

ISSN 1346-5597

NII Technical Report

Completeness of Pointer Program Verification by
Separation Logic

Makoto Tatsuta, Wei-Ngan Chin, and Mahmudul Faisal Al Ameen

NII-2009-013E
June 2009

Completeness of Pointer Program Verification by Separation Logic

Makoto Tatsuta
National Institute of Informatics

2-1-2 Hitotsubashi, 101-8430 Tokyo, Japan
tatsuta@nii.ac.jp

Wei-Ngan Chin
Department of Computer Science
National University of Singapore
chinwn@comp.nus.edu.sg

Mahmudul Faisal Al Ameen
Department of Informatics

Graduate University for Advanced Studies
2-1-2 Hitotsubashi, 101-8430 Tokyo, Japan

alameen@nii.ac.jp

Abstract

Reynolds’ separation logical system for pointer program
verification is investigated. This paper proves its complete-
ness theorem as well as the expressiveness theorem of Peano
arithmetic language for the system under the standard in-
terpretation. This paper also introduces the predicate that
represents the next new cell, and proves the completeness
and the soundness of the extended system under determin-
istic semantics.

1 Introduction

Program verification for while programs has been inten-
sively studied [1]. However, pointer program verification
has not been fully studied, since there was difficulty to de-
sign an appropriate logical system for asserted pointer pro-
grams. Reynolds gave a breakthrough for it by using sep-
aration logic [10] and proposed a new logical system for
pointer program verification. It enables us concise specifi-
cation of program properties and a manageable proof sys-
tem. Separation logic is successful in a theoretical sense
as well as a practical sense. By using separation logic,
some pointer program verification systems have been im-
plemented [8, 2]. For example, the system in [8] automati-
cally proved the correctness of a pointer version of the quick
sort program in a second.

One of the most important theoretical questions for a ver-
ification system is its completeness. The soundness of a sys-
tem guarantees that if the correctness of a program is proved
in the system, then the program will indeed run correctly.
The soundness of those existing practical systems has been
proved. However, it does not mean the system can prove all
correct programs are correct, that is, there is a possibility

that some programs are not proved to be correct by the sys-
tem even though they are indeed correct. The completeness
is the converse of the soundness. The completeness of the
system guarantees that if a program runs correctly, then the
system surely proves the program is correct. The complete-
ness of the system shows how powerful the system is. If the
completeness for the system is proved, we do not have to
worry about theoretical power of the system. If we have the
completeness for the core of the system with some restric-
tions, we know what kind of limitation this system has, and
how to use and improve the system.

Our contributions are: (1) the completeness theorem of
separation logic for the first time, (2) the expressiveness the-
orem of Peano arithmetic for the separation logic, and (3)
the predicate that represents the next new cell for complete-
ness under deterministic semantics.

We will prove completeness by extending the original
completeness results for while programs [1] to pointer pro-
grams and separation logic. We choose backwards reason-
ing in Reynolds’ system for logical rules. Main difficulty
is proving the expressiveness theorem. We will also prove
completeness for deterministic semantics as well.

The expressiveness theorem says that Peano arithmetic
with the standard interpretation is expressive for the sep-
aration logic. That is, the weakest precondition of every
program is definable in Peano-arithmetical language. This
result is obtained by coding the heap information as well
as the store information by natural numbers, and simulat-
ing program executions as well as the truth of assertions
by using Peano arithmetic. At first sight, the expressive-
ness may look trivial, but it is indeed a subtle problem
and some pathological counterexamples are known [3]. We
can have natural numbersn andm that encode the given
store s and heaps, respectively. We will construct the
formula Heap(m) that exactly specifies the current heap

so that Heap(m) is true at the current state(s, h) if and
only if the numberm encodes the heaph. We can con-
struct a Peano-arithmetical formula HEvalA(m) for a sep-
aration logic assertionA such thatA is true at(s, h) if
and only if HEvalA(m) is true ats when the numberm
represents the heaph. For program execution, we will
have a Peano-arithmetical formula Exec

P,−→x (n1, n2) for a
given programP and its variables−→x such that the exe-
cution of P at the stater1 terminates with the stater2 if
and only if Exec

P,−→x (n1, n2) is true where the numbersn1

andn2 represent the statesr1 andr2 respectively. Combin-
ing Heap(m), HEvalA(m), and Exec

P,−→x (n1, n2), we will
define the weakest precondition for each given programP
and assertionA. Though this result relies on heavy number
coding of programs and assertions, we will present detailed
definitions in order to provide a fundamental framework for
completeness results to support future systems with a wider
class of programs and assertions.

Our completeness theorem only shows relative com-
pleteness. That is, it assumes all true assertions are avail-
able in the system. This is a best possible completeness for
pointer program verification for a similar reason to that for
while program verification discussed in [4].

Parts of a completeness proof have been discussed in [6].
They showed the precondition of their backwards axiom for
every atomic statement gives the weakest precondition for
the statement. However, they only proved completeness for
programs without if-statements nor while-statements, and
they did not prove the completeness theorem itself.

When we take deterministic semantics instead of non-
deterministic semantics, the axiom for allocation in [10]
becomes insufficient for completeness. In order to have a
complete system for deterministic semantics, we introduce
the predicate New(e) that represents the new cell consumed
by the next allocation, and strengthen the axiom by using
this predicate. Under deterministic semantics, we will show
the completeness theorem of the resulting system as well as
its soundness theorem.

Our long-term aim is proving completeness of the core of
existing practical verification systems for pointer programs.
This paper will give the first step for this purpose. Since our
system in this paper is simple and general, our completeness
theorem can be applied to those systems in order to show
the completeness of their core systems. This paper will also
provide a starting point for completeness theorems in ex-
tensions with richer programming languages and assertion
languages such as recursive procedure calls and inductive
definitions.

Section 2 defines our programming language and our as-
sertion language. Their semantics is given in Section 3.
Section 4 gives a logical system for proving asserted pro-
grams, and Section 5 shows our completeness theorem as
well as our soundness theorem. Section 6 proves the ex-
pressiveness theorem. Section 7 discusses applying our re-
sults to the verification system implemented in [8]. Section
8 gives the conclusion.

2 Languages

This section defines our programming language and
our assertion language. Our language is obtained from
Reynolds’ paper [10].

We first define our base language, which will be used
later for both our programming language and our assertion
language. It is essentially a first-order language for Peano
arithmetic. We call its formula a base formula. We will
usei, j, k, l, m, n for natural numbers. Our base language
is defined as follows:

Variablesx, y, z, w,
Constantsc ::= 0, 1, null.
Function symbol+,×.
We have no propositional constants.
Predicate symbolsp ::==, <.
Termst ::= x|c|f(t, . . . , t).
Base formulasA ::= p(t, . . . , t)|¬A|A ∧A|A ∨A|A→

A|∀xA|∃xA.
p(t1, . . . , tn) means the predicatep holds for terms

t1, . . . , tn. The other formula constructions mean usual log-
ical connectives. We will sometimes write the numbern to
denote the term1 + (1 + (1 + . . . (1 + 0))) (n times of
1+).

Our programming language is an extension of while pro-
grams to pointers. It is the same as that of Reynolds [10].
Its expressions are terms of the base language. That is,

Expressionse ::= x|0|1|null|e + e|e× e.
Expressions mean natural numbers or pointers. null

means the null pointer.
Its boolean expressions are quantifier-free base formulas.

That is,
Boolean expressionsb ::= e = e|e < e|¬b|b∧b|b∨b|b→

b.
Boolean expressions are used as conditions in a program.
Programs are defined by:
ProgramsP ::= x := e|if (b) then(P) else(P)|

while (b) do (P)|P ;P |
x := cons(e, e)|x := [e]|[e] := e|dispose(e).

The statementx = cons(e1, e2) allocates two new con-
secutive memory cells, pute1 ande2 in the cells, and put
the address intox. The statementx := [e] looks up the con-
tent of the memory cell at the addresse and put it intox.
The statement[e1] := e2 changes the content of the mem-
ory cell at the addresse1 by e2. The statement dispose(e)
deallocates the memory cell at the addresse.

Our assertion language is a first-order language extended
by the separating conjunction∗ and the separating implica-
tion —∗. We will sometimes call its formula an assertion.
Its variables, constants, function symbols, and terms are the
same as those of the base language. Our assertion language
is defined as follows:

Predicate symbols=, <, 7→.
Propositional constant emp.
FormulasA ::= emp|e = e|e < e|e 7→ e|¬A|A∧A|A∨

A|A→A|∀xA|∃xA|A ∗A|A —∗A.

2

emp means the current heap is empty.e1 7→ e2 means
the current heap has only one cell at the addresse1 and its
content ise2. A∗B means the current heap can be split into
some two disjoint heaps such thatA holds at one heap and
B holds at the other heap.A —∗B means that for any heap
disjoint from the current heap such thatA holds at the heap,
B holds at the new heap obtained from the current heap and
the heap by combining them.

FV(A) is defined as the set of free variables inA. FV(e)
and FV(P) are similarly defined. FV(O1, . . . , On) is de-
fined as FV(O1) ∪ . . . ∪ FV(On) whenOi is a formula, an
expression, or a program.

We use vector notation to denote a sequence. For exam-
ple,−→e denotes the sequencee1, . . . , en of expressions.

3 Semantics

The semantics of our programming language and our as-
sertion language is defined in this section. Our semantics
is the same as that in Reynolds’ paper [10] except the fol-
lowing simplification: (1) values are natural numbers, (2)
addresses are non-zero natural numbers, and (3) null is0.

The setN is defined as the set of natural numbers. The
set Vars is defined as the set of variables in the base lan-
guage. The set Locs is defined as the set{n ∈ N |n > 0}.

For setsS1, S2, f : S1 → S2 means thatf is a map from
S1 to S2. f : S1 →fin S2 means thatf is a finite map
from S1 to S2, that is, there is a finite subsetS′1 of S1 and
f : S′1 → S2. Dom(f) denotes the domain of the mapf .
p(S) denotes the powerset of the setS. For a setS ⊆ A
and a mapf : A → B, we definef(S) = {f(x)|x ∈ S}.
For a mapf : A → B and a subsetC ⊆ A, the map
f |C : C → B is defined byf |C(x) = f(x) for x ∈ C.

A store is defined as a map from Vars→ N , and denoted
by s. A heap is defined as a finite map from Locs→fin N ,
and denoted byh. A value is a natural number. An address
is a positive natural number. The null pointer is0. A store
assigns a value to each variable. A heap assigns a value to
an address in its finite domain.

The stores[x1 := n1, . . . , xk := nk] is defined by
s′ such thats′(xi) = ni and s′(y) = s(y) for y 6∈
{x1, . . . , xk}. The heaph[m1 := n1, . . . , mk := nk] is
defined byh′ such thath′(mi) = ni and h′(y) = h(y)
for y ∈ Dom(h) − {m1, . . . , mk}. The stores[x1 :=
n1, . . . , xk := nk] is the same ass except values for the
variablesx1, . . . , xn. The heaph[m1 := n1, . . . , mk :=
nk] is the same ash except the contents of the memory cells
at the addressesm1, . . . , mk.

We will write h = h1 +h2 when Dom(h) = Dom(h1)∪
Dom(h2), Dom(h1) ∩ Dom(h2) = φ, h(x) = h1(x) for
x ∈ Dom(h1), andh(x) = h2(x) for x ∈ Dom(h2). The
heaph is divided into the two disjoint heapsh1 andh2 when
h = h1 + h2.

A state is defined as(s, h). The set States is defined as
the set of states. The state for pointer program is specified

by the store and the heap, since pointer programs manipu-
late memory heaps as well as variable assignments.

Definition 3.1 We define the semantics of our base lan-
guage by the standard model of natural numbers and
[[null]] = 0. That is, we suppose[[0]] = 0, [[1]] = 1,
[[+]] = +, [[×]] = ×, [[=]] = (=), and[[<]] = (<). For
a stores, an expressione, and a base formulaA, according
to the interpretation of a first-order language, the meaning
[[e]]s is defined as a natural number and the meaning[[A]]s
is defined as true or false.[[e]]s and[[A]]s are the value ofe
under the stores, and the truth value ofA under the stores,
respectively.

Definition 3.2 We define the semantics of our program-
ming language. For a programP , its meaning[[P]] is de-
fined as a map from States∪{abort} to p(States∪{abort}).
We will define[[P]](r1) as the set of all the possible result-
ing states after the execution ofP with the initial stater1

terminates. In particular, if the execution ofP with the ini-
tial stater1 does not terminate, we will define[[P]](r1) as
the empty set. [[P]] is defined by induction onP as the
smallest set satisfying the following:

[[P]](abort) = {abort},
[[x := e]]((s, h)) = {(s[x := [[e]]s], h)},
[[if (b) then(P1) else(P2)]]((s, h)) =

[[P1]]((s, h)) if [[b]]s = true,
[[P2]]((s, h)) otherwise,

[[while (b) do (P)]]((s, h)) = {(s, h)} if [[b]]s = false,
[[while (b) do (P)]]([[P]]((s, h))) otherwise,

[[P1;P2]]((s, h)) = [[P2]]([[P1]]((s, h))),
[[x := cons(e1, e2)]]((s, h)) =

{(s[x := n], h[n := [[e1]]s, n + 1 := [[e2]]s])|
n > 0, n, n + 1 6∈ Dom(h)},

[[x := [e]]]((s, h)) =
{(s[x := h([[e]]s)], h)} if [[e]]s ∈ Dom(h),
{abort} otherwise,

[[[e1] := e2]]((s, h)) =
{(s, h[[[e1]]s := [[e2]]s])} if [[e1]]s ∈ Dom(h),
{abort} otherwise,

[[dispose(e)]]((s, h)) =
{(s, h|Dom(h)−{[[e]]s})} if [[e]]s ∈ Dom(h),
{abort} otherwise.

Definition 3.3 We define the semantics of the assertion lan-
guage. For an assertionA and a state(s, h), the meaning
[[A]](s,h) is defined as true or false.[[A]](s,h) is the truth
value ofA at the state(s, h). [[A]](s,h) is defined by induc-

3

tion onA as follows:

[[emp]](s,h) = true if Dom(h) = φ,
[[e1 = e2]](s,h) = ([[e1]]s = [[e2]]s),
[[e1 < e2]](s,h) = ([[e1]]s < [[e2]]s),
[[e1 7→ e2]](s,h) = true

if Dom(h) = {[[e1]]s}, h([[e1]]s) = [[e2]]s,
[[¬A]](s,h) = (not [[A]](s,h)),
[[A ∧B]](s,h) = ([[A]](s,h) and[[B]](s,h)),
[[A ∨B]](s,h) = ([[A]](s,h) or [[B]](s,h)),
[[A→B]](s,h) = ([[A]](s,h) implies[[B]](s,h)),
[[∀xA]](s,h) = true

if [[A]](s[x:=n],h) = true for alln ∈ N,
[[∃xA]](s,h) = true

if [[A]](s[x:=n],h) = true for somen ∈ N,
[[A ∗B]](s,h) = true if h = h1 + h2,

[[A]](s,h1) = [[B]](s,h2) = true for someh1, h2,
[[A —∗B]](s,h) = true if h2 = h1 + h and

[[A]](s,h1) = true imply[[B]](s,h2) = true
for all h1, h2.

We sayA is true when if[[A]](s,h) = true for all(s, h).

Definition 3.4 For an asserted program{A}P{B}, its
meaning [[{A}P{B}]] is defined as true or false.
[[{A}P{B}]] is defined to be true if the following hold.

(1) for all (s, h), if [[A]](s,h) = true, then[[P]]((s, h)) 63
abort.

(2) for all (s, h) and (s′, h′), if [[A]](s,h) = true and
[[P]]((s, h)) 3 (s′, h′), then[[B]]((s′, h′)) = true.

We say{A}P{B} is true when[[{A}P{B}]] = true.
{A}P{B}means abort-free partial correctness.{A}P{B}
implies partial correctness. It also implies that the execu-
tion of the programP with the initial state that satisfiesA
never aborts, that is,P does not access to any unallocated
addresses during the execution.

4 Logical System

This section defines our logical system. It is the same as
Reynolds’ system presented in [10].

We will write A[x := e] for the formula obtained fromA
by replacingx by e. We will write the formulae 7→ e1, e2

to denote(e 7→ e1) ∗ (e + 1 7→ e2).

Definition 4.1 Our logical system is defined by the follow-
ing inference rules.

{A[x := e]}x := e{A} (assignment)

{A ∧ b}P1{B} {A ∧ ¬b}P2{B}
{A}if (b) then(P1) else(P2){B}

(if)

{A ∧ b}P{A}
{A}while (b) do (P){A ∧ ¬b} (while)

{A}P1{C} {C}P2{B}
{A}P1;P2{B}

(comp)

{A1}P{B1}
{A}P{B} (conseq)

(A→A1, B1 →B true)

{∀x′((x′ 7→ e1, e2) —∗A[x := x′])}
x := cons(e1, e2){A}

(cons)

(x′ 6∈ FV(e1, e2, A))

{∃x′(e 7→ x′ ∗ (e 7→ x′ —∗A[x := x′]))}
x := [e]{A}

(lookup)

(x′ 6∈ FV(e,A))

{(∃x(e1 7→ x)) ∗ (e1 7→ e2 —∗A)}
[e1] := e2{A}

(mutation)

(x 6∈ FV(e1))

{(∃x(e 7→ x)) ∗A}dispose(e){A} (dispose)

(x 6∈ FV(e))

We say {A}P{B} is provable and we write`
{A}P{B}, when{A}P{B} can be derived by these in-
ference rules.

We explain inference rules by the example of{emp}x :=
cons(0, 0); [x + 1] := 3; dispose(x){x + 1 7→ 3}. This
means that starting from the empty heap, if we allocate two
cells atx, we put 3 in the cell atx + 1, and we deallo-
cate the cell atx, then the resulting heap will have only
one memory cell atx + 1 with its content3. It is derived
by using inference rules as follows. The rule(cons) gives
{∀x′(x′ 7→ 0, 0—∗x′ 7→ 0, 0)}x := cons(0, 0){x 7→ 0, 0}.
Since emp→ ∀x′(x′ 7→ 0, 0 —∗ x′ 7→ 0, 0) is true, by
the rule (conseq), {emp}x := cons(0, 0){x 7→ 0, 0} is
provable. The rule(mutation) gives {(∃x′(x + 1 7→
x′)) ∗ (x + 1 7→ 3 —∗ x 7→ 0, 3)}[x + 1] := 3{x 7→ 0, 3}.
Since x 7→ 0, 0 → ((∃x′(x + 1 7→ x′)) ∗ (x + 1 7→
3 —∗ x 7→ 0, 3)) is true, by the rule(conseq), {x 7→
0, 0}[x+1] := 3{x 7→ 0, 3} is provable. The rule(dispose)
gives{(∃x′(x 7→ x′))∗x+1 7→ 3}dispose(x){x+1 7→ 3}.
Sincex 7→ 0, 3→ (∃x′(x 7→ x′)) ∗ x + 1 7→ 3 is true, by
the rule(conseq), {x 7→ 0, 3}dispose(x){x + 1 7→ 3} is
provable. By using the rule(comp) twice for {emp}x :=
cons(0, 0){x 7→ 0, 0}, {x 7→ 0, 0}[x + 1] := 3{x 7→ 0, 3},
and{x 7→ 0, 3}dispose(e){x + 1 7→ 3}, we finish showing
{emp}x := cons(0, 0); [x+1] := 3; dispose(x){x+1 7→ 3}
is provable.

5 Soundness and Completeness Theorems

Our main results are the following theorems. Our com-
pleteness theorem is new. For our soundness theorem we
give a whole proof in the case study of our system along
general ideas already discussed in [10].

Theorem 5.1 (Soundness)If {A}P{B} is provable, then
{A}P{B} is true.

4

Theorem 5.2 (Completeness)If {A}P{B} is true, then
{A}P{B} is provable.

Their proofs are given in the appendix. We only sketch
the proofs here.

The soundness theorem is proved by induction on the
given proof of{A}P{B}. Intuitively, we will show each
inference rule preserves the truth.

For example, we discuss the rule(comp). The rule is

{A}P1{C} {C}P2{B}
{A}P1;P2{B} (comp)

If we know {A}P1{C} and {C}P2{B} are both true,
we know {A}P1;P2{B} is true, since the truth of
{A}P1;P2{B} denotes that from the state whereA is true,
if the execution ofP1;P2 reaches some state, thenB is true
at the resulting state, and in the execution ofP1;P2 we have
some intermediate state after the execution ofP1 whereC is
true, with which we can use the assumptions for{A}P1{C}
and{C}P2{B}.

For another example, we discuss the(mutation) rule.
It is sufficient to show{(∃x(e1 7→ x)) ∗ (e1 7→ e2 —∗
A)}[e1] := e2{A} is true. We assume(∃x(e1 7→ x)) ∗
(e1 7→ e2 —∗ A) is true at the initial state(s, h) and the
execution of[e1] := e2 reaches the final state(s′, h′). We
have to showA is true at(s′, h′). By the first assumption,
we know the heaph is divided into the disjoint heapsh1 and
h2 such thath = h1 + h2, ∃x(e1 7→ x) is true at(s, h1),
ande1 7→ e2 —∗ A is true at(s, h2). That is, the heaph is
split into the first parth1 which contains only one memory
cell at the addresse1 and the second part. By the program
execution, the first part is changed so that the content of the
cell becomese2. Since the second assumption sayse1 7→
e2 —∗ A is true at the second part of the heap,A is true at
the resulting heap after the program execution.

Once we prove every rule preserves the truth, we know
the conclusion of a given proof is true by applying it to each
inference in the proof.

The completeness theorem is proved by induction on the
programP . The goal is showing a given true asserted pro-
gram is provable. Intuitively, we will reduce this goal to
subgoals for smaller pieces of the given program that state
true asserted subprograms of the given program are prov-
able. If we show that for each program construction a true
asserted program is provable by using the assumption that
all the asserted subprograms are provable, we can say any
given true asserted program is provable. The proof will use
the expressiveness of our language, which is proved as The-
orem 6.12 in the next section.

For example, we discuss the rule(comp). Suppose
{A}P1;P2{B} is true. We have to construct a proof of
{A}P1;P2{B}. In order to do that, we have to find some
assertionC such that{A}P1{C} is true and{C}P2{B}
is true. If we find the assertionC, sinceP1 and P2 are
smaller pieces of the given programP1;P2, we can suppose

{A}P1{C} and{C}P2{B} are both provable, and by the
rule(comp), we have a proof of{A}P1;P2{B}. In order to
find the assertionC, we will use the expressiveness given by
Theorem 6.12, to take the weakest precondition WP2,B(−→x)
for P2 andB as the assertionC.

The expressiveness theorem will also be necessary for
the case for{A}while (b) do (P){B} in order to find the
intermediate assertionC such thatA→ C, {C ∧ b}P{C},
andC ∧ ¬b→B are true.

For another example, we discuss the rule(mutation).
Suppose{A}[e1] := e2{B} is true. We have to construct
a proof of{A}[e1] := e2{B}. For this purpose, it is suf-
ficient to showA → ((∃x(e1 7→ x)) ∗ (e1 7→ e2 —∗ B))
is true, since we have the axiom{(∃x(e1 7→ x)) ∗ (e1 7→
e2 —∗ B)}[e1] := e2{B} and by the rule(conseq) with
A→ ((∃x(e1 7→ x)) ∗ (e1 7→ e2 —∗ B)), we have a proof
of {A}[e1] := e2{B}. In order to showA → ((∃x(e1 7→
x))∗(e1 7→ e2 —∗B)) is true, we assumeA is true at(s, h)
and we will show(∃x(e1 7→ x)) ∗ (e1 7→ e2 —∗ B) is true
at (s, h). Since{A}[e1] := e2{B} is true, the execution
of the statement[e1] := e2 from (s, h) does not return the
abort. Henceh contains the memory cell at the addresse1.
SinceB is true at the heap after the content of the cell at the
addresse1 is changed toe2, the assertion(e1 7→ e2 —∗ B)
is true for the heap obtained fromh by removing the cell at
the addresse1. Hence(∃x(e1 7→ x)) ∗ (e1 7→ e2 —∗ B) is
true at(s, h).

6 Expressiveness Theorem

This section proves the expressiveness theorem. We will
first define the base formulas Store−→x (m) and Heap(m)
for describing the current store and the current heap re-
spectively. Next we will provide the base formulas
EEval

e,−→x (n, k) and BEval
A,−→x (n), which express the

meaning of the expressione and the base formulaA respec-
tively. Then we will define the base formula HEvalA(m)
for expressing the meaning of the assertionA at the
heap bym. By using it, we will define the base for-
mula Eval

A,−→x (n,m), which expresses the meaning of
the assertionA. We will also define the base formula
Exec

P,−→x (n,m) for the meaning of the programP . Finally
we will define the base formulaWP,A(−→x) for the weakest
precondition of the programP and the assertionA, and we
will prove the expressiveness theorem that statesWP,A(−→x)
indeed expresses the weakest precondition.

We assume a standard surjective pairing function on nat-
ural numbers. For natural numbersn,m, we will write
(n,m) to denote the number that represents the pair ofn
and m. We also assume a standard surjective coding of
a sequence of natural numbers by a natural number. We
will write 〈n1, . . . , nk〉 for the number that represents the
sequencen1, . . . , nk. When the numbern represents a se-
quence, Lh(n) and(n)i denote the length of the sequence
and thei-th element of the sequence respectively.

5

The following predicates for handling sequences are
known to be definable in the language of Peano arithmetic.
Pair(k, n,m) is defined to hold ifk is the number that rep-
resents the pair ofn andm. Lh(n, k) is defined to hold if
k is the length of the sequence represented byn. That is,
Lh(〈n1, . . . , nk〉, k) holds. Elem(n, i, k) is defined to hold
if k is the i-th element in the sequence represented byn.
That is, Elem(〈n1, . . . , nk〉, i − 1, ni) holds. Note thati
ranges over{0, 1, . . . , k − 1}.

We code the piece of the stores for variablesx1, . . . , xk

by the number〈n1, . . . , nk〉 wheres(xi) = ni. We code
the heaph by the number〈m1, . . . , mk〉 where Dom(h) =
{n1, . . . , nk} andmi is the number that represents the pair
of ni andh(ni). We code the result of a program execution
by coding abort and(s, h) by 0 andk+1 respectively where
the piece ofs is coded byn, h is coded bym, andk is
the pair of numbersn andm. We allow doubled elements
and elements for the address0 in a sequence for simplicity
when we use the sequence to represent a heap. For example,
〈(0, 5), (1, 3), (1, 3)〉 as well as〈(1, 3)〉 represents the heap
h where Dom(h) = {1} andh(1) = 3.

We sayA is true at(s, h) when[[A]](s,h) = true.A ↔ B
is defined as(A→B) ∧ (B →A).

0 sometimes denotes the store that maps every variable to
0, that is,0(x) = 0 for all variablesx. φ sometimes denotes
the empty heap, that is,φ(x) is undefined for allx ∈ N .

We define the following base formulas.

Lesslh(i, n) = ∃x(Lh(n, x) ∧ i < x),
Addseq(k, n,m) = ∃x(Lh(n, x) ∧ Lh(m,x + 1))∧

Elem(m, 0, k)∧
∀yx(Lesslh(y, n) ∧ Elem(n, y, x)
→Elem(m, y + 1, x)).

Lesslh(i, n) meansi < lh(n). Addseq(k, n,m) means〈k〉·
n = m where· denotes the concatenation of sequences.

Definition 6.1 We define the base formulas
Storex1,...,xn(m) and Heap(m).

Storex1,...,xn(m) = Lh(m,n) ∧ Elem(m, 0, x1) ∧ . . .
∧Elem(m,n− 1, xn),

Lookup(m, l, k) = ∃yz(Lesslh(y, m) ∧ y 6= 0∧
Elem(m, y, z) ∧ Pair(z, l, k)),

Heap(m) =
∀xy(Lookup(m,x, y) ↔ (x 7→ y ∗ 0 = 0)).

Storex1,...,xn
(〈m1, . . . , mn〉) meanss(xi) = mi wheres is

the current store. Lookup(m, l, k) meansh(l) = k wherem
represents the heaph. Heap(〈(l1, n1), . . . , (lk, nk)〉) means
Dom(h) = {l1, . . . , lk} andh(li) = ni whereh is the cur-
rent heap.

Definition 6.2 We define the base formulas
EEval

e,−→x (n, k) for the expressione and BEval
A,−→x (n)

for the base formulaA where we suppose−→x includes
FV(e) and FV(A) respectively.

EEval
e,−→x (n, k) = ∃−→x (Store−→x (n) ∧ e = k),

BEval
A,−→x (n) = ∃−→x (Store−→x (n) ∧A).

EEval
e,−→x (n, k) means[[e]]s = k wheren represents the

stores. BEval
A,−→x (n) means[[A]]s = true wheren repre-

sents the stores.

We define the following base formulas.

Pair2(z, x, y) = ∃w(z = w + 1 ∧ Pair(w, x, y)),
Domain(k, m) = ∃yLookup(m, k, y),
Separate(m,m1,m2) = ∀x(∃y(Elem(m, y, x)) ↔

∃y(Elem(m1, y, x) ∨ Elem(m2, y, x)))∧
∀x1x2y1y2(Lookup(m1, x1, y1)∧
Lookup(m2, x2, y2)→ x1 6= x2).

Domain(k, m) meansk ∈ Dom(h) wherem represents the
heaph. Separate(m,m1,m2) meansh = h1+h2 wherem,
m1, andm2 represent the heapsh, h1, andh2 respectively.

Definition 6.3 We define the base formula HEvalA(x) for
the assertionA by induction onA.

HEvalA(m) = A (A is a base formula),
HEvalemp(m) = ¬∃xyLookup(m,x, y),
HEvale1 7→e2(m) = e1 > 0∧

∀xy(Lookup(m,x, y) ↔ x = e1 ∧ y = e2),
HEval¬A(m) = ¬HEvalA(m),
HEvalA∧B(m) = HEvalA(m) ∧ HEvalB(m),
HEvalA∨B(m) = HEvalA(m) ∨ HEvalB(m),
HEvalA→B(m) = HEvalA(m)→ HEvalB(m),
HEval∀xA(m) = ∀xHEvalA(m),
HEval∃xA(m) = ∃xHEvalA(m),
HEvalA∗B(m) = ∃y1y2(Separate(m, y1, y2)∧

HEvalA(y1) ∧ HEvalB(y2)),
HEvalA—∗B(m) = ∀y1y2(HEvalA(y2)∧

Separate(y1,m, y2)→ HEvalB(y1)).

HEvalA(m) means[[A]](s,h) = true wheres is the current
store andm represents the heaph.

Definition 6.4 We define the base formula Eval
A,−→x (n,m)

for the assertionA. We suppose−→x includes FV(A).

Eval
A,−→x (n,m) = ∃−→x (Store−→x (n) ∧ HEvalA(m)).

Eval
A,−→x (n,m) means[[A]](s,h) = true wheren represents

the stores andm represents the heaph.
We define the following base formulas.

New2(n,m) = n > 0 ∧ ¬Domain(n,m)∧
¬Domain(n + 1,m),

ChangeStorex0,...,xn,xi
(m1, k,m2) =

Lh(m1, n + 1) ∧ Lh(m2, n + 1)∧
∀yx(y < n + 1 ∧ y 6= i ∧ Elem(m1, y, x)→
Elem(m2, y, x)) ∧ Elem(m2, i, k),

6

ChangeHeap(m1, l, k, m2) = ∀xy(x 6= l→
(Lookup(m1, x, y) ↔ Lookup(m2, x, y)))
∧Lookup(m2, l, k),

EqHeap(m1,m2) =
∀xy(Lookup(m1, x, y) ↔ Lookup(m2, x, y)).

New2(n,m) meansn is the address of free cells inh
where m represents the heaph. That is, the address
n can be used by the nextx := cons(e1, e2) state-
ment. ChangeStorex0,...,xn,xi

(m1, k,m2) meansm2 rep-
resents the stores[xi := k] where m1 represents the
stores. ChangeHeap(m1, l, k, m2) meansm2 represents
the heaph[l := k] where m1 represents the heaph.
EqHeap(m1,m2) meansm1 and m2 represent the same
heap.

We define the following base formula.

EqResult(n1, n2) = n1 = n2 ∨ n1 > 0 ∧ n2 > 0∧
∃xy1y2(Pair2(n1, x, y1) ∧ Pair2(n2, x, y2)
∧EqHeap(y1, y2)).

We say the numbern represents the resultr if r = abort and
n = 0 or r = (s, h) andn = (m, k)+1 wherem represents
the stores andk represents the heaph. EqResult(n1, n2)
meansn1 andn2 represent the same result.

Definition 6.5 We define the base formula Exec
P,−→x (n,m)

by induction on the program P in Figure 1.
Exec

P,−→x (n1, n2) means[[P]](r1) 3 r2 where n1 and
n2 representr1 andr2 respectively andn1 andn2 contain
store information for variables−→x .

We define the following abbreviations. Note that they
are not formulas.

Storecodex1,...,xn
(m, s) = Lh(m,n)∧

∀i < n(Elem(m, i, s(xi+1))),
Heapcode(m,h) =

∀ln(h(l) = n ↔ Lookup(m, l, n)),
Result−→x (n, r) = n = 0 ∧ r = abort∨

n > 0 ∧ ∃shyz(r = (s, h) ∧ Pair2(n, y, z)∧
Storecode−→x (y, s) ∧ Heapcode(z, h)).

Storecodex1,...,xn
(m, s) means the numberm is the code

that represents the stores for variables x1, . . . , xn.
Heapcode(m,h) means the numberm is the code that rep-
resents the heaph. Result−→x (n, r) means the numbern rep-
resents the resultr.

The next lemma shows that the base formu-
las EEval

e,−→x (n, k), BEval
A,−→x (n), HEvalA(m),

Eval
A,−→x (n,m), and Exec

P,−→x (n1, n2) actually have
the meaning we explained above.

Lemma 6.6 (1) EEval
e,−→x (n, k) is true if and only if

∃s(Storecode−→x (n, s) ∧ [[e]]s = k).
(2) BEval

A,−→x (n) is true if and only if
∃s(Storecode−→x (n, s) ∧ [[A]]s = true).

(3) Heapcode(m,h)→ [[HEvalA(m)]]s = [[A]](s,h).
(4) Eval

A,−→x (n,m) is true if and only if
∃sh(Storecode−→x (n, s) ∧ Heapcode(m,h) ∧ [[A]](s,h) =
true).

(5) Exec
P,−→x (n1, n2) is true if and only if

∃r1r2(Result−→x (n1, r1)∧[[P]](r1) 3 r2∧Result−→x (n2, r2)).

Its proof is given in the appendix. They can be straightfor-
wardly proved by using their definitions.

Definition 6.7 For a programP and and an assertionA,
the weakest precondition forP andA under the standard
interpretation is defined as the set{(s, h)|∀r([[P]]((s, h)) 3
r→ r 6= abort∧ [[A]]r = true)}.
Definition 6.8 We define the base formula WP,A(−→x) for
the programP and the assertionA. We fix some sequence−→x of the variables in FV(P, A).

WP,A(−→x) = ∀xyzw(Store−→x (x) ∧ Heap(y)∧
Pair2(z, x, y) ∧ Exec

P,−→x (z, w)→ w > 0∧
∃y1z1(Pair2(w, y1, z1) ∧ Eval

A,−→x (y1, z1))).

WP,A(−→x) means the weakest precondition forP and A.
That is, WP,A(−→x) gives the weakest assertionW such
that {W}P{A} is true. Note that all the free variables in
WP,A(−→x) are−→x and they appear only in Store−→x (x).

For a setV of variables,s =V s′ is defined to hold if
s(x) = s′(x) for all x ∈ V . (s, h) =V (s′, h′) is defined to
hold if s =V s′ andh = h′.

The next lemma will be used in the proof of Lemma 6.10.
It shows that the store information involved in the execu-
tion of P is only the information for the variables actually
appearing inP .

Lemma 6.9 Supposes =FV(P) s′.
(1) If [[P]]((s, h)) 3 abort, then[[P]]((s′, h)) 3 abort.
(2) If [[P]]((s, h)) 3 (s1, h1), then [[P]]((s′, h)) 3

(s′1, h1) where s′1 =FV(P) s1 and s′1(x) = s′(x) for
x 6∈ FV(P).

Proof.They are prove by induction onP . 2.
The next lemma says that WP,A(−→x) indeed describes the

weakest precondition forP andA.

Lemma 6.10 (1) {WP,A(−→x)}P{A} is true.
(2) If [[P]]((s, h)) 3 r impliesr 6= abort and[[A]]r =

true for all r, then[[WP,A(−→x)]](s,h) = true.
(3) If {A}P{B} is true, thenA→WP,B(−→x) is true.

Its proof is given in the appendix. Lemmas 6.6 and 6.9 are
used there.

Definition 6.11 We say our assertion language is expres-
sive for our programming language under the standard in-
terpretation, when for every programP and assertionA,
there is a formulaW such that[[W]](s,h) = true if and only
if (s, h) is in the weakest precondition forP andA under
the standard interpretation.

7

Execx:=e,−→x (n1, n2) = (n1 = 0→ n2 = 0)∧
(n1 > 0→∃y1z1y2z2w(Pair2(n1, y1, z1) ∧ EEval

e,−→x (y1, w) ∧ ChangeStore−→x ,x
(y1, w, y2)

∧EqHeap(z1, z2) ∧ Pair2(n2, y2, z2))),
Exec

x:=cons(e1,e2),
−→x (n1, n2) = (n1 = 0→ n2 = 0)∧

(n1 > 0→∃y1z1y2z2ww1w2(Pair2(n1, y1, z1) ∧ EEval
e1,−→x (y1, w1) ∧ EEval

e2,−→x (y2, w2)
∧New2(w, z1) ∧ ChangeStore−→x ,x

(y1, w, y2)∧
∀xy(x 6= w ∧ x 6= w + 1→ (Lookup(z1, z, y) ↔ Lookup(z2, x, y)))∧
Lookup(z2, w, w1) ∧ Lookup(z2, w + 1, w2) ∧ Pair2(n2, y2, z2))),

Exec
x:=[e],−→x (n1, n2) = (n1 = 0→ n2 = 0)∧
(n1 > 0→∃y1z1y2z2ww1(Pair2(n1, y1, z1) ∧ EEval

e,−→x (y1, w)∧
(¬Domain(w, z1)→ n2 = 0)∧
(Domain(w, z1)→ Lookup(z1, w, w1) ∧ ChangeStore−→x ,x

(y1, w1, y2)∧
EqHeap(z1, z2) ∧ Pair2(n2, y2, z2)))),

Exec
[e1]:=e2,−→x (n1, n2) = (n1 = 0→ n2 = 0)∧
(n1 > 0→∃y1z1z2w1w2(Pair2(n1, y1, z1) ∧ EEval

e1,−→x (y1, w1) ∧ EEval
e2,−→x (y1, w2)∧

(¬Domain(w1, z1)→ n2 = 0)∧
(Domain(w1, z1)→ ChangeHeap(z1, w1, w2, z2) ∧ Pair2(n2, y1, z2)))),

Execdispose(e),−→x (n1, n2) = (n1 = 0→ n2 = 0)∧
(n1 > 0→∃y1z1z2w(Pair2(n1, y1, z1) ∧ EEval

e,−→x (y1, w)∧
(¬Domain(w, z1)→ n2 = 0)∧
(Domain(w, z1)→∀xy(Lookup(z1, x, y) ∧ x 6= w ↔ Lookup(z2, x, y)) ∧ Pair2(n2, y1, z2)))),

Execif (b) then(P1) else(P2),
−→x (n1, n2) = (n1 = 0→ n2 = 0)∧

(n1 > 0→∃xy(Pair2(n1, x, y) ∧ (BEval
b,−→x (x)→ Exec

P1,−→x (n1, n2))
∧(¬BEval

b,−→x (x)→ Exec
P2,−→x (n1, n2)))),

Execwhile (b) do (P),−→x (n1, n2) = (n1 = 0→ n2 = 0)∧
(n1 > 0→∃wz(Lh(w, z + 1) ∧ Elem(w, 0, n1) ∧ ∃w1(Elem(w, z, w1) ∧ EqResult(w1, n2))∧
∀w1(w1 < z →∃z1z2w2w3(Elem(w, w1, z1) ∧ Elem(w, w1 + 1, z2)∧
z1 > 0 ∧ Pair2(z1, w2, w3) ∧ BEval

b,−→x (w2) ∧ Exec
P,−→x (z1, z2))))

∧(n2 > 0→∃yz(Pair2(n2, y, z) ∧ ¬BEval
b,−→x (y)))),

Exec
P1;P2,−→x (n1, n2) = ∃z(Exec

P1,−→x (n1, z) ∧ Exec
P2,−→x (z, n2)).

Figure 1. Definition of Exec P,~x

Theorem 6.12 (Expressiveness)Our assertion language
is expressive for our programming language under the stan-
dard interpretation.

Proof. Since Lemma 6.10 (1) and (2) show WP,A(−→x)
defines the weakest precondition forP and A under the
standard interpretation, the weakest precondition is defin-
able in our language.2

7 Application to Real System

In this section, we discuss possibility of applying our
theoretical results to the system implemented in [8].

Our results in this paper will give a starting point to prove
completeness of the core system of existing practical sys-
tems for pointer program verification. Our current target

system is the system presented by [8]. We will compare that
system and our system and discuss possibility of applying
our results to that system.

We can list the difference between them as follows. For
the programming languages, (1) recursive procedure calls,
(2) data types such as int, bool, float, and void, (3) user
defined data types such as lists and trees. For the assertion
languages, (4) user defined predicates and their lemmas, (5)
two sorts (pointers and numbers), (6) Presburger arithmetic,
(7) restricted disjunction normal forms, (8) approximation
to pure logic.

Recursive procedure calls will be the next challenge.
They have been intensively studied for Hoare’s logic for
while programs [1]. Combining those results in while pro-
grams together with our results, our framework will enable
a completeness result for an extension with recursive proce-
dure calls in separation logic.

8

Data types such as int, bool, float, and void are not es-
sential difference. Our results can be extended to them by
small modification.

In order to handle user defined data types that are needed
for building data structures, such as lists and trees, we have
to extend our programming language and assertion lan-
guage. They are coded by cons(e1, e2), so the soundness
theorem will be proved straightforwardly. We have to prove
the completeness theorem again since it depends on rules
for user defined data types, but the key ideas in our results
remains applicable.

User defined predicates and their lemmas gives logical
difference, that is, the proof theoretic strength is changed
by them. However, by extending our assertion languages
with generalized inductive definitions [11], our results can
immediately show the completeness theorem for the exten-
sion, since we assume all true assertions in the theorem.

A two-sorted system is used in their programming lan-
guage and assertion language. In general, a many-sorted
system is often used in programming languages and asser-
tion languages. For example, each pointer type is typically
distinct from the number type. In contrast, our system is
based on a one-sorted system where a pointer is also a num-
ber. However, our results can directly apply to a two-sorted
system by assigning a number to each location and coding
a pointer by a unique number.

Only Presburger arithmetic is allowed in their system.
Since our results rely on intensive coding by Peano arith-
metic, our results do not directly apply to a system with
Presburger arithmetic. Moreover, [1] showed that a system
with Presburger arithmetic is inherently incomplete. Our
results can show completeness results of their system ex-
tended with Peano arithmetic.

Only restricted disjunction normal forms are allowed in
their systems, so that (a) conjunction of heap information is
not allowed, and (b) heap information must be positive, that
is, not negated. On the other hand, we used those to express
the assertion Heap(m) to prove the expressive theorem. In
order to apply our results to their system, we have to ex-
tend their system with more flexible assertions. With those
assertions, we will have to prove the completeness theorem
again since it depends on the assertion language, but the key
ideas in our results remains applicable.

Approximation to pure logic, called XPure, is used in
their system. Its purpose is efficient automatic verification
and this approximation has been proved to be sound, but
it is essentially not complete. Our results can apply to the
core system obtained from their system by removing the
approximation.

8 Deterministic Semantics

This section studies deterministic semantics and shows
completeness and soundness under deterministic semantics.

Reynolds assumed his program semantics is nondeter-
ministic. On the other hand, some real system runs deter-

ministically. In this section, we will discuss deterministic
program semantics and show its completeness.

The nondeterminism in his semantics came from the
x := cons(e1, e2) statement. Its execution finds new free
cells in memory space and allocates them. The choice of
the free cells is not specified. On the other hand, in our
deterministic semantics, the choice is specified. For sim-
plicity, we suppose the execution chooses the first free cells
in memory space, that is, thex := cons(e1, e2) statement
allocates the addressn that is the smallest natural number
such thatn > 0 andn, n + 1 are not used in the heap.

In deterministic semantics, the asserted program{1 7→
5}x := cons(0, 0); y = cons(0, 0){x = 2 ∧ y = 4} be-
comes true. On the other hand, we will have only a re-
stricted frame rule

{A}P{B}
{A ∗ C}P{B ∗ C}

with the additional side condition stating that the pro-
gram P does not contain any allocation statementsx :=
cons(e1, e2).

We define the deterministic semantics of our program
language. For a programP , its meaning[[P]] is defined as a
partial map from States∪{abort} to States∪{abort}. When
the execution ofP with the initial stater1 terminates with
the resulting stater2, we will define[[P]](r1) = r2. If the
execution ofP with the initial stater1 does not terminate,
[[P]](r1) becomes undefined.[[P]] is defined by induction
onP as the smallest partial map satisfying the following:

[[P]](abort) = abort,
[[x := e]]((s, h)) = (s[x := [[e]]s], h),
[[if (b) then(P1) else(P2)]]((s, h)) =

[[P1]]((s, h)) if [[b]]s = true,
[[P2]]((s, h)) otherwise,

[[while (b) do (P)]]((s, h)) = (s, h) if [[b]]s = false,
[[while (b) do (P)]]([[P]]((s, h))) otherwise,

[[P1;P2]]((s, h)) = [[P2]]([[P1]]((s, h))),
[[x := cons(e1, e2)]]((s, h)) =

(s[x := n], h[n := [[e1]]s, n + 1 := [[e2]]s]),
wheren is the smallest number such that
n > 0 andn, n + 1 6∈ Dom(h),

[[x := [e]]]((s, h)) =
(s[x := h([[e]]s)], h) if [[e]]s ∈ Dom(h),
abort otherwise,

[[[e1] := e2]]((s, h)) =
(s, h[[[e1]]s := [[e2]]s]) if [[e1]]s ∈ Dom(h),
abort otherwise,

[[dispose(e)]]((s, h)) =
(s, h|Dom(h)−{[[e]]s}) if [[e]]s ∈ Dom(h),
abort otherwise.

The difference from the semantics in Definition 3.2 comes
from the meaning of the statementx := cons(e1, e2). In
the above definition, the resulting state after the execution

9

of the statementx := cons(e1, e2) is uniquely determined
by using the smallest numbern.

Our assertion language is extended by adding the predi-
cate symbol New so that its formulas are defined by

FormulasA ::= New(e)|emp|e = e|e < e|e 7→ e|¬A|
A ∧A|A ∨A|A→A|∀xA|∃xA|A ∗A|A —∗A.

New(e) means to hold if and only ife is the address of
the first free cell in memory space. That is,x = e holds
after the nextx := cons(e1, e2) statement.

Our logical system is obtained from the system defined
in Definition 4.1 by changing the(cons) rule as follows:

{∃x′(New(x′) ∧ ((x′ 7→ e1, e2) —∗A[x := x′]))}
x := cons(e1, e2){A}

(cons)

(x′ 6∈ FV(e1, e2, A))

We have the completeness theorem as well as the sound-
ness theorem for this extension.

Theorem 8.1 (Soundness)If {A}P{B} is provable in the
system with New(e), then{A}P{B} is true under deter-
ministic semantics.

Theorem 8.2 (Completeness)If {A}P{B} is true under
deterministic semantics, then{A}P{B} is provable in the
system with New(e).

They are proved in a similar way to Theorems 5.1 and
5.2 respectively.

9 Conclusion

We have shown the completeness theorem of the pointer
program verification system by separation logic presented
by Reynolds. For this purpose, we have also proved the
expressiveness theorem of Peano-arithmetical language for
the system under the standard interpretation. We have
also discussed deterministic semantics for the system, in-
troduced the predicate that represents the next new cell, and
shown the soundness and the completeness of the system
under deterministic semantics.

Future work will be proving the completeness of the core
of the system presented in [8] by extending our results. We
will have to extend our system to support recursive proce-
dure calls with call-by-value parameters and inductive defi-
nitions. We will also have to restrict our system from a one-
sorted system to a two-sorted system. On the other hand,
the core of their system will have to be designed so that the
assertion language of the core system will include Peano
arithmetical language and the core system does not con-
tain the approximation to pure logic. Consequently we will
know the minimum assertion language for the completeness
of their system, which could be theoretically complete as
well as practically efficient.

Another future work will be proving completeness re-
sults of various extensions of our system such as recursive
procedure calls with call-by-name parameters and global
variables, which have been intensively analyzed for while
programs in several papers [1, 5, 7].

References

[1] K.R. Apt, Ten Years of Hoare’s Logic: A Survey —
Part I,ACM Transactions on Programming Languages
and Systems3 (4) (1981) 431–483.

[2] J. Berdine, C. Calcagno, and P.W. O’Hearn, Symbolic
Execution with Separation Logic, In: Proceedings of
the Third Asian Symposium on Programming Lan-
guages and Systems (APLAS2005),Lecture Notes in
Computer Science3780 (2005) 52-68.

[3] J.A. Bergstra and J.V. Tucker, Expressiveness and the
Completeness of Hoare’s Logic,Journal Computer and
System Sciences25 (3) (1982) 267–284.

[4] S.A. Cook, Soundness and completeness of an ax-
iom system for program verification,SIAM Journal on
Computing7 (1) (1978) 70–90.

[5] J.Y. Halpern, A good Hoare axiom system for an
ALGOL-like language, In:Proceedings of 11th ACM
symposium on Principles of programming languages
(POPL84)(1984) 262–271.

[6] S. Ishtiaq and P.W. O’Hearn, BI as an Assertion Lan-
guage for Mutable Data Structures, In:Proceedings of
28th ACM Symposium on Principles of Programming
Languages (POPL2001)(2001) 14–26.

[7] B. Josko, On expressive interpretations of a Hoare-logic
for Clarke’s language L4, In: Proceedings of 1st An-
nual Symposium of Theoretical Aspects of Computer
Science (STACS 84),Lecture Notes in Computer Sci-
ence166 (1984) 73–84.

[8] H. H. Nguyen, C. David, S.C. Qin, and W.N. Chin, Au-
tomated Verification of Shape and Size Properties Via
Separation Logic, In: Proceedings of 8th International
Conference on Verification, Model Checking, and Ab-
stract Interpretation (VMCAI 2007),Lecture Notes in
Computer Science4349 (2007) 251–266.

[9] H.H. Nguyen and W.N. Chin, Enhancing Program Ver-
ification with Lemmas, In: Proceedings of 20th Inter-
national Conference on Computer Aided Verification
(CAV 2008),Lecture Notes in Computer Science5123
(2008) 355-369.

[10] J.C. Reynolds, Separation Logic: A Logic for Shared
Mutable Data Structures, In:Proceedings of Seven-
teenth Annual IEEE Symposium on Logic in Computer
Science (LICS2002)(2002) 55–74.

[11] M. Tatsuta, Program synthesis using realizability,The-
oretical Computer Science90 (1991) 309–353.

10

Appendix

A Proof of Theorem 5.1

Lemma A.1 [[A]]s = [[A]](s,h) for a base formulaA where the left-hand side is the semantics for the base language and the
right-hand side is the semantics for the assertion language.

Proof.By induction onb. 2

Proof of Theorem 5.1.
By induction on the proof. We consider cases according to the last rule.
Case(assignment). Let P bex := e. Assume[[A[x := e]]](s,h) = true. Letn be[[e]]s. By the definition of[[x := e]], we

have[[P]]((s, h)) = {(s1, h)} wheres1 = s[x := n]. Since[[A[x := e]]](s,h) = [[A]](s1,h), we have[[A]](s1,h) = true. Hence
{A[x := e]}x := e{A} is true.

Case(if). Assume[[A]](s,h) = true and[[P]]((s, h)) 3 r. We will showr 6= abort and[[B]]r = true.
Case 1. [[b]]s = true. By Lemma A.1, we have[[A ∧ b]](s,h) = true. By the definition we haver ∈ [[P]]((s, h)) =

[[P1]]((s, h)). By induction hypothesis for the first assumption,{A ∧ b}P1{B} is true. Hence we haver 6= abort and
[[B]]r = true.

Case 2.[[b]]s = false.r 6= abort and[[B]]r = true are similarly proved to Case 1.
Hence{A}if (b) then(P1) else(P2){B} is true.
Case(while). Assume[[A]]s = true and[[while (b) do (P)]]((s, h)) 3 r. We will showr 6= abort and[[A ∧ ¬b]]r = true.
Case 1.[[b]]s = true. We have somer1 such that[[P]]((s, h)) 3 r1 and[[while (b) do (P)]](r1) 3 r.
By Lemma A.1, we have[[b]](s,h) = true. Hence[[A ∧ b]](s,h) = true. By induction hypothesis,{A ∧ b}P{A} is true. By

this,r1 6= abort and[[A]]r1 = true.
By induction hypothesis of the induction of the definition of[[while (b) do (P)]], from [[while (b) do (P)]](r1) 3 r and

[[A]]r1 = true, we haver 6= abort and[[A ∧ ¬b]]r = true.
Case 2.[[b]]s = false. We have[[while (b) do (P)]]((s, h)) = {(s, h)}. Sincer = (s, h), we haver 6= abort. By Lemma

A.1, we have[[b]](s,h) = false. Hence we have[[A ∧ ¬b]]r = true.
Therefore{A}while (b) do (P){A ∧ ¬b} is true.
Case(comp). Assume[[A]](s,h) = true and[[P1;P2]]((s, h)) 3 r. We will showr 6= abort and[[B]]r = true.
By the definition,[[P1;P2]]((s, h)) = [[P2]]([[P1]]((s, h))). We haver1 such that[[P1]]((s, h)) 3 r1 and[[P2]](r1) 3 r. By

induction hypothesis for the first assumption,{A}P1{C} is true. Hence we haver1 6= abort and[[C]]r1 = true. By induction
hypothesis for the second assumption,{C}P2{B} is true. Sincer ∈ [[P2]](r1), we haver 6= abort and[[B]]r = true. Hence
{A}P1;P2{B} is true.

Case(conseq). Assume[[A]](s,h) = true and[[P]]((s, h)) 3 r. We will showr 6= abort and[[B]]r = true. By the side
condition[[A→A1]] = true, we have[[A1]](s,h) = true. By induction hypothesis,{A1}P{B1} is true. Hencer 6= abort and
[[B1]]r = true. By the side condition[[B1 →B]] = true, we have[[B]]r = true. Hence{A}P{B} is true.

Case(cons). Assume[[∀x′(x′ 7→ e1, e2 —∗A[x := x′])]](s,h) = true and[[x := cons(e1, e2)]]((s, h)) 3 r. We will show
r 6= abort and[[A]]r = true.

Let P be x := cons(e1, e2), n1 be [[e1]]s, andn2 be [[e2]]s. By the definition of[[P]], r 6= abort andr = (s1, h1)
wheres1 = s[x := n] andh1 = h[n := n1, n + 1 := n2] for somen such thatn > 0 andn, n + 1 6∈ Dom(h). By
[[∀x′(x′ 7→ e1, e2 —∗A[x := x′])]](s,h) = true, we have[[x′ 7→ e1, e2 —∗A[x := x′]]](s′,h) = true wheres′ = s[x′ := n].
Let h2 = φ[n := n1, n + 1 := n2]. We haveh1 = h + h2. Then[[x′ 7→ e1, e2]](s′,h2) = true sincex′ 6∈ FV(e1, e2). Since
[[x′ 7→ e1, e2 —∗A[x := x′]]](s′,h) = true, we have[[A[x := x′]]](s′,h1) = true. Hence[[A]](s1,h1) = true, sincex′ 6∈ FV(A).

Case(lookup). Assume[[∃x′((e 7→ x′) ∗ ((e 7→ x′) —∗A[x := x′]))]](s,h) = true and[[x := [e]]]((s, h)) 3 r. We will
showr 6= abort and[[A]]r = true.

Let n be[[e]]s. From the assumption, we have somen1 such that[[(e 7→ x′) ∗ (e 7→ x′ —∗A[x := x′])]](s′,h) = true where
s′ = s[x′ := n1]. Hence we haveh1, h2 such thath = h1+h2, [[e 7→ x′]](s′,h1) = true, and[[e 7→ x′ —∗A[x := x′]]](s′,h2) =
true. Hence[[A[x := x′]]](s′,h) = true. Sincex′ 6∈ FV(e), [[e]]s′ = [[e]]s = n. Hence Dom(h1) = {n} andh1(n) = n1.
Sincen ∈ Dom(h), r 6= abort andr = (s1, h) wheres1 = s[x := n1]. Since[[A[x := x′]]](s′,h) = [[A]](s1,h) by x′ 6∈ FV(A),
we have[[A]]r = true.

Case(mutation). Assume[[(∃x(e1 7→ x)) ∗ (e1 7→ e2 —∗A)]](s,h) = true and[[[e1] := e2]]((s, h)) 3 r. We will show
r 6= abort and[[A]]r = true.

Let n be [[e1]]s andn2 be [[e2]]s. By the assumption, we haveh1, h2 such thath = h1 + h2, [[∃x(e1 7→ x)]](s,h1) = true,
and [[e1 7→ e2 —∗A]](s,h2) = true. Hence we have somen1 such that[[e1 7→ x]](s′,h1) = true wheres′ = s[x := n1].
Since[[e1]]s′ = [[e1]]s = n by x 6∈ FV(e1), we have Dom(h1) = {n} andh1(n) = n1. Sincen ∈ Dom(h), r 6= abort

11

and r = (s, h′) whereh′ = h[n := n2]. Let h′1 be φ[n := n2]. Thenh′ = h′1 + h2. [[e1 7→ e2]](s,h′1) = true. By
[[e1 7→ e2 —∗A]](s,h2) = true, we have[[A]](s,h′) = true.

Case(dispose). Assume[[(∃x(e 7→ x)) ∗A]](s,h) = true and[[dispose(e)]]((s, h)) 3 r. We will showr 6= abort and
[[A]]r.

Let n be[[e]]s. By the assumption, we haveh1, h2 such thath = h1+h2, [[∃x(e 7→ x)]](s,h1) = true, and[[A]](s,h2) = true.
Hence we have somen1 such that[[e 7→ x]](s′,h1) = true wheres′ = s[x := n1]. Since[[e]]s′ = [[e]]s = n by x 6∈ FV(e),
Dom(h1) = {n} andh1(n) = n1. Sincen ∈ Dom(h), r 6= abort andr = (s, h′2) whereh′2 = h|Dom(h)−{n}. Hence
h2 = h′2. Therefore[[A]]r = true.2

B Proof of Theorem 5.2

Proof. We will show that, for allA,P, B, if {A}P{B} is true, theǹ {A}P{B} by induction onP . We consider cases
according toP .

Casex := e. We will show A → B[x := e] is true. Assume[[A]](s,h). Let n be [[e]]s. We have[[P]]((s, h)) =
{(s1, h)} wheres1 = s[x := n]. Since{A}P{B} is true,[[B]](s1,h) = true. Since[[B]](s1,h) = [[B[x := e]]](s,h), we have
[[B[x := e]]](s,h) = true. HenceA→B[x := e] is true.

By applying (conseq) to [[A→B[x := e]]] = true and` {B[x := e]}x := e{B} from (assignment), we have`
{A}P{B}.

Case if(b) then(P1) else(P2).
We will show{A ∧ b}P1{B} is true. Assume[[A ∧ b]](s,h) = true and[[P1]]((s, h)) 3 r. We will showr 6= abort and

[[B]]r = true. By Lemma A.1,[[b]]s = [[b]](s,h) = true. Hence[[P]]((s, h)) = [[P1]]((s, h)) 3 r. Since{A}P{B} is true and
[[A]](s,h) = true,r 6= abort and[[B]]r = true. Hence{A ∧ b}P1{B} is true.

Similarly {A ∧ ¬b}P2{B} is true.
By induction hypothesis forP1 andP2, we havè {A∧b}P1{B} and` {A∧¬b}P2{B}. By (if), we havè {A}P{B}.
Case while(b) do (P1). Let P be while(b) do (P1) andC be WP,B(−→x).
We will show {C ∧ b}P1{C} is true. Assume[[C ∧ b]](s,h) = true and[[P1]]((s, h)) 3 r. We will show r 6= abort

and [[C]]r = true. By Lemma A.1, we have[[b]]s = [[b]](s,h) = true. By the definition[[P]], [[P]]((s, h)) ⊇ [[P]](r).
Since{C}P{B} is true by Lemma 6.10 (1), from[[C]](s,h) = true, we have[[P]]((s, h)) 63 abort. Hencer 6= abort.
Assume[[P]](r) 3 r′. Sincer′ ∈ [[P]](r) ⊆ [[P]]((s, h)) and[[C]](s,h) = true, we haver′ 6= abort and[[B]]r′ = true. Hence
[[P]](r) 3 r′ impliesr′ 6= abort and[[B]]r′ = true for allr′. By Lemma 6.10 (2), we have[[C]]r = true. Hence{C∧b}P1{C}
is true.

By induction hypothesis forP1, we havè {C ∧ b}P1{C}.
By Lemma 6.10 (3) with{A}P{B}, A→ C is true.
We will show C ∧ ¬b → B is true. Assume[[C ∧ ¬b]](s,h) = true. We will show[[B]](s,h) = true. By Lemma A.1,

[[¬b]]s = [[¬b]](s,h) = true. Hence[[P]]((s, h)) = {(s, h)}. Since{C}P{B} is true by Lemma 6.10 (1), from[[C]](s,h) = true
and[[P]]((s, h)) = {(s, h)}, we have[[B]](s,h) = true. HenceC ∧ ¬b→B is true.

Since` {C ∧ b}P1{C}, by (while), we havè {C}P{C ∧ ¬b}. SinceA→ C andC ∧ ¬b→ B are true, by(conseq),
we havè {A}P{B}.

CaseP1;P2. Let P beP1;P2 andC be WP2,B(−→x). By Lemma 6.10 (1),{C}P2{B} is true.
We will show{A}P1{C} is true. Assume[[A]](s,h) = true and[[P1]]((s, h)) 3 r. We will showr 6= abort and[[C]]r =

true. Since{A}P{B} is true,[[P]]((s, h)) 63 abort. Since[[P]]((s, h)) ⊇ [[P2]](r) by the definition of[[P]], r 6= abort. We
will show [[C]]r = true. Assume[[P2]](r) 3 r1. We will showr1 6= abort and[[B]]r1 = true. Then[[P]]((s, h)) 3 r1. Since
[[A]](s,h) = true and{A}P{B} is true, we haver1 6= abort and[[B]]r1 = true. Hence[[P2]](r) 3 r1 impliesr1 6= abort and
[[B]]r1 = true for allr1. By Lemma 6.10 (2),[[C]]r = true. Hence{A}P1{C} is true.

By induction hypothesis forP1 andP2, we havè {A}P1{C} and` {C}P2{B}. By (comp), we havè {A}P{B}.
Casex := cons(e1, e2). Let x′ 6∈ FV(e1, e2, B), andC be∀x′(x′ 7→ e1, e2 —∗B[x := x′]).
We will showA→ C is true. Assume[[A]](s,h) = true. Letn1 = [[e1]]s andn2 = [[e2]]s. Fix n. Let s′ = s[x′ := n].
We will show [[x′ 7→ e1, e2 —∗B[x := x′]]](s′,h) = true. Assume[[x′ 7→ e1, e2]](s′,h′1) = true andh′1 + h exists. We

haven > 0 andn, n + 1 6∈ Dom(h). Let h1 = φ[n := n1, n + 1 := n2]. Since[[e1]]s′ = n1 and [[e2]]s′ = n2 by
x′ 6∈ FV(e1, e2), we haveh′1 = h1. Let s1 = s[x := n]. Since{A}P{B} is true and[[P]]((s, h)) 3 (s1, h + h1),
[[B]](s1,h+h1) = true. Since[[B[x := x′]]](s′,h+h′1) = [[B]](s1,h+h′1) by x′ 6∈ FV(B), we have[[B[x := x′]]](s′,h+h′1) = true.
Therefore[[x′ 7→ e1, e2 —∗B[x := x′]]](s′,h) = true.

Hence[[x′ 7→ e1, e2 —∗B[x := x′]]](s′,h) = true for alln. Hence[[∀x′(x′ 7→ e1, e2 —∗B[x := x′])]](s,h) = true. Hence
A→ C is true.

Since` {C}x := cons(e1, e2){B} by (cons) andA→ C is true, we havè {A}x := cons(e1, e2){B} by (conseq).

12

Casex := [e]. Let x′ 6∈ FV(e,B), C be∃x′(e 7→ x′ ∗ (e 7→ x′ —∗B[x := x′])), andP bex := [e].
We will showA→ C. Assume[[A]](s,h) = true. We will show[[C]](s,h) = true.
Letn be[[e]]s. Since{A}P{B} is true,[[P]]((s, h)) 63 abort. Hencen ∈ Dom(h). Leth(n) = n1. We have[[P]]((s, h)) =

{(s1, h)} and[[B]](s1,h) = true wheres1 = s[x := n1]. Let h1 = h|{n}, h2 = h|Dom(h)−{n}, ands′ = s[x′ := n1]. Then
h = h1 + h2.

We have[[e 7→ x′]](s′,h1) = true since[[e]]s′ = [[e]]s = n by x′ 6∈ FV(e).
We will show [[e 7→ x′ —∗B[x := x′]]](s′,h2) = true. Assume[[e 7→ x′]](s′,h′1) = true andh2 + h′1 exists. We have

h1 = h′1. Henceh′1 + h2 = h. From [[B]](s1,h) = [[B[x := x′]]](s′,h) by x′ 6∈ FV(B) and [[B]](s1,h) = true, we have
[[B[x := x′]]](s′,h2+h′1) = true. Hence[[e 7→ x′ —∗B[x := x′]]](s′,h2) = true.

Combining them, we have[[e 7→ x′ ∗ (e 7→ x′ —∗B[x := x′])]](s′,h) = true. Hence[[C]](s,h) = true. HenceA → C is
true.

By (lookup), ` {C}P{B}. SinceA→ C is true, by(conseq), we have{A}P{B}.
Case[e1] := e2. Let x 6∈ FV(e1), P be[e1] := e2, andC be(∃x(e1 7→ x)) ∗ (e1 7→ e2 —∗B).
We will showA→ C is true. Assume[[A]](s,h) = true. We will show[[C]](s,h) = true. Letn1 = [[e1]]s andn2 = [[e2]]s.

Since{A}P{B} is true,[[P]]((s, h)) 63 abort. Hencen1 ∈ Dom(h). Then[[P]]((s, h)) = {(s, h1)} and[[B]](s,h1) = true
whereh1 = h[n1 := n2]. Let h2 = h|{n1} andh3 = h|Dom(h)−{n1}. We haveh = h2 + h3. Let s′ = s[x := h(n1)]. Since
[[e1]]s′ = [[e1]]s = n1 by x 6∈ FV(e1), we have[[e1 7→ x]](s′,h2) = true. Hence[[∃x(e1 7→ x)]](s,h2) = true.

We will show[[e1 7→ e2 —∗B]](s,h3) = true. Assume[[e1 7→ e2]](s,h′2) = true andh3 +h′2 exists. Thenh′2 = φ[n1 := n2]
and h′2 + h3 = h1. Since [[B]](s,h1) = true, we have[[B]](s,h′2+h3) = true. Hence[[e1 7→ e2]](s,h′2) = true implies
[[B]](s,h′2+h3) = true for allh′2. Hence[[e1 7→ e2 —∗B]](s,h3) = true.

Combining them, we have[[C]](s,h) = true. HenceA→ C is true.
By (mutation), ` {C}P{B}. SinceA→ C is true, by(conseq), we havè {A}P{B}.
Case dispose(e). Let x 6∈ FV(e), C be(∃x(e 7→ x)) ∗B, andP be dispose(e).
We will showA→ C is true. Assume[[A]](s,h) = true. We will show[[C]](s,h) = true. Letn = [[e]]s. Since{A}P{B}

is true, [[P]]((s, h)) 63 abort. Hencen ∈ Dom(h). Hence[[P]]((s, h)) = {(s, h1)} and [[B]](s,h1) = true whereh1 =
h|Dom(h)−{n}. Let n1 = h(n), h2 = φ[n := n1], ands′ = s[x := n1]. We haveh = h1 + h2. Since[[e]]s′ = [[e]]s = n by
x 6∈ FV(e), we have[[e 7→ x]](s′,h2) = true. Hence[[∃x(e 7→ x)]](s,h2) = true. Hence[[C]](s,h) = true. HenceA→C is true.

By (dispose), ` {C}P{B}. SinceA→ C is true, by(conseq), we havè {A}P{B}. 2

C Proof of Lemma 6.6

Proof. (1) This is similarly proved to (2).
(2) The left-hand side is equivalent to∀s[[∃−→x (Store−→x (n) ∧A)]]s = true. It is equivalent to∃s[[Store−→x (n) ∧A]]s =

true. Hence it is equivalent to∃s([[Store−→x (n)]]s = true∧ [[A]]s = true). Since[[Store−→x (n)]]s = true is equivalent to
Storecode−→x (n, s), we have the claim.

(3) We suppose Heapcode(m,h). We will show [[HEvalA(m)]]s = true ↔ [[A]](s,h) = true by induction onA. We
consider cases according toA.

CaseA is a base formula. We have HEvalA(m) = A and the claim holds.
CaseA = emp. We have HEvalA(m) = ¬∃xyLookup(m,x, y). Since [[emp]](s,h) = true, Dom(h) = φ, and

¬∃xyLookup(m,x, y) are equivalent, we have the claim.
CaseA = e1 7→ e2. Let ki be [[ei]]s. All of [[HEvalA(m)]]s = true,∀k′1k′2(∃m1m2(m = m1 · 〈(k′1, k′2)〉 ·m2 ∧ k′1 >

0) ↔ k′1 = k1 ∧ k′2 = k2), h = φ[k1 := k2], and[[A]](s,h) = true are equivalent. Hence the claim holds.
CaseA = A1 ∗A2.
From the left-hand side to the right-hand side. Assume[[HEvalA(m)]]s = true. We will show[[A]](s,h) = true. We have

[[Separate(m, y1, y2) ∧ HEvalA1(y1) ∧ HEvalA2(y2)]]s[y1:=m1,y2:=m2] = true for somem1,m2. Then[[HEvalAi
(mi)]]s =

true. We havehi such that Heapcode(mi, hi). Thenh = h1 + h2. By induction hypothesis with[[HEvalAi
(mi)]]s = true,

we have[[Ai]](s,hi) = true. Hence[[A]](s,h) = true.
From the right-hand side to the left-hand side. Assume[[A]](s,h) = true. We will show[[HEvalA(m)]]s = true.

There areh1, h2 such thath = h1 + h2 and [[Ai]](s,hi) = true. We havem1,m2 such that Heapcode(mi, hi). Then
Separate(m,m1,m2). By induction hypothesis forAi, we have[[HEvalAi(mi)]]s = true. Hence[[HEvalA(m)]]s = true by
takingy1 = m1 andy2 = m2.

CaseA = A1 —∗A2.
From the left-hand side to the right-hand side. Assume[[HEvalA(m)]]s = true. We will show [[A]](s,h) =

true. Assume[[A1]](s,h1) = true andh + h1 exists. We will show[[A2]](s,h+h1). We havem1,m2 such that

13

Heapcode(m2, h1), Heapcode(m1, h + h1). By induction hypothesis forA1, we have[[HEvalA1(m2)]]s = true. We also
have Separate(m1,m, m2). From the assumption, we have[[HEvalA2(m1)]]s = true. By induction hypothesis forA2, we
have[[A2]](s,h+h1) = true.

From the right-hand side to the left-hand side. Assume[[A]](s,h) = true. We will show[[HEvalA(m)]]s = true. Fixm1,m2

and assume[[HEvalA1(m2) ∧ Separate(m1,m, m2)]]s = true. We will show[[HEvalA2(m1)]]s = true. We haveh1, h2 such
that Heapcode(m1, h1), Heapcode(m2, h2). Thenh1 = h+h2. By induction hypothesis forA1, we have[[A1]](s,h2) = true.
From the assumption, we have[[A2]](s,h1) = true. By induction hypothesis forA2, we have[[HEvalA2(m1)]]s = true.

CasesA = ¬A1, A1 ∧A2, A1 ∨A2, A1 →A2,∀xA1,∃xA1 are proved straightforwardly by using induction hypothesis.
(4) The right-hand side is equivalent to∃h(Heapcode(m,h) ∧ ∃s(Storecode−→x (n, s) ∧ [[A]](s,h) = true)). Since

[[A]](s,h) = [[HEvalA(m)]]s under Heapcode(m,h) by (3), it is equivalent to∃h(Heapcode(m,h) ∧ ∃s(Storecode−→x (n, s) ∧
[[HEvalA(m)]]s = true)). Hence∃s(Storecode−→x (n, s) ∧ [[HEvalA(m)]]s = true). Since (2) shows BEvalHEvalA(m),−→x (n)
is equivalent to∃s(Storecode−→x (n, s) ∧ [[HEvalA(m)]]s = true), it is equivalent to BEvalHEvalA(m),−→x (n), that is,
∃−→x (Store−→x (n) ∧ HEvalA(m)), which is the left-hand side by the definition of Eval

A,−→x .
(5) By induction onP . 2

D Proof of Lemma 6.10

Proof. (1) Assume[[WP,A(−→x)]](s,h) = true and[[P]]((s, h)) 3 r. We will showr 6= abort and[[A]]r = true. We have
n1,n2,n andm such that Result−→x (n1, (s, h)), Result−→x (n2, r), and Pair2(n1, n, m). We have[[Store−→x (n)]](s,h) = true,
[[Heap(m)]](s,h) = true, Storecode−→x (n, s), and Heapcode(m,h).

We will show∃r1r2(Result−→x (n1, r1)∧ [[P]](r1) 3 r2 ∧Result−→x (n2, r2)). It is proved by takingr1 = (s, h) andr2 = r.
Therefore, by Lemma 6.6 (5), Exec

P,−→x (n1, n2) is true.
By letting x = n, y = m, z = n1, w = n2 in the definition of WP,A(−→x), from [[WP,A(−→x)]](s,h) = true, we have

n2 > 0 ∧ ∃y1z1(Pair2(n2, y1, z1) ∧ Eval
A,−→x (y1, z1)). By n2 > 0, r 6= abort. Letr = (s1, h1). We haven′,m′ such

that Pair2(n2, n
′,m′) and Eval

A,−→x (n′,m′) is true. By Lemma 6.6 (4), we haves′1, h
′
1 such that Storecode−→x (n′, s′1) ∧

Heapcode(m′, h′1)∧ [[A]](s′1,h′1) = true. Since Storecode−→x (n′, s1) and Heapcode(m′, h1), we haves′1 =−→x s1 andh′1 = h1.
Hence[[A]](s1,h1) = true, that is,[[A]]r = true.

(2) Assume∀r([[P]]((s, h)) 3 r implies r 6= abort∧ [[A]]r = true). We will show [[WP,A(−→x)]](s,h) = true. Fix
n,m, n1, n2 and assume Store−→x (n), Heap(m), Pair2(n1, n, m), and Exec

P,−→x (n1, n2) are true at(s, h). We will show
n2 > 0 and∃y1z1(Pair2(n2, y1, z1) ∧ Eval

A,−→x (y1, z1)).
We have Result−→x (n1, (s, h)). By Lemma 6.6 (5) with Exec

P,−→x (n1, n2), we haver′1, r
′
2 such that Result−→x (n1, r

′
1) ∧

[[P]](r′1) 3 r′2 ∧Result−→x (n2, r
′
2). By Result−→x (n1, (s, h)), we haves′ such thatr′1 = (s′, h) ands =−→x s′. If r′2 = abort, by

Lemma 6.9 (1),[[P]]((s, h)) 3 abort, which contradicts to the assumption. Hencer′2 6= abort. Let(s′2, h2) ber′2. By Lemma
6.9 (2),[[P]]((s, h)) 3 (s2, h2) wheres′2 =FV(P) s2. By the assumption, we have[[A]](s2,h2) = true. We haves′2 =−→x s2

since for ally ∈ −→x − FV(P), s′2(y) = s′(y) = s(y) = s2(y). Hence[[A]]r′2 = [[A]]r2 = true. We haven′,m′ such that
Pair2(n2, n

′,m′). Then Storecode−→x (n′, s′2) and Heapcode(m′, h2). Since the right-hand side of Lemma 6.6 (4) holds by
lettings = s′2 andh = h2, we have Eval

A,−→x (n′,m′). Hence∃y1z1(Pair2(n2, y1, z1)∧Eval
A,−→x (y1, z1)) by takingy1 = n′

andz1 = m′.
Therefore∀xyzw(Store−→x (x) ∧ Heap(y) ∧ Pair2(z, x, y) ∧ Exec

P,−→x (z, w)→
w > 0 ∧ ∃y1z1(Pair2(w, y1, z1) ∧ Eval

A,−→x (y1, z1))) is true at(s, h), that is,[[WP,A(−→x)]](s,h) = true.
(3) Assume[[A]](s,h) = true. We will show[[WP,A(−→x)]](s,h) = true.
Assume[[P]]((s, h)) 3 r. Since{A}P{B} is true,r 6= abort and[[B]]r = true. Hence we have[[P]]((s, h)) 3 r implies

r 6= abort and[[A]]r = true. By (2), we have[[WP,A(−→x)]](s,h) = true.
HenceA→WP,B(−→x) is true.2

14

