Uniqueness of D-normal Proofs

Makoto Tatsuta

NII-2006-011E
Sept. 2006
Uniqueness of D-normal Proofs

Makoto Tatsuta

National Institute of Informatics
2-1-2 Hitotsubashi, Tokyo 101-8430, JAPAN
e-mail: tatsuta@nii.ac.jp

Abstract

This paper presents the notion of D-normal proofs, which is defined syntactically and gives one of the weakest conditions for uniqueness of normal proofs. This paper proves the following results: (1) \(\beta\eta D\)-normal proofs of a formula are unique. (2) A \(\beta\)-normal proof of a PNN-formula is D-normal. (3) A \(\beta\)-normal proof of a minimal formula in BCK logic is D-normal. These results give other proofs of uniqueness of \(\beta\eta\)-normal proofs of a PNN-formula, and uniqueness of \(\beta\eta\)-normal proofs of a minimal formula in BCK logic.

1 Introduction

Number of normal proofs has been studied widely [2]. In this paper we will present the notion of D-normal proofs and discuss uniqueness of normal proofs using this notion.

We will present the notion of D-normal proofs, which is defined syntactically and gives sufficient conditions for uniqueness of normal proofs. Several sufficient conditions for uniqueness of normal proofs such as the one-two property [2], balanced formulas [5], minimal formulas in BCK logic [3], provability with non-prime contraction [1] and the PNN condition [2] have been proposed. D-normality is one of the weakest conditions in those conditions.

We will prove that D-normality conditions properly weaker than the PNN condition. The PNN condition was proposed recently and one of the weakest condition at that time. This gives another proof of uniqueness \(\beta\eta\)-normal proofs of a PNN-formula.

The uniqueness of \(\beta\eta\)-normal proofs of a minimal formula in BCK logic was a problem proposed by [4] and solved independently at almost the same time by Hirokawa [3] and the author [6]. The author used the notion of D-normal proofs for that purpose and proved that \(\beta\)-normal proofs of a minimal formula in BCK logic is D-normal.

Section 2 presents the notion of D-normal proofs and proves uniqueness of \(\beta\eta D\)-normal proofs. Section 3 proves that a \(\beta\)-normal proof of a PNN-formula is D-normal and gives another proof of uniqueness of \(\beta\eta\)-normal proofs of a PNN-formula. Section 4 states that a \(\beta\)-normal proof of a minimal formula in BCK logic is D-normal and proves uniqueness of \(\beta\eta\)-normal proofs of a minimal formula in BCK logic.

2 D-normal proofs

We study constructive propositional logic with only implicational formulas in natural deduction style. Formulas are constructed by \(\rightarrow\) from propositional variables. The inference rules are as follows.

\[
\begin{align*}
\frac{\text{l}}{A} & \\
\vdots & \\
\frac{B}{A \rightarrow B} & (\rightarrow I) \\
\end{align*}
\]

\[
\frac{A \rightarrow B \quad A}{B} & (\rightarrow E)
\]

For (\(\rightarrow E\)), \(A\) is called a minor premise.

Definition 2.1. (Proof)

(1) A formula \(A\) itself is a proof.

\(^1\) This paper was written in 1999 in order to prepare the conference talk, whose proceedings are [8], and provides detailed descriptions of proofs given in the talk.
(2) If π is a proof, then
\[
\begin{array}{c}
l \\
\vdots \\
\pi \\
\hline
A \rightarrow B \\
\end{array}
\]
\[
\frac{B}{A \rightarrow B} \quad (\rightarrow I) \quad l
\]
is a proof, where B is the lowermost formula of π, l is a label which is not used in π, and
\[
\begin{array}{c}
l \\
\vdots \\
\pi \\
\hline
A \\
\end{array}
\]
\[
\frac{B}{A \rightarrow B} \\
\]
is a proof obtained from π by replacing some uppermost occurrences of the formula A with l.

(3) If π_1 and π_2 are proofs,
\[
\begin{array}{c}
l \\
\vdots \\
\pi_1 \\
\vdots \\
\pi_2 \\
\hline
A \rightarrow B \\
\end{array}
\]
\[
\frac{A}{A \rightarrow B} \quad A \quad (\rightarrow E)
\]
is a proof, where $A \rightarrow B$ is the lowermost formula of π_1 and A is the lowermost formula of π_2.

We often write a proof without the inference rule names ($\rightarrow I$) and ($\rightarrow E$).

The lowermost formula of a proof π is the conclusion of π and denoted by $\text{Concl}(\pi)$. Uppermost formulas without labels of a proof π are assumptions of π and the set of assumptions of π is denoted by $\text{Ass}(\pi)$. Uppermost formulas with labels of a proof π are discharged assumptions of π. A proof π is called closed if π has no assumptions. A proof π is called a proof of a formula A if $\text{Concl}(\pi) = A$ and π is closed.

A proof π is a β-normal proof, if π does not include the following part for any A and B.
\[
\begin{array}{c}
l \\
\vdots \\
\pi \\
\hline
A \rightarrow B \\
\end{array}
\]
\[
\frac{B}{A \rightarrow B} \quad (\rightarrow I) \quad l
\]
\[
\frac{A}{A \rightarrow B} \quad l
\]

A proof π is a η-normal proof, if π does not include the following part for any A and B.
\[
\begin{array}{c}
l \\
\vdots \\
\pi \\
\hline
A \rightarrow B \\
\end{array}
\]
\[
\frac{A}{A \rightarrow B} \quad l
\]
\[
\frac{B}{A \rightarrow B} \quad (\rightarrow E)
\]

A proof π is a $\beta\eta$-normal proof if π is a β-normal proof and an η-normal proof.

For a formula A, $\text{core}(A)$ is a variable having the rightmost variable occurrence in A.

Definition 2.2. (D-normal proof)

A proof π is a D-normal proof if the following condition holds.

- If there exists a form
\[
\begin{array}{c}
k \\
\vdots \\
\pi \\
\hline
A \\
\end{array}
\]
\[
\frac{C}{B \rightarrow C} \quad (\rightarrow I) \quad l
\]

in π and $\text{core}(A) = \text{core}(B)$, then $k = l$ holds.

A proof π is a $\beta\eta D$-normal proof if π is a $\beta\eta$-normal proof and a D-normal proof.

Theorem 2.3.

If a formula has $\beta\eta D$-normal proofs π_1 and π_2, then $\pi_1 = \pi_2$.
A formula is a D-normal formula, if every $\beta\eta$-normal proof of A is a D-normal proof. Remark that $\beta\eta$-normal proofs of a D-normal formula are the same. The rest of this section proves Theorem 2.3.

Definition 2.4.
The length $|\pi|$ of a proof π is defined as follows.

1. If π is a formula, then $|\pi| = 0$.
2. If π is

 \[
 \frac{\vdots \pi_1 \vdots}{A \rightarrow B} \rightarrow I
 \]

 then $|\pi| = |\pi_1| + 1$.
3. If π is

 \[
 \frac{\vdots \pi_1 \vdots \pi_2}{A \rightarrow B \quad A} \rightarrow E
 \]

 then $|\pi| = |\pi_1| + |\pi_2| + 1$.

Note that $|\pi|$ represents the number of inference rules used in π. For a part Σ of a proof π, $|\Sigma|$ is defined as the number of inference rules in Σ.

$\text{dis}(\pi)$ denotes the set of discharged assumptions of the proof π. $\text{leaf}(\pi)$ denotes $\text{Ass}(\pi) + \text{dis}(\pi)$.

For an occurrence of a formula A in a proof π, we use the notation A^1 to denote that we think about the specific occurrence of A in π.

For a proof π and formula occurrences A_1^1, B_1^1 in π, a thread from A_1^1 to B_1^1 is a sequence of formula occurrences in π satisfying the followings.

- The sequence begins with A_1^1 and ends with B_1^1.
- Every formula occurrence in the sequence except the last is an upper formula occurrence of an inference, and is immediately followed by the lower formula occurrence of this inference.

For a formula A in a β-normal proof such that the inference rule for A is not $(\rightarrow I)$, the main formula of A (denoted by $\text{MainFormula}(A)$) is defined in the following way.

1. If A is an assumption or a discharged assumption, $\text{MainFormula}(A)$ is A itself.
2. If A is infered by $(\rightarrow E)$ and the part above A of π is

 \[
 \frac{\vdots \pi_1 \vdots}{B \rightarrow A \quad \vdots \quad \frac{\vdots}{A}}
 \]

 then $\text{MainFormula}(A) = \text{MainFormula}(B \rightarrow A)$. Note that the last inference of π_1 is not $(\rightarrow I)$ since π is a β-normal proof.

The main thread of a proof π is the thread from $\text{MainFormula}(\text{Concl}(\pi))$ to $\text{Concl}(\pi)$. We denote the set of formula occurrences in the main thread of π by $\text{thread}(\pi)$.

A thread is a path in a proof tree.

Definition 2.5. (Initial Subproof)

A subproof Π of a proof π is an initial subproof of π if the followings hold:

- Their conclusions are the same.
- If A_1^1 is in π and Π does not include A_1^1, Π does not include A_1^1.

We write $\Pi \subset \pi$ to denote that Π is an initial subproof of π.

For a part Σ of a proof π, $\Sigma \in \pi - \Pi$ iff Σ is the part above A_1^1 of π for some A_1^1 in assumptions of Π.

3
Definition 2.6. (L-unique Proof)
A β-normal proof π is an L-unique proof if the following condition holds.

- If there exists a form
 \[\vdots \ \cdot \cdot \cdot \ \pi_1 \]
 \[\vdots \]
 \[A \]
 \[\vdots \]
 \[B \rightarrow C \]
 \[\rightarrow I \]
 \[l \]
 \[\vdots \]

in π and
\[B = D_1 \rightarrow \cdots \rightarrow D_n \rightarrow A \quad (n \geq 0) \]
then the last inference of \(\pi_1 \) is not \(\rightarrow I \) and
\[\text{MainFormula}(A) = l \]

Definition 2.7. (Strongly η-normal Proof)
A proof π is a strongly η-normal proof if π does not include the following form.

\[\vdots \ \cdot \cdot \cdot \ \vdots \]
\[A \rightarrow B \]
\[A \]
\[\rightarrow E \]
\[\vdots \]
\[A \rightarrow B \]
\[\rightarrow I \]
\[\vdots \]

Lemma 2.8.
If a closed βD-normal proof \(\pi \) includes

\[\vdots \ \cdot \cdot \cdot \ \pi_1 \]
\[\vdots \]
\[A \]
\[\vdots \]
\[B \rightarrow C \]
\[l \]

and
\[B = D_1 \rightarrow \cdots \rightarrow D_n \rightarrow A \quad (n \geq 0) \]
and \(\pi_1 \) is a strongly η-normal proof, then the last inference of \(\pi_1 \) is not \(\rightarrow I \) and
\[\text{MainFormula}(A) = l \]

Proof 2.9.
Suppose that the assumptions of this lemma hold. Since π is a β-normal proof, there exist formulas \(E, X_1, \ldots, X_p \) (\(p \geq 0 \)), \(Y_1, \ldots, Y_q \) (\(q \geq 0 \)) such that
\[A = X_1 \rightarrow \cdots \rightarrow X_p \rightarrow E \]
and π1 is

\[\vdots \ \cdot \cdot \cdot \ \vdots \]
\[Y_1 \rightarrow \cdots \rightarrow Y_q \rightarrow E \]
\[l \]
\[Y_1 \]
\[\vdots \]
\[Y_q \rightarrow E \]
\[l \]
\[Y_q \]
\[\vdots \]
\[X_2 \rightarrow \cdots \rightarrow X_p \rightarrow E \]
\[l \]
\[X_2 \]
\[\vdots \]
\[X_1 \rightarrow \cdots \rightarrow X_p \rightarrow E \]
Since π is a D-normal proof and $\text{core}(Y_1 \rightarrow \cdots \rightarrow Y_q \rightarrow E) = \text{core}(E) = \text{core}(A) = \text{core}(B)$, we have $B = Y_1 \rightarrow \cdots \rightarrow Y_q \rightarrow E$, $k = l$.

From $Y_1 \rightarrow \cdots \rightarrow Y_q \rightarrow E = B = D_1 \rightarrow \cdots \rightarrow D_n \rightarrow A = D_1 \rightarrow \cdots \rightarrow D_n \rightarrow X_1 \rightarrow \cdots \rightarrow X_p \rightarrow E$, we have $X_i = Y_{q-p+i}$ $(1 \leq i \leq p)$, $A = Y_{q-p+1} \rightarrow \cdots \rightarrow Y_q \rightarrow E$ and π_1 is

\[
\begin{array}{c}
Y_1 \rightarrow \cdots \rightarrow Y_q \rightarrow E \quad Y_1 \\
\vdots \\
Y_q \rightarrow E \quad Y_q \\
E \\
\vdots \\
Y_{q-p+2} \rightarrow \cdots \rightarrow Y_q \rightarrow E \\
Y_{q-p+1} \rightarrow \cdots \rightarrow Y_q \rightarrow E
\end{array}
\]

Since π_1 is a strongly η-normal proof, we have $p = 0$, $A = E$, $B = Y_1 \rightarrow \cdots \rightarrow Y_q \rightarrow A$ and π_1 is

\[
\begin{array}{c}
Y_1 \rightarrow \cdots \rightarrow Y_q \rightarrow A \quad Y_1 \\
\vdots \\
Y_q \rightarrow A \quad Y_q \\
A
\end{array}
\]

Therefore the last inference of π_1 is not $(-I)$ and

$\text{MainFormula}(A) = B'$.

\[\Box\]

Lemma 2.10.

A closed $\beta\eta D$-normal proof is a strongly η-normal proof.

Proof 2.11.

Suppose that a proof π is a $\beta\eta D$-normal proof and is not a strongly η-normal proof. In π, there is the following form such that π_1 is a strongly η-normal proof.

\[
\begin{array}{c}
\vdots \\
\pi_1 \\
A \rightarrow B \quad A \\
B \\
A^{l} \rightarrow B^{l} \quad l \\
\vdots
\end{array}
\]

From Lemma 2.8, π_1 is

\[
\frac{\vdots}{A}
\]

and $|\pi_1| = 0$. This contradicts the fact that π is an η-normal proof. \Box

Proposition 2.12.

A closed $\beta\eta D$-normal proof is an L-unique proof.

Proof 2.13.

It is proved immediately from Lemma 2.8 and Lemma 2.10. \Box

Lemma 2.14.

If a formula A has closed L-unique proofs π_1 and π_2, and for some initial subproof Π of π_1, $\Pi \subset \pi_1$ and $\Pi \subset \pi_2$ hold, then $\pi_1 = \pi_2$.
Proof 2.15.

We may suppose that $|\pi_1| - |\Pi| \geq |\pi_2| - |\Pi|$.
This lemma is proved by induction on $|\pi_1| - |\Pi|$.

Case 1. $|\pi_1| - |\Pi| = 0.$
$|\pi_1| - |\Pi| = |\pi_2| - |\Pi| = 0$ holds. Then $\pi_1 = \Pi = \pi_2$.

Case 2. $|\pi_1| - |\Pi| > 0.$
There exists a part $\Sigma_1 \in \pi_1 - \Pi$ such that $|\Sigma_1| > 0$. Then there exists a part $\Sigma_2 \in \pi_2 - \Pi$ such that $\text{Concl}(\Sigma_1) = \text{Concl}(\Sigma_2)$ in Π.

Case 2.1. The last inference of Σ_1 is $(\rightarrow I)$.
Σ_1 is

\[
\begin{array}{c}
\vdots \\
\frac{B}{A \rightarrow B} k
\end{array}
\]

Case 2.1.1. $|\Sigma_2| = 0.$
We show this case is impossible. Σ_2 is $A \rightarrow B$. Therefore in π_2, $A \rightarrow B$ is discharged by the inference $(\rightarrow I)l$ in the thread from $A \rightarrow B$ to Concl(π_2). Then in π_1, $A \rightarrow B$ is discharged by the inference $(\rightarrow I)l$ in the thread from $A \rightarrow B$ to Concl(π_1). Since π_1 is L-unique, the inference rule for $A \rightarrow B$ is not $(\rightarrow I)$ and we get contradiction.

Case 2.1.2. The last inference of Σ_2 is $(\rightarrow I)$.
By renaming discharging labels in π_2, Σ_2 is

\[
\begin{array}{c}
\vdots \\
\frac{B}{A \rightarrow B} k
\end{array}
\]

Let Π' be the following initial subproof of π_1:

\[
\begin{array}{c}
\vdots \\
\frac{B}{A \rightarrow B} k
\end{array}
\]

Then $\Pi' \subseteq \pi_1$, $\Pi' \subseteq \pi_2$ and $|\pi_1| - |\Pi| > |\pi_1| - |\Pi'| \geq |\pi_2| - |\Pi'|$ hold. By induction hypothesis, we have $\pi_1 = \pi_2$.

Case 2.1.3. The last inference of Σ_2 is $(\rightarrow E)$.
We show this case is impossible. Let

\[\text{MainFormula}(A \rightarrow B) = X_1 \rightarrow \cdots \rightarrow X_p \rightarrow A \rightarrow B. \quad (p \geq 0)\]

Σ_2 is

\[
\begin{array}{c}
X_1 \rightarrow \cdots \rightarrow X_p \rightarrow A \rightarrow B \\
\vdots \\
X_2 \rightarrow \cdots \rightarrow X_p \rightarrow A \rightarrow B
\end{array}
\]

\[
\begin{array}{c}
\vdots \\
\frac{X_p \rightarrow A \rightarrow B}{A \rightarrow B}
\end{array}
\]

In π_2, $X_1 \rightarrow \cdots \rightarrow X_p \rightarrow A \rightarrow B$ is discharged in the thread from $A \rightarrow B$ to Concl(π_2) by the inference $(\rightarrow I)l$. Therefore in π_1, $X_1 \rightarrow \cdots \rightarrow X_p \rightarrow A \rightarrow B$ is discharged in the thread from $A \rightarrow B$ to Concl(π_1) by the inference $(\rightarrow I)l$.
Since π_1 is L-unique, the last inference of Σ_1 is not $(\rightarrow I)$ and we get contradiction.

Case 2.2. The last inference of Σ_1 is $(\rightarrow E)$.
Σ_1 is
where \(p \geq 0 \).

Case 2.2.1. \(|\Sigma_2| = 0 \).

Since \(\pi_2 \) is closed, \(\Sigma_2 \) is \(l \).

In \(\pi_2 \), \(B \) is discharged in the thread from \(B \) to Concl(\(\pi_2 \)) by the inference (\(\to \) l). Therefore in \(\pi_1 \), \(B \) is discharged in the thread from \(B \) to Concl(\(\pi_1 \)) by the inference (\(\to \) l).

Since \(\pi_1 \) is \(L \)-unique, \(\Sigma_1 \) is \(B \) and \(|\Sigma_1| = 0 \). This contradicts \(|\Sigma_1| > 0 \).

Case 2.2.2. The last inference of \(\Sigma_2 \) is (\(\to \) l).

It is not the case by the same reason as Case 2.1.3.

Case 2.2.3. The last inference of \(\Sigma_2 \) is (\(\to \) E).

\(\Sigma_2 \) is

\[
\begin{align*}
Y_1 \to \cdots \to Y_q \to C \to B & \quad Y_1 \quad \cdots \quad \vdots \\
Y_2 \to \cdots \to Y_q \to C \to B & \quad Y_2 \quad \cdots \quad \vdots \\
\vdots & \vdots \\
Y_q \to C \to B & \quad Y_q \quad \vdots \\
C \to B & \quad B
\end{align*}
\]

where \(q \geq 0 \).

In \(\pi_2 \), \(Y_1 \to \cdots \to Y_q \to C \to B \) is discharged in the thread from \(B \) to Concl(\(\pi_2 \)) by the inference (\(\to \) l). Therefore in \(\pi_1 \), \(Y_1 \to \cdots \to Y_q \to C \to B \) is discharged in the thread from \(B \) to Concl(\(\pi_1 \)) by the inference (\(\to \) l).

Since \(\pi_1 \) is \(L \)-unique, \(\pi_1 \) is

\[
\begin{align*}
Y_1 \to \cdots \to Y_q \to C \to B & \quad Y_1 \quad \cdots \quad \vdots \\
Y_2 \to \cdots \to Y_q \to C \to B & \quad Y_2 \quad \cdots \quad \vdots \\
\vdots & \vdots \\
Y_q \to C \to B & \quad Y_q \quad \vdots \\
C \to B & \quad B
\end{align*}
\]

Therefore \(A = C \). Let an initial subproof \(\Pi' \) of \(\pi_1 \) be given as follows:

\[
\begin{align*}
A \to B & \quad A \\
B & \quad \Pi
\end{align*}
\]

Then \(\Pi' \subset \pi_1 \), \(\Pi' \subset \pi_2 \) and \(|\Pi| - |\pi_1| > |\Pi'| - |\pi_1| \geq |\Pi'| - |\pi_2| \) hold. By induction hypothesis, we have \(\pi_1 = \pi_2 \).

\(\square \)

Proof 2.16. (of Theorem 2.3)
Suppose that a formula \(A \) has closed \(\beta \eta \)D-normal proofs \(\pi_1 \) and \(\pi_2 \). From Proposition 2.12, \(\pi_1 \) and \(\pi_2 \) are \(L \)-unique proofs. Let an initial subproof \(\Pi \) of \(\pi_1 \) be \(A \).

From Lemma 2.14, since \(\Pi \subset \pi_1 \) and \(\Pi \subset \pi_2 \), we have \(\pi_1 = \pi_2 \). \(\square \)
3 PNN condition

A formula A has PNN-occurrences of a variable B, if B has a positive occurrence and at least two negative occurrences in A. A formula A satisfies PNN-condition, if no variable has PNN-occurrences in A. A PNN-formula is a formula satisfying PNN-condition.

Theorem 3.1.
(1) A β-normal proof of a PNN-formula is a D-normal proof.
(2) A PNN-formula is a D-normal formula.

Remark that the converse of this theorem (1) does not hold. For example, the formula

$$C \rightarrow (D \rightarrow B) \rightarrow (C \rightarrow B) \rightarrow (B \rightarrow A) \rightarrow A$$

for distinct propositional variables A, B, C and D is a D-normal formula and has PNN-occurrences of B.

The following theorem is known [2]. By Theorem 2.3 and Theorem 3.1 immediately give another proof of this theorem.

Theorem 3.2. $\beta\eta$-normal proofs of a formula satisfying the PNN-condition are unique.

The rest of this section proves these theorems.

Definition 3.3. For a formula A, $\text{Pos}(A)$ is the set of positive subformulas of A and $\text{Neg}(A)$ is the set of negative subformulas of A. For a set S of formulas, $\text{Pos}(S) = \bigcup_{A \in S} \text{Pos}(A)$ and $\text{Neg}(S) = \bigcup_{A \in S} \text{Neg}(A)$.

A formula in a proof π is a minor premise in π if it is a minor premise of some inference rule ($\rightarrow E$).

Proposition 3.4. (Signed Subformula Property for NJ)
(1) If a β-normal proof π has a discharged assumption A, the followings hold.
 (a) $A \in \text{Neg(Concl(\pi))} \cup \text{Pos(Ass(\pi))}$.
 (b) If the last rule of π is not ($\rightarrow I$), $A \in \text{Pos(Ass(\pi))}$.

(2) If a closed β-normal proof has a minor premise A, $A \in \text{Pos(Concl(\pi))}$ holds.

Proof 3.5.
(1) We prove this by induction on the proof π.

Case 1. π is a formula B. There is no A.

Case 2. π is
$$\vdots \pi_1 \vdots \pi_2$$

$$B \rightarrow C \quad B$$

$$C$$

If A is in π_1, by induction hypothesis (b) for π_1, $A \in \text{Pos(Ass(\pi_1))}$. If A is in π_2, by induction hypothesis (a) for π_2, $A \in \text{Neg(B)} \cup \text{Pos(Ass(\pi_2))}$. Since we have $\text{Neg(B)} \subset \text{Pos(B \rightarrow C)} \subset \text{Pos(MainFormula(B \rightarrow C))}$, $A \in \text{Pos(Ass(\pi))}$ holds.

Case 3. π is
$$\vdots \pi_1 \vdots$$

$$B$$

$$C$$

$$B \rightarrow C \quad B$$

$$k$$

If A is not B, by induction hypothesis (a) for π_1, $A \in \text{Neg(C)} \cup \text{Pos(Ass(\pi_1))}$ holds and it is included in $\text{Neg(B \rightarrow C)} \cup \text{Pos(Ass(\pi))}$.

If A is B, $A \in \text{Neg(B \rightarrow C)}$. Therefore $A \in \text{Neg(B \rightarrow C)} \cup \text{Pos(Ass(\pi))}$.

(2) Suppose that the following part is in π:

$$\vdots \vdots \vdots$$

$$A \rightarrow B \quad A$$

$$B$$

We have $A \in \text{Neg(A \rightarrow B)} \subset \text{Neg(MainFormula(A \rightarrow B))}$. From (1), it is included in Pos(Concl(\pi)). □
\[
\begin{align*}
X \parallel Y & \text{ denotes a proof whose conclusion is } Y \text{ and whose assumptions include } X \text{ and } Y \text{ are in the same thread.} \\
X \supset_i Y & \text{ denotes that } X = Z_1 \to \ldots Z_n \to Y \text{ for some } n \geq 0, Z_1, \ldots, Z_n. \\
\end{align*}
\]

Lemma 3.6.

1. If a \(\beta \)-normal proof of a PNN-formula has the following part, \(Z_3 \) is a minor premise, and \(Z_3 \supset Y \rightarrow Z_2 \), we have \(Y_3 \supset X_3 \rightarrow Y_2 \).

\[
\begin{align*}
\begin{array}{c}
X_3 \rightarrow Y_2 \quad X_3 \\
Y_2 \\
\end{array}
\end{align*}
\]

2. If a \(\beta \)-normal proof of a PNN-formula has the following part, \(Y_3 \) is a minor premise, and \(Y_1 = Y_3 \), then we have \(X_1 = X_3 \).

\[
\begin{align*}
\begin{array}{c}
Y_3 \\
X_3 \rightarrow Y_2 \\
Y_2 \\
\end{array}
\end{align*}
\]

3. If a \(\beta \)-normal proof \(\pi \) of a PNN-formula has the following part, \(X_3 \) is a minor premise, and \(X_3 \rightarrow Y \in \text{Pos}(\text{Concl}(\pi)) \) for some \(Y \), then we have \(X_1 = X_3 \).

\[
\begin{align*}
\begin{array}{c}
X_3 \\
\end{array}
\end{align*}
\]

Proof 3.7.

1. Let \(Y = \text{core}(Y_3) \) and \(A \) be the conclusion of the proof. From Proposition 3.4 (2) for \(Z_3 \), we have \(Z_3 \in \text{Pos}(A) \). Therefore \(Y_3 = Z_2 \in \text{Pos}(A) \). Let \(Y_1 = \text{MainFormula}(Y_2) \). Let the part be

\[
\begin{align*}
\begin{array}{c}
Y_1 \\
X_3 \rightarrow Y_2 \\
Y_2 \\
\end{array}
\end{align*}
\]

From Proposition 3.4 (2) for the inference rule \((\rightarrow I) \) discharging the label \(l \), \(Y_1 \rightarrow B \in \text{Pos}(A) \) for some \(B \). From Proposition 3.4 (2) for \(Y_3, Y_3 \in \text{Pos}(A) \). By the PNN-condition for \(Y, Y_1 = Y_3 \). Since \(Y_1 \supset X_3 \rightarrow Y_2 \), we have \(Y_3 \supset X_3 \rightarrow Y_2 \).

2. Let \(X = \text{core}(X_3) \) and \(A \) be the conclusion of the proof. From Proposition 3.4 (2) for \(Y_3, Y_3 \in \text{Pos}(A) \). Since \(Y_3 = Y_1 \supset X_3 \rightarrow Y_2, X_3 \rightarrow Y_2 \in \text{Pos}(A) \) holds. From Proposition 3.4 (2) for the inference rule \((\rightarrow I) \) discharging the label \(l_2 \), \(X_1 \rightarrow B \in \text{Pos}(A) \) holds for some \(B \). From Proposition 3.4 (2) for \(X_3, X_3 \in \text{Pos}(A) \) holds. By the PNN-condition for \(X \), we have \(X_1 = X_3 \).

3. Let \(A \) be the conclusion of the proof. From Proposition 3.4 (2) for the inference rule \((\rightarrow I) \) discharging the label \(l \), \(X_1 \rightarrow Z \in \text{Pos}(A) \) holds for some \(Z \). From Proposition 3.4 (2) for \(X_3, X_3 \in \text{Pos}(A) \) holds. By the PNN-condition for \(X \), we have \(X_1 = X_3 \).

Definition 3.8. (level)

For a proof \(\pi \) and an occurrence \(A \) of a formula in \(\pi \), the level of \(A \) in \(\pi \) (denoted by \(\text{level}_\pi(A) \)) is defined as follows:

\[
\begin{align*}
\text{If } \pi \text{ is } A, \text{ then } \text{level}_\pi(A) = 0.
\end{align*}
\]
If π is
\[
\begin{array}{c}
A \\
\vdots \quad \pi_1 \\
B \\
A \rightarrow B \\
\end{array}
\]
then $\operatorname{level}_\pi(A \rightarrow B) = 0$ and $\operatorname{level}_\pi(X) = \operatorname{level}_{\pi_1}(X)$ for $X \in \pi_1$.

If π is
\[
\begin{array}{c}
\vdots \quad \pi_1 \quad \vdots \quad \pi_2 \\
A \rightarrow B \\
B \\
\end{array}
\]
then $\operatorname{level}_\pi(B) = 0$, $\operatorname{level}_\pi(X) = \operatorname{level}_{\pi_1}(X)$ for $X \in \pi_1$, and $\operatorname{level}_\pi(X) = \operatorname{level}_{\pi_2}(X) + 1$ for $X \in \pi_2$.

Proposition 3.9.

If a β-normal proof of a PNN-formula has discharged assumptions $l_1 A_1$ and $l_2 A_2$ and $\operatorname{core}(A_1) = \operatorname{core}(A_2)$, then we have $A_1 = A_2$.

Proof 3.10.

Let $A = \operatorname{core}(A_1)$ and B be the conclusion of the proof. From Proposition 3.4 (2) for the inference rules ($\rightarrow I$) discharging the labels l_1 and l_2, $A_1 \rightarrow X_1 \in \operatorname{Pos}(B)$ and $A_2 \rightarrow X_2 \in \operatorname{Pos}(B)$ hold for some X_1 and X_2.

Either A_1 or A_2 is of level $n > 0$. We may suppose that A_1 is of level $n > 0$. Let A_3 be the lowermost formula of the thread including A_1. Since A_3 is a minor premise, from Proposition 3.4 (2), $A_3 \in \operatorname{Pos}(B)$ holds.

By the PNN-condition for A, we have $A_1 = A_2$. \square

Proposition 3.11.

A β-normal proof of a PNN-formula does not have the following part:
\[
\begin{array}{c}
l_1 \\
A_0 \\
\vdots \\
A_1 \\
B \\
\end{array}
\]
where $\operatorname{core}(A_0) = \operatorname{core}(A_1)$ and A_0 and A_1 are distinct.

Proof 3.12.

Put A_1 be of level maximal. Let $A = \operatorname{core}(A_0)$ and B be the conclusion of the proof. By Proposition 3.9, we have $A_0 = A_1$. Let the part including l_1 and l_2 be as follows:

\[
\begin{array}{c}
l_1 \\
A_1 \\
\vdots \\
l_2 \\
A_2 \\
\end{array}
\]

where $\operatorname{core}(A_0) = \operatorname{core}(A_1)$ and A_0 and A_1 are distinct.
and π_1 be the part below X_3^n of this and π_2 be the part above A_3 of this.

Case 1. $A_3 \not\supseteq_i X_3^n \rightarrow A_2$, $X_3^n \not\supseteq_i X_2^{n-1} \rightarrow X_2^n$ for $p = n, \ldots, 2$, and $X_3^n \not\supseteq_i A_3 \rightarrow X_2^n$.

From $A_3 \not\supseteq_i X_3^n \rightarrow A_2$, π_2 is as follows:

$$
\begin{array}{c|c|c}
l_2 & k'_n & X \\
A_1 & X_1^n & \parallel
\end{array}
\begin{array}{c|c|c}
X_3^n & A_2 & X_2^n \\
\parallel & \parallel & A_3
\end{array}
$$

By Proposition 3.9, $X = X_3^n$ holds. Therefore π_2 as as follows:

$$
\begin{array}{c|c|c}
l_2 & k'_n & X \\
A_1 & X_1^n & \parallel
\end{array}
\begin{array}{c|c|c}
X_3^n & A_2 & X_2^n \\
\parallel & \parallel & A_3
\end{array}
$$

From $X_3^n \not\supseteq_i X_3^n \rightarrow X_2^n$, the thread from X_3^n to X_2^n is as follows:

$$
\begin{array}{c|c|c}
k'_n & X_3^n & X \\
A_1 & X_1^n & \parallel
\end{array}
\begin{array}{c|c|c}
X_3^n & A_2 & X_2^n \\
\parallel & \parallel & A_3
\end{array}
$$

By Proposition 3.9, $X = X_3^n$ holds.

By repeating this discussion, we prove that π_2 has the following form:

$$
\begin{array}{c|c|c}
l_2 & k'_n & X \\
A_1 & X_1^n & \parallel
\end{array}
\begin{array}{c|c|c}
X_3^n & A_2 & X_2^n \\
\parallel & \parallel & A_3
\end{array}
$$

By Proposition 3.9, $X = X_3^n$ holds.

By repeating this discussion, we prove that π_2 has the following form:

$$
\begin{array}{c|c|c}
l_2 & k'_n & X \\
A_1 & X_1^n & \parallel
\end{array}
\begin{array}{c|c|c}
X_3^n & A_2 & X_2^n \\
\parallel & \parallel & A_3
\end{array}
$$

Hence π_2 has A_1, and it contradicts the maximality of the level of A_1.

Case 2. $A_3 \supseteq_i X_3^n \rightarrow A_2$.

By Proposition 3.4 (2) for A_3, we have $X_3^n \rightarrow A_2 \in \text{Pos}(B)$. By repeating Lemma 3.6 (2) from the thread
By Theorem 2.3, we have

\[\forall X^n \exists A_1, \ldots, A_n \] and get contradiction by Proposition 3.11.

Case 3. \(A_3 \nvdash X^n \rightarrow A_2 \) and \(X^p \vdash X^q \rightarrow A_2 \) for some \(2 \leq p \leq n \). By repeating Lemma 3.6 (1) for \(X^p \vdash X^q \rightarrow A_2 \), we have \(X^q \vdash X^q \rightarrow A_2 \) for \(q = p, \ldots, 2 \) and \(A_1 \).

Case 4. \(A_3 \nvdash X^n \rightarrow A_2 \), \(X^p \nvdash X^q \rightarrow A_2 \) for \(2 \leq p \leq n \), and \(X^q \vdash X^q \rightarrow A_2 \).

By Proposition 3.4 (2) for \(X^q \), we have \(A_3 \rightarrow A_2 \) and \(A_3 \rightarrow A_2 \) and contradiction. \(\square \)

Proof 3.13. (of Theorem 3.1)

(1) Suppose that we have a \(\beta \)-normal proof \(\pi \) of a PNN-formula \(C \) and \(\pi \) is not a D-normal proof.

By the definition of D-normality, \(\pi \) has the following part:

\[
\begin{align*}
(k) & \\
A_0 & \\
\vdots & \\
B_1 & \\
\vdots & \\
A_1 & \\
& \rightarrow B_1 (l)
\end{align*}
\]

where \(\text{core}(A_0) = \text{core}(A_1) \) and \(k \neq l \).

Let \(A_0 \rightarrow X \) be derived by the inference rule (\(\rightarrow I \)) discharging the label \(k \). By Proposition 3.4 (2), we have \(A_0 \rightarrow X \in \text{Pos}(C) \). By Proposition 3.4 (2), we have \(A_1 \rightarrow B_1 \in \text{Pos}(C) \). Let \(A_2 \) be the lowermost formula of the thread including \(A_0 \). Since \(A_2 \) is a minor premise, by Proposition 3.4 (2), we have \(A_2 \in \text{Pos}(C) \). By the PNN-condition for \(A \), \(A_0 \rightarrow X = A_1 \rightarrow B_1 \) holds. Therefore \(A_0 = A_1 \) and \(X = B_1 \). Hence \(\frac{X}{A_0 \rightarrow X} (k) \) is not in the thread including \(\frac{A_1 \rightarrow B_1}{A_1} (l) \). Let \(B_2 \) and \(B_3 \) be the main formulas of \(\frac{A_1 \rightarrow B_1}{A_1} (l) \) and \(A_0 \rightarrow X (k) \) respectively. Then we have either

\[
\begin{align*}
L_1 & \quad L_2 & \quad \vdots \\
B_2 & \quad B_3 & \quad B_4 \\
& & \quad \vdots \\
& \quad & \quad B_4
\end{align*}
\]

and get contradiction by Proposition 3.11. \(\square \)

(2) It is immediate from (1). \(\square \)

Proof 3.14. (of Theorem 3.2)

Let \(\pi_1 \) and \(\pi_1 \) be \(\beta \eta \)-normal proofs of a PNN-formula \(A \). By Theorem 3.1 (1), they are \(\beta \eta D \)-normal proofs. By Theorem 2.3, we have \(\pi_1 = \pi_2 \). \(\square \)

4 BCK logic

BCK logic is the logic with only the restricted (\(\rightarrow I \)) rule which can discharge at most one occurrence of an assumption. A formula is called a minimal formula if it is minimal in the variable substitution preorder of provable formulas.

Proposition 4.1.

In BCK logic, a \(\beta \)-normal proof of a minimal formula is a D-normal proof.

Combining Theorem 2.3 and this proposition, we have the following theorem.
Theorem 4.2.
In BCK logic, if a minimal formula A has $\beta\eta$-normal proofs π_1 and π_2, then $\pi_1 = \pi_2$.

References

