

ISSN 1346-5597

NII Technical Report

Lexicalization of Second-Order ACGs

Makoto Kanazawa and Ryo Yoshinaka

NII-2005-012Ｅ
Aug. 2005

Lexicalization of Second-Order ACGs

Makoto Kanazawa1 and Ryo Yoshinaka2

1,2National Institute of Informatics
2Graduate School of Interdisciplinary Information Studies, University of Tokyo

Abstract

We use techniques familiar from the theory of context-free gram-
mars to show that, given a second-order abstract categorial grammar
(ACG), one can effectively find a lexicalized second-order ACG whose
object language is the object language of the original ACG minus com-
binators.

1 Introduction

An abstract categorial grammar (ACG) (de Groote 2001) is second-order if
every abstract constant has a type of the form q1→· · ·→qk→p (k ≥ 0), where
q1, . . . , qk, p are atomic types. An ACG is lexicalized if the object image of
every abstract constant contains a constant. In this note, we use techniques
familiar from the theory of context-free grammars to show that, given a
second-order ACG, one can effectively find a lexicalized second-order ACG
whose object language is the object language of the original ACG minus
combinators. This result was stated in Yoshinaka and Kanazawa 2005, but
the proof in that paper was in error. The purpose of this note is to correct
this mistake and at the same time relate the result to familiar properties of
context-free grammars.

Let G = 〈Σ,Σobj,L , s〉 be a second-order ACG with Σ = 〈A,C, τ〉. The
set C is partitioned into the set D of lexical constants (abstract constants
whose image under L contains at least one constant) and the set E of non-
lexical constants. That G is second-order means that there is a regular tree
grammar GG generating the abstract language of G whose productions are
of the form p → cq1 . . . qk, where p, q1, . . . , qk ∈ A and c ∈ C. Our procedure
for eliminating non-lexical constants from G corresponds to eliminating from
GG all productions of the form p → eq1 . . . qk, where e ∈ E. We break down
the procedure into three steps, each corresponding to a modification of a
familiar transformation on CFGs, as summarized in Table 1. Overall, the
procedure roughly corresponds to a procedure for converting a context-free
grammar into Greibach normal form.

non-lexical constants
eliminated from ACG

productions
eliminated from RTG technique applied

1. nullary p → e elimination of ε-productions
2. unary p → eq elimination of unit productions
3. k-ary (k ≥ 2) p → eq1 . . . qk (k ≥ 2) left-corner transform

Table 1: Three steps for eliminating non-lexical constants

1

Formally, we describe each of the first two steps of the procedure in
terms of a simple transformation of a regular tree grammar into another
one generating a certain subset of the original language. These transfor-
mations induce transformations on ACGs because second-order ACGs can
be translated into regular tree grammars and regular tree grammars can be
translated back into second-order ACGs. The third step of our procedure
is described in terms of a transformation of a regular tree grammar into a
linear context-free tree grammar generating the same language, relying on a
translation from linear context-free tree grammars into second-order ACGs
(de Groote and Pogodalla 2004).

2 The left-corner transform

The last step of our procedure for lexicalizing second-order ACGs is based on
a transformation on context-free grammars known as the left-corner trans-
form (Rosenkrantz and Lewis 1970), which converts a possibly left-recursive
context-free grammar into an equivalent non-left-recursive one. Top-down
parsing with the left-corner transformed grammar simulates left-corner pars-
ing with the original grammar. The left-corner transform can be used as an
intermediate step in converting a context-free grammar to Greibach normal
form.

A context-free grammar is a quadruple G = 〈N, T, P, S〉, where N is a
finite set of nonterminals, T is a finite set of terminals (disjoint from N), S is
a member of N (called the start symbol), and P is a finite set of productions
of the form A → β, where A ∈ N and β ∈ (N ∪ T)∗. An ε-production is
a production of the form A → ε. A unit production is a production of the
form A → B, where B is a nonterminal. For α, α′ ∈ (N ∪ T)∗, the relation
α ⇒G α′ holds if there is a production A → β such that α = α1Aα2 and
α′ = α1βα2 for some α1, α2 ∈ (N ∪ T)∗. A context-free grammar G =
〈N, T, P, S〉 is left-recursive if A ⇒∗G Aα for some A ∈ N and α ∈ (N ∪T)∗.

We use the following variant of Rosenkrantz and Lewis’s (1970) original
construction:

Definition 1. Let G = 〈N, T, P, S〉 be a context-free grammar with no
ε-production or unit production. The left-corner transform of G is G′ =
〈N ′, T, P ′, S〉, where

N ′ = N ∪ {B−A | A,B ∈ N }

and P ′ is defined as follows:

• For each production in P of the form A → b β where b ∈ T and
β ∈ (N ∪ T)∗, P ′ will have the production

A → b β (I)

and the production of the form

D → b β D−A (II)

for each D ∈ N .

2

• For each production in P of the form A → B β where B ∈ N and
β ∈ (N ∪ T)∗, P ′ will have the production

A−B → β (III)

and the production of the form

D−B → β D−A (IV)

for each D ∈ N .

The grammar G′ in Definition 1 corresponds to the result of eliminating
ε-productions from Rosenkrantz and Lewis’s (1970) transform.1 It is easy
to see that G′ is non-left-recursive.

Proposition 2 (Rosenkrantz and Lewis). Let G be a context-free gram-
mar without ε- or unit productions, and let G′ be the left-corner transform
of G. Then L(G) = L(G′).

For the sake of completeness, we provide a proof of Proposition 2.

Proof. First, we prove by simultaneous induction on n ≥ 1 that the following
hold for every D, B ∈ N and w ∈ T+:

(i) D ⇒n
G w implies D ⇒n

G′ w;

(ii) D ⇒n
G Bw implies D−B ⇒n

G′ w.

To prove (i), suppose D ⇒n
G w. Then we must have

D ⇒n1
G Aα ⇒G bβα ⇒n2+n3

G bw1w2 = w,

β ⇒n2
G w1,

α ⇒n3
G w2,

where n = n1 + n2 + n3 + 1 and A → bβ ∈ P . The induction hypothesis
about (i) implies β ⇒n2

G′ w1. If n1 = 0, then D = A, α = w2 = ε, n3 = 0,
and schema (I) gives D → bβ ∈ P ′. Thus,

D ⇒G′ bβ ⇒n2
G′ bw1 = w.

If n1 ≥ 1, since D ⇒n1+n3
G Aw2, the induction hypothesis about (ii) gives

D−A ⇒n1+n3
G′ w2. We have D → b β D−A ∈ P ′ by schema (II). Thus,

D ⇒G′ b β D−A ⇒n2
G′ b w1 D−A ⇒n1+n3

G′ bw1w2 = w.

To prove (ii), suppose D ⇒n
G Bw. Then we must have

D ⇒n1
G Aα ⇒G Bβα ⇒n2+n3

G Bw1w2 = w,

β ⇒n2
G w1,

α ⇒n3
G w2,

1As Rosenkrantz and Lewis (1970) note, G′ in general has many useless nonterminals.
One can modify Definition 1 to avoid creating useless nonterminals (Moore 2000, Johnson
and Roark 2000), but we choose not to do so here.

3

where n = n1 + n2 + n3 + 1 and A → Bβ ∈ P . The induction hypothesis
about (i) implies β ⇒n2

G′ w1 If n1 = 0, then D = A, α = w2 = ε, n3 = 0, and
schema (III) gives D−B → β ∈ P ′. Thus,

D−B ⇒G′ β ⇒n2
G′ w1 = w.

If n1 ≥ 1, since D ⇒n1+n3
G A w2, the induction hypothesis about (ii) gives

D−A ⇒n1+n3
G′ w2. We have D−B → β D−A ∈ P ′ by schema (IV). Thus,

D−B ⇒G′ β D−A ⇒n2
G′ w1 D−A ⇒n1+n3

G′ w1w2 = w.

Next we prove by simultaneous induction on n ≥ 1 that the following
hold for every D, B ∈ N and w ∈ T+:

(iii) D ⇒n
G′ w implies D ⇒n

G w;

(iv) D−B ⇒n
G′ w implies D ⇒n

G Bw.

To prove (iii), suppose D ⇒n
G′ w. There are two cases to consider.

Case 1. The first step of the derivation is by a production of type (I).
Then

D ⇒G′ bβ ⇒n1
G′ bw1 = w,

β ⇒n1
G′ w1,

where n = n1 + 1 and D → bβ ∈ P . The induction hypothesis about (iii)
implies β ⇒n1

G w1. Thus,

D ⇒G bβ ⇒n1
G bw1 = w.

Case 2. The first step of the derivation is by a production of type (II).
Then

D ⇒G′ b β D−A ⇒n1+n2
G′ bw1w2 = w,

β ⇒n1
G′ w1,

D−A ⇒n2
G′ w2,

where n = n1 + n2 + 1 and A → bβ ∈ P . The induction hypothesis about
(iii) implies β ⇒n1

G w1. By the induction hypothesis about (iv), D ⇒n2
G Aw2.

Thus,
D ⇒n2

G Aw2 ⇒G bβw2 ⇒n1
G bw1w2 = w.

To prove (iv), suppose D−B ⇒n
G′ w. Again, there are two cases to

consider.
Case 1. The first step of the derivation is by a production of type (III).

Then

D−B ⇒G′ β ⇒n1
G′ w,

where n = n1 + 1 and D → Bβ ∈ P . The induction hypothesis about (iii)
implies β ⇒n1

G w. Thus,

D ⇒G Bβ ⇒n1
G Bw.

4

Case 2. The first step of the derivation is by a production of type (IV).
Then

D−B ⇒G′ β D−A ⇒n1+n2
G′ w1w2 = w,

β ⇒n1
G′ w1,

D−A ⇒n2
G′ w2,

where n = n1 + n2 + 1 and A → Bβ ∈ P . The induction hypothesis about
(iii) implies β ⇒n1

G w1. By the induction hypothesis about (iv), D ⇒n2
G Aw2.

Thus,
D ⇒n2

G Aw2 ⇒G Bβw2 ⇒n1
G Bw1w2 = Bw.

The proposition follows from (i) and (iii).

One further simple transformation converts G′ into what is sometimes
called extended Greibach normal form. A context-free grammar is in ex-
tended Greibach normal form if the right-hand side of each production starts
with a terminal. Productions of G′ of types (I) and (II) are already of the
required form. Consider a production of G′ of type (III) or (IV). Since the
original context-free grammar G has no unit production, β cannot be empty.
If the first symbol of β is a terminal, there is nothing to do. If β = Cγ with
C ∈ N , then we replace this production by all productions that we obtain
by expanding C with a production of type (I) or (II). This way we obtain a
grammar G′′ in extended Greibach normal form such that L(G′′) = L(G).

3 Second-order ACGs and tree grammars

3.1 ACGs

Our notations and terminology for ACGs follow de Groote (2001) and de
Groote and Pogodalla (2004), except that we speak of higher-order signa-
tures instead of higher-order linear signatures, we write → instead of (,
and we use σ (for type substitution) and θ (for term homomorphism) to
denote the two components of a lexicon.

Given a finite set of atomic types, the set T (A) of types built upon A is
the smallest superset of A satisfying the condition

α, β ∈ T (A) implies (α→ β) ∈ T (A).

We omit the outermost parentheses when we write types. The connective
→ is assumed to be right-associative, so we write α1 → α2 → α3 instead of
α1 → (α2 → α3).

A higher-order signature is a triple Σ = 〈A,C, τ〉, where A is a finite set
of atomic types, C is a finite set of constants, and τ is a mapping from C
to T (A). Let X be a countably infinite set of variables. The set Λ(Σ) of
(untyped) linear λ-terms built upon a higher-order signature Σ = 〈A,C, τ〉
is the smallest superset of X ∪ C satisfying the following conditions:

1. If t, u ∈ Λ(Σ) and t and u do not share any free variables, then (tu) ∈
Λ(Σ);

2. If t ∈ Λ(Σ) and x is a variable that occurs free in t, then (λx.t) ∈ Λ(Σ).
(x is no longer free in λx.t.)

5

We omit the outermost parentheses when we write λ-terms. We
write t1t2t3 for (t1t2)t3, λx.t1t2 for λx.(t1t2), and λx1 . . . xn.t for
λx1.(λx2. . . . (λxn.t) . . .). We take for granted the notion of βη-equality,
and treat βη-equal λ-terms as equal.

Given a higher-order signature Σ = 〈A,C, τ〉, λ-terms in Λ(Σ) may be
assigned types in the usual way. A context is a finite set Γ of typing dec-
larations of the form x : α (where x ∈ X, α ∈ T (A)) in which no variable
is declared more than once. The following inference system derives typing
judgments of the form Γ `Σ t : α, where Γ is a context, t ∈ Λ(Σ), and
α ∈ T (A):

`Σ c : τ(c) for c ∈ C x : α `Σ x : α for x ∈ X and α ∈ T (A)

Γ, x : α `Σ t : β

α `Σ λx.t

Γ `Σ t : α→ β ∆ `Σ u : α

Γ,∆ `Σ tu : β

We write Γ ` t : α when Γ `Σ t : α for some Σ = 〈A,∅,∅〉.
When we write Σ,Σ′,Σ1, etc., to denote higher-order signatures, we

assume Σ = 〈A,C, τ〉, Σ′ = 〈A′, C ′, τ ′〉, Σ1 = 〈A1, C1, τ1〉, etc., unless other-
wise noted. Given higher-order signatures Σ and Σ′, a lexicon from Σ to Σ′

is a pair L = 〈σ, θ〉 such that

1. σ is a type substitution that maps elements of A to elements of T (A′);

2. θ is a mapping from C to Λ(Σ′);

3. `Σ′ θ(c) : σ(τ(c)) for all c ∈ C.

θ is extended to a mapping from Λ(Σ) to Λ(Σ′) as follows:

θ(x) = x for x ∈ X,
θ(tu) = θ(t)θ(u),

θ(λx.t) = λx.θ(t).

When L = 〈σ, θ〉 is a lexicon, we write L (α) and L (t) for σ(α) and θ(t),
respectively.

An abstract categorial grammar (ACG) is a quadruple G = 〈Σ,Σ′,L , s〉,
where

1. Σ is a higher-order signature called the abstract vocabulary ;

2. Σ′ is a higher-order signature called the object vocabulary ;

3. L is a lexicon from Σ to Σ′;

4. s is an atomic type of the abstract vocabulary (s ∈ A).

The abstract language of G , denoted by A(G), is defined as follows:

A(G) = { t ∈ Λ(Σ) | `Σ t : s }.

The object language of G , denoted by O(G), is defined as follows:

O(G) = {u ∈ Λ(Σ′) | u = L (t) for some t ∈ A(G) }.

6

A constant c of the abstract vocabulary of an ACG G is lexical if at least
one constant occurs in L (c). We say that G is lexicalized if all its abstract
constants are lexical.

The order of a type α, denoted by ord(α), is defined as follows:

ord(p) = 1 if p is atomic,
ord(α→ β) = max(ord(α) + 1, ord(β)).

The order of a higher-order signature Σ is max{ ord(τ(c)) | c ∈ C }. The
order of a lexicon L from Σ to Σ′ is max{ ord(L (p)) | p ∈ A }. G(n,m)
denotes the class of ACGs G = 〈Σ,Σ′,L , s〉 such that the order of Σ is ≤ n
and the order of L is ≤ m. An ACG G is n-th order if G ∈ G(n,m) for
some m.

Note that the set Λ(Σ) of linear λ-terms built upon a higher-order sig-
nature Σ = 〈A,C, τ〉 does not depend on A and τ . The following lemma is
obvious from the definition of the object language, but it will be convenient
to be able to refer to it.

Lemma 3. Let Σ be a higher-order signature. Let Σ1 and Σ2 be two higher-
order signatures such that C1 = C2, and let θ : C → Λ(Σ1) = Λ(Σ2). Sup-
pose that σ1 : A → T (A1) and σ2 : A → T (A2) are such that L1 = 〈σ1, θ〉
is a lexicon from Σ to Σ1 and L2 = 〈σ2, θ〉 is a lexicon from Σ to Σ2. Let
s ∈ A and define

G1 = 〈Σ,Σ1,L1, s〉,
G2 = 〈Σ,Σ2,L2, s〉.

Then O(G1) = O(G2).

3.2 From second-order ACGs to regular tree grammars

A ranked alphabet is a pair 〈F, ρ〉, where F is an alphabet and ρ is a mapping
ρ : F → N. We often write F for the ranked alphabet 〈F, ρ〉, suppressing
reference to ρ. The set of trees over a ranked alphabet F is denoted TF . We
write trees in parenthesis-free prefix notation so that TF ⊆ F+.

Let Σ = 〈A,C, τ〉 be a second-order signature. We call a constant c ∈ C
k-ary if τ(c) is of the form q1 → · · ·→ qk → p, where q1, . . . , qk, p are atomic
types. We define the ranked alphabet 〈C, ρΣ〉 by letting ρΣ(c) = k if c is
k-ary. If t is a λ-term in Λ(Σ) such that `Σ t : p for some p ∈ A, then t can
be identified with a member of T〈C,ρΣ〉. We say that Σ is compatible with a
ranked alphabet 〈F, ρ〉 if F = C and ρ = ρΣ.

Any ranked alphabet F can be identified with a second-order signature
ΣF = 〈{o}, F, τF 〉, where for each f ∈ F , τF (f) = ok → o if f has rank
k. If Σ = 〈A,C, τ〉 is a second-order signature, there is a unique first-order
lexicon LΣ from Σ to Σ〈C,ρΣ〉 such that LΣ(c) = c for every c ∈ C.

Let F = F1 ∪F2 be a ranked alphabet (F1 ∩F2 = ∅). We can write any
t ∈ TF uniquely in the following form:

w0a1w1 . . . akwk,

where ai ∈ F1 for 1 ≤ i ≤ k and wi ∈ F∗2 for 0 ≤ i ≤ k. We let t|F1 denote
the string a1 . . . ak, and write ty1,...,yk

for the linear λ-term t′ in Λ(ΣF2) such
that FV(t′) = {y1, . . . , yk} and t′[a1/y1, . . . , ak/yk] = t.

7

A regular tree grammar is a context-free grammar such that the non-
terminal and terminal alphabets N and T are ranked, all nonterminals
have rank 0, and the right-hand side of every production is a tree over
N ∪ T . If G is a regular tree grammar and p is a nonterminal of G, then
{α ∈ (N ∪ T)∗ | p ⇒∗G α } is a subset of TN∪T . A set L ⊆ TT is a regular
tree language if L = L(G) for some regular tree grammar G.

It is easy to see that the abstract language of a second-order ACG is a
regular tree language.

Definition 4. Let G = 〈Σ,Σobj,L , s〉 be a second-order ACG, with Σ =
〈A,C, τ〉. The regular tree grammar GG determined by G is

GG = 〈A,C, PG , s〉,
where the rank for c ∈ C is given by ρΣ(c) and

PG = { p → cq1 . . . qk | c ∈ C ∧ τ(c) = q1 → · · · → qk → p }.
We can easily prove the following lemma:

Lemma 5. Let G = 〈Σ,Σobj,L , s〉 be a second-order ACG with Σ =
〈A,C, τ〉, and let GG be the regular tree grammar determined by G . For
every p ∈ A and t ∈ TA∪C ,

p ⇒∗GG
t if and only if y1 : q1, . . . , yk : qk `Σ ty1,...,yk

: p,

where t|A = q1 . . . qk.

Lemma 5 implies

Proposition 6. For every second-order ACG G , it holds that L(GG) =
A(G).

3.3 From linear context-free tree grammars to second-order
ACGs

We let Xn = {x1, . . . , xn} be a ranked alphabet of n variables, all of rank
0. Given a ranked alphabet F , an n-context over F is a tree t[x1, . . . , xn] in
TF∪Xn in which each xi (1 ≤ i ≤ n) occurs exactly once. If u1, . . . , un ∈ TF ,
t[u1, . . . , un] denotes the result of substituting u1, . . . , un for x1, . . . , xn in
t[x1, . . . , xn]. The set of n-contexts over F is denoted by CF (n). Note that
CF (0) = TF .

Since a context t[x1, . . . , xn] ∈ CF1∪F2(n) is a special kind of tree in
TF1∪F2∪Xn , the vertical bar notation extends to contexts. If

t[x1, . . . , xn] = w0a1w1 . . . akwk,

where ai ∈ F1 for 1 ≤ i ≤ k and wi ∈ (F2 ∪ Xn)∗ for 0 ≤ i ≤ k, we let
t[x1, . . . , xn]|F1 denote the string a1 . . . an, and write t[x1, . . . , xn]y1,...,yk

for
the linear λ-term t′ in Λ(ΣF2) such that FV(t′) = {x1, . . . , xn, y1, . . . , yk}
and t′[q1/y1, . . . , qk/yk] = t.

A linear context-free tree grammar2 is a quadruple G = 〈N, T, P, s〉,
where N is a ranked alphabet of nonterminals, T is a ranked alphabet of

2We follow de Groote and Pogodalla (2004) in deviating from standard terminology
and mean linear and non-deleting by ‘linear’.

8

terminals, s is a nonterminal of rank 0, and P is a finite set of productions
of the form

ax1 . . . xn → t[x1, . . . , xn]

where a is a member of N of rank n and t[x1, . . . , xn] is an n-context over
N ∪ T .

For every u, v ∈ TN∪T , u ⇒G v is defined to hold if and only if there is a
c[x1] ∈ CN∪T (1) and a production ax1 . . . xn → t[x1, . . . , xn] in P such that

u = c[au1 . . . un],
v = c[t[u1, . . . , un]].

The language L(G) of a linear context-free tree grammar G is defined by
L(G) = { t ∈ TT | s ⇒∗G t }.

Note that a regular tree grammar G = 〈N, T, P, s〉 is just a special kind
of linear context-free tree grammar such that all elements of N have rank 0.

Let G = 〈N, T, P, s〉 be a linear context-free tree grammar. We use the
method of de Groote and Pogodalla (2004) to construct a second-order ACG
GG such that O(GG) = L(G).

Definition 7. Let G = 〈N, T, P, s〉 be a linear context-free tree grammar.

1. Define a second-order signature ΣG = 〈AG, CG, τG〉 as follows:

AG = N,

CG = { cπ | π ∈ P },
τG(cax1...xn→t[x1,...,xn]) = a1 → · · · → ak → a,

where t[x1, . . . , xn]|N = a1 . . . ak.

2. Define a second-order lexicon LG = 〈σG, θG〉 from ΣG to ΣT by

σG(a) = on → o if a has rank n,
θG(cax1...xn→t[x1,...,xn]) = λy1 . . . ykx1 . . . xn.t[x1, . . . , xn]y1,...,yk

,

where t[x1, . . . , xn]|N = a1 . . . ak.

3. Define a second-order ACG GG by

GG = 〈ΣG,ΣT ,LG, s〉.

Note that GG ∈ G(2, 2), and in the special case where G is a regular tree
grammar, GG ∈ G(2, 1).

Proposition 8. For every linear context-free tree grammar G, it holds that
O(GG) = L(G).

Proof. It suffices to prove the following claim:

Claim. For every t ∈ TN∪T , the following are equivalent:

(i) s ⇒∗G t.

(ii) There is a u ∈ Λ(ΣG) such that

y1 : a1, . . . , yk : ak `ΣG
u : s and LG(u)[a1/y1, . . . , ak/yk] = t.

9

First we prove (i) ⇒ (ii) by induction on n such that s ⇒n
G t. If n = 0,

then t = s. Let u = y1. We have y1 : s `ΣG
u : s and LG(u)[s/y1] =

y1[s/y1] = s, so (ii) holds. If n = n1 + 1, then s ⇒n1
G c[bt1 . . . tm] ⇒G

c[t0[t1, . . . , tm]] = t for some context c[x1] ∈ CN∪T and some production
π = bx1 . . . xm → t0[x1, . . . , xm] in P . By the induction hypothesis, there is
a u′ ∈ Λ(ΣG) such that

y1 : a1, . . . , yl : al, z : b `ΣG
u′ : s (1)

and
LG(u′)[a1/y1, . . . , al/yl, b/z] = c[bt1 . . . tm]. (2)

Let t0[x1, . . . , xm]|N = b1 . . . bj . Since τG(π) = b1 → · · · → bj → b, we have

z1 : b1, . . . , zj : bj `ΣG
cπz1 . . . zj : b. (3)

By the definition of LG,

LG(cπ) = λz1 . . . zjx1 . . . xm.t0[x1, . . . , xm]z1,...,zj . (4)

By (1) and (3),

y1 : a1, . . . , yl : al, z1 : b1, . . . , zj : bj `ΣG
u′[cπz1 . . . zj/z] : s.

By (2) and (4),

LG(u′[cπz1 . . . zj/z])[a1/y1, . . . , al/yl, b1/z1, . . . , bj/zj]
= LG(u′)[LG(cπ)z1 . . . zj/z][a1/y1, . . . , al/yl, b1/z1, . . . , bj/zj]
= LG(u′)[a1/y1, . . . , al/yl][LG(cπ)b1 . . . bj/z]
= c[zt1 . . . tm][(λz1 . . . zjx1 . . . xm.t0[x1, . . . , xm]z1,...,zj)b1 . . . bj/z]
= c[zt1 . . . tm][λx1 . . . xm.t0[x1, . . . , xm]/z]
= c[t0[t1, . . . , tm]]
= t.

Therefore, (ii) holds with u = u′[cπz1 . . . zj].
Next we prove (ii) ⇒ (i) by induction on the number n of occurrences of

constants in u. If n = 0, then k = 1, u = y1, and s = a1. Since LG(u) = y1,
it follows that t = s and (i) obviously holds. If n ≥ 1, then there must be a
context c[x1] ∈ CCG

(1) and some production π = bx1 . . . xm → t0[x1, . . . , xm]
such that

u = c[cπyi1 . . . yil], (5)
t0[x1, . . . , xm]|N = ai1 . . . ail (6)

for some i1, . . . , il ∈ {1, . . . , k}. Let {j1, . . . , jk−l} = {1, . . . , k}−{i1, . . . , il}.
Since y1 : a1, . . . , yk : ak `ΣG

u : s and yi1 : ai1 , . . . , yil : ail `ΣG
cπyi1 . . . yil : b,

we must have
yj1 : aj1 , . . . , yjk−l

: ajk−l
, z : b ` c[z] : s.

Let
t′ = LG(c[z])[aj1/yj1 , . . . , ajk−l

/yjk−l
, b/z]. (7)

By the induction hypothesis,
s ⇒∗G t′. (8)

10

Since b has rank m,
t′ = c′[bt1 . . . tm] (9)

for some c′ ∈ CN∪T (1) and t1, . . . , tm ∈ TN∪T . Let

t = LG(u)[a1/y1, . . . , ak/yk].

Then

t = LG(c[cπyi1 . . . yil])[a1/y1, . . . , ak/yk] by (5)
= LG(c[z])[LG(cπ)yi1 . . . yil/z][a1/y1, . . . , ak/yk]
= LG(c[z])[λx1 . . . xm.t0[x1, . . . , xm]yi1

,...,yil
/z][a1/y1, . . . , ak/yk]

= LG(c[z])[aj1/yj1 , . . . , ajk−l
/yjk−l

]
[λx1 . . . xm.t0[x1, . . . , xm]yi1

,...,yil
[ai1/yi1 , . . . , ail/yil]/z]

= LG(c[z])[aj1/yj1 , . . . , ajk−l
/yjk−l

][λx1 . . . xm.t0[x1, . . . , xm]/z] by (6)
= c′[zt1 . . . tm][λx1 . . . xm.t0[x1, . . . , xm]/z] by (7) and (9)
= c′[t0[t1, . . . , tm]].

So t′ ⇒G t. From this and (8), we conclude (i).

More generally, L(G) may be generated by a second-order ACG whose
object vocabulary is compatible with T .

Corollary 9. Let G = 〈N, T, P, s〉 be a linear context-free tree grammar,
and let Σ = 〈A, T, τ〉 be a higher-order signature compatible with T . Suppose
that σ : N → T (A) satisfies the following condition:

(†) For every production ax1 . . . xn → t[x1, . . . , xn] in P ,

y1 : σ(a1), . . . , yk : σ(ak) `Σ λx1 . . . xn.t[x1, . . . , xn]y1,...,yk
: σ(a)

where t[x1, . . . , xn]|N = a1 . . . ak.

Then
L = 〈σ, θG〉,

where θG is defined in part 2 of Definition 7, is a lexicon from ΣG to Σ.
Define a second-order ACG G by

G = 〈ΣG,Σ,L , s〉.

Then O(G) = L(G).

Proof. By Proposition 8 and Lemma 3.

The following is an important special case of the above construction.
Note that when G is a regular tree grammar, the definition of θG takes the
form

θG(ca→t) = λy1 . . . yk.ty1,...,yk
.

Corollary 10. Let G = 〈N, T, P, s〉 be a regular tree grammar. Suppose
that τ : T → T (N) is such that Σ = 〈N, T, τ〉 is a second-order signature
compatible with T and the following condition is satisfied:

11

(‡) For every a → t ∈ P with t|N = a1 . . . ak,

y1 : a1, . . . , yk : ak `Σ ty1,...,yk
: a.

Then
L̃G = 〈idN , θG〉,

where idN is the identity function on N , is a first-order lexicon from ΣG to
Σ. Define a second-order ACG G̃G by

G̃G = 〈ΣG,Σ, L̃G, s〉.
Then G̃G ∈ G(2, 1) and O(G̃G) = L(G).

4 Elimination of non-lexical constants

At each step of our procedure, we start with a second-order ACG G =
〈Σ,Σobj,L , s〉 with Σ = 〈A,C, τ〉. We assume C = D ∪ E, where D is the
set of lexical constants and E is the set of non-lexical constants. We let
d, d1, d2, . . . stand for elements of D, and e, e1, e2, . . . for elements of E.

In Section 4.1, we make no further assumption on G and produce a
second-order ACG G1 without nullary non-lexical constants such that O(G1)
equals O(G) minus combinators. In Section 4.2, we assume that G has no
nullary non-lexical constant and produce a second-order ACG G2 without
nullary or unary non-lexical constants such that O(G2) = O(G). Finally, in
Section 4.3, we assume that G has no nullary or unary non-lexical constant
and produce a second-order ACG G3 without non-lexical constants such
that O(G3) = O(G). Combining the three steps, we obtain a procedure for
lexicalizing an arbitrary second-order ACG. We will see that the order of
the lexicon stays the same in the first two steps, but increases by one in the
last step.

Theorem 1. Given an ACG G ∈ G(2,m), one can effectively find a lexical-
ized ACG G ′ ∈ G(2,m+1) such that O(G ′) equals O(G) minus combinators.

4.1 Elimination of nullary non-lexical constants

To eliminate nullary non-lexical constants from G , we eliminate from GG

all productions of the form p → e, obtaining a regular tree grammar G1

such that the right-hand side of every production contains some d ∈ D or
some q ∈ A. Clearly, this is in general impossible without affecting the
generated language, since there may be infinitely many trees t ∈ TE such
that p ⇒∗GG

t. However, what we are after is an ACG whose object language
is equal to the object language of the original ACG minus combinators, and
fortunately this allows us to discard from L(GG) all trees which contain
as a subtree some tree in TE whose height exceeds a certain bound. Our
method of doing this is loosely based on the standard method of eliminating
ε-productions from context-free grammars.

Let

Γ0 = { 〈p, L (e)〉 | e ∈ E ∧ p → e ∈ PG },
Γh+1 = Γh ∪ { 〈p, L (e)u1 . . . uk〉 | e ∈ E ∧ p → eq1 . . . qk ∈ PG ∧

〈qi, ui〉 ∈ Γh for 1 ≤ i ≤ k }.

12

Γh contains 〈p, u〉 if and only if there is a tree t ∈ TE of height ≤ h such
that p ⇒∗GG

t and u = L (t). Then if we let Γ =
⋃

h∈N Γh,

Γ = { 〈p, L (t)〉 | p ∈ A ∧ t ∈ TE ∧ p ⇒∗GG
t }.

By Lemma 5, 〈p, u〉 ∈ Γ implies ` u :L (p). Since {u | ` u :L (p) } is finite,
it follows that Γ is finite. Therefore, there must be a number h such that
Γh = Γh+1 = Γ. Let h be the least such number.

Now let

Tp,h
E = { t ∈ TE | p ⇒∗GG

t ∧ t has height ≤ h },
and define

P1 = { p → ct1 . . . tk | p → cq1 . . . qk ∈ PG ∧ I ⊆ {1, . . . , k} ∧
ti ∈ Tqi,h

E if i ∈ I ∧ ti = qi if i 6∈ I ∧
I 6= {1, . . . , k} if c ∈ E },

G1 = 〈C,A, s, P1〉.
Clearly, P1 does not contain any productions of the form p → t for t ∈ TE .

Lemma 11. (i) L(G1) ⊆ L(GG)− TE.

(ii) {L (t) | t ∈ L(G1) } = {L (t) | t ∈ L(GG)− TE }.
Proof. Since P1 does not contain any productions p → t with t ∈ TE , we
see that L(G1) ∩ TE = ∅. From the definition of P1, p → t ∈ P1 implies
p ⇒∗G t. Therefore, s ⇒∗G1

t implies s ⇒∗GG
t, which means L(G1) ⊆ L(GG).

We have proved (i).
The ⊆ direction of (ii) follows from (i), so it remains to prove the ⊇

direction. This follows from the following claim:

Claim. If p ⇒∗GG
t ∈ TC − TE, then there is a t′ ∈ TC − TE such that

p ⇒∗G1
t′ and L (t) = L (t′).

We prove the claim by induction on t ∈ TC − TE such that p ⇒∗GG
t.

If t = ct1 . . . tk, then there must be a production p → cq1 . . . qk in PG and
qi ⇒∗GG

ti (1 ≤ i ≤ k). Let I = { i | 1 ≤ i ≤ k ∧ ti ∈ TE }. By induction
hypothesis, for every i ∈ {1, . . . , k}− I, there is a t′i such that qi ⇒∗G1

t′i and
L (t′i) = L (ti). By the definition of h, for every i ∈ I, there is a t′i ∈ Tqi,h

E

such that L (t′i) = L (ti). Since t 6∈ TE , if c ∈ E, I 6= {1, . . . , k}. By the
definition of P1,

p → ct′′1 . . . t′′k ∈ P1,

where

t′′i =

{
t′i if i ∈ I,
qi otherwise.

Therefore, p ⇒G1 ct′′1 . . . t′′k ⇒∗G1
ct′1 . . . t′k. We have

L (ct′1 . . . t′k) = L (c)L (t′1) . . .L (t′k)
= L (c)L (t1) . . .L (tk)
= L (ct1 . . . tk)
= L (t).

13

By the definition of P1 and Lemma 5, condition (‡) holds of Σ and P1.
Hence, the ACG G̃G1 defined by Definition 7 satisfies

O(G̃G1) = L(G1) (10)

by Corollary 10. By the definition of L̃G1 , if an abstract constant cp→t of
G̃G1 is nullary, some d ∈ D must occur in L̃G1(cp→t). We compose the
original lexicon L with L̃G1 and obtain

G1 = 〈ΣG1 ,Σobj,L ◦ L̃G1 , s〉.
Then G1 has no nullary non-lexical constant. By Proposition 6, part (ii) of
Lemma 11, and (10), we get

O(G1) = O(G)− {u | ` u : L (s) }.
Since G̃G1 ∈ G(2, 1), if G ∈ G(2,m), then G1 ∈ G(2,m) as well.

4.2 Elimination of unary non-lexical constants

We now work with a second-order ACG G that has no nullary non-lexical
constant. To eliminate unary non-lexical constants from G , we eliminate
from GG all productions of the form p → eq, obtaining a regular tree gram-
mar G2 such that the right-hand side of every production contains some
d ∈ D or at least two nonterminals q1, q2 ∈ A. Our method of doing this is
loosely based on the standard method of eliminating unit productions from
context-free grammars, and the necessary modification is parallel to what
we have done in the previous subsection.

Note first that, since every e ∈ E has rank ≥ 1, every element of CE(1)
is of the form e1 . . . enx1 where e1, . . . , en all have rank 1. Let

∆0 = { 〈p, p, x1〉 | p ∈ A },
∆h+1 = ∆h ∪ { 〈p, q, L (e)u〉 | e ∈ E ∧ p → eq1 ∈ PG ∧ 〈q1, q, u〉 ∈ ∆h }.

∆h contains 〈p, q, u〉 if and only if there is a context t[x1] ∈ CE(1) of height
≤ h such that p ⇒∗GG

t[q] and u = L (t[x1]). Then if we let ∆ =
⋃

h∈N∆h,

∆ = { 〈p, q, L (t[x1])〉 | p, q ∈ A ∧ t[x1] ∈ CE(1) ∧ p ⇒GG
t[q] }.

By Lemma 5, 〈p, q, u〉 ∈ ∆ implies x1 :L (q) ` u:L (p). Since {u | x1 :L (q) `
u : L (p) } is finite, it follows that ∆ is finite. Therefore, there must be a
number h such that ∆h = ∆h+1 = ∆. Let h be the least such number.

Now let

CE(1)p,q,h = { t[x1] ∈ CE(1) | p ⇒∗GG
t[q] ∧ t[x1] has height ≤ h },

and define

P2 = { p → t[cq1 . . . qk] | (c ∈ D ∨ k ≥ 2) ∧ q → cq1 . . . qk ∈ PG ∧
t[x1] ∈ CE(1)p,q,h },

G2 = 〈C,A, s, P2〉.
Clearly, P2 does not contain any productions of the form p → t (t ∈ TE) or
p → t[q] (t[x1] ∈ CE(1)).

14

Lemma 12. (i) L(G2) ⊆ L(GG).

(ii) {L (t) | t ∈ L(G2) } = {L (t) | t ∈ L(GG) }.
Proof. By the definition of P2, p → t ∈ P2 implies p ⇒∗GG

t. Therefore,
s ⇒∗G2

t implies s ⇒∗GG
t, which means L(G2) ⊆ L(GG). We have proved

(i).
The ⊆ direction of (ii) follows from (i), so it remains to prove the ⊇

direction. This follows from the following claim:

Claim. If p ⇒∗GG
t ∈ TC , then there is a t′ ∈ TC such that p ⇒∗G2

t′ and
L (t) = L (t′).

We prove the claim by induction on t ∈ TC such that p ⇒∗GG
t. We

can write t uniquely as t = t0[ct1 . . . tk], where t0[x1] ∈ CE(1) and either
c ∈ E or k ≥ 2. Since p ⇒∗GG

t, there must be q, q1, . . . , qk ∈ A such that
p ⇒∗GG

t0[q], q → cq1 . . . qk ∈ PG , and qi ⇒∗GG
ti for 1 ≤ i ≤ k. By induction

hypothesis, there are t′i such that qi ⇒∗G2
t′i and L (ti) = L (t′i) for 1 ≤

i ≤ k. By the definition of h, there must be a t′0[x1] ∈ CE(1)p,q,h such that
L (t0[x1]) = L (t′0[x1]). By the definition of P2, then, p → t′0[cq1 . . . qk] ∈ P2.
Therefore, p ⇒∗G2

t′0[cq1 . . . qk] ⇒∗G2
t′0[ct

′
1 . . . t′k] and

L (t′0[ct
′
1 . . . t′k]) = L (t′0[x1])[L (c)L (t′1) . . .L (t′k)/x1]

= L (t0[x1])[L (c)L (t1) . . .L (tk)/x1]
= L (t0[ct1 . . . tk])
= L (t).

By the definition of P2 and Lemma 5, condition (‡) holds of Σ and P2.
Hence the ACG G̃G2 defined by Definition 7 satisfies

O(G̃G2) = L(G2) (11)

by Corollary 10. By the definition of L̃G2 , if an abstract constant cp→t of
G̃G2 is nullary or unary, some d ∈ D must occur in L̃G2(cp→t). We compose
the original lexicon L with L̃G2 and obtain

G2 = 〈ΣG2 ,Σobj,L ◦ L̃G2 , s〉.

Then G2 has no nullary or unary non-lexical constant. By Proposition 6,
part (ii) of Lemma 12, and (11), we get

O(G2) = O(G).

Since G̃G2 ∈ G(2, 1), if G ∈ G(2,m), then G2 ∈ G(2,m) as well.

4.3 Elimination of remaining non-lexical constants

We now work with a second-order ACG G which has no nullary or unary
non-lexical constant. A production of GG has one of the following forms:

p → dq1 . . . qk,

p → eq1 . . . qk+2.

15

We will eliminate all productions of the second type and obtain a grammar
G3 such that the right-hand side of every production contains some d ∈ D.
Our method of doing this is based on the left-corner transform of Section 2.

A simple-minded application of the left-corner transform to GG obviously
does not yield a desirable result; for the purpose of our conversion, we have
to treat e in the second schema above as if it is ε. As it turns out, we can
easily overcome this problem by taking the mirror image of the left-corner
transform—we apply the right-corner transform to GG and convert it to a
grammar G3 in reverse extended Greibach normal form.

We use nonterminals of the form p/q instead of p−q. For every w ∈ C+,
we will have p/q ⇒∗G3

w if and only if p ⇒∗GG
wq. Define G3 = 〈A′, C, P ′′, s〉,

where
A′ = A ∪ { p/q | p, q ∈ A },

and P ′′ is defined as follows:

• For each production in PG of the form p → d, P ′′ will have the pro-
duction

p → d (I)

and the production of the form

r → r/p d (II)

for each r ∈ A.

• For each production in PG of the form p → dq1, P ′′ will have the
production

p/q1 → d (III)

and the production of the form

r/q1 → r/p d (IV)

for each r ∈ A.

• For each pair of productions in PG of the forms p → cq1 . . . qk+2 and
qk+1 → d, P ′′ will have the production

p/qk+2 → c q1 . . . qk d (III+I)

and the production of the form

r/qk+2 → r/p c q1 . . . qk d (IV+I)

for each r ∈ A.

• For each pair of productions in PG of the forms p → cq1 . . . qk+2 and
q → d, P ′′ will have the production

p/qk+2 → c q1 . . . qk qk+1/q d (III+II)

and the production

r/qk+2 → r/p c q1 . . . qk qk+1/q d (IV+II)

for each r ∈ A.

16

The reader can verify that G3 is indeed the result of applying Definition 1
and the procedure following it in Section 2, except that the left-to-right order
of the right-hand side of productions is reversed. Every production in G3

has some d ∈ D as the last symbol of its right-hand side. By Proposition 2,
we have

Lemma 13. L(G3) = L(GG).

Notice that G3 is no longer a regular tree grammar. However, we can
turn it into a linear context-free tree grammar G′

3 by assigning nonterminals
of the form p/q rank 1, and rewriting productions of the form p/q → α as
p/q x1 → α x1:

P ′′′ = { p → α | p → α ∈ P ′′ } ∪ { p/q x1 → α x1 | p/q → α ∈ P ′′ },
G′

3 = 〈A′, C, P ′′′, s〉.
One can easily check that the right-hand side of a production in P ′′′ is either
a tree or a 1-context over A′ ∪ C, depending on whether the left-hand side
is of the form p or of the form p/q. It is also easy to see that derivations in
G3 and derivations in G′

3 are isomorphic to each other, so we have

Lemma 14. L(G′
3) = L(GG).

All that remains to be done is to translate G′
3 back into a second-order

ACG. Let ΣG′3 be the second-order signature defined by Definition 7. If we
define a type substitution σ : A′ → T (A) as follows:

σ(p) = p for p ∈ A,
σ(p/q) = q→ p for p, q ∈ A,

then condition (†) holds of σ, Σ, and P ′′′, as the reader can check easily. Let
θG3 be as defined by part 2 of Definition 7, i.e.,

θG′3(cp→t) = λy1 . . . yk.ty1,...,yk
, where t|A′ = q1 . . . qk,

θG′3(cp/q x1→t[x1]) = λy1 . . . ykx1.t[x1]y1,...,yk
where t[x1]|A′ = q1 . . . qk.

Then
L̂G′3 = 〈σ, θG′3〉

is a second-order lexicon from ΣG′3 to Σ, and the second-order ACG

ĜG′3 = 〈ΣG′3 ,Σ, L̂G′3 , s〉
satisfies

O(ĜG′3) = L(G′
3) (12)

by Corollary 9. By the definition of L̂G′3 , for every abstract constant c of

ĜG′3 , L̂G′3(c) must contain some d ∈ D. We compose the original lexicon L

with L̂G′3 and obtain

G3 = 〈ΣG′3 ,Σobj,L ◦ L̂G′3 , s〉.
Then G3 has no non-lexical constant. By Proposition 6, Lemma 14, and
(12), we conclude

O(G3) = O(G).

Since ĜG′3 ∈ G(2, 2), if G ∈ G(2,m), then G3 ∈ G(2,m + 1).

17

References

de Groote, Philippe. 2001. Towards abstract categorial grammars. In
Association for Computational Linguistics, 39th Annual Meeting and
10th Conference of the European Chapter, Proceedings of the Conference,
pages 148–155.

de Groote, Philippe and Sylvain Pogodalla. 2004. On the expressive power
of abstract categorial grammars: Representing context-free formalisms.
Journal of Logic, Language and Information 13, 421–438.

Johnson, Mark and Brian Roark. 2000. Compact non-left-recursive gram-
mars using the selective left-corner transform and factoring. In Proceed-
ings of the 18th International Conference on Computational Linguistics
(COLING), 2000, pages 355–361.

Moore, Robert C. 2000. Removing left recursion from context-free gram-
mars. In Proceedings, 1st Meeting of the North American Chapter of the
Association for Computational Linguistics, Seattle, Washington,
pages 249–255.

Rosenkrantz, D.J. and P.M. Lewis II. 1970. Deterministic left corner parser.
In IEEE Conference Record of the 11th Annual Symposium on Switching
and Automata, pages 139–152.

Yoshinaka, Ryo and Makoto Kanazawa. 2005. The complexity and gener-
ative capacity of lexicalized abstract categorial grammars. In Philippe
Blache, Edward Stabler, Joan Busquets, and Richard Moot, editors, Log-
ical Aspects of Computational Linguistics: 5th International Conference,
LACL 2005, pages 330–346. Berlin: Springer.

18

