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Abstract

In information retrieval experiments, indicators for measuring effec-
tiveness of the systems or methods are important. Average precision is
often used as an indicator for evaluating ranked output of documents in
standard retrieval experiments. This report examines some properties of
this indicator. First, we clarify mathematically that relevant documents
at a higher position in the ranked list contribute much more to increasing
the score of average precision. Second, influence of detecting unknown rel-
evant documents on the score is discussed. Third, we examine statistical
variation of average precision scores caused by fluctuations of results from
relevance judgments. Another issue of this report is to explore evaluation
indicators using data of multi-grade relevance. After reviewing indicators
proposed by other researchers, i.e., modified sliding ratio, normalized dis-
counted cumulative gain (nDCG), Q-measure and so on, a new indicator,
generalized average precision is developed. We compare these indicators
empirically using a simple and artificial example.

1 Introduction

Laboratory experiments using test collections have played an important role
in developing information retrieval theories and techniques until now. In the
experiments, we have to evaluate correctly search results generated by retrieval
systems. This is not an easy task. Traditionally, precision and recall ratio have
been used as evaluation indicators for measuring the performance of Boolean
searches. The meaning of these indicators is clear, i.e., the precision is the
proportion of relevant documents that are retrieved, and recall is the proportion
of retrieved documents that are relevant [1]. In contrast, it is more complicated
to evaluate a list of documents ranked in decreasing order of relevance that
the system estimates. In standard experiments at present, average precision
is widely used for comparing the performance between retrieval techniques or
systems. Unfortunately, computation of average precision is more intricate than
that of traditional precision or recall (see section 2), and it is difficult to correctly
understand what the score means in retrieval experiments. If the score of average
precision is not correctly interpreted, the experiment becomes futile. Thus, we
need more examinations on the properties of average precision. In particular, it
is important to investigate average precision in terms of reliability as a measure
to be used in scientific experiments.
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Another point to consider is that the average precision is based on binary
judgments of relevance (i.e., relevant or not) as well as the traditional indicators.
This means that these indicators cannot distinguish between a highly relevant
document and a normally relevant one even though there is difference in the
degree of relevance between them because both the documents must be assumed
to be equally relevant in order to compute these indicators. Consequently,
a system that places highly relevant documents in higher order may not be
evaluated sufficiently highly through the average precision. Therefore, it is worth
developing an alternative indicator that enables us to take multiple degrees of
relevance into consideration for assessing search results.

This report examines some properties of average precision, and explores an
evaluation indicator based on multi-grade relevance judgments. First, in section
2, we discuss mainly the sensitivity of average precision when the ranking of
a relevant document changes. Section 3 examines the reliability of average
precision, focusing on problems of unknown relevant documents and variation
of results in relevance judgments. In section 4, evaluation indicators directly
utilizing multiple degrees of relevance are investigated. Finally, some concluding
remarks are given. Note that the section 2 and 3 are partly based on discussion
in Kishida[2].

2 Property of average precision

2.1 Formal definition of evaluation indicators

Suppose that we wish to evaluate a retrieval system by using a test collection,
which consists of a set of documents, a set of search requests (topics), and results
of relevance judgments. Let xk be a variable representing the degree of relevance
of the kth document in a ranked list that a system generates for a given topic.
In this section, we assume binary relevance judgments, i.e.,

xk =
{

1 if kth document is relevant
0 if kth document is irrelevant. (1)

If we take the top-ranked m documents, the value of precision in the document
set is computed such that

pm =
1
m

m∑
k=1

xk. (2)

It should be noted that pm can be interpreted as an average of values, x1, ..., xm.
We denote the average by x̄m.

Average precision is defined as “the mean of the precision scores obtained
after each relevant document is retrieved, using zero as the precision for relevant
documents that are not retrieved [1],” which can be mathematically expressed
by using pm or x̄m such that

v =
1
R

n∑
i=1

I(xi)pi =
1
R

n∑
i=1

I(xi)x̄i (3)
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where R is the total number of relevant documents and n is the number of
documents included in the list (usually n = 1000). I(xi) is a function such that

I(xi) =
{

0 if xi = 0
1 otherwise. (4)

In the case where xi is a binary variable, we can simply set I(xi) = xi. Thus,
the average precision can be represented as

v =
1
R

n∑
i=1

xipi =
1
R

n∑
i=1

xi

i

i∑
k=1

xk. (5)

Another indicator, R-precision, is sometimes used in retrieval experiments.
It is defined as “precision after R documents have been retrieved where R is the
number of relevant documents for the current topic [1]”, which can be expressed
using our notation as

r =
1
R

R∑
i=1

xi. (6)

There are also other classical indicators for assessing ranked output, which
were proposed in the 1960s. The sum of ranking of R relevant documents
can be represented as

∑N
i=1 iI(xi) where N is the total number of documents

included in the database. These relevant documents should be ranked from 1st
to Rth positions in an “ideal” ranked list where the sum of ranking of relevant
documents amounts to

∑R
i=1 i. Normalized recall (Salton and Lesk [3]) is based

on a difference of the two sums of ranking, and its formal definition is

zr = 1 −
∑N

i=1 iI(xi) −
∑R

i=1 i

R(N − R)
. (7)

The maximum value of the difference of two sums amounts to R(N−R) because
the difference is calculated such that (N − R + 1) + (N − R + 2) + · · · + N −
(1 + 2 + · · ·+ R) = R × (N −R). Therefore, 0.0 ≤ zr ≤ 1.0 where 1.0 indicates
the best ranking.

When we convert the index i representing each position of documents into
log i, the indicator is called “normalized precision,” which is defined mathemat-
ically as

zp = 1 −
∑N

i=1 I(xi) log i −
∑R

i=1 log i

log NCR
. (8)

where log NCR = log(N −R+1)+log(N −R+2)+ · · ·+log N − (log 1+ log 2+
· · · + log R).

Unfortunately, normalized recall and precision have been seldom used in re-
cent retrieval experiments, perhaps because all N documents have to be ranked
and checked for computing scores of these indicators, and this requirement is
not practical.

It should be noted that there have been other efforts for evaluating ranked
output such as “search length” by Cooper [4] and “measure E” by Swets [5].
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2.2 Sensitivity of evaluation indicators

Suppose that an irrelevant document placed at the jth position in a ranked list
is turned to be relevant (i.e., changing from xj = 0 to xj = 1). Let ∆v(j) be
an amount of increment in average precision score with the change of the jth
document from irrelevant to relevant. From Eq.(5), ∆v(j) can be computed as

∆v(j) =
1
R

pj +
n∑

t=j+1

∆pt

 , (9)

where ∆pt indicates an increment of pt with this change (t = j + 1, ..., n). Note
that the change at the jth position not only adds a new value of precision pj

but also affects each pt in lower positions below j. Since ∆pt = t−1xt, we obtain

∆v(j) =
1
R

j−1

j∑
k=1

xk +
n∑

t=j+1

t−1xt

 . (10)

Theoretically, Eq.(10) has a minimum when j = N where N is the total
number of documents in the database, and a maximum when j = 1. If R
is assumed to be invariant with the change of jth document,

∑N
k=1 xk = R.

Hence, we obtain from Eq.(10) that ∆v(N) = 1/N , which is usually very small
in standard retrieval experiments. In contrast, the maximum value of Eq.(10)
depends on each value of pt.

We can easily conclude that

∆v(j) > ∆v(j + 1), (11)

where the (j + 1)th document is assumed to be irrelevant at the time of com-
puting ∆v(j), and similarly, the jth document is assumed to be irrelevant when
we consider ∆v(j + 1). Under these assumptions, it is obvious that pj > pj+1

and
n∑

t=j+1

∆pt =
n∑

t=j+2

t−1xt =
n∑

l=j+2

∆pl. (12)

Therefore, we can obtain Eq.(11). This equation implies that a relevant docu-
ment ranked at a higher position helps to increase the average precision score
much more than a lower-ranked relevant document. This is a remarkable char-
acteristic of average precision in comparison with R-precision. In the case of
R-precision, an increment with the change is simply expressed by ∆r(j) = R−1,
which is independent of the position of the document.

3 Reliability of evaluation by indicators

3.1 Sources of statistical variations

When evaluation indicators are employed in a standard situation of retrieval
experiments, we have to consider two kinds of statistical errors: (1) sampling
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errors and (2) non-sampling errors. For assessing the magnitude of sampling
errors, a standard statistical theory can be applied. Let vh be an average pre-
cision score for the hth search request (or topic). If we have L topics in an
experiment, a sample mean of average precision scores v1, ..., vL, i.e.,

v̄ = L−1
L∑

h=1

vh, (13)

can be used as an estimator of the population mean. The sample mean v̄ is
often called “mean average precision (MAP).” Similarly, a sample variance is
computed as

s2
v = (L − 1)−1

L∑
h=1

(vh − v̄)2, (14)

under the assumption that simple random sampling was carried out. The vari-
ance can be used for statistical tests.

On the other hand, in the case of retrieval experiments, there are two sources
of non-sampling errors, i.e., (1) undiscovered relevant documents by adopting
the so-called pooling method and (2) variations of results in the process of
relevance judgments, which will be discussed below.

3.2 Influence of undiscovered relevant documents

Suppose that we select the top 100 documents from every search result sub-
mitted by research groups participating in a project such as TREC, NTCIR
or CLEF, and create a pooled set of documents by merging them and remov-
ing duplications. A set of relevant documents is usually identified by assessing
manually the pooled document set. Therefore, if a relevant document is ranked
below the 100th position in all search results, it remains undiscovered and is
supposed to be treated as an irrelevant document in the process of computing
average precision scores since usually we set n = 1000 in Eq.(5).

We shall examine the change of average precision score when an undiscovered
relevant document at the jth position happens to be newly detected. First,
note that the total number of relevant documents increases to R + 1. Second,
an increment with detection of a relevant document at the jth position can be
computed by Eq.(10). Finally, we have to consider a decrease of original score v
with increase of the number of total relevant documents, which can be evaluated
as

v − Rv/(R + 1) = [1 − R/(R + 1)]v = (R + 1)−1v. (15)

Therefore, the change of average precision score upon detecting an undiscovered
relevant document at the jth position is computed as

∆̃v(j) =
1

R + 1

1
j

j∑
k=1

xk +
n∑

t=j+1

xt

t

 − 1
R + 1

v, (16)
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Table 1. Change of average precision score after finding
a new relevant document at rank 101

average precision: v
R 0.1 0.3 0.5
10 0.00081 -0.01737 -0.03555
50 0.00794 0.00402 0.00010
100 0.00891 0.00693 0.00495

where v is an original score of average precision before the relevant document
is detected. If we suppose that there is no relevant document below the jth
position, we obtain

∑j
k=1 xk = R + 1 and

∑n
t=j+1 t−1xt = 0. Thus, Eq.(16)

becomes simpler, i.e.,
∆̃v(j) = j−1 − (R + 1)−1v. (17)

Table 1 shows examples of values in Eq.(17) where j = 101. The amount of
change is not so large. This can be explained by the fact that relevant documents
in a lower position do not have a large effect on the average precision score as
indicated in Eq.(10) and Eq.(11). As shown in Table 1, there is a possibility
that the average precision score decreases inversely upon finding an additional
undiscovered relevant document. It turns out from Eq.(17) that ∆̃v(j) becomes
negative when vj > R + 1, which can be easily obtained by transforming the
inequality j−1 − (R + 1)−1v < 0.

3.3 Influence of variation in relevance judgments

In order to compute an average precision score, we need to examine whether
documents are relevant or not. Human assessors usually make relevance judg-
ments based on the “topicality” of written search requests in standard retrieval
experiments such as TREC, NTCIR or CLEF. If the value of xi can be de-
termined by the process of relevance judgments for a search topic, an average
precision score can be calculated by Eq.(5) for each search run.

However, such judgment is subjective, and it can be reasonably assumed
according to discussions on subjectivity of relevance (see Schamber [6]) that the
results of judgments will vary depending on human assessors or situations in
which the judgments are made. Thus, we need to investigate the influence of
the variation on scores of average precision using a theory of statistical survey.

Suppose that the results from many independent repetitions of relevance
judgments for each search topic are available, e.g., 10 or more different assessors
separately made judgments for the same topic. In this case, according to a
textbook of statistical sampling [7], we can introduce the model

vha = µh + eha, (18)

where vha is the average precision calculated by using the result from the ath
repetition of relevance judgments for the hth topic (a = 1, 2, ...). If there is no
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variation in the process of relevance judgments, all vha are inevitably equivalent
(i.e., vh1 = vh2 = ...). However, when the judgments fluctuate, vha is conceptu-
ally broken into µh and eha, where µh is the true value of vha and eha is a kind
of “error of measurement” (if there is no variation, eha is always zero).

Let Em(·|h) be an expectation of any variable over repeated judgments (a =
1, 2, ...) for the hth topic. Since µh is independent of judgment fluctuations, we
obtain

Em(vha|h) = µh + Em(eha|h). (19)

If eha follows a frequency distribution with mean zero, this equation becomes
Em(vha|h) = µh, i.e., the error term eha is cancelled out by an average op-
eration Em(·|h). When Em(eha|h) cannot be assumed to be zero, the mean
Em(vha|h) includes a statistical bias, and similarly the MAP score computed
from Em(vha|h) is influenced by the bias. For simplicity, we assume that
Em(eha|h) = 0 (i.e., Em(vha|h) = µh). As for the variance of vha, we can
compute it as

Vm(vha|h) = Em[(vha − µh)2|h] = Em[(µh + eha − µh)2|h]
= Em(e2

ha|h) = Vm(eha|h), (20)

by assuming that Em(eha|h) = 0. We denote the variance of eha by σ2
h, i.e.,

Vm(vha|h) = σ2
h.

When a particular sample S consisting of L topics is given, a score of MAP
at the ath judgment can be calculated as v̄a = L−1

∑L
h=1 vha. Then, the mean

of v̄a taken over repeated judgments (a = 1, 2, ...) is

Em(v̄a|S) = Em

(
1
L

L∑
h=1

vha

∣∣∣∣∣ S

)
=

1
L

L∑
h=1

Em(vha|h) =
1
L

L∑
h=1

µh (21)

under the assumption that judgments between topics are independent.
Furthermore, since the result shown in Eq.(21) was obtained for a particular

sample S, we must consider an expectation over all possible samples, and denote
it by Ep(·). Using Eq.(21), we obtain

Ep[Em(v̄a|S)] = Ep

(
1
L

L∑
h=1

µh

)
=

1
L

L∑
h=1

Ep(µh). (22)

According to elementary statistical theory, Ep(µh) = µ where µ is the popula-
tion mean of µh. Therefore, finally we obtain

Ep[Em(v̄a|S)] = µ, (23)

which means that a MAP score including variations of relevance judgments is
an unbiased estimator under the assumption that Em(eha|h) = 0.

Similarly, the variance of v̄a can be computed as

Vp[Vm(v̄a|S)] =
1
L

(σ2
d + σ2

µ) (24)
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where σ2
µ is the population variance of µ and

σ2
d = Ep

(
1
L

L∑
h=1

σ2
h

)
(25)

(see appendix for details). σ2
d is equal to the population mean of the variance of

frequency distribution that the fluctuation of average precision with judgments
(eha) follows.

If eha in Eq.(18) is caused by only careless mistakes in relevance judgments,
we may be able to keep the variations small. Needless to say, as the sample
variance is smaller, the estimated population mean of average precision is more
reliable. As already mentioned, relevance judgment is essentially subjective and
we may have to consider eha as an indispensable factor. In this case, we should
try to reduce the standard error by using a large sample (i.e., a large number
of topics) in order to obtain sufficient confidence in the statistical test.

For knowing more about the influence of judgment variation, we shall try a
very simple simulation. Suppose that there are 50 topics and each has a search
result consisting of 10 ranked documents respectively (i.e., L = 50 and N = 10).
We also assume subjectivity of relevance, and introduce a relevance probability
πhi of the ith document for the hth topic. The probability is empirically inter-
preted as the ratio of judgments as relevant in M repeated trials for the same
document, e.g., if πhi = 0.9, this means that the ith document is assessed as
relevant by 9 out of 10 judges for the hth search topic. The procedure of our
simulation is as follows.

(1) Setting distribution of relevance probabilities πh1, ..., πh10 for the hth topic
(h = 1, ..., L). In order to simplify this process, a random number from 0 to
9 following a uniform distribution is generated for each document, and if the
number is less than 5 then a predetermined probability θ (e.g., θ = 0.9) is
assigned to the document. If not, 1 − θ is allocated. That is, we set πhi = θ
or πhi = 1 − θ randomly. The procedure is applied to every document for all
topics.

(2) Estimating µh and σ2
h for a given hth topic by repeating M times the

following operations (2-a) and (2-b).
(2-a) For the ith document, a uniform random number from 0.0 to 1.0 is

generated, and if it exceeds the probability πhi then the document is assumed
to be relevant. If not, the document is irrelevant.

(2-b) The above procedure (2-a) is repeated for all documents (i.e., i =
1, ..., N), and an average precision score is computed under the assumption that
a retrieval system outputs the documents from i = 1 to i = N sequentially.
From a set of M scores, we can compute µ̂h and σ̂2

h (the hat mark means that
the quantity is an estimation).

(3) Procedure (2) is repeated for L topics (h = 1, ..., L). Consequently, σ2
d

is estimated by averaging σ̂2
h(h = 1, ..., L), and σ2

µ is calculated from µ̂h(h =
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1, ..., L).

We execute two runs of the simulation where we set θ = 0.9 and θ = 0.5
respectively, i.e., in one case the degree of variation is relatively small and in
the other it is large (“θ = 0.5” means that each document is judged as relevant
or irrelevant randomly). In both cases, the above procedure (2-a) and (2-b) is
repeated 1000 times (i.e., M = 1000). The results are shown in Table 2.

Table 2. Results of simulation
θ = 0.9 θ = 0.5

µ̂(= L−1
∑L

h=1 µ̂h) 0.62396 0.60679
σ̂2

µ 0.01660 0.00004
σ̂2

d(= L−1
∑L

h=1 σ̂2
h) 0.01314 0.03674

σ̂2
µ + σ̂2

d 0.02974 0.03678
M−1

∑M
a=1 V̂p(vha|S) 0.03006 0.03687

In the case that θ = 0.9, the value of σ̂2
d is less than that of σ̂2

µ. It should be
noted that differences of average precision score between topics are so small in
the simulation unlike actual situations in standard test collection due to the fact
that a fixed probability θ is uniformly used in all topics for simplicity. Therefore,
σ̂2

µ is expected to be larger in real settings than the values shown in Table 2. In
contrast, for the case where θ = 0.5, σ̂2

d is about three times as large as in the
case of 0.9, as we expected. Note that the sum of these quantities, i.e., σ̂2

µ + σ̂2
d,

almost equals M−1
∑M

a=1 V̂p(vha|S), which is an average of V̂p(vha|S) that is an
estimation of the population variation when the index a is fixed. Actually, only
a value of V̂p(vha|S) is observed in real situations, and is used as an estimation of
the population variance. Therefore, if we can reduce the size of σ̂2

d by preventing
careless mistakes in judgments, statistical accuracy will be improved.

4 Generalized average precision

4.1 Indicators based on multi-grade relevance judgments

4.1.1 Multi-grade relevance judgments and indicators

In general, average precision is computed based on binary judgments on rele-
vance (see Eq.(1)). However, it may be more natural to assign a multiple degree
of relevance to each document in the process of assessment. For example, Tang
et al. [8] concluded that a seven-point scale is optimal for relevance assess-
ments. In retrieval experiments, the NTCIR project (CLIR task [9]) is using a
four-point scale (highly relevant, relevant, partially relevant and irrelevant) and
a three-point scale was employed at the TREC Web Track [10].

A standard technique for calculating average precision from data obtained
by multi-grade judgments is to reduce the multi-grade point into a dichotomous
value. For example, in the NTCIR project, a binary measure “rigid relevance”
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is particularly defined by interpreting two grades of “highly relevant” and “rel-
evant” as relevant and other grades as irrelevant (in this project, “relaxed rel-
evance” is also used, in which “partially relevant” is included in the relevant
class). This kind of conversion allows us to compute average precision scores,
but some information contained in the original data is inevitably lost. An alter-
native strategy is to develop another indicator directly using multi-grade scores.
Indeed, some researchers have proposed such indicators:

1. sliding ratio [11]

2. ranked half life [12]

3. normalized (discounted) cumulated gain [13, 14, 15]

4. generalized, nonbinary recall and precision [16]

5. weighted average precision [17]

6. Q-measure [18]

7. average distance measure [19]

In the following sections, we will discuss each of these indicators. In this
discussion, we suppose that xi represents a multiple degree of relevance for the
ith document in a ranked output unlike Eq.(1) (e.g., in the case of a four-point
scale, xi = 0, 1, 2, 3).

4.1.2 Sliding ratio and its modification

The sliding ratio is a classical indicator proposed by Pollack [11] in 1968. We
consider two sequences of relevance judgments, xk and yk (k = 1, ..., n), where
xk indicates a relevance degree of the kth document in a ranked output, and
yk represents a relevance degree in an “ideal” ranking. If we have just four
relevant documents whose relevance degrees are 1, 2, 2 and 3 respectively, these
documents should be ideally ranked such that y1 = 3, y2 = 2, y3 = 2, y4 =
1, y5 = 0, .... The sliding ratio is defined as a ratio of two values at each position,
i.e., xk/yk[11].

We can easily apply the sliding ratio to compute an indicator for evaluating
the overall ranking by using two sums of xk and yk (k = 1, ..., n), i.e.,

vS =
∑n

k=1 xk∑n
k=1 yk

. (26)

For example, suppose that x1 = 1, x2 = 2, x3 = 3, x4 = ... = xn = 0 in a ranked
document list generated by a system A for a query. Then, the value of vS is
6/8 = 0.75.

However, vS in Eq.(26) is not sufficiently sensitive to ranking of documents.
For example, suppose that another system B creates a ranked output such that
x1 = 3, x2 = 2, x3 = 1, x4 = ... = xn = 0. Although system B clearly outper-
forms system A, the value of vS is the same in both systems (i.e., vS = 0.75).
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In order to solve this problem, Sagara [20] has proposed the “modified sliding
ratio,” which is defined as

vS′ =
∑n

k=1
1
kxk∑n

k=1
1
kyk

. (27)

When using vS′ , the score of system B amounts to about 0.88, which is greater
than that of system A (i.e., about 0.61) in the above example.

We can easily obtain the differential of vS′ by a continuous quantity xj , i.e.,

dvS′

dxj
=

1
j

1∑n
k=1

1
kyk

. (28)

Since
∑n

k=1(1/k)yk is a constant, the main factor of this equation is only j−1.
Hence, like the average precision (see Eq.(10)), a document ranked at a higher
position in the list contributes much more to increasing the score of the modified
sliding ratio.

4.1.3 Ranked half life

Borlund and Ingwersen [12] proposed the ranked half life (RHL) indicator, which
is a kind of median of positions at which relevant documents are placed. For
example, if four relevant documents whose relevance scores are 0.5, 1.0, 1.0, 0.5
are placed at 1st, 3rd, 9th and 14th positions respectively, the RHL indicator
amounts to 3.0 because the total relevance score is 3.0 and half of the total score
(i.e., 1.5) can be obtained up to the 3rd document. As this example shows, this
indicator is not so sensitive to changes of order of relevant document, i.e., if
these four documents are ranked at 1st, 3rd, 100th and 1000th positions, the
value of the RHL indicator remains unchanged. Note that the RHL indicator is
more precisely defined as a median for grouped data (see Borlund and Ingwersen
[12] for details).

4.1.4 Cumulated gain

We denote the numerator of Eq.(26) by c(n), i.e.,

c(n) =
n∑

k=1

xk, (29)

which is called “cumulated gain (CG)” by Järvelin and Kekäläinen [13, 14].
They also defined the “discounted cumulated gain (DCG)” as

d(i) =
∑

1≤k<b

xk +
∑

b≤k≤i

1
logb k

xk, (30)

where b is the base of the logarithm (e.g., b = 2). The idea under the DCG is
to reduce the weights of relevant documents as their ranking decreases, which
is similar to that in the modified sliding ratio. However, the reduction is not
steeper because xk is divided by the logarithm of rank.
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Similarly, we can consider the DCG for yk representing a relevance degree
in an ideal ranking, i.e.,

dI(i) =
∑

1≤k<b

yk +
∑

b≤k≤i

1
logb k

yk. (31)

Thus, an average of “normalized discounted cumulated gain (nDCG)” up to the
position n is defined as

vD =
1
n

n∑
i=1

d(i)
dI(i)

. (32)

If j ≥ b, the differential of vD by xj is

dvD

dxj
=

1
n

n∑
k≥j

1
logb j

1
dI(k)

, (33)

since d(i)′ = 1/ logb j. This equation contains a sort of inverse of rank, 1/ logb j,
which is similar to the average precision or the modified sliding ratio. However,
the differential of vD also includes dI(k), which complicates the behavior of this
function. Intuitively, as the rank j becomes smaller, the increment becomes
greater, because the summation in Eq.(33) is computed for positions over j.

Kekäläinen and Järvelin [16] also proposed “generalized, nonbinary recall
and precision.” For computing these indicators, we need to normalize each value
of xk into a real number ranging from 0.0 to 1.0. An easy way is to divide xk

by the maximum value in its definition, i.e., zk = xk/maxk xk. The generalized
precision gP and recall gR can be computed as

gP =
1
n

n∑
k=1

zk and gR =
∑n

k=1 zk∑N
k=1 zk

,

where N indicates the total number of documents in the database the same
as before. Note that the maximum value of the generalized precision is not
necessarily 1.0.

4.1.5 Weighted average precision and Q-measure

A variation of the sliding ratio has been proposed by Kando et al. [17], i.e.,

vW =
1
R

n∑
i=1

I(xi)
∑i

k=1 xk∑i
k=1 yk

, (34)

which is called “weighted average precision.” Unfortunately, the denominator∑i
k=1 yk becomes partly a constant at low positions in the list because all rel-

evant documents are placed in ranking within R (i.e., the number of relevant
documents). This means that this indicator cannot be sensitive for assessing
ranking below the Rth document, i.e., it gives the same score to two patterns of
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ranking that are different in the part below the Rth position. To solve this prob-
lem, Sakai et al. [18] proposed an alternative indicator, “Q-measure,” which is
defined as

vQ =
1
R

n∑
i=1

I(xi)
∑i

k=1 I(xk)(xk + 1)

i +
∑i

k=1 yk

. (35)

Since its denominator is added to the index number of the position, i, it always
becomes larger as the order descends over the Rth position.

When we consider the differential of vQ by xj , it is necessary to assume that
xj > 0 (or I(xj) > 0), and so

dvQ

dxj
=

1
R

 n∑
i=j

I(xi)
1

i +
∑i

k=1 yk

 . (36)

In contrast, for the case when xj changes from 0 to a positive value (i.e., from
I(xj) = 0 to I(xj) = 1), we have to use the following equation,

∆vQ(j) =
1
R

∑j
k=1 I(xk)(xk + 1)

j +
∑j

k=1 yk

+
n∑

i=j+1

I(xi)
xj + 1

i +
∑i

k=1 yk

 . (37)

Eq.(36) contains a summation starting from the index j, which means that the
differential increases as j decreases. Hence, we can see that a relevant document
at a higher position contributes much more to increasing the score, similar to
the other indicators.

4.1.6 Average distance measure

The “average distance measure (ADM)” proposed by Mea and Mizzaro [19] is
defined as

vA = 1 − 1
N

∑
i:di∈D

|si − xi|, (38)

where D indicates the whole database, si is the relevance degree of the ith
document di estimated by a retrieval system and xi is the actual relevance
degree. Note that information on the position of each document in a ranked list
is not explicitly included in the ADM formula.

4.2 Generalization of average precision

It is easy to extend the traditional average precision for incorporating multiple
degrees of relevance. First, we introduce a quantity sR such that

sR =
R∑

i=1

I(xi)x̄i. (39)
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Then, average precision can be written as

v =
1

max sR

n∑
i=1

I(xi)x̄i =
1

max sR

n∑
i=1

I(xi)
i

i∑
k=1

xk (40)

since max sR = R if xi is a binary variable. In general, we can define max sR

such that

max sR =
N∑

i=1

I(yi)ȳi, (41)

using the ideal ranked list, y1, ..., yN . By substituting this equation into Eq.(40),
we obtain

vG =
1∑N

i=1 I(yi)ȳi

n∑
i=1

I(xi)
i

i∑
k=1

xk. (42)

Needless to say, vG can be used when xi is not binary. We call this indicator
“generalized average precision.”

If we assume that xj > 0 (or I(xj) > 0), the differential of vG by xj becomes

dvG

dxj
=

1∑N
i=1 I(yi)ȳi

n∑
k=j

I(xk)
1
k

. (43)

When xj changes from 0 to a positive value (i.e., from I(xj) = 0 to I(xj) = 1),
we have to use the following equation,

∆vG(j) =
1∑N

i=1 I(yi)ȳi

1
j

j∑
k=1

xk +
n∑

t=j+1

I(xt)xj

t

 , (44)

which corresponds to Eq.(10).

4.3 Numerical comparison

In this section, we briefly compare scores between some multi-grade indicators
using a simple example. Since the purpose of this paper is to examine indicators
appropriate for assessing a set of ranked documents in standard retrieval exper-
iments, we select only rank-sensitive indicators, i.e., modified sliding ratio (vS′),
average of normalized DCG or nDCG (vD), Q-measure (vQ) and generalized
average precision (vG).

Suppose that there are just three relevant documents for a given query in
a database, the relevance degrees of which are 3, 2, 1 respectively, and that a
system presents to its users just 5 documents (i.e., n = 5) selected from the
database. It is easy to compute the scores of each evaluation indicator for all
patterns of the output. We denote each output pattern by a brief representation
such as “32100”, which means that x1 = 3, x2 = 2, x3 = 1, x4 = 0 and x5 = 0. In
total, there are 136 different patterns from “32100” to “00000” in this situation.
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Table 3 shows values of average and standard deviation by each indicator for
the sample of 136 patterns.

Clearly, there is no large difference of average and standard deviation be-
tween these evaluation indicators in this case. This means that the distributions
of scores of these indicators are almost the same, although the Q-measure indi-
cates a somewhat higher average score and that of generalized average precision
is somewhat lower.

Table 3. Statistics for indicators (sample size is 136)
vS′ vD vQ vG

average .488 .443 .503 .410
std. dev. .245 .250 .240 .228

Table 4. Correlation matrix (sample size is 136)
vS′ vD vQ vG

vS′ 1.000
vD 0.969 1.000
vQ 0.885 0.840 1.000
vG 0.963 0.940 0.961 1.000
Ave. Pre. 0.857 0.829 0.928 0.894

Table 5. Scores of indicators for some characteristic patterns
Pattern vS′ vD vQ vG

a. 32000 0.923 0.933 0.667 0.733
b. 00123 0.331 0.184 0.513 0.304

b/a 0.358 0.197 0.770 0.415
c. 03210 0.558 0.610 0.750 0.622

c/a 0.604 0.654 1.125 0.848
d. 30000 0.692 0.640 0.333 0.400

d/a 0.750 0.686 0.500 0.545
e. 00003 0.138 0.046 0.121 0.080

e/d 0.200 0.072 0.364 0.200

Table 4 is a correlation matrix between a set of the four indicators and
traditional average precision for our sample. Scores of the traditional (binary)
average precision were computed assuming that a document whose relevance
degree is more than 0 is relevant and otherwise irrelevant. It turns out that
the Q-measure has significantly lower correlation with the modified sliding ratio
and nDCG, i.e., the correlation coefficients are 0.885 and 0.840 respectively. We
may consider that the pattern assessed highly by the Q-measure is somewhat
different from those assessed highly by the modified sliding ratio and nDCG. In
contrast, the modified sliding ratio and nDCG have the highest correlation (i.e.,
0.969) among them, and the generalized average precision maintains high corre-
lations with the other three indicators. We may thus represent the relationships
between the four indicators as “(vS′ , vD) – (vG) – (vQ).”
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In order to explore further the differences between the four indicators, we
select some characteristic patterns from our example (see Table 5).

(a) Pattern “32000”
The score of Q-measure is relatively low, i.e., vQ = .667, while those of the
modified sliding ratio and nDCD are very high (.923 and .933, respectively).
The generalized average precision is at a mid point near to the Q-measure
(vG = .733).

(b) Pattern “00123”
Unlike the case of pattern “32000”, the score of Q-measure is the highest among
all indicators, i.e., vQ = .513, for the pattern “00123”, in which all relevant doc-
uments appear in the list. The characteristics become clearer when we compare
the score of vQ with that of nDCG, which is .184, or only about 20 percent of the
score for the pattern “32000”. The Q-measure may be a kind of recall-oriented
indicator in that the score shows higher performance in the case of more relevant
documents within the list.

(c) Pattern “03210”
The recall-oriented nature of the Q-measure is again observed for the pattern
“03210”, which is a pattern in which the top-ranked document is irrelevant but
relevant documents are successfully ranked from the second position in decreas-
ing order of relevance. In the case of Q-measure, the score for “03210” out-
performs that of “32000”. In contrast, the three other indicators show higher
performance for the pattern “32000” than “03210”. However, only the general-
ized average precision shows a similar tendency as the Q-measure, i.e., the score
(vG = .622) is relatively large in comparison with that for “32000” (the ratio
is 84.8 percent). The differential of these two indicators (Q-measure and gen-
eralized average precision) contains a summation having an indicator function
I(xj) (see Eq.(36) and (43)). Hence, these indicators may take a higher score
as the list contains many more documents whose relevance degree is more than
zero (i.e., I(xj) = 1).

(d) Pattern “30000”
The pattern “30000” is the case in which only the most relevant document
is included in the list and is top-ranked. If users wish to get only the most
relevant document, they can do so with this pattern even though other relevant
documents are not included in the list. For such pattern, the modified sliding
ratio shows high performance, i.e., vS′ = .692, which is just 75 percent of the
score for the pattern “32000”. A similar tendency is also observed in the result
of nDCG. In contrast, the Q-measure does not assign a particularly high score
to the pattern “30000”, and the generalized average precision is again at a mid
point between (vS′ , vD) and (vQ).

(e) Pattern “00003”
The score of the nDCG is the lowest (vD = 0.046). A similar tendency is also
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observed in the patter “00123” as discussed above. Intuitively, dI(k) in the
differential of this indicator (see Eq.(33)) affects this tendency.

Although we cannot obtain a clear conclusion from a simple numerical com-
parison using a small and artificial example, our restricted simulation reveals
that the Q-measure is recall-oriented, whereas the modified sliding ratio and
nDCG are precision-oriented. The generalized average precision may be at a
mid point between the two sides. The nDCG tends to estimate lower those
patterns having relevant documents only in the bottom of the ranked list.

5 Concluding remarks

In this paper, we have discussed some properties of average precision and ex-
plored indicators directly using results from multi-grade judgments of relevance.
Some interesting findings were obtained through theoretical and empirical ex-
aminations. However, all empirical examinations in this report were executed
just on small samples that were artificially generated under some assumptions.
There is room for further research using larger samples obtained in more realistic
situations of retrieval experiments.
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Appendix

As is well-known in statistical science, Vp[Vm(·|S)] can be decomposed as

Vp[Vm(·|S)] = Ep[Vm(·|S)] + Vp[Em(·|S)] (45)

(see p.275 in the textbook by W.G. Cochran [7]). First, we obtain

Vp[Em(v̄a|S)] =
1
L

σ2
µ (46)

since Em(v̄a|S) is a sample mean of µ (see Eq.(21)) and it is clear that the
variance of a sample mean can be obtained by dividing population variance σ2

µ

by sample size L.
Regarding the first term Ep[Vm(v̄a|S)], we obtain

Vm(v̄a|S) = Vm

[
L−1

L∑
h=1

vha

∣∣∣∣∣ S

]
= L−2

L∑
h=1

Vm(vha|S). (47)

Under the assumption of independent relevance judgments between search top-
ics,

L−2
L∑

h=1

Vm(vha|S) = L−2
L∑

h=1

Vm(vha|h) = L−2
L∑

h=1

σ2
h. (48)

Therefore,

Ep[Vm(v̄a|S)] = Ep

[
L−2

L∑
h=1

σ2
h

]
= L−1Ep

[
L−1

L∑
h=1

σ2
h

]
. (49)

If we define σ2
d as in Eq.(25), it is clear that Eq.(24) can be obtained (note that

Vp[Em(v̄a|S)] = L−1σ2
µ).
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