
ISSN 1346-5597

NII Technical Report

Visualization of Concurrent Program Executions

Cyrille Artho, Klaus Havelund, and Shinichi Honiden

NII-2007-006E
May 2007

Visualization of Concurrent Program Executions

Cyrille Artho
Research Center for Information Security (RCIS),

National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan

Klaus Havelund
NASA Jet Propulsion Laboratory/Columbus Technologies, Pasadena, USA

Shinichi Honiden
National Institute of Informatics, Honiden Laboratory, Tokyo, Japan

Abstract

Various program analysis techniques are very ef-
ficient at discovering failures and properties. How-
ever, it is often difficult to evaluate results, such as
program traces. This calls for abstraction and visual-
ization tools. We propose an approach based on UML
sequence diagrams, addressing shortcomings of such
diagrams for concurrency. The result is a more expres-
sive visualization that can provide all the necessary in-
formation at a glance.

1. Introduction

Certain program analysis techniques work directly
on the executable program. For instance,run-time ver-
ification monitors executions of (possibly concurrent)
programs [2, 8, 10, 23].Software model checkingalso
analyzes executions of concurrent systems, producing
an error trace when a failure is found [3, 5, 12, 27].
Tool capabilities have advanced, but their outputs still
consist of overly concise reports, or very long program
traces. Hence, understanding the nature of failures
and properties remains difficult. Program traces are a
widely used way to show how a program behaves up to
a given point, but may grow very large.Abstractions
can simplify program traces; indeed, a typical trace
shown to the end user contains mostly method calls
and thus constitutes a useful abstraction. For sequen-
tial programs, a program trace or even a stack trace (a
subset of the entire program trace) contains enough in-
formation for a concise and useful summary.

However, large or concurrent traces are hard to read.
In a concurrent program, context switches interrupt
threads. By showing only a thread ID prior to each
step, a program trace has no clear visual indication
of such a context switch. Furthermore, it is not clear
whether a context switch is necessary to reproduce a
failure, or whether it just happened to be part of the
schedule executed that lead to a failure. In order words,
the happens-before relation between events [17] is not
visible in a program trace, even if it may be available
from data gathered at run-time [8].

Program trace visualization addresses the problem
of understanding dynamic program behavior. Two ap-
proaches exist:still visualization,whereall events are
visualized in one view, andanimations. Still visualiza-
tion includes UML sequence diagrams [22] and plots
of event sequences, such as in [21] or a large num-
ber of similar tools. Common notations such as UML
are not capable of capturing asynchronous events [15].
Animations use either a two-dimensional view of each
state [5, 6], or a three-dimensional animation [20]. In
animations, the order in which events occur is intu-
itively visible; however, an animation also imposes a
total order on concurrent events where only a partial
order may exist.

There seems to be a relationship between still visu-
alization and automated gathering of requirements [7,
9, 28], where a requirements specification of a program
is extracted from one or more program runs. As an ex-
ample, a state machine extracted from several runs can
be regarded as a still visualization of the program’s be-
havior as well as a specification of its behavior during
those runs. Extraction of such specifications from runs

1

can serve as oracles for later runs, for example for use
in regression testing, or simply as a means of program
understanding. Other forms of less visual specifica-
tions can be extracted, such as for example temporal
logic specifications [28]. Such specifications also have
natural visualizations, for example as time lines [24].

This paper is organized as follows: Section 2 de-
scribes our visualization approach. Reasons for design
choices in our visualization are given in Section 3. Sec-
tion 4 shows a more complex example, where our vi-
sualization approach was used to elucidate a complex
error trace. Section 5 discusses implementation issues.
Section 6 concludes and outlines challenges ahead.

2. Our visualization approach

In still visualization, even complex event chains can
be visualized “at a glance”. We chose an approach
based on UML sequence diagrams [22] because UML
diagrams are fairly widely accepted in industry and
supported by tools. UML sequence diagrams capture
sequences of method calls, but cannot deal with con-
currency. We have therefore extended UML sequence
diagrams in several ways to include the missing fea-
tures required to visualize concurrent events.

2.1. Limitations of UML sequence diagrams

Sequence diagrams are designed to show sequences
of method calls. This task is closely related to display-
ing a program trace. UML sequence diagrams have
been studied extensively and defined precisely [15,
18]. Our work expands on existing sequence diagrams
and gives them a meaning in concurrent scenarios.

Our initial approach is based on previous extensions
of UML sequence diagrams for clarifying the current
execution context [18]. Previous work [18] has not ad-
dressed concurrency. In particular, UML sequence di-
agrams cannot illustrate the following:

• A Thread as data structureandexecutable task.

• “Invisible” task switches induced by the thread
scheduler.

• Activations and suspensions of threads. In most
modern programming languages that follow a
POSIX thread model [13, 19, 25], a thread is in-
active when created. Once a special method (such
as start) is called, it becomes active, but can
be suspended, through actions that wait on events

(such as termination of another thread, or notifi-
cation of a change of a shared conditional).

• Time-based suspension. A thread can suspend it-
self (“sleep”) for a certain time, allowing other
threads to run. The same effect can be induced by
the thread scheduler through a context switch. Its
occurrence is therefore somewhat arbitrary, and
cannot be used for reliable synchronization of
events. We have therefore chosen not to visual-
ize this artifact.

• The happens-before relation[17]. This relation
indicates that certain events must happen strictly
before another event occurs. For instance, any
events leading to the creation and activation of
another thread must happen before actions of
the child thread take place. This is obvious as
the child thread did not exist during such previ-
ous actions. However, when a large number of
such events occurs, understanding of the happens-
before relation is often non-trivial, and should
therefore be included in a visualization.1

• Locking. Many programming languages use
locks for mutual exclusion [13, 19, 25]. The pres-
ence of locking actions may delay a thread until a
certain lock is available. This is partially reflected
by the happens-before relation. For conciseness,
we have not added another mechanism to visual-
ize locking and lock sets.

The happens-before relation states, informally, that
based on observed events, certain reorderings of events
are possible. Given events would still occur with
an equivalent global program state after each event,
and the overall outcome of the program would not be
changed. More formally, if events are reordered within
the happens-before relation, an observer that evaluates
global program states always sees the same sequence
of global program states, even though invisible inter-
nal actions can be ordered in different ways [17]. This
resulting property is calledsequential consistency.

2.2. Our UML extensions

Our visualization addresses the concerns described
above. It is based on the Java programming language,
but readily applicable to other programming languages

1Until recently, with common run-time verification algorithms,
the knowledge of this relation was often incomplete. A recent algo-
rithm computes this relation precisely without much overhead [8].

2

using the same thread model [13, 19, 25]. Our visu-
alization distinguishes between the two roles of a Java
thread as an executable task and a data structure [13].
The thread data structure holds information such as
thread name and ID, and can be extended with other
data. A thread as ataskconstitutes a light-weight pro-
cess that shares the global heap with other threads.
This article refers the following methods of the Java
API to denote crucial operations on threads and locks:

• methodstart causes a thread to begin execution;

• join suspends the current thread until the target
thread has terminated;

• wait suspends the current thread until another
thread issuesnotify or notifyAll.2

Threads as a data structure are visualized like other ob-
ject instances in UML sequence diagrams. Our first
extension is the visualization of role of a thread as an
executable task by a hexagon. A dashed arrow point-
ing to the left symbolizes the thread scheduler running
a thread (task). As in UML sequence diagrams, solid
arrows depict a method call or return, and solid squares
show a method being executed.

main

Worker

main

create

Server WorkerPort

Figure 1. A thread switch from main to
Worker, and back.

Figure 1 includes these basic elements. It shows the
illustration ofcontext switchesbetween threads. At the
beginning of the scenario, themain thread is sched-
uled. This thread creates a new instance ofPort. Dur-
ing the call to the constructor, the scheduler switches
to another thread,Worker. The interruption of themain
thread is shown by a gap in the time line of the call
from Serverto Port. ThreadWorkerexecutes for a cer-
tain amount of time without making any method call,
after which themainthread is scheduled again, and the
method call toPort completes.

2This simplified definition holds if one thread is waiting on a
shared lock. For the complete definition that covers multiple waiting
threads, refer to the language specification [13].

main

run

start

create
main

Worker

WorkerServer

Figure 2. Thread creation and start.

wait
main

main

Server Port

Figure 3. Thread suspension using wait.

Dotted lines show event dependencies according to
the happens-before relation [17]. If there is a dotted
line from a pointp to a hexagont, then any events fol-
lowing an activation of threadt could have started right
after p. Figure 2 shows the happens-before relation
based on a slightly more complex example, where a
worker thread isstartedby themainthread. At the be-
ginning of the program, themain thread is scheduled,
as depicted by a hexagon. A dashed arrow points to
the beginning of the sequence of actions of that thread,
symbolizing scheduling of actions of this thread. Cre-
ation of threadWorker involves initialization of the
data structure and is no different from initializing a
normal object. The thread is started by a library call,
which interfaces with the operating system. Any ac-
tions of threadWorkercan occur at any time after this
point, symbolized by the dotted line. In other words,
actions of threadWorkercould be moved up to the top
of the horseshoe-shaped dotted line.

The start of a thread is shown by a corresponding
action in the thread scheduler, using an dashed arrow
pointing from a hexagon to the left. Likewise, thread
suspensionis depicted by such a dashed arrow point-
ing to the right, from the lower part of the black box
denoting a method call, to the thread being suspended.
In Figure 3, themain thread runs and callswait on
lock Port. The arrow originates from the end of the
method call rather than its middle because the current
thread still executes instructions up to its suspension.

3

join

start

run

Server

main

Worker

main

Worker

Figure 4. Thread suspension using join.

wait

Worker

main

main

Port WorkerServer

notify

Figure 5. Thread notification.

Unlike thread suspension, threadterminationis not
shown as a scheduler event. Because no further ac-
tions of that thread exist, there is no compelling need
to decorate thread termination. On the other hand,
thread termination may influence the behavior of other
threads waiting on that event, and thus contribute to
the happens-before relation. Figure 4 shows an exam-
ple involvingThread.join. As in subsequent figures,
some initial thread activations have been omitted for
brevity. Threadmainstarts a worker thread and waits
upon its termination usingjoin. This suspendsmain
until Workerterminates. Any events in themainthread
following thatjoin call can only happen after Thread
Workerhas terminated, as illustrated by the dotted line.

Thread notification is similar to re-activation of
a thread after suspension. In the previous exam-
ple involvingjoin and thread termination, one event
leads to thread suspension (join), while another event
(thread termination) allows the suspended thread to
continue. The same pattern exists forwait/notify,
the key difference being that continuation of the sus-
pended thread is achieved by a special call (notify)
rather than termination of another thread.

Figure 5 shows an example forwait/notify. As in
Figure 4, suspension of the waiting thread is shown by
a dashed arrow pointing to the right. Here threadmain
waits onPort, which is used as a lock and semaphore

according to standard Java semantics [13]. After sus-
pension, threadWorkeris scheduled, which notifies all
threads waiting onPort. Notification leads to activa-
tion of one of the suspended threads (main in the ex-
ample). Once notified, a thread is again ready to run,
as shown by the happens-before relation. Activation is
takes place inside native methodnotify.

Notification can target a single thread, orall threads
waiting on a lock, usingnotifyAll in Java. Whenever
several threads wait for the same lock, notification will
enable all of them to run. In this case, the happens-
before relation concerns multiple threads. Further-
more, it is often the case that only a single thread
will continue to execute, while all the other threads re-
check a shared condition and then go back to being
suspended by callingwait again.

Figure 6 depicts such a scenario. At the beginning
of the situation shown, threadsWorker 1andWorker 2
are waiting on lockPort. ThreadmaincallsnotifyAll
on that lock, whereuponWorker 1 is scheduled first.
That thread can complete an action on global data
(e. g., consuming a shared resource, such as a con-
nection from a client). After that, the scheduler runs
Worker 2. In the example, the shared resource has
been consumed byWorker 1, soWorker 2has to wait
again until another thread makes the resource in ques-
tion available again. Therefore,Worker 2subsequently
waits again after re-checking its condition. This allows
the scheduler to executeWorker 1again.

3. Design decisions

Our extension of UML sequence diagrams main-
tains a close and concise mapping [14]. We address all
commonly available concurrency artifacts [13, 19, 25],
using four new symbols. First, we distinctly express
the role of a thread as a task. Second, we make task
activations and context switches visible. The hexagon
as a task symbol is visually clear. Furthermore, it
allows attachment of arrows denoting thread context
switches, and lines representing the happens-before re-
lation. Locks are not directly visualized, but can be
shown by secondary notations, such as annotations.

Third, thread suspension is different from a nor-
mal context switch (where a thread can continue to run
again later). We chose to represent this with a sym-
bol that is the reverse of thread activation by a context
switch. We believe that this is consistent.

Finally, the happens-before relation [17] explains
possible event orderings. It is visualized by dotted

4

wait

notifyAll

Worker 2Server Port

Worker 1

Worker 1

Worker 2

Worker 2

Worker 1

Figure 6. Thread notification: Main thread notifies both work er threads.

lines. Events are not totally ordered [17]. Thus, more
constraining visualizations, such as shaded regions,
fail for more complex scenarios.

We chose to illustrate calls towait andnotify like
any other method calls, by a solid black box. This does
not only provide consistency, but also allows for a bet-
ter illustration of the side effects of these methods.

The precise timing of thread activations cannot be
determined, as it occurs inside special method calls,
such asstart andnotify. Hence, the line visualizing
the happens-before relation is placed in the middle of
such method calls. Thread suspension viajoin is dif-
ferent, as its argument (the thread in question) actually
has to terminate before said call returns. Therefore, the
line of the happens-before relation must be attached to
the bottom of the box, representing completed method
execution, which implies thread termination.

Method calls towait do not affect the happens-
before relation. This is becausewait has no direct ef-
fect on other threads, so any events of other threads are
not correlated to when the current thread is suspended.

We chose not to visualize locking and lock sets di-
rectly. Inclusion of lock sets may be done by annota-
tions, but will decrease conciseness of the graph. Like-
wise, atomicity of actions, which depends on locking,
is not shown. While correct lock usage corresponds to
a “hard mental operation” [14], our visualization cap-
tures the key problems in concurrency on a slightly
higher level of abstraction, improving scalability.

4. Trace visualization

The example application was subject to previous re-
search [1, 4]. It implements a chat server, where mul-
tiple clients can connect and interact with each other.
The architecture of the chat server is fairly complex,

involving a main server thread to accept connections
and one worker thread per connection. Worker threads
use shared data structures to send a message to all other
clients (see Figure 7). This architecture is comparable
to modern web servers [11].

In the chat server, the main server thread listens to
incoming connections and creates a worker thread for
each connection that is handled. These worker threads
use shared data structures to send a message to all
other clients. The main thread inside each client pro-
cess is the only thread and therefore not shown sepa-
rately. Because the server contains several threads, the
main thread is listed as such. Each message from a
client is handled by the corresponding worker thread
on the server side. This worker thread then sends that
message to each other client by accessing the shared
array that contains references to all the other work-
ers. Through this array, the sockets connecting the chat
server to each client can be retrieved. Therefore any in-
teraction between clients always occurs via the server
application, where it is handled by a particular worker
thread.

Process

Client

Process

Client

Thread

Thread

Worker

accesses

Worker

Server

main

creates

Thread

Process

Figure 7. Chat server architecture.

5

3: run()

1: create, start

2: create, start

3.1: sendAll(String)

3.1.2: send(String)

3.1.1: send(String)

main

Worker 1 Worker 2Server

out == null

Worker 1
out != null

Figure 8. Complex interaction illustrated by our extended s equence diagram.

The difficulty of understanding program semantics
became obvious when analyzing a complex error trace
containing six threads and hundreds of transitions be-
tween threads [1]. We subsequently sought visualiza-
tion techniques. Figure 8 shows the essence of such
an error trace. Trace abstraction was performed man-
ually [26], but we believe that this can be automated
in a scalable way. Crucial events include thread cre-
ations and changes in the predicate that makes the pro-
gram fail (fieldout beingnull when accessed). The
program trace consists of the three classes (Server,
Worker 1, Worker 2). The Server class first initializes
the two worker threads (using them as data structures),
and enables them to run (as threads). In the exam-
ple, the second client then proceeds to send a message.
The second worker thread is subsequently scheduled
to handle this event. This entails sending a message
to all clients. To achieve this, the worker thread ac-
cesses data structures of all worker threads, including
itself. When accessing fieldout of the other Worker
object, it accesses an uninitialized field, producing a
NullPointerException.

The failure occurs because the constructor of the
worker threads initializes only some fields. Initializa-
tion of referenceout is performed in therun method of
a worker thread, rather than in its constructor. There-
fore, a particular sequence of initialization and execu-
tion leads to a null pointer dereference in one of the
two threads involved. Annotations aboutout (in ital-
ics) show changes and dereferences inside a method
call. The happens-before relation links initialization
of thread Worker 1 to its execution, showing that
this thread could have been scheduled after the other
worker thread was initialized. Such a schedule would

have avoided a failure. The actual schedule shown in
this trace is different, leading to a failure. The error
trace in its entirety is rather long and difficult to read.
For readers with some experience in the Java socket
API, Appendix A includes the full error trace, and an
explanation of each step.

5. Visualizer architecture

As described earlier, events can be contained in an
error trace of a model checker, or be generated at run-
time. Figure 9 shows how events are extracted in both
cases. In model checking (MC), the resulting error
trace is visualized. In run-time verification (RV), event
generation has to be embedded into the program being
analyzed. This can be done with automated code in-
strumentation, for example, using aspect-oriented pro-
gramming [16].

Instrumentation tool

checker
Model

trace
Error

Program Program

program
modified

MC RV

Events

Visualizer

RV toolAnalyzer

Figure 9. Event extraction / visualization.

6

The modified program will, in addition to its nor-
mal functionality, emit events to our visualizer. In RV,
the visualizer can operate on-line, using live events, or
off-line, after termination of the program. Error traces
from model checkers are only examined off-line, after
termination of the model checker.

The visualization module can be built as a library.
Calls can be made at points defined by a programmer,
or at automatically instrumented places. Alternatively,
a parser can be built for a particular input format, ei-
ther reading error traces from a model checker, or read-
ing logged execution traces. The result of the parse
can then be visualized with the same package, inde-
pendently of the application domain.

6. Conclusions and future work

Understanding a concurrent program trace is diffi-
cult. Still visualization builds on trace abstraction and
shows the essence of a trace. Our approach builds on
UML sequence diagrams and can illustrate a failure on
a complex error trace clearly, and can also be used as a
tool to reverse engineer program behavior. Error traces
may originate from a model checker or a run-time ver-
ification tool and can be visualized in the same way.

Future challenges include automated tool support,
so our visualization can be applied to larger examples.
This will also allow us to explore the scalability of our
visualization when used with different abstraction or
exploration techniques. We will also consider visual-
ization of timeouts and locks through means other than
annotations.

A. Full error trace

Figures 10, 11, and 12 contain the full error trace
of the example application. From the raw output of
Java PathFinder 3.0a (JPF) [27], the following modifi-
cations have been performed:

• Steps showing execution of code inside Java li-
brary classes or of internal helper classCentral-
izedProcesshave been omitted. The latter class
is necessary to transform all the processes of a
client/server application into threads, such that
they can be run in a single-process virtual ma-
chine. This is an artifact of the specific (complex)
application chosen, and discusses extensively in
previous publications [1, 4]. Process centraliza-
tion makes it possible to select several interact-
ing processes in a single-process model checker.

All processes are converted to threads, and net-
work communication using TCP/IP method calls
is substituted by a “virtual” network, which con-
nects the centralized processes. For all intents and
purposes, the application behaves as if it were a
multi-process application, but it runs inside a sin-
gle wrapper process.

• The formatting has been improved and enhanced
with type setting language keywords in bold face.

• Duplicate reports of execution steps referring to
the same line of code have been deleted. Such du-
plication arises, for instance, when one line con-
tains several instructions (such as a string con-
catenation), or when a lock is acquired, which
blocks execution of that thread until the lock is
available.

• The thread IDs in the thread stacks (at the bottom
of the trace) have been adjusted in order to cor-
respond to the thread IDs inside the error trace.
This corresponds to a feature that is available in a
newer version of JPF.

Without further explanation, the error trace is very hard
to understand, due to its length and complexity. Six
threads are involved, five of which execute at least
some instructions in this error trace. Three of these
threads are still active at the time when the exception
occurs. In order to make the error trace more under-
standable, each step is explained briefly:

• First, the exception of the current thread is shown.
This is thread 4 (the last thread shown in the error
trace, in transition 116).

• Transition 0 (thread 0): The wrapper thread starts
all the processes of the client/process application.

• Transitions 1 – 5 (thread 1): Initialization of the
main process of the chat server.

• Transitions 19 – 20 (thread 2): Initialization of the
first chat client.

• Transition 22 (thread 2): The first chat client con-
nects to the server.

• Transitions 37 – 39 (thread 1): The chat server ac-
cepts the incoming connection and initializes the
first worker thread. Note how referenceout is ini-
tialized tonull in line 19 ofChatServer.java.
After registration of the new worker thread in the

7

array of active worker threads, the chat server
main thread waits again for an incoming con-
nection by callingservsock.accept (Transi-
tion 39).

• Transitions 56 – 60 (thread 2): The first chat client
sends a message to the server and tries to read
the first incoming message from the server. This
could be its own message or a message from a
different chat client.

• Transitions 63 – 65 (thread 3): Initialization of the
second chat client, which connects to the server.

• Transitions 77 – 80 (thread 1): The chat server
accepts the incoming connection, initializes the
second worker thread, and registers that worker
thread in the array of active worker threads. Af-
ter that, the limit of connections has been ex-
hausted, so the main server thread shuts down
(transition 80).

• Transitions 81 – 88 (thread 3): The second chat
client sends a message to the server and tries to
read the server response.

• Transitions 91– 112 (thread 4): The first worker
thread initializes its output stream(out),reads the
first message from its client, and proceeds to send
that message to all active clients usingsendAll.

• Transition 115 (thread 2): The first chat client
reads the server response, closes its connection,
and terminates.

• Transition 116 (thread 4): The first worker thread
accesses referenceout of the second worker
thread. This reference isnull. Hence, its ac-
cess leads to theNullPointerException shown
at the beginning of this error trace.

• Subsequently, the stack traces of the other active
threads are shown. These are thread 3, which
is the second client waiting for the response,
and thread 5, which is the second worker thread.
Methodrun of the second worker thread is eligi-
ble for execution, but has not scheduled for ex-
ecution yet. Hence, referenceout of the second
worker thread has never been initialized.

References

[1] C. Artho and P.-L. Garoche. Accurate centraliza-
tion for applying model checking on networked
applications. InProc. 21st Int’l Conf. on Auto-
mated Software Engineering (ASE 2006), Tokyo,
Japan, 2006.

[2] C. Artho, K. Havelund, and A. Biere. High-level
data races.Journal on Software Testing, Verifica-
tion & Reliability (STVR), 13(4):220–227, 2003.

[3] C. Artho, V. Schuppan, A. Biere, P. Eugster,
M. Baur, and B. Zweimüller. JNuke: Effi-
cient Dynamic Analysis for Java. InProc.
16th Int’l Conf. on Computer Aided Verification
(CAV 2004), volume 3114 ofLNCS, pages 462–
465, Boston, USA, 2004. Springer.

[4] C. Artho, C. Sommer, and S. Honiden. Model
checking networked programs in the presence
of transmission failures. InProc. 1st Joint
IEEE/IFIP Symposium on Theoretical Aspects of
Software Engineering (TASE 2007), Shanghai,
China, 2007.

[5] J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu,
Robby, S. Laubach, and H. Zheng. Bandera:
Extracting finite-state models from Java source
code. InProc. 22nd Int’l Conf. on Software Engi-
neering (ICSE 2000), pages 439–448, Limerick,
Ireland, 2000. ACM Press.

[6] L. Cousot and K. Havelund. Visualization of
Concurrent Java Program Executions. NASA
Ames Research Center, Internal project, 2001.

[7] C. Csallner and Y. Smaragdakis. DSD-Crasher:
A hybrid analysis tool for bug finding. InProc.
Int’l Symposium on Software Testing and Analy-
sis (ISSTA 2006), pages 245–254, 2006.

[8] T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks:
Efficiently computing the happens-before rela-
tion using locksets. InProc. 1st Combined Int’l
Workshops on Formal Approaches to Software
Testing and Runtime Verification (FATES 2006
and RV 2006), volume 4262 ofLNCS, pages 193–
208, Seattle, USA, 2006. Springer.

[9] M. Ernst. Dynamically Discovering Likely Pro-
gram Invariants. PhD thesis, 2000.

8

[10] E. Farchi, Y. Nir, and S. Ur. Concurrent bug pat-
terns and how to test them. InProc. 20th IEEE
Int’l Parallel & Distributed Processing Sympo-
sium (IPDPS 2003), page 286, Nice, France,
2003. IEEE Computer Society Press.

[11] The Apache Foundation, 2006.
http://www.apache.org/.

[12] P. Godefroid. Model checking for program-
ming languages using VeriSoft. InProc. 24th
ACM Symposium on Principles of Programming
Languages (POPL 1997), pages 174–186, Paris,
France, 1997. ACM Press.

[13] J. Gosling, B. Joy, G. Steele, and G. Bracha.
The Java Language Specification, Third Edition.
Addison-Wesley, 2005.

[14] T. Green and M. Petre. Usability analysis of
visual programming environments: A ‘cognitive
dimensions’ framework.Journal of Visual Lan-
guages and Computing, 7(2):131–174, 1996.

[15] Ø. Haugen. From MSC-2000 to UML 2.0 -
the future of sequence diagrams. InProc. 10th
Int’l SDL Forum Copenhagen on Meeting UML
(STL 2001), pages 38–51, London, UK, 2001.
Springer-Verlag.

[16] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. Griswold. An overview of As-
pectJ.LNCS, 2072:327–355, 2001.

[17] L. Lamport. How to Make a Multiprocessor
that Correctly Executes Multiprocess Programs.
IEEE Transactions on Computers, 9:690–691,
1979.

[18] X. Li, Z. Liu, and J. He. A formal seman-
tics of UML sequence diagrams. InProc. 16th
Australian Software Engineering Conf. (ASWEC
2004), Melbourne, Australia, 2004. IEEE Com-
puter Society.

[19] Microsoft Corporation.Microsoft Visual C# .NET
Language Reference. Microsoft Press, Redmond,
USA, 2002.

[20] O. Radfelder and M. Gogolla. On better un-
derstanding UML diagrams through interactive
three-dimensional visualization and animation.
In Proc. Int’l Conf. on Advanced Visual Inter-
faces (AVI 2000), pages 292–295. ACM Press,
New York, 2000.

[21] J. Roberts and C. Zilles. TraceVis: an exe-
cution trace visualization tool. InProc. Work-
shop on Modeling, Benchmarking and Simulation
(MoBS 2005), Madison, USA, 2005.

[22] J. Rumbaugh, I. Jacobson, and G. Booch.The
Unified Modeling Language Reference Man-
ual. Addison-Wesley Object Technology Series,
1998.

[23] S. Savage, M. Burrows, G. Nelson, P. Sobal-
varro, and T. Anderson. Eraser: A dynamic data
race detector for multithreaded programs.ACM
Transactions on Computer Systems, 15(4):391–
411, 1997.

[24] M. Smith, G. Holzmann, and K. Etessami. Events
and Constraints: a Graphical Editor for Capturing
Logic Properties of Programs. InProc. 5th IEEE
Int’l Symposium on Requirements Engineering
(RE 2001), August 2001.

[25] B. Stroustrup. The C++ Programming Lan-
guage, Third Edition. Addison-Wesley Longman
Publishing Co., Inc., Boston, USA, 1997.

[26] K. Tei. Personal communication, 2006.

[27] W. Visser, K. Havelund, G. Brat, S. Park, and
F. Lerda. Model checking programs.Auto-
mated Software Engineering Journal, 10(2):203–
232, 2003.

[28] J. Yang. Automatically Inferring Temporal Prop-
erties. InDoctoral Symposium, 27th Int’l Conf.
on Software Engineering (ICSE 2005), St Louis,
USA., 2005.

9

java.lang.NullPointerException: calling
’println(Ljava/lang/String;)’ on null object

at Worker.send(ChatServer.java:44)
at ChatServer.sendAll(ChatServer.java:91)
at Worker.run(ChatServer.java:32)

----------------------------------- path to error (length: 117)
Tr. #0 Thread #0

ChatSim.java:12 Thread t[] = new Thread[nClients + 1];
ChatSim.java:13 t[0] = new CentralizedProcess(0) {
ChatSim.java:17 t[0].start();
ChatSim.java:31 for (int i = 1; i <= nClients; i++) {
ChatSim.java:32 t[i] = new CentralizedProcess(i) {
ChatSim.java:37 t[i].start();
ChatSim.java:31 for (int i = 1; i <= nClients; i++) {
ChatSim.java:32 t[i] = new CentralizedProcess(i) {
ChatSim.java:37 t[i].start();
ChatSim.java:31 for (int i = 1; i <= nClients; i++) {
ChatSim.java:39 }

Tr. #1 Thread #1
ChatSim.java:15 new ChatServer(nClientsServed);
ChatServer.java:51 public ChatServer(int maxServ) {
ChatServer.java:52 int port = 4444;
ChatServer.java:53 workers = new Worker[2];
ChatServer.java:56 ServerSocket servsock = new ServerSocket(port);

Tr. #5 Thread #1
ChatServer.java:57 while (maxServ-- != 0) {
ChatServer.java:58 sock = servsock.accept();

Tr. #19 Thread #2
ChatSim.java:34 ChatClient.main(null);
ChatClient.java:13 static int currID = 0;
ChatSim.java:34 ChatClient.main(null);
ChatClient.java:16 new ChatClient().exec();
ChatClient.java:19 public ChatClient() {

Tr. #20 Thread #2
ChatClient.java:20 synchronized(getClass()) {
ChatClient.java:22 }

Tr. #22 Thread #2
ChatClient.java:23 }
ChatClient.java:16 new ChatClient().exec();
ChatClient.java:27 Socket socket = new Socket();
ChatClient.java:28 InetSocketAddress addr = new InetSocketAddress(...);
ChatClient.java:29 socket.connect(addr);

Tr. #37 Thread #1
ChatServer.java:58 sock = servsock.accept();

Tr. #38 Thread #1
ChatServer.java:60 synchronized(this) {
ChatServer.java:61 for (i = 0; i < workers.length; i++) {
ChatServer.java:62 if (workers[i] == null) {
ChatServer.java:63 workers[i] = new Worker(i, sock, this);
ChatServer.java:8 class Worker implements Runnable {
ChatServer.java:63 workers[i] = new Worker(i, sock, this);
ChatServer.java:15 public Worker(int n, Socket s, ChatServer cs) {
ChatServer.java:16 this.n = n;
ChatServer.java:17 chatServer = cs;
ChatServer.java:18 sock = s;
ChatServer.java:19 out = null;
ChatServer.java:20 in = null;
ChatServer.java:21 }
ChatServer.java:63 workers[i] = new Worker(i, sock, this);
ChatServer.java:64 new Thread(workers[i]).start();
ChatServer.java:65 break;
ChatServer.java:67 } if (i == workers.length) {
ChatServer.java:70 }

Figure 10. Part 1 of error trace: Start of server thread, first client, first worker thread.

10

Tr. #39 Thread #1
ChatServer.java:71 }
ChatServer.java:57 while (maxServ-- != 0) {
ChatServer.java:58 sock = servsock.accept();

Tr. #56 Thread #2
ChatClient.java:30 System.out.println("Client " + id + " connected.");
ChatClient.java:31 InputStreamReader istr =
ChatClient.java:33 BufferedReader in = new BufferedReader(istr);

Tr. #57 Thread #2
ChatClient.java:34 OutputStreamWriter out =
ChatClient.java:36 out.write(id + ": Hello, world!\n");

Tr. #59 Thread #2
ChatClient.java:37 out.flush();
ChatClient.java:38 for (int i = 0; i < 1; i++) {

Tr. #60 Thread #2
ChatClient.java:39 System.out.println(id + ": Received " + in.readLine());

Tr. #63 Thread #3
ChatSim.java:34 ChatClient.main(null);
ChatClient.java:16 new ChatClient().exec();
ChatClient.java:19 public ChatClient() {

Tr. #64 Thread #3
ChatClient.java:20 synchronized(getClass()) {
ChatClient.java:21 id = currID++;
ChatClient.java:22 }

Tr. #65 Thread #3
ChatClient.java:23 }
ChatClient.java:16 new ChatClient().exec();
ChatClient.java:27 Socket socket = new Socket();
ChatClient.java:28 InetSocketAddress addr = new InetSocketAddress(...);
ChatClient.java:29 socket.connect(addr);

Tr. #77 Thread #1
ChatServer.java:58 sock = servsock.accept();

Tr. #78 Thread #1
ChatServer.java:60 synchronized(this) {
ChatServer.java:61 for (i = 0; i < workers.length; i++) {
ChatServer.java:62 if (workers[i] == null) {
ChatServer.java:61 for (i = 0; i < workers.length; i++) {
ChatServer.java:62 if (workers[i] == null) {
ChatServer.java:63 workers[i] = new Worker(i, sock, this);
ChatServer.java:15 public Worker(int n, Socket s, ChatServer cs) {
ChatServer.java:16 this.n = n;
ChatServer.java:17 chatServer = cs;
ChatServer.java:18 sock = s;
ChatServer.java:19 out = null;
ChatServer.java:20 in = null;
ChatServer.java:21 }
ChatServer.java:63 workers[i] = new Worker(i, sock, this);
ChatServer.java:64 new Thread(workers[i]).start();
ChatServer.java:65 break;
ChatServer.java:67 } if (i == workers.length) {
ChatServer.java:70 }

Tr. #79 Thread #1
ChatServer.java:71 }
ChatServer.java:57 while (maxServ-- != 0) {
ChatServer.java:75 }

Tr. #80 Thread #1
ChatServer.java:76 System.out.println("Server shutting down.");
ChatServer.java:77 }
ChatSim.java:15 new ChatServer(nClientsServed);
ChatSim.java:16 }};

Tr. #81 Thread #3
ChatClient.java:30 System.out.println("Client " + id + " connected.");

Figure 11. Part 2 of error trace: Second client connects, sec ond worker thread created.

11

Tr. #84 Thread #3
ChatClient.java:31 InputStreamReader istr =
ChatClient.java:33 BufferedReader in = new BufferedReader(istr);

Tr. #85 Thread #3
ChatClient.java:34 OutputStreamWriter out =
ChatClient.java:36 out.write(id + ": Hello, world!\n");

Tr. #87 Thread #3
ChatClient.java:37 out.flush();
ChatClient.java:38 for (int i = 0; i < 1; i++) {

Tr. #88 Thread #3
ChatClient.java:39 System.out.println(id + ": Received " + in.readLine());

Tr. #91 Thread #4
ChatServer.java:24 System.out.println(... + Thread.currentThread());

Tr. #93 Thread #4
ChatServer.java:26 out = new PrintWriter(sock.getOutputStream(), true);

Tr. #97 Thread #4
ChatServer.java:27 assert(out != null);

Tr. #98 Thread #4
ChatServer.java:28 in = new BufferedReader(new

Tr. #102 Thread #4
ChatServer.java:30 String s = null;
ChatServer.java:31 while ((s = in.readLine()) != null) {

Tr. #105 Thread #4
ChatServer.java:32 chatServer.sendAll("[" + n + "]" + s);

Tr. #111 Thread #4
ChatServer.java:89 for (i = 0; i < workers.length; i++) {

Tr. #112 Thread #4
ChatServer.java:90 if (workers[i] != null)
ChatServer.java:91 workers[i].send(s);
ChatServer.java:44 out.println(s);
ChatServer.java:45 }
ChatServer.java:89 for (i = 0; i < workers.length; i++) {
ChatServer.java:90 if (workers[i] != null)
ChatServer.java:91 workers[i].send(s);
ChatServer.java:44 out.println(s);

Tr. #115 Thread #2
ChatClient.java:39 System.out.println(id + ": Received " + in.readLine());
ChatClient.java:38 for (int i = 0; i < 1; i++) {
ChatClient.java:41 out.close();
ChatClient.java:44 }
ChatClient.java:45 }
ChatClient.java:17 }
ChatSim.java:35 }

Tr. #116 Thread #4
ChatServer.java:44 out.println(s);

------------------------------------ end error path

------------------------------------ thread stacks
Thread #3:

at java.io.BufferedReader.readLine(java/io/BufferedReader.java:292)
at java.io.BufferedReader.readLine(java/io/BufferedReader.java:362)
at ChatClient.exec(ChatClient.java:39)
at ChatClient.main(ChatClient.java:16)
at ChatSim$2.run(ChatSim.java:34)

Thread #5:
at Worker.run(ChatServer.java:24)

------------------------------------ end thread stacks

===================================
1 Error Found: uncaught exception

===================================

Figure 12. Part 3: The second client sends a message, leading to an exception in the server.

12

