

ISSN 1346-5597

NII Technical Report

Types for Hereditary Permutators

Makoto Tatsuta

NII-2007-010E
Nov. 2007

Types for Hereditary Permutators

Makoto Tatsuta

National Institute of Informatics
2-1-2 Hitotsubashi, Tokyo 101-8430, Japan

tatsuta@nii.ac.jp

Abstract
This paper answers the open problem of finding a type system that characterizes hereditary

permutators, which is the problem 20 in the TLCA list of open problems. First this paper shows
that there does not exist such a type system by showing that the set of hereditary permutators is not
recursively enumerable. The set of positive primitive recursive functions is used to prove it. Secondly
this paper gives a best-possible solution by providing a set of types such that a term has every type
in the set if and only if the term is a hereditary permutator. Intersection types and the Omega type
is used to handle infinite computation in lambda terms.

1 Introduction

A hereditary permutator is a lambda term that represents finite or infinite nests of permutations. Finite
hereditary permutators have been proved to characterize the invertible terms in λ-calculus with βη-
reduction [3]. [1] proved that hereditary permutators characterize the invertible terms in Scott’s model
D∞. Invertible terms were used to characterize type isomorphisms [2].

A characterization of some class of lambda terms by a type system is always an interesting question
[4, 7]. The question of finding a characterization of hereditary permutators by a type system has been
studied intensively and is the problem 20 on the TLCA list of open problems [5].

This paper answers this question. First this paper shows that there does not exist such a type system
by showing that the set of hereditary permutators is not recursively enumerable. The set of hereditary
permutators cannot be characterized by any type system and any type with a recursively enumerable
language and a recursively enumerable set of inference rules. Secondly this paper gives a best-possible
solution by providing a set of types such that a term has every type in the set if and only if the term is
a hereditary permutator.

The set of positive primitive recursive functions is used to prove the first claim. This set will be shown
to be not recursively enumerable. For a give primitive recursive function f , we will construct a lambda
term obtained from some hereditary permutator by modifying some node in its Böhm tree for all n such
that the Böhm tree of the modified node is the same as that of the original node if and only if f(n)
is positive. Then we could decide whether f is positive by deciding whether this term is a hereditary
permutator.

For the second claim, we will use intersection types and the Omega type to handle infinite computation
in lambda terms. They will also enable us to use the subject reduction property and the subject expansion
property.

Section 2 describes basic definitions and the problem. Non-existence of the solution is proved in
Section 3. Section 4 gives permutator schemes that neatly characterizes hereditary permutators. Section
5 defines the type system with the set of types that characterizes hereditary permutators. One direction
of the characterization is proved in Section 6. Section 7 proves the other direction and completes the
characterization theorem.

2 Hereditary Permutators

In this section, we will give the problem 20 in the TLCA list of open problems [5] as well as basic
definitions.

1

Definition 2.1 (λ-Calculus). We have variables x, y, z, λ-terms M, N, . . . are defined by:
M, N, . . . ::= x|λx.M |MM .
FV(M) denotes the set of free variables in M . M [x := N] denotes a standard substitution. M ≡ N

denotes the syntactical equality modulo renaming bound variables. Vars is the set of variables. Λ is the
set of λ-terms.

One-step β-reduction M →β N is defined by the compatible closure of

(β) (λx.M)N →β M [x := N].

β-reduction M →∗
β is defined as the reflexive transitive closure of the relation →β . β-equality M =β N

is defined as the least equivalence relation including →∗
β . We say M reduces N if M →∗

β N . A λ-term
of the shape (λx.M)N is called a redex. A λ-term M is called normal if there is not any λ-term N such
that M →β N .

A λ-term M is called head normal if M is of the shape λx1 . . . xn.yN1 . . . Nm. A λ-term M is called
head normalizing if there is some head normal term N such that M →∗

β N .

Definition 2.2 (Böhm Trees). We suppose ⊥ is a constant. N∗ is defined to be the set of a finite
sequence of natural numbers. 〈m0,m1, . . . , mn〉 denotes an element in N∗, 〈〉 denotes the empty sequence,
and s ∗ t denotes the concatenation of sequences s and t. s ≤ t is defined to hold for s, t ∈ N∗ if s is an
initial segment of t.

A tree is defined by a partial function f from N∗ to the set {λx1 . . . xn.y|x1, . . . , xn, y ∈ Vars, n ≥
0} ∪ {⊥} such that
(1) f(t) is undefined if f(s) is undefined and s ≤ t,
(2) for any s there is a number i such that f(s ∗ 〈i〉) is undefined,
(3) f(s ∗ 〈i〉) is undefined if f(s ∗ 〈j〉) is undefined and j < i,
(4) f(s ∗ 〈i〉) is undefined if f(s) = ⊥.

We will write ⊥ for the tree f when f(〈〉) = ⊥. We will also write [λx1 . . . xn.y, T0, . . . , Tm] for the
tree f when f(〈〉) = λx1 . . . xn.y and f(〈m〉) is defined, f(〈m + 1〉) is undefined, and the tree Ti is the
function fi such that fi(s) = f(〈i〉 ∗ s).

When the tree T is [λx1 . . . xn.y, T1, . . . , Tm], λx1 . . . xn.y is called a node of the tree T , and a node
of some subtree Ti is also called a node of T . λx1 . . . xn.y is called the root in the tree T . If the tree T is
given by a function f , the node f(s ∗ 〈i〉) is called a child node of the node f(s).

The depth of the node in the tree is defined by:
(1) The depth of the node λx1 . . . xn.y in the tree [λx1 . . . xn.y, T1, . . . , Tm] is 0,
(2) The depth of a node in the tree [λx1 . . . xn.y, T1, . . . , Tm] is d + 1 if the depth of the node in some
subtree Ti is d.

Böhm tree BT(M) of a λ-term M is defined by:
(1) BT(M) = ⊥ if M is not head normalizing,
(2) BT(M) = [λx1 . . . xn.y, BT(M1), . . . ,BT(Mm)] if M =β λx1 . . . xn.yM1 . . .Mm.

Remark. (1) The tree [λx1 . . . xn.y, BT(M1), . . . ,BT(Mm)] is traditionally drawn by the picture

¡
¡

¡
¡

¡

@
@

@
@

@

λx1 . . . xn.y

BT(M1) BT(Mn)

· · ·
.

(2) If M =β N , then BT(M) = BT(N).
(3) BT(M) = ⊥ if and only if M is not head normalizing.
Example. BT(λw.(λx.y)x((λz.z)z)w) = BT(λw.yzw) = [λw.y, z, w].

BT(λw.(λx.xx)(λx.xx)((λz.z)z)w) = ⊥. BT(λw.(λx.y)x((λx.xx)(λx.xx))w) = [λw.y,⊥, w].
BT(λw.(λx.y)x((λz.y)((λx.xx)(λx.xx)))) = [λw.y, y].

Definition 2.3 (Hereditary Permutators). A λ-term M is called a hereditary permutator if BT(M)
satisfies the following conditions:

(H1) Its root has the shape λzx1 . . . xn.z and the multiset of its child nodes is {λwi
1 . . . wi

ni
.xi|1 ≤ i ≤ n}

for some variables wi
j 6= xi.

2

(H2) A node except the root has the shape λx1 . . . xn.y and the multiset of its child nodes is
{λwi

1 . . . wi
ni

.xi|1 ≤ i ≤ n} for some variables wi
j 6= xi.

The problem 20 in the TLCA list of open problems is finding a type that characterizes the set of
hereditary permutators. This question expects that there is some type system T with some type A such
that M : A is provable in T if and only if M is a hereditary permutator.

We will answer this question. First, in Section 3 we will show that the set of hereditary permutators is
not recursively enumerable. Hence we will conclude that there does not exist any type that characterizes
hereditary permutators if the system has a recursively enumerable language and a recursively enumerable
set of inference rules. Secondly, in Section 5 we will present an intersection type system with a set of
types which characterizes hereditary permutators.

In the description of the problem 20 in the TLCA list of open problems, a hereditary permutator M
is defined to satisfy

(H0’) M is closed and each variable occurs once in M ,
(H1’) M has the shape λzx1 . . . xn.zM1 . . .Mm,
(H2’) In BT(M), the set of the child nodes of a node λx1 . . . xn.y includes the set {λwi

1 . . . wi
l .xi|1 ≤ i ≤ n}

for some variables wi
j 6= xi.

By this definition, we might think that λzx.z((λw.x)z) is not a hereditary permutator because of (H0’)
and λz.(λy.z)y is not a hereditary permutator either because of (H1’). We understood the conditions
(H0’) and (H1’) as not those for M , but those for BT(M). Then this definition is equivalent to Definition
2.3.

3 Non-existence of a type for hereditary permutators

We will show that there does not exist any type that characterizes the set of hereditary permutators.
Notation. We will write HP for the set of hereditary permutators. N is the set of natural numbers. We

will use a vector notation ~e to denote a sequence e1, . . . , en (n ≥ 0). For example, we will use ~M to denote
a sequence of λ-terms M1, . . . , Mn (n ≥ 0). M ~N denotes MN1 . . . Nn. λ~x.M denotes λx1 . . . xn.M . f(~x)
denotes f(x1, . . . , xn) if ~x denotes the sequence x1, . . . , xn. We will write n for the n-th Church numeral
λfx.fnx where fnx denotes f(f(. . . (fx) . . .)) (n times of f). We will also write ñ for Sn0 for a number
n.

First, we give several notations for partial recursive functions.

Definition 3.1. We write {n}pr(x) for the n-th unary primitive recursive function. 〈x, y〉 denotes the
standard primitive recursive pairing, and π0(x) and π1(x) are the first and second projections respectively.
The n-th unary partial recursive function {n}(x) is defined by {π1(n)}pr(µy.({π0(n)}pr(〈x, y〉) = 0)). We
also define u(x, y) = {x}pr(y).

Remark. The function u is a universal function for unary primitive recursive functions. u is a total
recursive function.

Definition 3.2. For a function f : Nn → N , we say that a λ-term F represents f when f(m1, . . . , mn) =
m iff Fm1 . . .mn →∗

β m.

Theorem 4.15 in Page 53 in [6] showed the following claim.

Theorem 3.3 ([6]). For every recursive function f , there is some λ-term F such that F represents f .

Definition 3.4. PPR is defined to be the set {n ∈ N |∀x({n}pr(x) > 0)}.

PPR is the set of indexes for positive primitive recursive functions.

Proposition 3.5. The set PPR is not recursively enumerable.

3

Proof. By the standard result from recursion theory, we have the recursive function S : N2 →
N defined by {S(n,m)}pr(x) = {n}pr({m}pr(x)), and the recursive function P : N → N defined by
{P (n)}pr(m) = 〈n,m〉.

Assume that PPR is recursively enumerable. We will show contradiction.
Define a partial function f : N → N by f(x) = 1 if S(π0(x), P (x)) is in PPR, and f(x) is undefined

otherwise. Then f is partial recursive. There is a number e such that for all x, both {e}(x) and f(x) has
the same value or both are undefined.

Then we show that f(x) is defined if and only if {x}(x) is undefined. It is proved as follows:
f(x) is defined iff S(π0(x), P (x)) is in PPR by the definition of f , iff ∀y({π0(x)}pr({P (x)}pr(y)) >
0) by the definition of S and PPR, iff ∀y({π0(x)}pr(〈x, y〉) > 0) by the definition of P , iff
{π1(x)}pr(µy.({π0(x)}pr(〈x, y〉) = 0)) is undefined, iff {x}(x) is undefined.

If {e}(e) is defined, then f(e) is defined by the definition of e, and hence {e}(e) is undefined by the
above. Hence {e}(e) is undefined. However, f(e) is undefined by the definition of e, and hence {e}(e) is
defined by the above, which is contradiction.

Consequently, the set PPR is not recursively enumerable. 2

We define

S ≡ λyfx.f(yfx),
Y0 ≡ λxy.y(xxy),
Y ≡ Y0Y0.

The term S is the successor for Church numerals. Y is Turing’s fixed point operator.
Remark. Y M →∗

β M(Y M).
We now prove the first main theorem by using PPR.

Theorem 3.6. The set HP of hereditary permutators is not recursively enumerable.

Proof. Assume HP is recursively enumerable. We will show contradiction.

Define P as Y (λpz0z1.z0(pz1)). Then BT(λz0.Pz0) is

λz0z1.z0

λz2.z1

λz3.z2

...

, since Pzn →∗
β (λz0z1.z0(Pz1))zn =α

(λznzn+1.zn(Pzn+1))zn →β λzn+1.zn(Pzn+1). Hence λz0.Pz0 is in HP.
By Theorem 3.3, we have a λ-term U that represents the function u. Define T by

∆ ≡ λx.xx,
T ≡ Y (λtxyz0z1.Uxy(λw.z0(tx(Sy)z1))(∆∆)).

Then we have Teñzn →∗
β λzn+1.Ueñ(λw.zn(Te ˜(n + 1)zn+1))(∆∆) in a similar way to P . Hence

BT(Teñzn) is [λzn+1.zn,BT(Te ˜(n + 1)zn+1)] if {e}pr(n) > 0 since Ueñ =β k + 1 for some k and
BT(Teñzn) is ⊥ if {e}pr(n) = 0 since Ueñ =β 0.

We show that λz0.T e0z0 is in HP if and only if e is in PPR. The direction form the right to the left is
proved by BT(λz0.T e0z0) = BT(λz0.Pz0) when e is in PPR, and hence BT(λz0.T e0z0) is in HP. In order
to show the direction form the left to the right, first we assume e is not in PPR and will show λz0.T e0z0

is not in HP. From e 6∈ PPR, we have a number m0 such that {e}pr(m0) = 0 and {e}pr(m) > 0 for all

m < m0. Then BT(λz0.T e0z0) =

λz0z1.z0

λz2.z1

λz3.z2

...

λzm0 .zm0−1

⊥

, and hence BT(λz0.T e0z0) is not in HP.

4

If HP were recursively enumerable, then PPR would be recursively enumerable, which would lead to
contradiction. Therefore HP is not recursively enumerable. 2

Non-existence of solutions for the problem follows immediately from the previous theorem.

Theorem 3.7 (Non-existence of a type for hereditary permutators). There does not exist any
type system T with any type A such that its language and the set of its inference rules
are recursively enumerable, and the set of hereditary permutators is the same as {M ∈
Λ|Γ ` M : A is provable in T for some Γ}.

Proof. If we had such a type system T , then {M ∈ Λ|Γ ` M : A is provable in T for some Γ} would
be recursively enumerable, and therefore HP would be recursively enumerable, which would contradict
to Theorem 3.6. 2

4 Permutator Schemes

We will define a permutator scheme that has the same Böhm tree as the application of a hereditary
permutator to a variable. Permutator schemes will neatly characterize hereditary permutators and we
will discuss some set-theoretic properties of hereditary permutators by using them.

Definition 4.1. We write Sm for the symmetric group of order m. We define the set PSn(z) for n ≥ 0
and a variable z by

PS0(z) = Λ,
PSn+1(z) = {M ∈ Λ|M →∗

β λx1 . . . xm.zMπ(1) . . . Mπ(m), π ∈ Sm,Mi ∈ PSn(xi) (1 ≤ i ≤ m)}.

Remark. (1) M ∈ PSk(z) iff there is a hereditary permutator N such that BT(λz.M) and BT(N) are
the same at any node at depth < k.

(2) PSk+1(z) ⊆ PSk(z).

Lemma 4.2. (1) Let n > 0. M is in PSn(z) if and only if the following hold in BT(M).

(a) Its root has the shape λ~x.z,
(b) If it has a node λx1 . . . xm.y at depth < n− 1, the multiset of its child nodes is {λ~wi.xi|1 ≤ i ≤ m}

for some variables ~wi different from xi,
(c) If it has a node λx1 . . . xm.y at depth n− 1, the node has m child nodes.

(2) λz.M is in HP if and only if M is in PSn(z) for all n > 0.

Proof. (1) The left-hand side to the right-hand side. By induction on n.
Case n = 1. (a) M →∗

β λx1 . . . xm.zMπ(1) . . . Mπ(m), so the claim holds.
(b) There is not any node at depth < 0.
(c) The node at depth 0 is the root and has m child nodes.
Case n > 1. Suppose M ∈ PSn(z). Let M →∗

β λx1 . . . xm.zMπ(1) . . .Mπ(m) and Mi ∈ PSn−1(xi).
(a) The claim holds since its head variable is z.
(b) If the node is the root, the claim holds because the root of BT(Mi) is λ~wi.xi by induction hypothesis

(a) for n− 1 with Mi ∈ PSn−1(xi). If the node is not the root, the node at depth < n− 1 is some node
at depth < n− 2 of BT(Mi) for some i. By induction hypothesis (b) for n− 1 with Mi ∈ PSn−1(xi), the
claim holds.

(c) Any node at depth = n − 1 is some node at depth = n − 2 of BT(Mi) for some i. By induction
hypothesis (c) for n− 1 with Mi ∈ PSn−1(xi), the claim holds.

The right-hand side to the left-hand side. By induction on n.
Case n = 1. The claim holds from (a) and (c).
Case n > 1. By (a), we have M →∗

β λx1 . . . xm.z ~M . By (b), z ~M is zMπ(1) . . .Mπ(m) for some π ∈ Sm

and Mi →∗
β λ~wi.xi

~Ni.
We show that BT(Mi) satisfies (a) to (c) for xi and n− 1.
(a) Its root is λ~wi.xi.

5

(b) Any node at depth < n − 2 in BT(Mi) is some node at depth < n − 1 in BT(M), so the claim
holds.

(b) Any node at depth = n − 2 in BT(Mi) is some node at depth = n − 1 in BT(M), so the claim
holds.

By induction hypothesis for n− 1, we have Mi ∈ PSn−1(xi). Hence M is in PSn(z)
(2) (A) The left-hand side to the right-hand side. For each n, we will show M ∈ PSn(z). If n = 0,

then the claim holds since PS0(z) = Λ. Suppose n > 0. We will show that BT(M) satisfies (a) to (c) in
(1) for z and n.

(a) The claim holds by (H1).
(b)(c) If the node is the root, the claim follows from (H1). If the node is not the root, the claim

follows from (H2).
Hence we have M ∈ PSn(z) from (1).
(B) The right-hand side to the left-hand side.
(H1) The claim follows from M ∈ PS2(z) and (a) and (b) in (1).
(H2) Let d be the depth of the node. The claim follows from M ∈ PSd+2(z) and (b) in (1). 2

5 Types for hereditary permutators

This section will present a type system with a set of types which characterizes hereditary permutators.

Definition 5.1. We define the type system T .
We have type constants pn, qm (n ≥ 0,m ≥ 1), and Ω. Types A,B, . . . are defined by:
A,B, . . . ::= pn|qm|Ω|A→A|A ∩A (n ≥ 1,m ≥ 0).
Type partial equivalence A ∼n B for n > 0 is defined by:

Ω ∼0 Ω
Ai ∼n Bi (1 ≤ i ≤ m)

Bπ(1) → . . .→Bπ(m) → qk ∼n+1 A1 → . . .→Am → qk

where π ∈ Sm and TC(Ai, Bi)− {Ω} (1 ≤ i ≤ m), {qk} are disjoint in the second rule.
A type declaration is a finite set of the form {x1 : A1, . . . , xn : An} where xi’s are distinct variables

and Ai’s are types. We will write Γ,∆, . . . for a type declaration. A judgment is Γ ` M : A. We will
also write x1 : B1, . . . , xn : Bn ` M : A for {x1 : B1, . . . , xn : Bn} ` M : A, and Γ, y : C ` M : A for
x1 : B1, . . . , xn : Bn, y : C ` M : A, when Γ is {x1 : B1, . . . , xn : Bn}.

Typing rules are given by:

Γ, x : A ` x : A
(Ass)

Γ, x : A ` M : B

Γ ` λx.M : A→B
(→I) Γ ` M : A→B Γ ` N : A

Γ ` MN : B
(→E)

Γ ` M : A Γ ` M : B
Γ ` M : A ∩B

(∩I) Γ ` M : A ∩B
Γ ` M : A

(∩E1)
Γ ` M : A ∩B

Γ ` M : B
(∩E2)

Γ ` M : Ω
(Ω)

Γ, z : A ` M : B A ∼n B

Γ ` λz.M : pn
(pnI)

Notation. TC(~A) is defined as the set of type constants in the types ~A.
Remark. The relation ∼n is proved to be a partial equivalence relation.
This is a standard intersection type system except for the type partial equivalence∼n and the constants

pn, qm. The intended meaning of the relation ∼n and the constants pn are the set {(A,B)|z : A ` M :
B iff M ∈ PSn(z)} and the set {λz.M |M ∈ PSn(z)} respectively. The constants qm are used for keeping
hierarchy in ∼n. Our discussion will also go well in the same way when we add the type preorder ≤ with
set-theoretically-sound rules such as A ∩ B ≤ B ∩ A. Intersection types and the type Ω are necessary
since we need the subject expansion property in our proof.

We have a characterization theorem of HP by this type system with the set of the types pn.

Theorem 5.2 (Characterization Theorem). M is a hereditary permutator if and only if ` M : pn

is provable in the type system T for all n.

We will finish the proof of this theorem in Section 7. The soundness of this characterization will be
proved in Section 6 and its completeness will be shown in Section 7.

6

6 Soundness

We will prove the soundness part of Theorem 5.2 by using permutator schemes.
First we will show basic properties for the system T .

Definition 6.1. [A] is defined as a type of the shape defined by:

[A] ::= A|[A] ∩B|B ∩ [A].

[A] ambiguously denotes some type obtained from A by intersection.
We have a standard generation lemma.

Lemma 6.2 (Generation Lemma). (1) If Γ, x : A ` x : B and B 6= Ω, then A is [B].
(2) If Γ ` λx.M : [A→B], then Γ, x : A ` M : B.
(3) If Γ ` MN : [B] and B 6= Ω, then there is some A such that Γ ` M : A→B and Γ ` N : A.
(4) If Γ, x : A1→. . .→An→B ` xM1 . . . Mm : Cl+1→. . .→Cn→B, n > 0, and Cl+1→. . .→Cn→B 6= Ω,

then l = m, Ai = Ci (l < i ≤ n), and Γ, x : A1 → . . .→An →B ` Mi : Ai (1 ≤ i ≤ l).

Proof. (1)(2)(3) By induction on the proof.
(4) The claim follows from (1) and (3). 2

Next we will show the subject reduction property. The next lemma is an auxiliary lemma for that.

Lemma 6.3. Γ, x : A ` M : B and Γ ` N : A imply Γ ` M [x := N] : B.

Proof. By induction on Γ, x : A ` M : B 2

Proposition 6.4 (Subject Reduction). If Γ ` M : A and M →β M ′, then Γ ` M ′ : A.

Proof. Induction on the proof. Consider cases according to the last rule. By induction hypothesis,
we can immediately show cases where M is not the redex. We will show only interesting cases.

Case (→E) where M is the redex. The proof is

Γ ` λx.M : B →A, Γ ` N : B

Γ ` (λx.M)N : A .

and M ′ is M [x := N].
By Lemma 6.2 (2) for Γ ` λx.M : B → A, we have Γ, x : B ` M : A. By Lemma 6.3, we have

Γ ` M [x := N] : A.
Case (Ipn). The proof is

Γ, z : A ` N : B A ∼n B

Γ ` λz.N : pn

and M ′ is λz.N ′ where N →β N ′. By induction hypothesis, we have Γ, z : A ` N ′ : B. Hence
Γ ` λz.N ′ : pn holds. 2

Then we will show the subject expansion property. For that, we need the following lemma.

Lemma 6.5. If Γ ` M [x := N] : A, then there is some type B such that Γ, x : B ` M : A and Γ ` N : B.

Proof. Induction on the proof. Consider cases according to the last rule. We will show only interesting
cases.

Case x 6∈ FV(M). Let B be Ω.
Case (→E). The proof is

Γ ` M1 : C →A Γ ` M2 : C

Γ ` M1M2 : A .

By induction hypothesis, we have B1 such that Γ, x : B1 ` M1 : C → A and Γ ` N : B1. By induction
hypothesis, we also have B2 such that Γ, x : B2 ` M2 : C and Γ ` N : B2. Let B be B1 ∩B2.

Case (∩E). Similar to Case (→E).
Case (Ω). Let B be Ω. 2

In order to have this lemma, we need intersection types and the Ω type. The subject expansion
property is proved by using this lemma.

7

Proposition 6.6 (Subject Expansion). Γ ` M : A and M ′ →β M implies Γ ` M ′ : A.

Proof. Induction on the proof. Consider cases according to the last rule. We will discuss only
interesting cases.

Case M ′ is the redex. Let M ′ be (λx.L)N and M be L[x := N]. By Lemma 6.5, there is a type B
such that Γ, x : B ` L : A and Γ ` N : B. Then we have Γ ` λx.L : B→A and hence we have Γ ` M ′ : A.

Case (→I) and M ′ is not the redex. We can put M ′ = λx.N ′, M = λx.N , and N ′ →β N . By
induction hypothesis for Γ, x : A ` N : B, we have Γ, x : A ` N ′. Hence Γ ` M ′ : A holds.

Case (→E) and M ′ is not the redex. We can put M ′ = N ′L′, M = NL. The claim follows from
induction hypothesis.

Cases (∩I), (∩E1), and (∩E2). By induction hypothesis.
Case (Ω). The claim holds trivially.
Case (pnI) and M ′ is not the redex. We can put M ′ = λz.N ′, M = λz.N , and N ′ →β N . By

induction hypothesis, Γ, z : A ` N ′ : B holds. Hence we have Γ ` M ′ : pn. 2

Remark. We will use the subject reduction property and the subject expansion property for proving
soundness and completeness respectively.

Definition 6.7. right(A) is defined as the rightmost type constant in A. HN is defined to be the set of
head normalizing terms. X → Y is defined as the set {M ∈ Λ|∀N ∈ X(MN ∈ Y)} for sets X, Y ⊆ Λ.

The interpretation [|A|] of a type A is defined by:

[|qn|] = [|pn+1|] = HN (n ≥ 0),
[|Ω|] = Λ,
[|A→B|] = [|A|]→ [|B|],
[|A ∩B|] = [|A|] ∩ [|B|].

The interpretation [|∼n|] is defined by

[|∼0|] = {(Λ,Λ)},
[|∼n+1|] = p(HN)× p(HN).

Example. right(A→B → q0, (C → q1) ∩ (C → q2)) = {q0, q2}.

Lemma 6.8. (1) x ~M is in [|A|].
(2) right(A) 6= Ω implies [|A|] ⊆ HN.
(3) [|A|] is closed under =β .

Proof. (1) By induction on A.
(2) By induction on A.
Case A→ B. Suppose right(A→ B) 6= Ω and M ∈ [|A→B|]. By (1) we have x ∈ [|A|]. Hence Mx is

in [|B|]. By induction hypothesis for B, we have Mx ∈ HN. Hence M is in HN.
Case A ∩B. From right(A ∩B) 6= Ω, we have right(B) 6= Ω. By induction hypothesis for B, we have

[|B|] ⊆ HN. Hence we get [|A ∩B|] ⊆ HN.
(3) By induction on A. 2

Definition 6.9. A variable assignment ρ is defined by ρ : Vars→ Λ. A variable assignment ρ[x := M]
is defined by (ρ[x := M])(x) = M and (ρ[x := M])(y) = ρ(y) if x is not y. The interpretation [|M |]ρ of a
term M with ρ is defined as M [x1 := ρ(x1), . . . , xn := ρ(xn)] where FV(M) = {x1, . . . , xn}.

Lemma 6.10. If we have −−−→x : B ` M : A and ρ(xi) ∈ [|Bi|] (∀i), then we have [|M |]ρ ∈ [|A|].

Proof. It is proved by induction on the proof. We consider cases according to the last rule. We will
show only interesting cases.

Case (→I). Assume N ∈ [|A|]. We will show [|λx.M |]ρN ∈ [|B|]. Let ρ′ be ρ[x := N]. By induction
hypothesis, we have [|M |]ρ′ ∈ [|B|]. Since we have [|λx.M |]ρN →β [|M |]ρ′, from Lemma 6.8 (3), we get
[|λx.M |]ρN ∈ [|B|]. Hence [|λx.M |]ρ is in [|A→B|].

Cases (→E), (∩I), (∩Ei) are proved by induction hypothesis.
Case (Ω) is proved by [|Ω|] = Λ.

8

Case (Ipn). The proof is

Γ, z : A ` M : B A ∼n B

Γ ` λz.M : pn .

Let ρ′ be ρ[z := z]. By Lemma 6.8 (1), ρ′(z) is in [|A|]. By induction hypothesis, we have Mρ′ ∈ [|B|].
Since n > 0 and A ∼n B, we have right(B) 6= Ω. By Lemma 6.8 (2), we have [|B|] ⊆ HN. Since (λz.M)ρ
is λz.Mρ′, we have (λz.M)ρ ∈ HN. 2

Proposition 6.11. If −−−→x : B ` M : A and right(A) 6= Ω, M is head normalizing.

Proof. Let ρ(x) = x. By Lemma 6.8 (1), ρ(xi) = xi is in [|Bi|]. By Lemma 6.10, we have Mρ ∈ [|A|].
By Lemma 6.8 (2) we have [|A|] ⊆ HN. Since Mρ = M , we have M ∈ HN. 2

Definition 6.12. We define the set core(A) of type constants for a type A by induction on A by

core(c) = {c} (c = qn, pn,Ω),
core(A→B) = core(B),
core(A ∩B) = core(A) ∪ core(B).

We will also write core(A1, . . . , An) and core(x1 : A1, . . . , xn : An) for ∪{core(Ai)|1 ≤ i ≤ n}.
Example. core(A→B → q0, (C → q1) ∩ (C → q2)) = {q0, q1, q2}.

Lemma 6.13. If Γ, x : A ` x ~M : B, then core(A) ⊇ core(B).

Proof. By induction on the proof. 2

Lemma 6.14. If A ∼n B and Γ, z : A ` M : B are provable and core(Γ) ∩ (TC(A,B)− {Ω}) = φ, then
M is in PSn(z).

Proof. By induction on n.
Case n = 0. The claim holds since PS0(z) = Λ.
Case n + 1. Let A be Bπ(1)→ . . .→Bπ(m)→ qk and B be A1→ . . .→Am → qk. By Proposition 6.11,

M is head normalizing. Let M →∗
β λ~x.y ~M and ~x be x1, . . . , xl.

By Proposition 6.4, we have Γ, z : A ` λ~x.y ~M : B. By Lemma 6.2 (2), we have Γ, z : A,
−−−→
x : A ` y ~M : C

where we put C = Al+1 → . . .→Am → qk.
Since core(Γ)∩ (TC(A,B)−{Ω}) = φ, we have qk 6∈ core(Γ) and hence y is z or xi from Lemma 6.13.

Since qk 6∈ TC(Ai, Bi) − {Ω}, we have qk 6∈ core(Ai) and hence y is z from Lemma 6.13. Then we have
Γ, z : A,

−−−→
x : A ` z ~M : C.

If m = 0, then the claim holds since l = 0 and z ∈ PSn(z). Suppose m > 0. By Lemma 6.2 (4), the
length of ~M is l and we have Bπ(i) = Ai (l + 1 ≤ i ≤ m) and Γ, z : A,

−−−→
x : A ` Mi : Bi (1 ≤ i ≤ l)

where we put z ~M = zMπ(1) . . . Mπ(l).
By definition M ∈ PS1(z) iff M →∗

β λ~x.z ~M and the lengths of ~x and ~M are the same. Hence we have
M ∈ PS1(z). If n = 1, the claim immediately follows from this.

Suppose n > 1. When i 6= j, core(Ai) 6= core(Bj) holds since these cores are some type constants
other than Ω and TC(Ai, Bi)−{Ω} and TC(Aj , Bj)−{Ω} are disjoint. From Bπ(i) = Ai (l+1 ≤ i ≤ m)
we have π(i) = i for l + 1 ≤ i ≤ m. Therefore π is in Sl.

Since we already have Ai ∼n Bi, Γ, z : A,
−−−→
x : A ` Mi : Bi, and core(Γ, z : A, xj : Aj (i 6=

j)) ∩ (TC(Ai, Bi) − {Ω}) = φ, by induction hypothesis for n, we have Mi ∈ PSn(xi). From
M →∗

β λx1 . . . xl.zMπ(1) . . .Mπ(l), π ∈ Sl, and Mi ∈ PSn(xi), we have M ∈ PSn+1(z). 2

Lemma 6.15. ` λz.M : [pn] implies M ∈ PSn(z).

Proof. Induction on the proof. Consider cases according to the last rule.
We do not have cases (Ass), (→I), (→E), nor (Ω).
Cases (∩I) and (∩Ei) are proved by induction hypothesis.
Case (Ipn). The proof is

z : A ` M : B A ∼n B

` λz.M : pn .

Let Γ be φ in Lemma 6.14, we have M ∈ PSn(z). 2

9

Proposition 6.16 (Soundness). If ` M : pn for all n, then M is in HP.

Proof. By Proposition 6.11, we have M →∗
β λx1 . . . xl.y ~M . By Proposition 6.4, we have `

λx1 . . . xl.y ~M : pn.
If l = 0, we have contradiction from Lemma 6.2 (1) and (3). So we have l > 0. Let λz.N be

λx1 . . . xl.y ~M .
We have ` λz.N : pn for all n. By Lemma 6.15, we have N ∈ PSn(z) for all n. By Lemma 4.2 (2),

we have λz.N ∈ HP. Hence M is in HP. 2

7 Completeness

We will show the completeness and finish the proof of the characterization theorem.

Lemma 7.1. If M ∈ PSn(z), there are A and B such that z : A ` M : B and A ∼n B.

Proof. Induction on n.
Case n = 0. Take Ω for A,B.
Case n + 1. Suppose M →∗

β λx1 . . . xm.zMπ(1) . . . Mπ(m), π ∈ Sm, and Mi ∈ PSn(xi).
Induction hypothesis for n, we have Ai and Bi such that xi : Ai ` Mi : Bi and Ai ∼n Bi. By choosing

appropriate ql for each (Ai, Bi), we can suppose that TC(Ai, Bi)− {Ω} (1 ≤ i ≤ m) are disjoint.
Let qk be fresh in Ai, Bi and A = Bπ(1) → . . .→Bπ(m) → qk and B = A1 → . . .→Am → qk. Then we

have A ∼n+1 B.
Then we have z : A,

−−−→
x : A ` zMπ(1) . . .Mπ(m) : qk. Hence we get z : A ` λ~x.zMπ(1) . . . Mπ(m) : B. By

Proposition 6.6, we have z : A ` M : B. 2

Proposition 7.2 (Completeness). If M ∈ HP, then we have ` M : pn.

Proof. Let M →∗
β λz.N . By Lemma 4.2 (2), we have N ∈ PSn(z) for all n > 0. By Lemma 7.1,

there are A and B such that z : A ` N : B and A ∼n B. By the rule (Ipn), we get ` λz.N : pn. By
Proposition 6.6, we have ` M : pn. 2

Now we complete the proof of the characterization theorem.
Proof of Theorem 5.2. The implication from the right-hand side to the left-hand side is proved by

Proposition 6.16. The implication form the left-hand side to the right-hand side is proved by Proposition
7.2. 2

Example. Let

Y = (λxy.y(xxy))(λxy.y(xxy)),
Q = Y (λfxy.x(fy)),
P = λx0.Qx0.

We have

Y F →∗
β F (Y F),

Qx0 →∗
β λx1.x0(Qx1) →∗

β λx1.x0(λx2.x1(Qx2)) →∗
β λx1.x0(λx2.x1(λx3.x2(Qx3))) →∗

β

Then BT(P) is

λx0x1.x0

λx2.x1

λx3.x2

...

and P is a hereditary permutator.

Let

A0 = Ω,
An+1 = An → qn+1.

10

Then {An → An|n > 0} is the set of types for P . That is, we have ` P : An → An for all n. On the
other hand, we can show that if ` M : An →An for all n, then M β-equals to P or the finite hereditary
permutators Pm defined by

P0 = λz.z,
Pn+1 = λzx1.z(Pnx1).

Acknowledgments

We would like to thank Professor Koji Nakazawa for comments on a draft of this paper.

References

[1] J.A. Bergstra and J.W. Klop, Invertible terms in the lambda calculus, Theoretical Computer Sicence
11 (1980) 19–37.

[2] K. Bruce, R. Di Cosmo, and G. Longo, Provable isomorphisms of types, Mathematical Structures in
Computer Science 2 (2) (1992) 231–247.

[3] M. Dezani-Ciancaglini, Characterization of normal forms possessing inverse in the lambda-beta-eta-
calculus, Theoretical Computer Science 2 (1976) 323–337.

[4] M. Dezani-Ciancaglini, F. Honsell, and Y. Motohama, Compositional Characterization of λ-terms
using Intersection Types, Theoretical Computer Science 340 (3) (2005) 459–495.

[5] R. Hasegawa, L. Paolini, and P. Urzyczyn, The TLCA list of Open Problems,
http://tlca.di.unito.it/opltlca/, 2007.

[6] J.R. Hindley and J.P. Seldin, Introduction to Combinators and λ-Calculus (Cambridge University
Press, Cambridge, 1986).

[7] M. Tatsuta and M. Dezani-Ciancaglini, Normalisation is Insensible to lambda-term Identity or Differ-
ence, In: Proceedings of Twenty First Annual IEEE Symposium on Logic in Computer Science (2006)
327–336.

11

