-, x.
coding of programs and assertions, we will present detailed We have no propositional constants.
definitions in order to provide a fundamental framework for Predicate symbolg ::==, <.
completeness results to support future systems with a wider Termst ::= z|c|f(¢, ..., t).
class of programs and assertions. Base formulasd ::= p(¢,...,t)["AJAN AJAV A|A —
Our completeness theorem only shows relative com- A|VzA|FzA.
pleteness. That is, it assumes all true assertions are avail- p(t1,...,t,) means the predicatp holds for terms
able in the system. This is a best possible completeness fot1, . . ., t,. The other formula constructions mean usual log-
pointer program verification for a similar reason to that for ical connectives. We will sometimes write the numbep
while program verification discussed in [4]. denote theterm + (1 + (1 +...(1+0))) (ntimes of
Parts of a completeness proof have been discussed in [6]1+).
They showed the precondition of their backwards axiom for ~ Our programming language is an extension of while pro-
every atomic statement gives the weakest precondition forgrams to pointers. It is the same as that of Reynolds [10].
the statement. However, they only proved completeness forlts expressions are terms of the base language. That is,
programs without if-statements nor while-statements, and Expressiong ::= z|0|1|null|e + e|e x e.
they did not prove the completeness theorem itself. Expressions mean natural numbers or pointers. null
When we take deterministic semantics instead of non- means the null pointer.
deterministic semantics, the axiom for allocation in [10] Its boolean expressions are quantifier-free base formulas.
becomes insufficient for completeness. In order to have aThat s,
complete system for deterministic semantics, we introduce  Boolean expressioris::= e = e|e < e|=b|bAb|bVb|b—
the predicate Ne(e) that represents the new cell consumed b.
by the next allocation, and strengthen the axiom by using Boolean expressions are used as conditions in a program.
this predicate. Under deterministic semantics, we will show  Programs are defined by:
the completeness theorem of the resulting system as well as ProgramsP ::= z := e|if (b) then(P) else(P)|
its soundness theorem. while (b) do (P)|P; P|
Our long-term aim is proving completeness of the core of x := conde, e)|x := [e]|[e] := e|disposée).
existing practical verification systems for pointer programs.  The statement = conge;, e3) allocates two new con-
This paper will give the first step for this purpose. Since our secutive memory cells, put ande, in the cells, and put
system in this paper is simple and general, our completenesshe address inte. The statement := [e] looks up the con-
theorem can be applied to those systems in order to showtent of the memory cell at the addressind put it intoz.
the completeness of their core systems. This paper will alsoThe statemenfe;] := es changes the content of the mem-
provide a starting point for completeness theorems in ex-ory cell at the address, by e». The statement dispogg
tensions with richer programming languages and assertiondeallocates the memory cell at the address
languages such as recursive procedure calls and inductive Our assertion language is a first-order language extended
definitions. by the separating conjunctienand the separating implica-
Section 2 defines our programming language and our astion —«. We will sometimes call its formula an assertion.
sertion language. Their semantics is given in Section 3. Its variables, constants, function symbols, and terms are the
Section 4 gives a logical system for proving asserted pro-same as those of the base language. Our assertion language
grams, and Section 5 shows our completeness theorem ais defined as follows:
well as our soundness theorem. Section 6 proves the ex- Predicate symbols:, <, .
pressiveness theorem. Section 7 discusses applying our re- Propositional constant emp.
sults to the verification system implemented in [8]. Section  FormulasA ::= empe = ele < ele — e|-A|AN AJAV
8 gives the conclusion. A|A — AVzA|TzA|A x AJA —x A.



emp means the current heap is empty.— e, means
the current heap has only one cell at the addegsand its
contentise,. Ax B means the current heap can be splitinto
some two disjoint heaps such thatholds at one heap and
B holds at the other heapl —« B means that for any heap

disjoint from the current heap such th&holds at the heap,  pefinition 3.1 We define the semantics of our base lan-
B holds at the new heap obtained from the current heap andguage by the standard model of natural numbers and

the heap by combining them. [null] = 0. That is, we suppos€0] = 0, [1] = 1,
FV(A) is defined as the set of free variablesAnFV(e) [+] = + [x] = x, [=] = (=), and[[<] = (<). For
and FMP) are similarly defined. FYOy,...,0y) is de- 3 stores, an expression, and a base formuld, according
fined as FVO:1) U ... UFV(O,) whenO; is aformula, an g the interpretation of a first-order language, the meaning
expression, or a program. [e]]s is defined as a natural number and the meafjiffy
We use vector notation to denote a sequence. For examis defined as true or falsée]], and[[A], are the value of
ple, e denotes the sequenes, . . ., e,, of expressions. under the store, and the truth value oft under the store,
respectively.

by the store and the heap, since pointer programs manipu-
late memory heaps as well as variable assignments.

3 Semantics

The semantics of our programming language and our as-Definition 3.2 We define the semantics of our program-
sertion language is defined in this section. Our semanticsming language. For a prograf, its meaning[P] is de-
is the same as that in Reynolds’ paper [10] except the fol- fined as a map from State{aborg to p(StatesJ {abort}).
lowing simplification: (1) values are natural numbers, (2) We will define[[P](r1) as the set of all the possible result-
addresses are non-zero natural numbers, and (3) iull is  ing states after the execution &f with the initial stater;
The setN is defined as the set of natural numbers. The terminates. In particular, if the execution Bfwith the ini-
set Vars is defined as the set of variables in the base lantial stater; does not terminate, we will defirgP]|(r1) as
guage. The set Locs is defined as the{set N|n > 0}. the empty set.[[P] is defined by induction orP as the
For setsSy, Ss, f : S — S3 means thaf is a map from smallest set satisfying the following:
S1t0 Sa. f : 51 —pin S2 means thaif is a finite map
from S; to Ss, that is, there is a finite subsg{ of .S; and

f: 8 — S,. Dom(f) denotes the domain of the map [P]|(aborh = {abort,

p(S) denotes the powerset of the st For a setS C A [z = e]|((s,h)) = {(s[z := [e]ls], 1)},
and a mapf : A — B, we definef(S) = {f(x)|z € S}. [lif (b) then(Py) eIse(Pz)]] (s,h)) =
For a mapf : A — B and a subse€ C A, the map [Pi]l((s, ) if [b]]s = true,
fle : C — Bis defined byf|c(x) = f(z) forz € C. [P:]]((s, h)) otherwise

A store is defined as a map from Vars N, and denoted [[while (b) do (P)]|((s,h)) = {(s, h)} if [[b]s = false
by s. A heap is defined as a finite map from Loesy;,, N, ([while (b) do (P )]]([[ I ((s, h))) otherwise
and denoted byi. A value is a natural number. An address  [P;; P2]((s, h)) = [P]([P.]((s, h))),
is a positive natural number. The null pointeiisA store [z := condey, e2)]((s,h)) =
assigns a value to each variable. A heap assigns a value to {(s[z := n], h[n := [e1]]s,n + 1 := [ea]ls])]
an address in its finite domain. n>0,n,n+1¢Dom(h)},

The stores[zy := ni,...,x := ng] is defined by [@:= e m((s h)) =
s such thats'(z;) = n; ands'(y) = s(y) fory ¢ {(slz := h([e]ls)], h)} if [€e] s € Dom(h),
{z1,...,21}. The heaph[m; = ny,...,my := ng] is {abort otherwise

defined byh’ such thath/(m;) = n; andh/(y) = h(y)
for y € Dom(h) — {m,...,my}. The stores[z; :=
ny,...,x, = ni| is the same as except values for the
variableszy, ..., xz,. The heaph[m; = nq,...,my =

ng] is the same ak except the contents of the memory cells

[[ex] := e2])((s, h)) =
{(s,h[[[e1])s == [[e2]ls])} if [[e1]]s € Dom(R),
{abort otherwise

[disposée)]|((s, i) =
{(s, h|Dom(h) (1eg.1)} 1 lle]ls € Dom(h),

at the addressesq, ..., my.

We will write h = hq + he when Donih) = Dom(h;) U
Dom(hsy), Dom(hy) N Dom(hs) = ¢, h(z) = hi(x) for
x € bom(hy), andh(xz) = ho(z) for x € Dom(hs). The
heaph is divided into the two disjoint heags andh, when Definition 3.3 We define the semantics of the assertion lan-
h = hi + ho. guage. For an assertiofi and a statés, h), the meaning

A state is defined ags, 7). The set States is defined as [[A]](s ) is defined as true or false[A]], ) is the truth
the set of states. The state for pointer program is specifiedvalue of A at the statés, h). [[A]](, ) is defined by induc-

{abort otherwise



tion on A as follows:

[emgd], ) = true if Dom(h) = ¢,
[er = e2]l(s,n) = ([ealls = [[e2]s),
fer < eal(s,n) = ([exlls < [e2]ls)
ex = ea](sn) = true

if Dom(h) ={leils}, h([ealls) =
A (s,n) = (N0t [A]l(5.1)),

)

[e2]ls,

AN Bll(s,n) = ([All(s,n) @and[B] s,1))
([AT(s,n) or [[B.ﬂ(s,h))a
A— B]](s h) = ([[Aﬂ(s,h) implies [[B}](S,h)%

[
[
%A V Blls,n) =
[VzA](s,n) = true

if [A])(s[z:=n),n) = true for alln € N,
[FzA]l(s,n) = true

if [All(s[z:=n),n) = true for somen € N,
[A B]](s,h) =trueifh = hy + ho,

[All(s,n,) = [Bll(s,ns) = true for somehy, ha,
[[A —% Bﬂ(s,h) = true if ho = hy + h and

[All(s,n,) = true imply [ B (s n,) = true
for all hy, ho.

We sayA is true when if[[A]] ;) = true for all(s, h).

Definition 3.4 For an asserted programiA}P{B}, its
meaning [{A}P{B}] is defined as true or false.
[{A}P{B}] is defined to be true if the following hold.

(1) for all (s, h), if [[A]l(s,n) = true, then[P]((s, h)) Z
abort.

(2) for all (s,h) and (s', n'), if [A](sn) = true and
[Pl((s,h)) > (s, 1), then[B]((s', h')) = true.

We say{A}P{B} is true when[{A}P{B}] = true.
{A} P{B} means abort-free partial correctnesd.} P{ B}

implies partial correctness. It also implies that the execu- Provable.

tion of the programP with the initial state that satisfied

{(Ayp{C} {C}P{B}

aypirdsy
APBLY o cen)
{AYP{B} V(A Ay, B, — Btrue)

(cons)

{V2'((z' +— ey, e9) —x Alz :=2'])}
x:=conder,ex){A} (2’ € FV(e1, ez, A))

{Hx/(e — % (6 — 2 —k A[l‘ _ x,]))} (look’up)
z = [e[{A} (z' € FV(e, A))
{Ga(er = 2)) * (e1 — 2 —* A)} (mutation)
]l o P
{(Fz(e — x)) x A}disposé¢e){A} (dispose)
(z ¢ FV(e))

We say {A}P{B} is provable and we write-
{A}P{B}, when{A}P{B} can be derived by these in-
ference rules.

We explain inference rules by the exampld efp}x :=
cong0,0); [z + 1] := 3;disposéx){z + 1 — 3}. This
means that starting from the empty heap, if we allocate two
cells atz, we put 3 in the cell atz + 1, and we deallo-
cate the cell ate, then the resulting heap will have only
one memory cell at + 1 with its content3. It is derived
by using inference rules as follows. The rdtens) gives
{Va'(z' — 0,0—x 2z’ — 0,0) }x := cong0,0){z — 0,0}.
Since emp— Va'(z' — 0,0 —« 2’ — 0,0) is true, by
the rule (conseq), {emptz := cong0,0){z — 0,0} is
The rule(mutation) gives {(3z'(x + 1 +—

)k (z+1—3—x2x—0,3)}z+1]:=3{z+— 0,3}

never aborts, that is? does not access to any unallocated Sincez — 0,0 — ((Ga'(z + 1 = 2')) = (2 + 1 —

addresses during the execution.

4 Logical System

3—xx — 0,3)) is true, by the rulg(conseq), {x —
0,0}[z+1] := 3{3: — 0,3} is provable. The rulédispose)
gives{(ﬂx’(x — :c’))*a:—i—l — 3}disposé¢zr){z+1 — 3}.
Sincex — 0,3 — (I2'(z — 2')) xx + 1 — 3is true, by
the rule(conseq) {z — 0,3}disposéz){z + 1 — 3} is

This section defines our logical system. It is the same asprovable. By using the rulecomp) twice for {emp}z :=

Reynolds’ system presented in [10].

We will write A[z := e] for the formula obtained from
by replacingr by e. We will write the formulae — ey, es
to denotgle — e1) * (e + 1 — ea).

Definition 4.1 Our logical system is defined by the follow-
ing inference rules.

{A[z = e]}z := e{A} (assignment)

{ANBYP{B} {AA-b}Py{B}
{A}if (b) then(P,) else(P,){B}
{AND}P{A}
{A}while (b) do (P){A A —b}

(if)

(while)

cong0,0){z — 0,0}, {z — 0,0}[z + 1] := 3{z — 0,3},
and{z — 0, 3}disposée){a: + 1+ 3}, we finish showing
{emp}z := cong0,0); [x+1] := 3; disposéx){z+1 — 3}
is provable.

5 Soundness and Completeness Theorems

Our main results are the following theorems. Our com-
pleteness theorem is new. For our soundness theorem we
give a whole proof in the case study of our system along
general ideas already discussed in [10].

Theorem 5.1 (Soundness)f {A} P{B} is provable, then
{A}P{B} is true.



Theorem 5.2 (Completeness)f {A}P{B} is true, then  {A}P{C} and{C}P,{B} are both provable, and by the
{A}P{B} is provable. rule (comp), we have a proof of A} P;; P,{B}. In order to
find the assertio, we will use the expressiveness given by

Their proofs are given in the appendix. We only sketch Theorem 6.12, to take the weakest preconditiop, W(@’)
the proofs here. for P, andB as the assertio€'.

The soundness theorem is proved by induction on the The expressiveness theorem will also be necessary for
given proof of{ A} P{B}. Intuitively, we will show each the case fo{ A}while (b) do(P){B} in order to find the
inference rule preserves the truth. intermediate assertiofi such thatd — C, {C A b} P{C},

For example, we discuss the ril®mp). The rule is andC A —b — B are true.

For another example, we discuss the r(leutation).
{A}P{C} {C}P{B} Suppose{A}[e1] := e2{B} is true. We have to construct
(AVPy; P,{B} (comp) a proof of {A}[e;] := ex{B}. For this purpose, it is suf-
ficient to showA — ((Jz(e; — z)) * (e1 — ea —x* B))
If we know {A}P{C} and {C}P,{B} are both true, is true, since we have the axioffdz(e, — x)) * (e1 —
we know {A}P; P,{B} is true, since the truth of €2 —x B)}[ei] := e2{B} and by the rule(conseq) with
{A}Py; P,{B} denotes that from the state whetds true, 4 — ((Fz(e1 = @)) * (€1 — ez —* B)), we have a proof
if the execution ofP,; P, reaches some state, thBristrue ~ Of {A}[e1] := e2{B}. In order to showA — ((3z(e; —
at the resulting state, and in the executioPpf P, we have 7)) (e1 — ex—x* B)) is true, we assumd is true at(s, h)
some intermediate state after the executioRofvhereC is and we will show(3z(e; = x)) * (e1 + ea —x B) is true

true, with which we can use the assumptions{fd P, {C'} ~ at(s,h). Since{A}[ei] := ex{B} is true, the execution

and{C}P»{B}. of the statemenfe; | = €3 from (s, h) does not return the
For another example, we discuss theutation) rule. abort. H_enceh contains the memory cell at the address

It is sufficient to show{(3z(e; — z)) * (e; — ey —x SinceB is Frue at the heap after the c_ontent of the cell at the

A)Yer] := ex{A} is true. We assumé3z(e; — x)) * address; is changed te,, the assertiofie; — e; —x B)

(e1 — es —x A) is true at the initial statés, ») and the IS true for the heap obtained fromby removing the cell at

execution offe;] := e, reaches the final state’, »/). We  the address;. Hence(3z(e; — x)) x (e1 — e —x B) is

have to showA is true at(s’, #’). By the first assumption, true at(s, ).

we know the heap is divided into the disjoint heapgs and

]’LQ such thath = hl + hg, 3$(€1 — 73) iS_tI’ue at(S,hl.), 6 ExpreSSIVeness Theorem

ande; — eo —x A is true at(s, ho). That is, the heap is

split into the first parf,; which contains only one memory i . . )

cell at the address; and the second part. By the program . This section proves the expressiveness theorem. We will

execution, the first part is changed so that the content of thellrSt define the base formulas Stgeém) and Heapm)

cell becomes. Since the second assumption says— for dgscnblng the current store _and the current heap re-

eo —x A is true at the second part of the heapis true at spectively.  Next we will provide th_e base formulas

the resulting heap after the program execution. EEval - (n, k) and BEval, -»(n), which express the
Once we prove every rule preserves the truth, we know meaning of the expressiarand the base formuld respec-

the conclusion of a given proof is true by applying it to each tively. Then we will define the base formula HEv@&in)

inference in the proof. for expressing the meaning of the assertidnat the
The completeness theorem is proved by induction on theh€ap bym. By using it, we will define the base for-

programP. The goal is showing a given true asserted pro- Mula Eval, = (n,m), which expresses the meaning of

gram is provable. Intuitively, we will reduce this goal to the assertiond. We will also define the base formula

subgoals for smaller pieces of the given program that stateEXec, - (n,m) for the meaning of the prograi. Finally

true asserted subprograms of the given program are provave will define the base formuldp 4 (@) for the weakest

able. If we show that for each program construction a true precondition of the progran? and the assertiod, and we

asserted program is provable by using the assumption thatvill prove the expressiveness theorem that stétess (7')

all the asserted subprograms are provable, we can say anindeed expresses the weakest precondition.

given true asserted program is provable. The proof willuse  We assume a standard surjective pairing function on nat-

the expressiveness of our language, which is proved as Theural numbers. For natural numbensm, we will write

orem 6.12 in the next section. (n,m) to denote the number that represents the pait of
For example, we discuss the ruleomp). Suppose andm. We also assume a standard surjective coding of

{A}Py; P,{B} is true. We have to construct a proof of a sequence of natural numbers by a natural number. We

{A}Py; P{B}. In order to do that, we have to find some will write (n4,...,n;) for the number that represents the

assertionC' such that{ A} P, {C} is true and{C} P.{B} sequence, ..., n;. When the number represents a se-

is true. If we find the assertio@’, since P, and P, are qguence, Lln) and(n),; denote the length of the sequence

smaller pieces of the given prografp; P», we can suppose and thei-th element of the sequence respectively.



The following predicates for handling sequences are for the base formulad where we supposéer includes
known to be definable in the language of Peano arithmetic.FV(e) and FM A) respectively.

Paink,n, m) is defined to hold if; is the number that rep-
resents the pair of andm. Lh(n, k) is defined to hold if
k is the length of the sequence representedbyrhat is,
Lh({nq,...,nk), k) holds. Elenfn, i, k) is defined to hold
if & is thei-th element in the sequence representechby
That is, Elent(ni,...,ng),7 — 1,n;) holds. Note that
ranges ovef0,1,...,k — 1}.

We code the piece of the stosdor variablesey, . . ., zy
by the numbern,...,n;) wheres(z;) = n,. We code
the heaph by the numbeKm,, ..., my) where Donfh) =
{nl, ..

by coding abort ands, ) by 0 andk+1 respectively where
the piece ofs is coded byn, h is coded bym, andk is

the pair of numbers andm. We allow doubled elements
and elements for the addre$# a sequence for simplicity

., ng} andm; is the number that represents the pair
of n; andh(n;). We code the result of a program execution

EEval, »(n, k) = 37 (Storep (n) Ae = k),
BEval, - (n) = 37 (Storez (n) A A).

EEval —(n, k) means[e], = k wheren represents the
stores. BEval, »(n) means[A]l, = true wheren repre-
sents the store.

We define the following base formulas.

PaiR(z, z,y) = Jw(z = w4+ 1 A Pai{w, z,y)),

Domaink, m) = JyLookup(m, k, y),

Separatén, m;, mq) = Va(Jy(Elem(m, y, x)) <«
Ely(Elen(mla Y, I) \ Elen‘(m% Y, I)))/\
Vxlxgylyg(LOOkup(ml, X1, yl)/\
LOOkU[X?TLQ7 X9, yg) — X1 75 ,TQ).

when we use the sequence to represent a heap. For examplPomaink, m) meanst € Dom(h) wherem represents the
((0,5), (1,3), (1,3)) as well as((1, 3)) represents the heap heaph. Separaten, m1, m2) meansh = hi+hs wherem,

h where Donth) = {1} andh(1) = 3.
We sayA is true at(s, h) when[[A]|; ;) = true. A < B
is defined agA — B) A (B — A).

my1, andms represent the heaps h, andh, respectively.

Definition 6.3 We define the base formula HEwdlk) for
the assertiom by induction onA.

0 sometimes denotes the store that maps every variable to

0, that is,0(x) = 0 for all variablest. ¢ sometimes denotes
the empty heap, that ig(x) is undefined for all: € N.
We define the following base formulas.

LesslHi,n) = Jz(Lh(n,z) A i < x),

Addsedk, n,m) = 3z(Lh(n,z) A Lh(m,z + 1))A
Elem(m, 0, k)A
Vyz(LesslHy, n) A Elem(n,y, z)
—Elemim,y + 1, 2)).

LessIHi, n) means < lh(n). Addsedk, n, m) meangk) -
n = m where- denotes the concatenation of sequences.
base formulas

Definition 6.1 We define the

Store,, ..., (m) and Heapm).

Store,, ... 4, (m) = Lh(m,n) A Elem(m,0,21) A ...
AElem(m,n — 1, x,),

Lookup(m, I, k) = Jyz(LessIHy, m) Ay # OA
Elem(m, y, z) A Painz, 1, k)),

Heagm) =
Vay(Lookup(m, z,y) < (x — y* 0 = 0)).

Store,, .. 4, ((m1,...,m,)) meanss(z;) = m; wheres is

the current store. Lookyp, [, k) meansi(l) = k wherem

represents the hedp Heag((l1,n1), ..., (I, ng))) means
Dom(h) = {ly,...,l;} andh(l;) = n; whereh is the cur-
rent heap.

Definition 6.2 We  define  the base  formulas
EEval - (n, k) for the expressior and BEwval , - (n)

HEvals(m) = A (A'is a base formula
HEvalemp(m) = —3zyLookup(m, ,y),
HEval,,..,(m) = e; > OA
Vay(Lookup(m, z,y) < = e1 Ay = e3),
HEval. 4 (m) = —HEvals (m),
HEvalssp(m) = HEvals(m) A HEvalg(m),
HEvalyy p(m) = HEvals(m) v HEvalg (m),
HEvals_ g(m) = HEvals(m) — HEvalg(m),
HEval, 4 (m) = VzHEval, (m),
HEvah, 4 (m) = JzHEvals(m),
HEvals.z(m) = Jy1y2(Separaten, y1, y2)A
HEvalA(yl) AN HEvaIB(yg)),
HEV&'A—*B(m) = Vylyg(HEvalA (yg)/\
Separatéy;, m, y2) — HEvalg(y1)).

HEvals (m) meang[A], ) = true wheres is the current
store andn represents the hedp

Definition 6.4 We define the base formula Eyalz (n, m)
for the assertiom. We supposer includes F\(A).

Eval, » (n,m) = 37 (Storep (n) A HEvals (m)).

Eval, - (n,m) means[A](; ») = true wheren represents

the stores andm represents the hedp
We define the following base formulas.

New2(n, m) =n > 0 A ~Domain(n, m)A
—Domain(n + 1,m),
ChangeStorg . . (m1,k,ma) =
Lh(my,n + 1) A Lh(mg,n 4+ 1)A
Vyz(y <n+ 1Ay #iAElemmy,y,z)—
Elem(ms, y, z)) A Elem(ma, i, k),



ChangeHeapn,, [, k, ma) = VYaoy(x # l—
(Lookup(my, z,y) <> Lookup(maz, z,y)))
ALookup(ma,, k),

Equamml, mg) =
Vay(Lookup(my, x,y) < Lookup(ms, z,y)).

New2(n,m) meansn is the address of free cells ih
where m represents the heap. That is, the address
n can be used by the next congep, ey) State-
ment. ChangeStofe . .. (m1,k,mz2) meansmy rep-
resents the store[z; := k| where m; represents the
stores. ChangeHeapn1, [, k, my) meansmsy represents
the heaphll k] where m; represents the heap.
EqHeapm, m2) meansm; and ms represent the same
heap.
We define the following base formula.

EQReSUM:nl,ng) =ny=ngVng>0Any >0A
Jzyry2(Pai(ny, z, y1) A PaiR(ng, z, yo)
NEqHeagy:, y2))-

We say the number represents the resulif » = abort and
n=0orr = (s,h) andn = (m, k) +1 wherem represents
the stores andk represents the hedp EqResultni,ns)
meansn; andns, represent the same result.

Definition 6.5 We define the base formula E)ge@(n, m)
by induction on the programP in Figure 1.
Exec,  (n1,n2) means[Pfj(r1) > ry wheren; and
no represent; andrs respectively anch; andn, contain
store information for variables’.

We define the following abbreviations. Note that they
are not formulas.

..... 2, (m, s) = Lh(m, n) A

Vi < n(Elem(m, i, s(x;41))),
Heapcodém, h) =

Vin(h(l) = n < Lookup(m,i,n)),
Resultz (n,7) =n =0 Ar = abort/

n > 0 A Jshyz(r = (s, h) APaiR(n,y, 2)A

Storecodey (y, s) A Heapcodgz, h)).

Storecodg, .. ,, (m,s) means the number is the code
that represents the store for variables x4,...,z,.
Heapcodém, i) means the number is the code that rep-
resents the hedp Resultz (n,7) means the numberrep-
resents the result

The next lemma shows that the base formu-
las  EEval »(n,k), BEval, »(n), HEvali(m),
Eval, »(n,m), and Exeg (ni1,n2) actually have
the meaning we explained above.

Lemma 6.6 (1) EEvaIe,?(n,k) is true if and only if
3s(Storecodey (n, 5) A [[e]ls = k).

(2) BEval, »(n) is true if
Js(Storecodey (n, s) A [A]ls = true).

and only if

(3) Heapcodém, h) — [HEvals(m)]ls = [A]l(s,n)-

(4) EvaIA,?(n,m) is true if and only if
Jsh(Storecodez (n, s) A Heapcodém, h) A [Allsn) =
true).

(5) Exeg,’?(nl,ng) is true if and only if
E'TlTQ(ReSUl%)(nl,Tl)/\[[P]](’l"l) E) TQ/\RQSU'%)(HQ,TQ)).

Its proof is given in the appendix. They can be straightfor-
wardly proved by using their definitions.

Definition 6.7 For a programP and and an assertioA,
the weakest precondition faP and A under the standard
interpretation is defined as the $é&, h) |Vr([P]|((s, h)) >

r — r # abortA [[A], = true)}.

Definition 6.8 We define the base formula M (T") for
the programP and the assertiod. We fix some sequence
T of the variables in FYP, A).

Wp A(T) = Voyzw(Storep (z) A Heady)A
Pai2(z, z,y) A Exec, z (2, w) — w > 0A
1z (Pai(w, yr, z1) A Evaly 2 (y1,21)))-

Wp 4(T) means the weakest precondition fBrand A.
That is, Wp_4(@) gives the weakest assertidii such
that {IV} P{A} is true. Note that all the free variables in
Wp 4(7) are and they appear only in Stoge(x).

For a setV of variables,s =y s’ is defined to hold if
s(x) =¢(z)forallz € V. (s,h) =y (s, k') is defined to
hold if s =y s’ andh = //.

The nextlemma will be used in the proof of Lemma 6.10.
It shows that the store information involved in the execu-
tion of P is only the information for the variables actually
appearing inP.

Lemma 6.9 Suppose =gy s'-

(1) If [P]}((s,h)) > abort, then[P]}((s’, h)) > abort.

() I [P((s,h)) > (s1,h), then [P]((s',n)) >
(s1,h1) wheres) =pyp) s1 andsj(z) = s'(z) for
x & FV(P).

Proof. They are prove by induction oR. O.
The next lemma says that Wi (') indeed describes the
weakest precondition faP and A.

Lemma 6.10 (1) {Wp 4 (T)}P{A} is true.

(2) If [P]|((s,h)) > r impliesr # abort and[[A4],
true for all r, then[Wp 4 (7)) (s,n) = true.

(3) If {A} P{B} is true, thend — Wp 5(7T) is true.

Its proof is given in the appendix. Lemmas 6.6 and 6.9 are
used there.

Definition 6.11 We say our assertion language is expres-
sive for our programming language under the standard in-
terpretation, when for every prograf and assertior,
there is a formuld” such that{IW]; ) = true if and only

if (s, h) is in the weakest precondition fd® and A under

the standard interpretation.



Exec.—c, T (n1,n2) = (ng =0 —ny = 0)A
(n1 >0— HylzlyQZQw(PairZ(nl, Y1, 21) A EEV&L T’(yl, ’LU) A\ ChangeStOrg»_z(yh w, yg)
NEgHeafz, z2) A Pai2(ns, ya, 22))), 1 ’
EX€C,._conge, cr), 7 (M1,72) = (m1 = 0 = ny = 0)A
(n1 > 0 — Jyy z1y220wwiwe (Pai(ny, y1, 21) A EEvaIel,Y(yla wy) A EEVaLQ’Y(yQ, wa)
ANew2(w, z1) A ChangeStores (y1,w,y2)A
Vey(z ZwAhx#£w+1— (LO&)kur(zl7 z,y) < Lookup(za, z,4)))A
Lookup(zz, w, w1 ) A Lookup(zz, w 4+ 1, ws) A Pai2(na, y2, 22))),
EXECI::[E]}T(TM,TZQ) = (n1 =0—>ng = O)/\
(n1 > 0 — Jy1 z21y220ww1 (PaiR(ny, y1, 21) A EEvaIe7
(=Domainw, z;) — ny = 0)A
(Domainw, z1) — Lookup(z1,w,w1) A ChangeStorg: (y1, w1, y2)A
Equapjzl, 22) A PaiQ(ng, Y2, 2’2))))7
Exeqel]::e%?(nl, ny) = (n1 =0—ng = 0)A
(711 >0— E|y12122w1w2(Pair2(’fL1, Y1, 21) AN EEvaLh?(yl, wl) AN EEvale%?(yl, wg)/\
(=Domainwy, z1) — ng = 0)A
(Domair‘(wh Zl) — ChangeHed{Il, wi, W, ZQ) A PaiQ(ng, Y1, 22))))7
Execdisposee),f’(”l’”Q) =(np =0—ny =0)A
(n1 > 0 — Jy1z120w(Pai2(ny,y1,21) A EEvaIe’?(yl, w)A
(=Domainw, z1) — ny = 0)A
(Domainw, z;) — Yay(Lookup(z1, x,y) A z # w < Lookup(zz, z,y)) A Pai(nz, y1, 22)))),
EX€Gt (4 then(r,) else(r,), @ (M1 n2) = (n1 = 0 —ng = 0)A
(n1 > 0 — Szy(Pai2(ny, z,y) A (BEval, 3 (z) — Exec, 2 (n1,n2))
A(=BEval, () — Exec,, - (n1,n2)))),
EXeGyhile (1) do (p), 7 (1, 72) = (11 = 0 —nz = 0)A
(n1 > 0 — Jwz(Lh(w, z + 1) A Elem(w, 0, n1) A 3w, (Elem(w, 2z, w1) A EqQResulfw; , n2))A
Vwy (w1 < z — Jz1 z0wews (Elem(w, wy, z1) A Elem(w, wy + 1, 22)A
z1>0A PairZ(zl, Wa, w3) N BEV&'b T(U)Q) A Exeg,?(zl, 2’2))))
A(ns > 0 — 3yz(PaiR(ns,y, z) A ~BEval, —(1)))),
EXC,, p, 7 (n1,12) = 32(EX€C, o (n1,2) AEXEG, o (2,n2)).

- (Y1, w)A

Figure 1. Definition of Exec pz

Theorem 6.12 (Expressivenesspur assertion language  system is the system presented by [8]. We will compare that
is expressive for our programming language under the stan-system and our system and discuss possibility of applying

dard interpretation. our results to that system.
We can list the difference between them as follows. For
Proof. Since Lemma 6.10 (1) and (2) showpM (@) the programming languages, (1) recursive procedure calls,

defines the weakest precondition f&r and A under the (2) data types such as int, bool, float, and void, (3) user
standard interpretation, the weakest precondition is defin-defined data types such as lists and trees. For the assertion
able in our language: languages, (4) user defined predicates and their lemmas, (5)
two sorts (pointers and numbers), (6) Presburger arithmetic,
(7) restricted disjunction normal forms, (8) approximation
to pure logic.

Recursive procedure calls will be the next challenge.

In this section, we discuss possibility of applying our They have been intensively studied for Hoare’s logic for
theoretical results to the system implemented in [8]. while programs [1]. Combining those results in while pro-

Our results in this paper will give a starting point to prove grams together with our results, our framework will enable
completeness of the core system of existing practical sys-a completeness result for an extension with recursive proce-
tems for pointer program verification. Our current target dure calls in separation logic.

7 Application to Real System



Data types such as int, bool, float, and void are not es-ministically. In this section, we will discuss deterministic
sential difference. Our results can be extended to them byprogram semantics and show its completeness.
small modification. The nondeterminism in his semantics came from the

In order to handle user defined data types that are needed := conge;, e2) Statement. Its execution finds new free
for building data structures, such as lists and trees, we havecells in memory space and allocates them. The choice of
to extend our programming language and assertion lan-the free cells is not specified. On the other hand, in our
guage. They are coded by cdas e2), so the soundness deterministic semantics, the choice is specified. For sim-
theorem will be proved straightforwardly. We have to prove plicity, we suppose the execution chooses the first free cells
the completeness theorem again since it depends on ruleBy memory space, that is, the := conge;, e5) statement
for user defined data types, but the key ideas in our resultsallocates the addressthat is the smallest natural number
remains applicable. such that: > 0 andn,n + 1 are not used in the heap.

User defined predicates and their lemmas gives logical In deterministic semantics, the asserted progfam—
difference, that is, the proof theoretic strength is changed5}z := cong0,0);y = cong0,0){z = 2 Ay = 4} be-
by them. However, by extending our assertion languagescomes true. On the other hand, we will have only a re-
with generalized inductive definitions [11], our results can stricted frame rule
immediately show the completeness theorem for the exten-
sion, since we assume all true assertions in the theorem.

A two-sorted system is used in their programming lan-
guage and assertion language. In general, a many-sorted
system is often used in programming languages and asser?/
tion languages. For example, each pointer type is typically
distinct from the number type. In contrast, our system is
based on a one-sorted system where a pointer is also a nu
ber. However, our results can directly apply to a two-sorted
system by assigning a number to each location and codin
a pointer by a unique number.

Only Presburger arithmetic is allowed in their system.
Since our results rely on intensive coding by Peano arith-
metic, our results do not directly apply to a system with
Presburger arithmetic. Moreover, [1] showed that a system
with Presburger arithmetic is inherently incomplete. Our
results can show completeness results of their system ex-

{AYP{B}
{A+«C}P{B=«C}

with the additional side condition stating that the pro-
gram P does not contain any allocation statements=
congey, ez).
_ We define the deterministic semantics of our program
anguage. For a program, its meaning[ P]] is defined as a
artial map from States{abort to States) {abort. When
he execution ofP with the initial stater; terminates with
the resulting state,, we will define[[P]|(r1) = rq. If the
execution ofP with the initial stater; does not terminate,
[P](r1) becomes undefined|[P] is defined by induction
on P as the smallest partial map satisfying the following:

[P]](abor) = abort

: : : [z == €] ((s,h)) = (s[z := [e]ls], h),

tended with Peano arithmetic. :

Only restricted disjunction normal forms are allowed in [if (b) then(P) else(P)])((s, h)) =
their systems, so that (a) conjunction of heap information is [P1]l((s, n)) if [[b]s = rue,
not allowed, and (b) heap information must be positive, that _HP?H(( h)) otherwis _
is, not negated. On the other hand, we used those to express [While (b) do (P)]}((s ,h)) (s, h) if [b]]s = false
the assertion Hedp:) to prove the expressive theorem. In [while (b) do (P)]|([P]|((s, h))) otherwise
order to apply our results to their system, we have to ex-  [1; P2[[((s, k) = []([P]((s, 1)),
tend their system with more flexible assertions. With those [ := congey, e2)]|((s, h)) =
assertions, we will have to prove the completeness theorem (sl :==nl],hln = [ei]ls,n + 1 := [ea] s]),

again since it depends on the assertion language, but the key wheren is the smallest number such that

ideas in our results remains applicable.

Approximation to pure logic, called XPure, is used in
their system. Its purpose is efficient automatic verification
and this approximation has been proved to be sound, but
it is essentially not complete. Our results can apply to the
core system obtained from their system by removing the
approximation.

8 Deterministic Semantics

This section studies deterministic semantics and shows

n > 0andn,n + 1 ¢ Dom(h),
[z := [e]]((s, h)) =
(sl := R([e]s)];
abort otherwisg
[lea) = ea] (s, ) =
(s, hl[ex]ls == [le2]ls]) if [[ex]]s € Dom(h),
abort otherwisg
[disposge)[|((s, h)) =
(s, h|Dom(h) (1e1.y) 1f [ells € Dom(h),
abort otherwise

h) if [e]ls € Dom(h),

completeness and soundness under deterministic semantic3he difference from the semantics in Definition 3.2 comes
Reynolds assumed his program semantics is nondeterfrom the meaning of the statement:= conge;,es). In
ministic. On the other hand, some real system runs deter-the above definition, the resulting state after the execution
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Appendix

A Proof of Theorem 5.1

LemmaA.l [A],s = [[A]l(s,») for a base formulad where the left-hand side is the semantics for the base language and the
right-hand side is the semantics for the assertion language.

Proof. By induction onb. O
Proof of Theorem 5.1.

By induction on the proof. We consider cases according to the last rule.

Case(assignment). Let P bex := e. Assume]A[z := e]]|,,») = true. Letn be[le]ls. By the definition offz := ]|, we
have[ P]((s,h)) = {(s1,h)} wheres, = s[z := n]. Since[[A[z := e]]|(s,n) = [All(s,,n), We have[[A] 5, ») = true. Hence
{Alz :=e]}x := e{A} is true.

Case(if). Assume][A](, 5y = true and[P]|((s, h)) > r. We will showr # abort and[B]},. = true.

Case 1.[b]]s = true. By Lemma A.1, we havgA A b, ) = true. By the definition we have € [P]((s,h)) =
[P1]((s,h)). By induction hypothesis for the first assumptidm A b} P{B} is true. Hence we have # abort and
[B] = true.

Case 2][b]s = false.r # abort and[B]],, = true are similarly proved to Case 1.

Hence{ A}if (b) then(P,) else(P,){B} is true.

Case(while). Assume[A]]s = true and[while (b) do (P)]|((s,h)) > r. We will showr # abort and[A A b, = true.

Case 1[b]s = true. We have some, such thaf[P]|((s, h)) > r1 and[while (b) do (P)](r1) > .

By Lemma A.1, we havéb]], ») = true. Hence[A A 0], ) = true. By induction hypothesig,A A b} P{A} is true. By
this,r, # abort and[A]],, = true.

By induction hypothesis of the induction of the definition[efhile (b) do (P)]], from [while (b) do (P)]|(r1) > r and
[4]., = true, we have # abort and[A A —b]), = true.

Case 2.[b]]s = false. We havdwhile (b) do (P)]((s,h)) = {(s,h)}. Sincer = (s, h), we haver # abort. By Lemma
A.1, we have]b]], ,) = false. Hence we havgd A —b]], = true.

Therefore{ A}while (b) do (P){A A —b} is true.

Case(comp). Assume|[A]] s ») = true and[Py; P2][((s, h)) > r. We will showr # abort and[B]], = true.

By the definition,[P; P2|((s, h)) = [P]([P1]]((s, h))). We haver; such thaf[P1]]((s, h)) 2 r1 and[[P]](r1) > r. By
induction hypothesis for the first assumptigal } P, {C'} is true. Hence we haveg # abort and|C],, = true. By induction
hypothesis for the second assumpti@’} P,{ B} is true. Since* € [P]|(r1), we haver # abort and[B]|,, = true. Hence
{A}Pl, PQ{B} is true.

Case(conseq). Assume[[A]](s n) = true and[P]((s,h)) > r. We will showr # abort and|[B]}, = true. By the side
condition[[A — A;]] = true, we havglA, ]|, ;) = true. By induction hypothesigA; } P{B } is true. Hence # abort and
[B1]- = true. By the side conditiofiB; — B] = true, we havd{B]],, = true. Hence[ A} P{B} is true.

Case(cons). Assume]Va' (2" — e1, eo —x Alx := 2'])]|(5,n) = true and]z := congey, e2)]((s, h)) > . We will show
r # abort and[A]),. = true.

Let P bex := congey,es), n1 be [e1]s, andng be [es]]s. By the definition of[P], » # abort andr = (s1,hq)
wheres; = s[z := n] andhy = hln := ny,n + 1 := ny| for somen such thatn > 0 andn,n + 1 ¢ Dom(h). By
[Va' (2" = e1, e2 —x Az := 2'])]|(5,n) = true, we havez’ — ey, es —* Alx := 2']]| (s ) = true wheres’ = sz’ := n].
Lethy = ¢[n :=ny,n + 1 := ny|. We haveh; = h + hy. Then[[z’ — ey, ea]|(s n,) = true sincex’ ¢ FV(ey, ez). Since
[z — e1,es —* Alz := 2']]| .y = true, we havg{A[z := 2]y 5,) = true. Henced[A]](, »,) = true, sincer’ ¢ FV(A).

Case(lookup). Assume[[3z’((e — ') * ((e — o) —* Az := 2']))]|(5,n) = true and[[z := [e][((s,h)) > r. We will
showr # abort and[A]),. = true.

Letn be[le] ;. From the assumption, we have somesuch thaf[(e — ') * (e — 2’ —x A[z := 2'])]|(s ) = true where
s' = s[z’ := n1]. Hence we have, ho suchthah = hy+ho, [le — '] 5,y = true, andle — &' —x Az := 2'][|(y p,) =
true. Hencg[A[z := 2']]|(y ») = true. Sincex’ ¢ FV(e), [e]ls = [le]]ls = n. Hence Donfh,) = {n} andh,(n) = n;.
Sincen € Dom(h), r # abortand- = (s, h) wheres; = sz := n;]. Since[[A[z := 2']] ' n) = [All(s,,n) Dy’ & FV(A),
we have[[A]), = true.

Case(mutation). Assume[(3z(er — x)) * (€1 — ez —* A)]|(5,5) = true and[[e1] := e2]|((s, h)) > r. We will show
r # abort and[A]],, = true.

Letn be[e;]]s andny be[es]s. By the assumption, we hava, h, such thath = hy + ha, [Fz(er — 2)](s,5,) = true,
and[le; — es —x All(sn,) = true. Hence we have somg such thatfe; — x|y 4,) = true wheres’ = s[z := n4].
Since[le1]ss = [e1]ls = n by z & FV(e1), we have Dorthy) = {n} andh;(n) = ni. Sincen € Dom(h), r # abort
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andr = (s,h’) whereh’ = hin := no|. Leth} be¢[n := no]. Thenh' = h| + ha. [e1 — e2]l(sny) = true. By
[e1 = ea —x* A]l(s,n,) = true, we have{A], »/) = true.

Case(dispose). Assume[[(3z(e — x)) * A|(5 ) = true and[disposge)]|((s,r)) > . We will showr # abort and
Al
: ]I]_etn be[e] ;. By the assumption, we havg, hy such that = hy +ho, [Fz(e — z)]|(s,n,) = true, and[A]|(; n,) = true.
Hence we have some, such thatfe — x|y 5,) = true wheres’ = s[z := n;]. Since[le]lss = [[e]ls = n by z & FV(e),
Dom(h1) = {n} andhi(n) = ny. Sincen € Dom(h), r # abort andr = (s, h,) wherehy = h|pom,_(,;- Hence
he = hY. Thereford[A]], = true.O

B Proof of Theorem 5.2

Proof. We will show that, for allA, P, B, if {A}P{B} is true, thert- {A} P{B} by induction onP. We consider cases
according toP.

Caser := e. We will show A — B[z := e¢] is true. Assumg[A]|(; ). Letn be [e],. We have[P]((s,h)) =
{(s1,h)} wheres, = s[x := n]. Since{A}P{B} is true,[B](s, ») = true. Since[B]|,, ») = [Blz := €]]|(s,n), we have
[Blz := €]]l(s,n) = true. HenceAd — B[z := ¢] is true.

By applying (conseq) to [A — B[z :=¢]]] = true and- {B[z := e|}x = e{B} from (assignment), we havet
{A}P{B}.

Case if(b) then(Py) else(Fz).

We will show {A A b} Pi{B} is true. Assume{A A b](, ) = true and[Py]|((s, k) > r. We will showr # abort and
[B]), = true. By Lemma A.1[[b]s = [[b]](s,n) = true. Hence[P]((s, ) = [P1]((s,)) > r. Since{ A} P{B} is true and
[A]l(s,n) = true,r # abort and[B], = true. Hence( A A b} P { B} is true.

Similarly {A A —b}P,{B} is true.

By induction hypothesis foP; andP,, we have- {AAb} P {B} and- {AA-b}P>{B}. By (if), we have- { A} P{B}.

Case whilgb) do (P;). Let P be while(b) do (P;) andC be Wp 5(T).

We will show {C' A b}P{C} is true. Assumd[C A b]j(; ) = true and[P1]|((s,h)) > r. We will showr # abort
and [C]}, = true. By Lemma A.1, we havgb]], = [[b]s,») = true. By the definition[P]], [P]((s,h)) 2 [P](r).
Since {C}P{B} is true by Lemma 6.10 (1), fromiCJ)(, ) = true, we have[P((s,h)) Z abort. Hencer # abort.
Assume[[P]|(r) > r'. Sincer’ € [P]|(r) C [[P]|((s, h)) and[[C]\(s,») = true, we have’ # abort and|B]],» = true. Hence
[P](r) > r’ impliesr’ # abortand|B]},» = true for all*’. By Lemma 6.10 (2), we hayg”),, = true. HencgC Ab} P {C}
is true.

By induction hypothesis foP;, we have- {C' A b} P {C}.

By Lemma 6.10 (3) with A} P{B}, A — C'is true.

We will show C' A =b — B is true. Assumg[C A —b]|(s ) = true. We will show[B]|(, ) = true. By Lemma A.1,
[=0]ls = [=b]](s,n) = true. Hencd[P]|((s, h)) = {(s, h)}. Since{C}P{B} is true by Lemma 6.10 (1), froffC] , ») = true
and[[P]((s,h)) = {(s, h)}, we have[B](, ;) = true. HenceZ A —b — B is true.

Since {C A b} P {C}, by (while), we have- {C}P{C A —b}. SinceA — C andC A —b — B are true, by(conseq),
we have- {A}P{B}.

CaseP;; P,. Let P be P;; P, andC be Wp, 5(7). By Lemma 6.10 (1){C} P,{B} is true.

We will show {A} P, {C} is true. Assumg{A]), ) = true and[P1]((s,h)) > r. We will showr # abort and[C]], =
true. Since{A}P{B} is true,[[P]((s,h)) # abort. Sincd[P]((s,h)) 2 [P:]](r) by the definition of[P]], » # abort. We
will show [[C]), = true. Assumé[P.]|(r) > r1. We will showr; # abort and|B]),, = true. Then[P])((s,h)) > r1. Since
[A]l(s,n) = true and{ A} P{ B} is true, we have, # abort and[B]],, = true. Hence[]|(r) > r; impliesr; # abort and
B, = true for allr,. By Lemma 6.10 (2){C]], = true. Henceg[ A} P, {C} is true.

By induction hypothesis foP, and P, we have- {A} P, {C} and- {C} P,{B}. By (comp), we have- {A}P{B}.

Caser := congey, e2). Leta’ & FV(ey, eq, B), andC beVa/(z' — ey, eq —x Blz := 2']).

We will show A — C'is true. Assumg A, ) = true. Letn; = [[e1]]s andny = [[es]]s. Fix n. Lets’ = s[z’ :=n].

We will show [z — e1, ez —x* Blz := 2'[]| (s ny = true. Assume[z’ — e, e2]/(sr ny) = true andh; + h exists. We
haven > 0 andn,n + 1 ¢ Dom(h). Leth; = ¢[n := ny,n + 1 := ny]. Sincefe1]sy = n1 and[es]]ls = no by
' & FV(ei,ez), we haveh| = h;. Lets; = s[x := n]. Since{A}P{B} is true and[P]((s,h)) > (s1,h + hy),
[Bll(sy,h+r,) = true. Since[Blz := '] (s ntny) = [Bll(s1,n4+n;) by 2" & FV(B), we have[Blz := a']]|(s h4n;) = true.
Thereforel[z" +— e1, eo —+ Blx := 2']]| (s 5y = true.

Hence[z' — e1, eo —* Bl := 2']]|(» p) = true for alln. Hence[Va' (2’ — e1, eo —* B[z := 2'])]|(5,) = true. Hence
A — Cistrue.

Sincel- {C}x := congey, e3){B} by (cons) andA — C'is true, we havé- { A}z := congey, e2){B} by (conseq).
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Caser := [e]. Leta’ € FV(e, B), C be3a’(e — 2’ x (e — 2’ —x Bz := 2'])), and P bex := [e].

We will show A — C'. Assumef[A]](, 5) = true. We will show{C], ») = true.

Letn be[e]ls. Since{ A} P{B} istrue,[[P]((s,h)) # abort. Hence: € Dom(h). Leth(n) = n;. We have[P]|((s, h)) =
{(s1,h)} and[[B]/(s,,n) = true wheres; = s[z := ny]. Lethy = hl(n}, ha = hlpomp)—(n)> @Nds" = s[z’ := ny]. Then
h = hy + ho.

We havelle — '] (s 5,) = true sincefe]ls = [[e]s = n by 2’ & FV(e).

We will show [[e — 2" —x B[z := 2'[[|(s/ n,) = true. Assumgfe — z']J(s n;) = true andhy + b exists. We have
hy = h. Henceh| + hy = h. From B, n) = [Blz := 2']](s.n) by 2’ ¢ FV(B) and[[B], ) = true, we have
[Blz := 2']]| (s hy+n7) = true. Hencele — ' —x Blx := 2']]| (s pn,) = true.

Combining them, we havge — ' * (e — 2’ —x Blz := 2'])]| (s ») = true. Hencg[C], ) = true. Henced — C'is
true.

By (lookup), = {C} P{B}. SinceA — C'is true, by(conseq), we have{ A} P{B}.

Case€le;] := eq. Leta & FV(e1), P bele;] := ez, andC be (Jz(e; — ) * (e1 — ea —x* B).

We will show A — C'is true. Assumg{A]|(, ») = true. We will show[[CT|, ;) = true. Letn; = [le1]]s andny = [[ea]s.
Since{A} P{B} is true,[[P]|((s, h)) # abort. Hencew; € Dom(h). Then[[P[[((s,h)) = {(s,h1)} and[B]](s n,) = true
whereh; = h[ny := ny]. Lethy = h|(,,) andhs = h\Dom(h)f{nl}- We haveh = hy + hs. Lets’ = s[z := h(nq)]. Since
[e1]ls = [le1]ls = n1 by z & FV(e1), we have]er — x5 1,) = true. Hencé[3z(e; — )]s 5,) = true.

We will show([e; +— ez —%* BJ|(s,n,) = true. Assumgle; — es]|(s,n;) = true andhs + hj exists. Therh), = ¢[n; := no]
andhy + hy = hy. Since[Bln,) = true, we have[BJ( n,1n,) = true. Hencele; — eall(sny) = true implies
[B(s,ny+hy) = true for allh;. Hencelle; — ez —x* B (s n,) = true.

Combining them, we havigC]|(,,) = true. Henced — C'is true.

By (mutation), - {C}P{B}. SinceA — C'is true, by(conseq), we have- { A} P{B}.

Case dispoge). Letx ¢ FV(e), C be(3z(e — z)) * B, andP be disposg).

We will show A — C'is true. AssumgAJ|(, ») = true. We will show[[CT|, ) = true. Letn = [le]|s. Since{A}P{B}
is true, [P]|((s,h)) # abort. Hencen € Dom(h). Hence[P]|((s,h)) = {(s,h1)} and[B]( 5,y = true whereh; =
h‘Dom(h)—{n}' Letn; = h(n), hy = ¢[n := ny], ands’ = s[x := n1]. We haveh = h; + ho. Sincefe]]s = [[e]s = n by
r ¢ FV(e), we have]e — x|y 1,) = true. Hencé[3z(e — x)]|(s.5,) = true. Hencd[C]|(, ;) = true. Henced — C'is true.

By (dispose), F {C}P{B}. SinceA — C'is true, by(conseq), we have- {A} P{B}. O

C Proof of Lemma 6.6

Proof. (1) This is similarly proved to (2).

(2) The left-hand side is equivalent W[[37 (Storez (n) A A)]s = true. Itis equivalent tals[Storez (n) A Alls =
true. Hence it is equivalent t8s([[Storep (n)]], = trueA [[A]l, = true). Since[[Storex(n)], = true is equivalent to
Storecodez (n, s), we have the claim.

(3) We suppose Heapca@e, 7). We will show [HEvals(m)]]s = true « [[A]j, ) = true by induction onA. We
consider cases according Ao

CaseA is a base formula. We have HEwdn) = A and the claim holds.

CaseA = emp. We have HEvalim) = —3axylLookup(m,z,y). Since[emgd], ) = true, Donth) = ¢, and
—JzyLookup(m, z,y) are equivalent, we have the claim.

CaseA = e — eqg. Letk; be[e;]s. All of [HEvala(m)])s = true,VE k5 (Imime(m = mq - (K1, K5)) - ma A K} >
0) < ki = ky ANk = k), h = @[k := ko, and[[A]], ) = true are equivalent. Hence the claim holds.

Cased = A; % A,.

From the left-hand side to the right-hand side. Ass(iiHEval,(m)], = true. We will show[A] , ») = true. We have
[Separaten, y1,y2) A HEvala, (y1) A HEVala, (Y2)]] sy, :=m1 yo:=ms) = true for somem;, my. Then[[HEvaly, (m;)]s =
true. We haveé:; such that Heapcoder;, h;). Thenh = h; + he. By induction hypothesis witfiHEvals, (m;)]]s = true,
we havef[A;]] (s n,) = true. Hencd[A]](, ») = true.

From the right-hand side to the left-hand side. Assufdd, ,, = true. We will show[[HEvals(m)], = true.
There arehy, hy such thath = hy + ho and [[A;]Js.5,) = true. We haven,my such that Heapcode;, h;). Then
Separatén, m1, mg). By induction hypothesis for;, we have[[HEvala, (m;)]]s = true. HencgHEval, (m)]]s = true by
takingy; = my andys = ms.

Cased = A; —x A,.

From the left-hand side to the right-hand side. AssufhtEvals(m)], = true. We will show [A]s s =
true. Assume[Ai];,) = true andh + hy exists. We will show[[As](s p1n,). We havem;,my such that
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Heapcodém., h1), Heapcodém,, h + hq). By induction hypothesis for;, we have[[HEvaly, (m2)]]s = true. We also
have Separate:;, m,ms). From the assumption, we ha{lelEval, (m1)]s = true. By induction hypothesis fots, we
have[[As] (s, h4r,) = true.

From the right-hand side to the left-hand side. Ass{jm ; ,) = true. We will show[HEval, (m)]]s = true. Fixmy, ms
and assum@HEval, (m2) A Separatén;, m, mg)]|s = true. We will show[HEvala, (m1)]]s = true. We havé;, hy such
that Heapcoden, h1 ), Heapcodémns, hy). Thenh; = h+ hy. By induction hypothesis fod;, we have[ A, ||, 5,y = true.
From the assumption, we hafié,]|; »,) = true. By induction hypothesis fot,, we have[HEval,, (m1 )]s = true.

CasesA = —Ay, A1 NAg, A1V As, Ay — Ag, Vo Ay, Jz Aq are proved straightforwardly by using induction hypothesis.

(4) The right-hand side is equivalent th(Heapcodém, h) A Js(Storecodes(n,s) A [A]ls,n) = true)). Since
[A]l(s,ny = [HEvala(m)]]; under Heapcoden, h) by (3), it is equivalent talh(Heapcodém, h) A 3s(Storecodes (n, s) A
[HEvala(m)]]s = true)). Henceds(Storecodes (n, s) A [HEvala(m)]]s = true). Since (2) shows BEVﬁ'EvaIA(m),E’(”)
is equivalent tods(Storecodey (n,s) A [HEvals(m)]s = true), it is equivalent to BEVE?JlEvaIA(m),?(”)' that is,
37 (Storeg (n) A HEvala(m)), which is the left-hand side by the definition of Eyal,.

(5) By induction onP. O '

D Proof of Lemma 6.10

Proof. (1) Assume[[Wp, 4(@)]|(s,») = true and[P]((s,h)) > r. We will showr # abort and[A], = true. We have
n1,n2,n andm such that Resuly (ny, (s, h)), Resultz (ng, ), and Pai(ny,n,m). We have[Storez (n)]](s,n) = true,
[Heagm)]](s,n) = true, Storecodes (n, s), and Heapcoden, h).

We will show3r;ra(Results (ny,71) A[[Pll(r1) 3 r2 AResulty (n2,72)). Itis proved by taking = (s, h) andry = r.
Therefore, by Lemma 6.6 (5), Exg%(nl, ng) Is true.

By lettingz = n,y = m,z = ni,w = ny in the definition of W 4(7), from [Wp 4(7)](s,n) = true, we have
ng > 0 A Jyi 21 (Pai(ng, y1,21) A EvalA?(yl,zl)). By ns > 0, r # abort. Letr = (s1,h1). We haven/, m’ such
that Pai2(ns, n’,m’) and Eval, - (n’,m’) is true. By Lemma 6.6 (4), we hawg, i such that Storecodg(n’, s1) A
Heapcoden’, hy) A [[A]l (s ;) = true. Since Storecode(n', s1) and Heapcoden', h1), we haves| = s andh; = hy.
Hence[[A]l(s, »,) = true, that is[[A]}, = true.

(2) Assumevr([P]|((s,h)) > r impliesr # abortA [A]l, = true). We will show [Wp a(7)](s,n) = true. Fix
n,m,ni,ny and assume Stote(n), Heagm), Pai2(n1,n,m), and Exeg, = (n1,n2) are true at(s, h). We will show
no >0 andEIylzl(Pail‘Z(ng, Y1, 2’1) N EvalAyﬁ(yl, Zl))

We have Resuip(n1, (s,h)). By Lemma 6.6 (5) with Exeg—(n1,n2), we haver;, r; such that Resug (n1, r}) A
[P](r}) > r5 AResultz (ng, r5). By Results (ng, (s, b)), we haves’ such that} = (s',h) ands = s'. If 75, = abort, by
Lemma 6.9 (1)[[P])((s, h)) > abort, which contradicts to the assumption. Herice: abort. Let(s), hy) ber}. By Lemma
6.9 (2),[P((s,h)) > (s2, h2) Wheres) =gy p) s2. By the assumption, we hayel]s, »,) = true. We haves; = s
since for ally € @ — FV(P), s5(y) = s'(y) = s(y) = s2(y). Hence[A]|,; = [A],, = true. We havex’,m’ such that
Pair2(ng,n’', m’). Then Storecodg (n', s5) and Heapcoden', h»). Since the right-hand side of Lemma 6.6 (4) holds by
letting s = s, andh = hs, we have Eva| - (n', m’). Hencedy, 21 (Pai2(n2, y1, 21) AEval, - (y1, 21)) by takingy, = n’
andz; = m/.

Thereforevzyzw(Storep () A Heafy) A Pai(z, z,y) A Exec, (2, w) —

w > 0 A Jyrz1(Pair(w, y1, z1) A Eval, 2 (y1,21))) is true at(s, k), that is,[Wp 4 (T)]s,n) = true.

(3) Assumel[A]] 5,y = true. We will Show[Wp 4 (Z)]](s,n) = true.

Assume[[P])((s,h)) > r. Since{ A} P{B} is true,r # abort and[B]|,, = true. Hence we havigP]|((s, h)) > r implies
r # abort and[A]|, = true. By (2), we havfWp A(T)] (s,5) = true.

HenceA — Wp () is true.O
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