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Greville’s Method for Preconditioning Least Squares Problems

Xiaoke Cui ∗, 1) Ken Hayami ∗, †, 2)

Abstract

In this paper, we construct a preconditioner for least squares problems min ‖b −
Ax‖2, where A can be matrices with any shape or rank. The preconditioner itself is
a sparse approximation to the Moore-Penrose inverse of the coefficient matrix A. For
this preconditioner, we provide theoretical analysis to show that under our assumption,
the problem preconditioned by this preconditioner is equivalent to the original problem,
and the GMRES method can determine a solution to the preconditioned problem before
breakdown happens.

Keywords: Least Squares Problem, Preconditioning, Moore-Penrose Inverse, Greville Al-
gorithm, GMRES

1 Introduction

Consider a least squares problem,

min
x∈Rn

‖b − Ax‖2, (1.1)

where A ∈ Rm×n, b ∈ Rm.

Assume A is large and sparse, then iterative methods are preferred to use to solve 1.1.
In [6], Hayami proposed we can use GMRES [12] to solve least squares problems by using
some preconditioners. If we have a preconditioner B ∈ Rn×m and we precondition 1.1 from
the left, we can transform problem 1.1 to

min
x∈Rn

‖Bb − BAx‖2. (1.2)
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On the other hand, we can also precondition problem 1.1 from the right and transform the
problem 1.1 to

min
y∈Rm

‖b − ABy‖2. (1.3)

Since generally A is rectangular and not necessarily full rank, after preconditioned, the prob-
lem might not be equivalent to the original problem 1.1. For this issue, please refer to [6].

In this paper, we use the idea, Approximate Inverse(AINV) Preconditioners [11] which
were originally developed for solving large sparse linear systems of the form,

Ax = b. (1.4)

In this paper, since A is a general matrix, we construct an matrix M ∈ Rn×m, which is
an approximation to the Moore-Penrose inverse [10] of A, and use M to precondition least
squares problem 1.1.

The main contribution of this paper is to give out a new way to precondition general
least squares problems from the perspective of approximate Moore-Penrose inverse. Our
method also the includes RIF preconditioner[1] as a specific case. Hence, from our analysis,
we give a better insight to the RIF preconditioner. We also give a theoretical analysis on
the equivalence between the preconditioned problem and the original problem, and discuss
the possibility of breakdown when using GMRES to solve the preconditioned system.

The rest of the paper is organized as follows. In Section 2, we first introduce some the-
oretical results about the generalized inverse of rank-one update and the original Greville’s
method. Based on the Greville’s method, we give a global algorithm to construct a pre-
conditioner M which is an approximate generalized inverse of A in Section 3. In Section
4, we rewrite the global method into vector-wise form, and show that for full column rank
matrix A, our algorithm is equivalent to the RIF preconditioning algorithm[1]. In Section
6 and Section 7, we prove that under certain assumption, using our preconditioner M , the
preconditioned problem is equivalent to the original problem, and the GMRES method can
determine a solution to the preconditioned problem before breakdown happens. In Section
8, we consider some details when we implement our algorithms. Numerical results are pre-
sented in Section 9. We conclude the whole paper in Section 10. We start with introduce
Greville’s Method.

2 Greville’s Method

Given a rectangular matrix A ∈ Rm×n, rank(A) = r ≤ min{m, n}. Assume the Moore-
Penrose inverse of A is known, we are interested in how to compute the Moore-Penrose
inverse of

A + cdT , c ∈ Rm, d ∈ Rn, (2.5)
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which is a rank-one update of A. In [10], the following six logical possibilities are considered

1. c 6∈ R(A), d 6∈ R(AT ) and 1 + dT A†c arbitrary,

2. c ∈ R(A), d 6∈ R(AT ) and 1 + dT A†c = 0,

3. c ∈ R(A), d arbitrary and 1 + dT A†c 6= 0,

4. c 6∈ R(A), d ∈ R(AT ) and 1 + dT A†c = 0,

5. c arbitrary, d ∈ R(AT ) and 1 + dT A†c 6= 0,

6. c ∈ R(A), d ∈ R(AT ) and 1 + dT A†c = 0.

Here R(A) denotes the range space of A. For each possibility, an expression for the Moore-
Penrose inverse of the rank one update of A is given by the following theorem[10].

Theorem 2.1 For A ∈ Rm×n, c ∈ Rm, d ∈ Rn, let k = A†c, h = dT A†, u = (I − AA†)c,
v = dT (I − A†A), and β = 1 + dT A†c. Notice that,

c ∈ R(A) ⇔ u = 0 (2.6)
d ∈ R(AT ) ⇔ v = 0. (2.7)

Then, the generalized inverse of A + cdT is given as follows.

1. If u 6= 0 and v 6= 0, then (A + cdT )† = A† − ku† − v†h + βv†u†.

2. If u = 0 and v 6= 0, and β = 0, then (A + cdT )† = A† − kk†A† − v†h.

3. If u = 0 and β 6= 0, then (A + cdT )† = A† + 1
β̄
vT kT A† − β̄

σ1
p1q

T
1 , where p1 =

−
(
‖k‖2

2

β̄
vT + k

)
, qT

1 = −
(
‖v‖2

2

β̄
kT A† + h

)
.

4. If u 6= 0, v = 0 and β = 0, then (A + cdT )† = A† − A†h†h − ku†.

5. If v = 0 and β 6= 0, then (A + cdT )† = A† + 1
β̄
A†hT uT − β̄

σ2
p2q

T
2 , where p2 =

−
(
‖u‖2

β̄
A†hT + k

)
, qT

2 = −
(
‖h‖2

2

β̄
uT + h

)
, and σ2 = ‖h‖2

2‖u‖2
2 + |β|2.

6. If u = 0, v = 0 and β = 0, then (A + cdT )† = A† − kk†A† − A†h†h + (k†A†h†)kh.

To utilize the above theorem, let

A =
n∑

i=1

aie
T
i , (2.8)

where ai is the ith column of A. Further let, Ai = [a1, . . . , ai, 0, . . . , 0]. Hence we have

Ai =
i∑

k=1

aie
T
i , i = 1, . . . , n, (2.9)
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and if we denote A0 = 0m×n,

Ai = Ai−1 + aie
T
i , i = 1, . . . , n. (2.10)

Thus every Ai, i = 1, . . . , n is a rank-one update of Ai−1. Noticing that A†
0 = 0n×m, we

can utilize Theorem 2.1 to compute the Moore-Penrose inverse of A step by step and have
A† = A†

n in the end.

According to Equation (2.6), we are especially interested in Case 1 and Case 2. Substitute
c with ai and d with ei, we can rewrite Equation 2.6 as following,

ai 6∈ R(Ai−1) ⇒ u = (I − Ai−1A
†
i−1)ai 6= 0, v = eT

i (I − A†
i−1Ai−1) 6= 0 (2.11)

ai ∈ R(Ai−1) ⇒ u = (I − Ai−1A
†
i−1)ai = 0, β = 1 + eT

i A†
i−1ai = 1. (2.12)

Equation (2.12) associates with the columns which are linear combinations of some of the
previous columns.

Then from Theorem 2.1, denoting A0 = 0m×n, we obtain a method to compte A†
i based

on A†
i−1 as

A†
i =

{A†
i−1 + (ei − A†

i−1ai)((I − Ai−1A
†
i−1)ai)† if ai 6∈ R(Ai−1)

A†
i−1 + 1

σi
(ei − A†

i−1ai)(A
†
i−1ai)T A†

i−1 if ai ∈ R(Ai−1)
, (2.13)

where σi = 1 + ‖ki‖2
2. This method was proposed by Greville in the 1960s[5].

3 Global Algorithm for General Matrices

In this section, we will construct our preconditioning algorithm according to the Greville’s
method of section 2. First of all, we notice that the different part between case ai 6∈ R(Ai−1)
and case ai ∈ R(Ai−1) lies in the second term. If we define fi and vi as

ki = A†
i−1ai, (3.1)

ui = ai − Ai−1ki = (I − Ai−1A
†
i−1)ai, (3.2)

σi = 1 + ‖ki‖2
2, (3.3)

(3.4)

fi =
{ ‖ui‖2

2 if ai 6∈ R(Ai−1)
σi if ai ∈ R(Ai−1)

, (3.5)

vi =
{ ui if ai 6∈ R(Ai−1)

(A†
i−1)

T ki if ai ∈ R(Ai−1)
, (3.6)
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we can express A†
i in a unified form for general matrices, as

A†
i = A†

i−1 +
1
fi

(ei − ki)vT
i , (3.7)

and we have

A† =
n∑

i=1

1
fi

(ei − ki)vT
i . (3.8)

If we denote

K = [k1, . . . , kn], (3.9)
V = [v1, . . . , vn], (3.10)

F =

 f1 · · · 0

0
. . . 0

0 · · · fn

 , (3.11)

we obtain a matrix factorization of A† as follows.

Theorem 3.1 Let A ∈ Rm×n and rank(A) ≤ min{m,n}. Using the above notations, the
Moore-Penrose inverse of A has the following factorization

A† = (I − K)F−1V T . (3.12)

Here I is the identity matrix of order n, K is a strict upper triangular matrix, F is a diag-
onal matrix, whose diagonal elements are all positive.

If A is full column rank, then

V = A(I − K) (3.13)
A† = (I − K)F−1(I − K)T AT . (3.14)

Proof. Denote Āi = [a1, . . . , ai], then since

ki = A†
i−1ai (3.15)

= [a1, . . . , ai−1, 0, . . . , 0]†ai (3.16)

=
[
Āi−1, 0, . . . , 0

]†
ai (3.17)

=
[

Ā†
i−1

0

]
ai (3.18)

=



ki,1,
...

ki,i−1

0
...
0


, (3.19)
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K = [k1, . . . , kn] is a strictly upper triangular matrix.

Since ui = 0 ⇔ ai ∈ R(Ai−1),

fi =
{ ‖ui‖2

2 if ai 6∈ R(Ai−1)
σi if ai ∈ R(Ai−1)

. (3.20)

Thus fi(i = 1, . . . , n), are always positive, which implies that F is a diagonal matrix with
positive diagonal elements.

If A is a full rank matrix, we have

V = [u1, . . . , un] (3.21)

=
[
(I − A0A

†
0)a1, . . . , (I − An−1A

†
n−1)an

]
(3.22)

= [a1 − A0k1, . . . , an − An−1kn] (3.23)
= A − [A0k1, . . . , An−1kn] (3.24)
= A − [A1k1, . . . , Ankn] (3.25)
= A(I − K). (3.26)

The second from the bottom equality follows from the fact that K is a strictly upper trian-
gular matrix. Now, when A† is full rank, can be decomposed as follows,

A† = (I − K)F−1V T = (I − K)F−1(I − K)T AT . 2 (3.27)

Remark 1 From the about proof, it is easy to see that when A is a full column rank matrix,
(I − K)F−1(I − K)T is a LDLT Decomposition of (AT A)−1.

Based on Greville’s method, we obtain a simple algorithm. We only want to construct a
sparse approximation to the Moore-Penrose inverse of A, hence, we perform some numerical
droppings in the middle of the algorithm to maintain the sparsity of the preconditioner. We
call the following algorithm the Global Greville Preconditioning algorithm, since it forms
or updates the whole matrix at a time rather than column by column.

Algorithm 1 Global Greville Preconditioning algorithm

1. set M0 = 0
2. for i = 1 : n

3. ki = Mi−1ai

4. ui = ai − Ai−1ki
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5. if ui 6= 0
6. fi = ‖ui‖2

2

7. vi = ui

8. else
9. fi = 1 + ‖ki‖2

2

10. vi = MT
i−1ki

11. end if
12. Mi = Mi−1 + 1

fi
(ei − ki)vT

i

13. perform numerical droppings to M †
i

14. end for
15. Get Mn ≈ A†.

Remark 2 In Algorithm 1, actually, we do not need to store ki, vi, fi, i = 1, . . . , n, because
we form the M †

i explicitly.

Remark 3 In Algorithm 1, we need to update Mi in every step, but actually we do not need
to update the whole matrix, since only the first i− 1 rows of Mi−1 could be nonzero. Hence,
to compute Mi, we need to update the first i−1 rows of Mi−1, and then add one new nonzero
row to be the ith row.

Remark 4 We can also perform numerical droppings to ki. Thus, if ki is sparse, when we
update Mi−1, we only need to update the rows which correspond to the nonzero elements in
ki. Hence, the rank-one update will be very cheap.

4 Vector-wise Algorithm for General Matrices

If we want to construct the matrix K, F and V without forming Mi explicitly, we can
use a vector-wise version of the above algorithm. In Algorithm 1, the column vectors of K
are constructed one column at a step, and we compute vi to compute the diagonal element
of F . Hence, it is possible to rewrite Algorithm 1 into a vector-wise form.

Since ui can be computed from ai − Ai−1ki, which does not refer to Mi−1 explicitly, to
vectorize Algorithm 1, we only need to form ki and vi = MT

i−1ki when linear dependence
happens, without using Mi−1 explicitly.

7



Consider the numerical droppings are not used. Since we already know that

A† = (I − K)F−1V T .

= (I − [ k1 . . . kn ])

 f−1
1

. . .
f−1

n


 vT

1
...

vT
n


=

n∑
i=1

(ei − ki)
1
fi

vT
i ,

for any integer p, it is easy to see that

A†
p =

p∑
i=1

(ei − ki)
1
fi

vT
i . (4.1)

Therefore, we have

vi = (A†
i−1)

T ki (4.2)

= (
i−1∑
p=1

(ep − kp)
1
fp

vT
p )T ki (4.3)

=
i−1∑
p=1

1
fp

vp(ep − kp)T ki (4.4)

and

ki = A†
i−1ai (4.5)

=
i−1∑
p=1

(ep − kp)
1
fp

vT
p ai (4.6)

=
i−2∑
p=1

(ep − kp)
1
fp

vT
p ai + (ei−1 − ki−1)

1
fi−1

vT
i−1ai (4.7)

= A†
i−2ai + (ei−1 − ki−1)

1
fi−1

vT
i−1ai (4.8)

To make this more clear, from the last column of K, the requirement relationship can
be shown as

kn = A†
n−1an

↗ ↖
A†

n−2an kn−1 = A†
n−2an−1

↗ ↖ ↗ ↖
A†

n−3an kn−2 = A†
n−3an−2 A†

n−3an−1 kn−2 = A†
n−3an−2

. . . . . . .
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In other words, we need to compute every A†
iak, k = i + 1, . . . , n. Denote A†

iaj , j > i as
ki,j . In this sense, ki = ki−1,i. In the algorithm, ki,j , j > i will be stored in the jth column
of K, if j = i + 1, ki,j = kj , and it will not be changed any more. If j > i + 1, ki,j will be
updated to ki+1,j and still stored in the same position.

Based on the above discussion, and add the numerical dropping strategy, we can write
the following algorithm. In the algorithm, we omit the first subscript of ki,j .

Algorithm 2 Vector-wise Greville Preconditioning Algorithm

1. set K = 0n×n

2. for i = 1 : n

3. u = ai − Ai−1ki

4. if u 6= 0
5. fi = ‖u‖2

2

6. vi = u

7. else
8. fi = ‖ki‖2

2 + 1

9. vi = (A†
i−1)

T ki =
i−1∑
p=1

1
fp

vp(ep − kp)T ki

10. end if
11. for j = i + 1, . . . , n

12. kj = kj + vT
i aj

fi
(ei − ki)

13. perform numerical droppings on kj

14. end for
15. end for
16. K = [k1, . . . , kn], F = Diag {f1, . . . , fn}, V = [v1, . . . , vn].

If we consider the expression of vi, we can rewrite Algorithm 2 as the follows.

Algorithm 3 Vector-wise Greville Preconditioning Algorithm

1. set K = zeros(n, n)
2. for i = 1 : n

3. u = ai − Ai−1ki

4. if u 6= 0
5. fi = ‖u‖2

2
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6. vi = u

7. for j = i + 1, . . . , n

8. kj = kj + vT
i aj

fi
(ei − ki)

9. perform numerical droppings on kj

10. end for
11. else
12. fi = ‖ki‖2

2 + 1
13. vi = (A†

i−1)
T ki =

∑i−1
p=1

1
fp

vp(ep − kp)T ki

14. for j = i + 1, . . . , n

15. kj = kj + kT
i kj

fi
(ei − ki)

16. perform numerical droppings on kj

17. end for
18. end if
19. end for
20. K = [k1, . . . , kn], F = Diag{f1, . . . , fn}, V = [v1, . . . , vn].

Remark 5 For the full column rank case, we already showed that V = A(I−K). Hence, we
do not need to store matrix V in this case. However, it does not mean that for the general
case, we need to store the whole matrix V . In fact, we only need to store the vectors of V
which correspond to the columns ai ∈ R(Ai−1). Hence, if the rank deficiency is small, the
extra storage is small.

5 Greville Preconditioning Algorithm and RIF Preconditioner

In this section, we especially take a look at the full column rank case. When A is full
column rank, both Algorithm 2 and Algorithm 3 can be simplified as follows.

Algorithm 4 Vector-wise Greville Preconditioning Algorithm for Full Column Rank Ma-
trices

1. set K = 0n×n

2. for i = 1 : n

3. ui = ai − Ai−1ki

4. fi = ‖ui‖2
2

5. for j = i + 1, . . . , n

6. kj = kj + uT
i aj

fi
(ei − ki)

7. perform numerical droppings on kj
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8. end for
9. end for

10. K = [k1, . . . , kn], F = Diag{f1, . . . , fn}.

In Algorithm 4,

u = ai − Ai−1ki

= [a1, . . . , ai, 0, . . . , 0]



−ki,1
...

−ki,i−1

1
0
...
0


= Ai(ei − ki)
= A(ei − ki).

If we denote ei − ki as zi, then ui = Azi.

The Line 6 in the Algorithm 4, can also be rewritten as

kj = kj +
uT

i aj

‖ui‖2
2

(ei − ki)

ej − kj = ej − kj −
uT

i aj

‖ui‖2
2

(ei − ki)

zj = zj −
uT

i aj

‖ui‖2
2

zi.

Denote di = ‖ui‖2
2 and θ =

uT
i aj

di
. Then combining all the new notations, we can rewrite

the algorithm as follows.

Algorithm 5

1. set Z = In×n

2. for i = 1 : n

3. ui = Aizi

4. di = (ui, ui)
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5. for j = i + 1, . . . , n

6. θ = (ui,aj)
di

7. zj = zj − θzi

8. end for

9. end for

10. Z = [z1, . . . , zn], D = Diag{d1, . . . , dn}.

Remark 6 Since zi = ei − ki, we have Z = I − K. Denoting D = Diag{d1, . . . , dn}, the
factorization of A† in Theorem 3.1 can be rewritten as

A† = ZD−1ZT AT (5.1)

Thus, we can see that Algorithm 5 is exactly the same as the RIF preconditioner, which
was proposed based on a AT A-orthogonalization procedure, by Benzi and Tůma [1].

Theorem 5.1 For full column rank matrix A ∈ Rm×n, rank(A) = n, the Greville Pre-
conditioning Algorithms we proposed in this paper are equivalent to the Robust Incomplete
Factorization Preconditioning Algorithm proposed in [1].

6 Equivalence Condition

Consider solving the least squares problem (1.1) by transforming it into the left precon-
ditioned form,

min
x∈Rn

‖Mb − MAx‖2, (6.1)

where A ∈ Rm×n, M ∈ Rn×m, and b is a right-hand-side vector b ∈ Rm.

When preconditioning a least squares problem, one important issue is whether the so-
lution of the preconditioned problem is the solution of the original problem. For square
nonsingular linear systems, the condition for this equivalence is that the preconditioner M
should be nonsingular. Since we are dealing with general rectangular matrices, we need some
other conditions to ensure that the preconditioned problem (6.1) is equivalent to the original
least squares problem (1.1).

First note the following [6], where R(X) denotes the range space of matrix X.
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Lemma 6.1
‖b − AxT ‖2 = min

x∈Rn
‖b − Ax‖2

and
‖Mb − MAxT ‖2 = min

x∈Rn
‖Mb − MAx‖2

are equivalent for all b ∈ Rm, if and only if R(A) = R(MT MA).

If we perform any of Algorithm 1, Algorithm 2 and Algorithm 3 completely and exactly,
we will finally have an exact Moore-Penrose inverse of A, i.e. M = A†. However, we need to
performe some numerical droppings to control the sparsity of the preconditioner M . Assume
the dropping threshold is τ . After dropping the elements in ki which are smaller than τ , ki

becomes k̃i. This results in ui becoming ũi, and vi becoming ṽi. Hence, the norm of ui may
not be an accurate way to detect if ai ∈ R(Ai−1) or ai 6∈ R(Ai−1). We will come back to
how to detect the linear dependence later. After droppings, K becomes K̃, F becomes F̃ ,
V becomes Ṽ , and we have

A† ≈ M = (I − K̃)F̃−1Ṽ T . (6.2)

To analyze the equivalence between the original problem (1.1) and the preconditioned
problem (6.1), where M is from any of our algorithms, we first consider the simple case, in
which A is a full column rank matrix. After numerical droppings, we have,

A† ≈ M = (I − K̃)F̃ ŨT , (6.3)

where Ũ is
Ũ = A(I − K̃). (6.4)

Notice that K̃ is a strictly upper triangular matrix and F̃ is a diagonal matrix with positive
elements. Hence, we can denote

M = CAT , (6.5)

where C is an nonsingular matrix. According to the discussion in [6], we have the following
result.

Theorem 6.1 If A ∈ Rm×n, and A is full column rank, by Algorithm 1, Algorithm 2 or
Algorithm 3 with numerical droppings, we can construct a preconditioner M . With this
preconditioner M , the preconditioned least squares problem and the original least squares
problem are equivalent and GMRES can determine a least squares solution to the precondi-
tioned problem before breakdown.

For the general case, we still have K̃ and F̃ nonsingular. However, the expression for Ṽ is
not straightforward. To simplify the problem, we assume that there is no zero column
in A, and our algorithm can detect all the linear independence correctly. Hence,
if we denote {ai1 , ai2 , . . . , air} to be the maximum linear independent columns set of A, with
1 = i1 < i2 < . . . < ir and there is no other maximum linear independent columns set
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in {a1, . . . , air}, so that this maximum linear independent columns set is uniquely defined.
Then we will have ui1 , . . . , uir such that ‖uij‖2 6= 0, j = 1, . . . , r, and vij = uij , j = 1, . . . , r.
For every uij , the following relation still holds.

uij = aij − Aij−1k̃ij

= A(I − K̃)eij

Rewriting the 12th line of Algorithm 1 with numerical droppings, we have

Mi = Mi−1 +
1
fi

(ei − k̃i)ṽT
i . (6.6)

From the above equation, we can see that every row of Mi is a linear combination of the vec-
tors ṽT

k , 1 ≤ k ≤ i. For example, the kth row of Mi is a linear combination of ṽT
1 , ṽT

2 , . . . , ṽT
i .

Then we have
R(MT

i ) = span{ṽ1, . . . , ṽi}. (6.7)

Now consider the columns ai, 1 = i1 < i ≤ i2 ≥ 2. According to our assumption, all the
columns ai, 1 < i < i2 are linearly dependent on a1.

ṽ2 = MT
1 k̃2

∈ R(MT
1 )

= span{ṽ1}
= span{ũ1}.

From the above relationship,

R(MT
2 ) = span{ṽ1, ṽ2}

= span{ũ1}
= R(MT

1 ),

and similarly,

ṽ3 = MT
2 k̃3

∈ R(MT
2 )

= R(MT
1 )

= span{ũ1}.

Then, in the same way, we have

R(MT
i2−1) = span{ũ1}. (6.8)

Hence, generally,

R(MT
i ) = span{ṽ1, . . . , ṽi} (6.9)

= span{ũi1 , . . . , ũit}, (6.10)
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where i1, . . . , it ∈ {i1, . . . , ir}, where it ≤ i and imax{t+1,r} ≥ i. Noticing the fact that,

ũi = A(I − K̃)ei, (6.11)

we have the following theorem.

Theorem 6.2 Let A ∈ Rm×n, m ≥ n, and rank(A) = r, and assume that the linear inde-
pendence is detected correctly by Algorithm 1, Algorithm 2 or Algorithm 3. Then, we have
the following relationships, where M is the approximate Moore-Penrose inverse constructed
by any of these algorithms,

R(MT ) = R(Ṽ ) (6.12)
= span{ũi1 , . . . , ũir} (6.13)
= R(A). (6.14)

Combine the above theorem and

Theorem 6.3 [6] For all b ∈ Rm, the equation BAx = Bb has a solution, and the solution
attains min

x∈Rn
‖b − Ax‖2, if and only if R(A) = R(BT ).

we have the following

Theorem 6.4 For all b ∈ Rm, M is constructed by Algorithm 1, Algorithm 2, or Algorithm
3, assume that all the linear independence is detected correctly by any of these algorithms,
and used as a left preconditioner, the least squares problem (6.1) is equivalent to the original
least squares problem (1.1).

Remark 7 About our assumption, we assume that our algorithms can detect all the linear
independency in the columns of A. Hence, we allow such mistakes that a linear dependent
column is judged as a linear independent column. An extreme case is that we judge all the
columns of A as linear independent, in this way, we obtain the RIF preconditioner.

7 Breakdown Free Condition

In this section we assume without losing generality that the first r columns of A are
linear independent. Hence,

R(A) = span{a1, . . . , ar}, (7.1)

where rank(A) = r, and ai, (i = 1, . . . , r) is the ith column of A. The reason is that we can
incorporate a column pivoting in Algorithm 1 easily. With the same assumption as in The-
orem 6.2, every time when a linear dependence is detected, we can pivot the current column
to the end of the matrix A, and after we have the least squares solution to the pivoted A,
we can permute the solution to get the solution to the original problem.
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Then we have,
ai ∈ R(Ar), i = r + 1, . . . , n. (7.2)

In this case, after performing Algorithm 1 with numerical dropping, matrix Ṽ can be written
in the form

Ṽ = [ũ1, . . . , ũr, ṽr+1, . . . , ṽn]. (7.3)

If we denote [ũ1, . . . , ũr] as Ũr, then

Ũr = A(I − K̃)Ir, Ir =
[

Ir×r

0

]
. (7.4)

From Equation (6.14)-(6.17), there exists a matrix H̃ such that

[ṽr+1, . . . , ṽn] = ŨrH̃ (7.5)
= A(I − K̃)IrH, (7.6)

where H̃ is an appropriate matrix, the size of H̃ is r × (n − r). It could be singular or
nonsingular. Then the whole Ṽ is given by

Ṽ = [ũ1, . . . , ũr, ṽr+1, . . . , ṽn] (7.7)
= [Ũr, ŨrH̃] (7.8)
= Ũr [ Ir×r H̃ ] (7.9)

= A(I − K̃)
[

Ir×r

0

]
[ Ir×r H̃ ] (7.10)

= A(I − K̃)
[

Ir×r H̃
0 0

]
. (7.11)

Hence,

M = (I − K̃)F̃−1

[
Ir×r 0
H̃T 0

]
(I − K̃)T AT . (7.12)

From the above equation, we can also see the difference between the full column rank case
and the rank deficient case lies in [

Ir×r 0
H̃r×n−r 0

]
, (7.13)

which should be an identity matrix when A is full column rank.

If there is no numerical dropping, M will be the Moore-Penrose inverse of A,

A† = (I − K)F−1

[
Ir×r 0
HT 0

]
(I − K)T AT . (7.14)

Comparing Equation (7.12) and Equation (7.14), we can have the following theorem.

16



Theorem 7.1 Let A ∈ Rm×n, and rank(A) = r. Assume that all the linear independence
is detected by Algorithm 1, Algorithm 2 or Algorithm 3. Then the following relationships
hold, where M denotes the approximate Moore-Penrose inverse constructed by any of these
algorithms,

R(M) = R(A†) (7.15)
= R(AT ) (7.16)

Based on Theorem 6.2 and Theorem 7.1, we have the following theorem which en-
sures that the GMRES method can determine a solution to the preconditioned problem
MAx = Mb before breakdown happens for any b ∈ Rm.

Theorem 7.2 Let A ∈ Rm×n, and rank(A) = r. Assume that all the linear independence
is detected by Algorithm 1, Algorithm 2 or Algorithm 3. Then using the preconditioner M
which is constructed by Algorithm 1, Algorithm 2 or Algorithm 3, GMRES can determine a
least squares solution to

min
x∈Rn

‖MAx − Mb‖2 (7.17)

before breakdown happens for all b ∈ Rm.

Proof. According to Theorem 2.1 in [2] by Brown and Walker, we only need to prove

N (MA) = N (AT MT ), (7.18)

which is equivalent to
R(MA) = R(AT MT ). (7.19)

Using the result from Theorem 7.1, there exists a nonsingular matrix T , such that A =
MT T . Hence,

R(MA) = R(MMT T ) (7.20)
= R(MMT ) (7.21)
= R(M). (7.22)

On the other hand,

R(AT MT ) = R(AT AT−1) (7.23)
= R(AT A) (7.24)
= R(AT ). (7.25)

The proof is completed using Theorem 7.1. 2
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Remark 8 From the proof of the above theorem, we have R(MA) = R(M), which means
that the preconditioned least squares problem (6.1) is a consistent problem.

Thus, with Theorem 6.4 and Theorem 7.2, we finally obtain our main result for our
Greville preconditioner M .

Theorem 7.3 Let A ∈ Rm×n, and rank(A) = r. Assume that all the linear independence
is detected by Algorithm 1, Algorithm 2 or Algorithm 3, and that the preconditioner M is
computed using one of these algorithms. Then, for all b ∈ Rm, preconditioned GMRES
determines a least squares solution of

min
x∈Rn

‖MAx − Mb‖2 (7.26)

before breakdown and this solution attains min
x∈Rn

‖b − Ax‖2.

8 Implementation Consideration

8.1 Detect Linear Dependence

In Algorithm 1, Algorithm 2, and Algorithm 3, one important issue is how to judge the
condition ‖ui‖ 6= 0 in the ”if” statement. Simply speaking, we can set up a tolerance τ
in advance, and switch to ”else” when ‖ui‖2 < τ . However is this good enough to help us
detect the linear dependent columns of A when we perform numerical dropping? To address
this issue, we first take a look at the RIF preconditioning algorithm.

The RIF preconditioner was developed for full rank matrices. However, numerical exper-
iments showed it also works for rank deficient matrices. For this phenomenon, our equivalent
Algorithm 4 can give a better insight into the RIF preconditioner. Since the only possibility
for the RIF preconditioner to breakdown is when fi = 0, which implies that ui is a zero
vector. From our algorithm, we know that

ui = ai − Ai−1ki (8.1)

= ai − Ai−1A
†
i−1ai (8.2)

= (I − Ai−1A
†
i−1)ai. (8.3)

It is clear that ui is the projection of ai onto R(Ai−1)⊥. Hence in exact arithmetic ui = 0 if
and only if ai ∈ R(Ai−1). Our algorithm has an alternative when ai ∈ R(Ai−1) happens, i.e.
when u = 0, our algorithm will turn into ”else” case. However, this is not always necessary,
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because of the numerical droppings. With numerical droppings, the ui is actually,

ui = ai − Ai−1k̃i (8.4)
= ai − Ai−1Mi−1ai (8.5)
6= 0. (8.6)

Hence, even though ai ∈ R(Ai−1), since ui will not be the exact projection of ai onto
R(Ai−1)⊥, the RIF algorithm will not necessarily breakdown when linear dependence hap-
pens.

The RIF preconditioner does not take the rank deficient columns or nearly rank deficient
columns into consideration. Hence, if we can capture the rank deficient columns, we might
be able to have a better preconditioner. Assume the M we compute from any of our three
algorithms can be viewed as an approximation to A† with error matrix E ∈ Rn×m,

M = A† + E. (8.7)

First note a theoretical result about the perturbation lower bound of the generalize inverse.

Theorem 8.1 [13] If rank(A + E) 6= rank(A), then

‖(A + E)† − A†‖2 ≥ 1
‖E‖2

. (8.8)

By Theorem 8.1, if the rank of M = A† + E from our algorithm is not equal to the rank
of A†, ( or A, since they have the same rank), by the above theorem, we have,

‖M † − (A†)†‖2 ≥ 1
‖E‖2

(8.9)

⇒ ‖M † − A‖2 ≥ 1
‖E‖2

. (8.10)

The above inequality says that, if we denote M † = A+∆A, then ‖∆A‖2 ≥ 1
‖E‖2

. Hence,
when ‖E‖2 is small, which means M is a good approximation to A†, M can be an exact
generalized inverse of another matrix which is far from A, and the smaller the ‖E‖2 is, the
far M † from A is. In this sense, if the rank of M is not the same as that of A, M may not
be a good preconditioner.

Thus, it is important to maintain the rank of M to be the same of rank(A). Hence, when
we perform our algorithm, we need to sparsify the preconditioner M , but at the same time
we also want to capture the rank deficient columns as many as possible, and maintain the
rank of M . To achieve this, apparently, it is very import to decide how to judge when the
exact value ui = ‖(I − Ai−1A

†
i−1)ai‖2 is close to zero or not based on the computed value
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ũi = ‖(I − Ai−1Mi−1)ai‖2.

Taking a closer look at ũi, we have

ũi = ai − Ai−1Mi−1ai (8.11)

= ai − Ai−1(A
†
i−1 + E1)ai (8.12)

= (ai − Ai−1A
†
i−1ai) − Ai−1E1ai (8.13)

= ui − Ai−1E1ai. (8.14)

When ai ∈ R(Ai−1), ui = ai − Ai−1A
†
i−1ai = 0. Then,

ũi = −Ai−1E1ai (8.15)
‖ũi‖2 ≤ ‖Ai−1‖F ‖ai‖2‖E1‖F , (8.16)

If we require E1 to be small, we can use a tolerance τ1. If

‖ũi‖2 ≤ τ1‖Ai−1‖F ‖ai‖2, (8.17)

we suppose we detect a column ai which is in the range space of Ai−1.

Another consideration is,

ũi = ai − Ai−1k̃i (8.18)
= ai − Ai−1(ki + ε2) (8.19)
= (ai − Ai−1ki) − Ai−1ε2 (8.20)
= ui − Ai−1ε2. (8.21)

When ai ∈ R(Ai−1), ui = ai − Ai−1ki = 0, then,

ũi = −Ai−1ε2 (8.22)
‖ũi‖2 ≤ ‖Ai−1‖F ‖ε2‖2. (8.23)

If we require ε2 to be small, we can use a tolerance τ2. Hence, if

‖ũi‖2 ≤ τ2‖Ai−1‖F , (8.24)

we judge that we have detected a column ai which is in the range space of Ai−1.

8.2 When m < n

So far we assume A ∈ Rm×n, and discussed the left-preconditioning. When m ≥ n, it is
better to perform a left-preconditioning since the size of the preconditioned problem will be
smaller. When m ≤ n, a right-preconditioning will be better. In this subsection we will show
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that all the results for left-preconditioning can be extended to the right-preconditioning case.

We would like to remark that it is more preferable to perform Algorithm 1, Algorithm 2
or Algorithm 3 to AT rather than A when m < n, based on the following three reasons. By
doing so, we construct M̂ , an approximate generalized inverse of AT , hence, we can use M̂T

as the preconditioner to the original least squares problem.

1. By taking a look at the Algorithm 1, Algorithm 2 or Algorithm 3, we can find out
that we construct the approximate generalized inverse row by row. Hence, we perform
a loop which goes through all the columns of A once. When m ≥ n, this loop is
relatively short, however, when m < n, this loop could become very long, and the
preconditioning will be more time-consuming.

2. Another reason is that, linear dependence will always happen in this case even though
matrix A is full row rank. If m << n, then when we perform the precondition algorithm
on A, a lot of linear dependence should be detected. This fact makes it more difficult
to capture the rank deficiency of A, and may result in a bad preconditioner.

3. Even though our algorithms can detect the linear dependence accurately, if we look at
the algorithms, for a certain column ai of A, it is more expensive to deal with than
when ai is independent of the space spanned by the previous columns.

First we consider full row rank case, in which we perform our algorithm on AT . According
to Theorem 3.1, there is a nonsingular matrix C such that M̂ = C(AT )T . Our preconditioner
M = M̂T would be AT CT , and if we use it as a right preconditioner, combine Lemma 8.1
[6], it is easy to obtain Theorem 8.2.

Lemma 8.1 min
x∈Rn

‖b − Ax‖2 = min
z∈Rm

‖b − ABz‖2 holds for all b ∈ Rm if and only if R(A) =

R(AB).

Theorem 8.2 Let A ∈ Rm×n and A is full row rank, by Algorithm 1, Algorithm 2 or Algo-
rithm 3 with numerical droppings, we can construct an preconditioner M . With this precon-
ditioner M , the preconditioned least squares problem and the original least squares problem
are equivalent and GMRES can determine an least squares solution to the preconditioned
problem before breakdown.

For general case, by using Theorem 6.2, we have

R(M̂T ) = R(AT ), (8.25)

which is saying that,
R(M) = R(AT ), (8.26)

where M = M̂T .
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Theorem 8.3 Let A ∈ Rm×n, m ≤ n. M is constructed by Algorithm 1, Algorithm 2, or
Algorithm 3. Assume that all the linear independence is detected by any of these algorithms,
and M is used as a right preconditioner, the least squares problem

min
z∈Rm

‖b − AMz‖2 (8.27)

is equivalent to the original least squares problem (1.1), for all b ∈ Rm.

And by using Theorem 7.1, we have

R(M̂) = R(A), (8.28)

which is saying that
R(MT ) = R(A). (8.29)

Hence if we use M as a right preconditioner, we can have the following theorem for
m < n case.

Theorem 8.4 Let A ∈ Rm×n, m ≤ n, and rank(A) = r. Assume that all the linear
independence is detected by Algorithm 1, Algorithm 2 or Algorithm 3. M is constructed
by using one of these algorithms, used as a right preconditioner. Then for all b ∈ Rm,
preconditioned GMRES can determine a least squares solution to

min
z∈Rm

‖AMz − b‖2 (8.30)

before breakdown happens, and this solution attains min
z∈Rm

‖b − AMz‖2 = min
x∈Rn

‖b − Ax‖2.

9 Numerical Examples

In this section, we use a matrix lp cycle from the Florida University Sparse Matrices Col-
lection, where zero rows are omitted. Detailed information is given in Table 1.

Table 1: Information on the matrix

Name m n rank nnz rank deficiency
A 3371 1890 1875 21234 15

The condition number of A, which is given by σ1(A)
σn(A) , is 1.46 × 107. We construct the

preconditioner M and perform the BA-GMRES[6] which is given below.

Algorithm 6 BA- GMRES
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1. Choose x0

2. r̃0 = B(b − Ax0)
3. v1 = r̃0/‖r̃0‖2

4. for i = 1, 2, . . . , k

5. wi = BAvi

6. for j = 1, 2, . . . , i

7. hj,i = (wi, vj)
8. wi = wi − hj,ivj

9. end for
10. hi+1,i = ‖wi‖2

11. vi+1 = wi/hi+1,i

12. Find yi ∈ Ri which minimizes ‖r̃i‖2 = ‖‖r̃0‖2ei − H̄iy‖2

13. xi = x0 + [v1, . . . , vi]yi

14. ri = b − Axi

15. if ‖AT ri‖2 < ε stop
16. end for
17. x0 = xk

18. Go to 2.

The BA-GMRES is a method that solving least squares problems with GMRES by precon-
ditioning the original problem with a suitable preconditioner B.

In the following example, the right hand side vector b is constructed artificially so that
the true solution is all ones vector. In this section, we use

‖ũi‖2 ≤ 10−6‖Ai−1‖F ‖ai‖2, (9.1)

the criterion to judge if we need to switch to the ”else” case. When the switching tolerance is
zero, it implies that we are constructing RIF preconditioners. The stopping rule for GMRES
is

‖AT (b − Ax)‖2 ≤ 10−8 · ‖AT b‖2. (9.2)

In this example matrix A, we know that the rank deficient columns are,

182 184 216 237 253
717 754 961 1221 1239
1260 1261 1278 1640 1859,

(9.3)

15 columns in all. In the following example, we can see that our preconditioning algorithm
can detect most of them precisely.
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Table 2: Numerical Results

τk nnz in K, F, V rank(V) deficiency detected ITS Pre. T Its. T Tot. T

10−1 156082 NaN 182th + 3.14 RIF
244633 1875 −1260,−1261,−1278 1676 7.88 49.20 57.07

10−2 282707 NaN 182th + 4.00 RIF
542066 1875 −1260,−1261,−1278 1376 14.52 35.40 49.73

10−3 584959 NaN 182th + 4.55 RIF
1103814 1875 −1260,−1261,−1278 905 24.86 18.00 42.86

10−4 742283 NaN 182th + 4.98 RIF
1875272 1875 −1239,−1278 204 40.41 2.37 42.78

10−5 76220 NaN 182th + 5.03 RIF
2449916 1873 +1537, +1545 111 54.16 1.19 55.34

10−6 788238 NaN 182th + 5.14 RIF
2932859 1873 +1537, +1545 56 65.58 0.76 66.34

N.E. 374 0.00 5.94

In Table 2, we compared the RIF preconditioners and the preconditioners constructed by
Algorithm 3. In the last row, we have the result computed by using the GMRES to solving
the normal equation AT Ax = AT b. The rows with ”RIF” in column ”Its. T” are results
of the RIF method. For this problem, the RIF preconditioning algorithm broke down for
all the dropping tolerance τk. The column ”nnz in K,F, V ” gives the numbers of nonzero
elements in K,F, V , i.e. it is nnz(K) + nnz(F ) + nnz(V ). The column ”rank(V )” gives the
rank of V . According to our analysis before, K and F are always nonsingular. The column
”deficiency detected” gives the linear dependent columns detected by the RIF method or
our algorithm. −1260 means the 1260th column, which is a rank deficient column is missed
by our algorithm. +1537 means the 1537th column, which is a linear independent column,
is recognized as a rank deficient column by mistake. For RIF precondition, we have ”182th”
in the table, which means that RIF broke down at 182th column, which is the first linear
dependent column in A. For our algorithm, we successfully avoided the breakdown. In this
column, we gave the number of linear dependent columns we detected by our algorithm,
and gave the specific column numbers in the next rows. For other columns, ”ITS” means
iteration numbers, ”Pre. T” means preconditioning time, ”Its. T” means iteration time,
and ”Tot. T” means total CPU time.

In Table, 2, we found that when τk = 10−1, 10−2, 10−3, our algorithm detected 12
linear dependent columns, and when τk = 10−4, our algorithm detected 13 linear dependent
columns. And all these linear dependent columns we detected are correct. Hence, our
assumption is satisfied. When τk = 10−5, 10−6, our algorithm gave 17 linear dependent
columns, in which 15 of them are correct and 2 of them are wrong. Hence, in this two cases,
our algorithm did not detected all the linear independent columns in A, our assumption
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is not satisfied, which implies the preconditioned problem is not equivalent to the original
problem. However, from Table 2, we can see that the GMRES still converged to a good
enough approximate solution. From the following figure, we can have a better insight into
this situation.

Figure 1: Convergence Curve for Numerical Example 1
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From Figure 1 we can see, when the dropping tolerance τk = 10−5, 10−6,
‖AT r‖2

‖AT b‖2

reached 10−9 first and then went back to level 10−6, and then maintained at the level. This
phenomenon illustrates our assumption very well.

10 Conclusion

In this paper, we proposed a new preconditioner for least squares problems. And we
showed that when matrix A is full rank, our preconditioning method is the same as the
RIF preconditioner[1], and when A is rank deficient, our preconditioners still work while
the RIF preconditioner may break down. We proved that under certain assumption, using
our preconditioners, the preconditioned problems are equivalent to the original problems.
And also under the same assumption, we showed that the GMRES method can determine
a solution to the preconditioned problem before breakdown happens. And in the numerical
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experiment part, our numerical results confirmed our theories.
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