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1 Introduction

The Boundary Element Method (BEM) or the Boundary Integral Equation (BIE) method
is a convenient method for solving partial differential equations, in that it requires dis-
cretization only on the boundary of the domain[2].

In the method, the accurate and efficient computation of boundary integrals is im-
portant. In particular, the evaluation of nearly singular integrals, which occur when
computing field values near the boundary or treating thin structures, is not an obvious
task.

For this purpose, Lachat and Watson[25] proposed an adaptive element subdivision
method using an error estimator for the numerical integration. Later, a more sophisti-
cated variable order composite quadrature with exponential convergence was proposed by
Schwab[27].

A different approach using quadratic and cubic variable transformations in order
to weaken the near singularity before applying Gauss quadrature was introduced by
Telles[29]. Koizumi and Utamura[20, 21] used polar coordinates with corrections. Hack-
busch and Sauter[7] also used local polar coordinates, performing the inner integrals
analytically and the outer integral by Gauss quadrature.

Another approach is to subtract out the near singularity using analytical integration
formulas for constant planar elements, and then evaluating the remainder term using
Gauss quadrature as in Cruse and Aithal[4]. Further, Sládek and Sládek[28] proposed a
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method to reduce the near singularity of the original boundary integral equation instead
of calculating the near singular integral directly.

In this paper, we will review variable transformation methods for evaluating nearly
singular integrals over curved surfaces, which were proposed by the author and co-
workers[3],[8]-[17],[22]-[24].

The rest of the paper is organized as follows. Section 2 gives a brief explanation of the
boundary element formulation of the three-dimensional potential problem. In section 3,
we analyze the nature of integral kernels occurring in such a formulation. In section 4, we
present the outline of the PART method proposed by the author. In section 5, we treat the
radial variable transformation, which is particularly important in the method. In section
6, we perform an error analysis of the method using complex function theory, which yields
insight regarding the optimal radial variable transformation. In section 7, we mention the
use of the double exponential transformation in the radial variable transformation.

2 Boundary element formulation of 3-D potential

problems

Let us consider the three-dimensional potential problem as an example. The boundary
integral equation is given by

c(xs)u(xs) =
∫
Γ
(qu∗ − uq∗)dΓ (1)

where xs is the source point, u(x) is the potential, and q(x) :=
∂u

∂n
is the derivative

of u along the unit outward normal n at x on the boundary Γ. Γ is the boundary of
the domain Ω of interest, and boundary conditions concerning u and q are given on Γ.
c(xs) = 1 when xs ∈ Ω and c(xs) = 1

2
when xs ∈ Γ and Γ is smooth at xs.

The fundamental solutions u∗ and q∗ are defined by

u∗(x, xs) =
1

4πr
, q∗(x, xs) = −(r, n)

4πr3
(2)

where r := x − xs and r := ||r||2.
The flux at a point xs ∈ Ω is given by

∂u

∂xs
=
∫
Γ

(
q
∂u∗

∂xs
− u

∂q∗

∂xs

)
dΓ (3)

where
∂u∗

∂xs
=

r

4πr3
,

∂q∗

∂xs
=

1

4π

{
n

r3
− 3(r, n)r

r5

}
. (4)

Equations (1) and (3) are discretized on the boundary Γ into boundary elements
Se (e = 1 ∼ N) defined by interpolation functions. The integral kernels of equations (1)
and (3) become nearly singular when the distance d between xs and Se is small compared
to the size of Se. (In the following, we will denote the boundary element Se by S for
brevity.)
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3 Nature of nearly singular integral kernels in 3-D

potential problems

First, we will analyze the nature of nearly singular integral kernels occurring in the bound-
ary element formulation of 3-D potential problems. Since near singularity becomes sig-
nificant in the neighbourhood of the source point xs, we will take a planar element S to
study the basic nature of the near singular kernels. Let xs be the point nearest to xs

on S. Then, introduce Cartesian coordinates (x, y, z) with S in the xy-plane, and polar
coordinates (ρ, θ) in S centred at xs.

Since

xs =

⎛
⎜⎝ 0

0
d

⎞
⎟⎠ , x =

⎛
⎜⎝ x

y
0

⎞
⎟⎠ =

⎛
⎜⎝ ρ cos θ

ρ sin θ
0

⎞
⎟⎠ , r =

⎛
⎜⎝ ρ cos θ

ρ sin θ
−d

⎞
⎟⎠ , n =

⎛
⎜⎝ 0

0
−1

⎞
⎟⎠ ,

and (r, n) = d, equations (2) and (4) can be expressed as

u∗ =
1

4πr
, q∗ = − d

4πr3
,

∂u∗

∂xs

=
1

4π

⎛
⎜⎜⎜⎜⎜⎜⎝

ρ cos θ

r3

ρ sin θ

r3

− d

r3

⎞
⎟⎟⎟⎟⎟⎟⎠

,
∂q∗

∂xs

=
1

4π

⎛
⎜⎜⎜⎜⎜⎜⎝

−3d
ρ cos θ

r5

−3d
ρ sin θ

r5

− 1

r3
+

3d2

r5

⎞
⎟⎟⎟⎟⎟⎟⎠

.

For a constant planar element S we have

∫
S

dS =
∫ 2π

0
dθ
∫ ρmax(θ)

0
ρdρ

using the polar coordinates defined above. Hence, the nearly singular integrals in three-

dimensional potential problems involving kernels u∗, q∗,
∂u∗

∂xs
,
∂q∗

∂xs
are given in the form

∫ 2π

0
dθ
∫ ρmax(θ)

0

ρδ

rα
dρ .

Here

Iα,δ :=
∫ ρj

0

ρδ

rα
dρ (5)

where r = r′ :=
√

ρ2 + d2 for planar elements, and ρj = 1, for example, can be considered
as a model radial variable integral which depicts the essential nature of the nearly singular
integrals arising from equations (1) and (3). The potential integral of equation (1) gives
rise to α = δ = 1 and α = 3, δ = 1, whereas the flux integral of equation (3) gives rise to
α = 3, δ = 1, 2 and α = 5, δ = 1, 2.
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4 The Projection and Angular & Radial Transforma-

tion (PART) method

As seen in the previous section, nearly singular integrals arising in the three-dimensional
boundary element method may be expressed as

I =
∫

S

f

rα
dS

where S is generally a curved surface patch, r = ||x−xs||2 is the distance between a fixed
source point xs and a point x on S. α is a positive integer and f is a function of x ∈ S,
which does not have any near singularity in r. The near singularity of the integrand arises
from the denominator rα, when the distance between xs and S is small compared to the
size of S, since the value of the integrand may vary rapidly along S near xs.

When S is planar, the integral may have a closed form for some f , but this is not the
case when S is curved.

The present method was motivated by Telles’ method[29], which uses product type
Gauss quadrature after applying cubic variable transformations in each of the two vari-
ables describing S in order to weaken the near singularity. Let the source distance d be
the distance between the source point xs and S. It was found that Telles’ method does
not give accurate results with a reasonable number of quadrature points when d is less
than about 1% compared to the size of S. Another drawback of Telles’ method when
applied to integrals over surfaces is that it concentrates the quadrature points towards
the two lines, parallel to the axes in the parameter space defining the curved element,
passing through the point corresponding to the source projection, since the method uses
the product rule in Cartesian coordinates.

Our method is based on the observation that, since the near singularity depends on
the distance ||x−xs||2, one should introduce some kind of polar coordinates near xs, and
then introduce variable transformation along the radial variable, in order to efficiently
weaken the near singularity.

Let a point on the curved element S be described by x(η1, η2). The method consists
of the following steps.

1. Find the point x(η1, η2) on S nearest to xs, using Newton-Raphson’s method. Com-
pute the source distance d := ||xs − x(η1, η2)||2.

2. Determine the point x̃s = x̃(η1, η2) =
∑
j

φ̃j(η1, η2)xj on the element S̃ which is

obtained by connecting the neighbouring corner nodes xj of the original curved
element S by straight lines.

3. Linearly map each sub-triangle �j in the parameter space (η1, η2), onto the corre-
sponding sub-triangle �̃j : x̃sxjxj+1.

4. Introduce polar coordinates (ρ, θ) centred at x̃s in each sub-triangle �̃j , to get

I =
∑
j

∫ �θj

0
dθ
∫ ρj(θ)

0

f

rα
Jjρdρ.
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Here, Jj is the Jacobian of the mapping from Cartesian coordinates on �̃j to curvi-
linear coordinates (η1, η2). �θj = � xjx̃sxj+1.

ρj(θ) =
hj

cos(θ − αj)
,

where hj = ||x̃s− f̃ j||2 and αj = � xjx̃sf̃ j , where f̃ j is the foot of the perpendicular
from x̃s to the edge xjxj+1.

5. Transform the radial variable by R(ρ) defined in section 5 in order to weaken the

near singularity due to
1

rα
.

6. Transform the angular variable by t(θ) in order to weaken the near singularity in θ
which arises from ρj(θ) when x̃s is close to the edge of S̃. An efficient transformation
can be obtained by letting

dθ

dt
=

1

ρj(θ)
,

which gives

t(θ) =
hj

2
log

{
1 + sin(θ − αj)

1 − sin(θ − αj)

}
. (6)

7. Apply the product Gauss-Legendre quadrature to perform the numerical integration
in the transformed variables R and t in

I =
∑
j

∫ t(�θj )

t(0)

dt

ρj(θ)

∫ R(ρj (θ)

R(0)

fJρ

rα

dρ

dR
dR . (7)

Here, we comment on some details of the above procedure.
The Newton-Raphson’s method in Step 1 generally converges within 3 to 4 iterations

to give a relative error of 10−6, with the initial solution set to an arbitrary point on S, e.g.
(η1, η2) = (0, 0), if x(η1, η2) lies inside the element S [13, 15]. However, when x(η1, η2)
lies outside S, the method may diverge. This can be circumvented by constraining the
solution on the edge of the element for such cases[14].

It was also found that when the point x(η1, η2) lies outside the original element S in
Step 1, or when it lies inside S but very close to the edge of S (namely when hj < d in
Steps 3 and 4), moving x(η1, η2) to a nearby point on the edge of S and redefining d leads
to a considerable reduction of the necessary number of integration points, and hence the
computation time [14]-[16].

In Step 2 of the above procedure, the interpolation functions describing the element
S̃ are given by φ̃j, which, in general, is different from the interpolation function φj of the
original element S [17].

When S is a (curved) quadrilateral element, S̃ is a bilinear quadrilateral element
whose vertices coincide with the corner nodes of S. (Note that x1, x2, x3, x4 and x̃s are
not necessarily coplanar.) The interpolation function defining S̃ is given by

φ̃k,l(η1, η2) = φ̃k(η1)φ̃l(η1),
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where k, l = −1, 1 and

φ̃−1(η) =
1 − η

2
, φ̃1(η) =

η + 1

2
.

When S is a (curved) triangular element, S̃ is the planar triangular element whose
vertices coincide with the corner nodes of S.

Steps 1 and 2 generally consume less than 1% of the total CPU-time.
In the method, we could also simply work with the sub-triangle �j in the parameter

space (η1, η2), instead of using the sub-triangle �̃j. However, this gives some problems
when the element S has high aspect ratio. Namely, it requires extra integration points
for the integration in the angular variable[17] even with the use of an angular variable
transformation in the parameter space similar to (6). This is because the parameter space
itself is insensitive to the aspect ratio of the element. Another shortcoming is that the
meaning of the source distance d (relative to the element geometry) becomes vague in
such cases when one uses it in the radial variable transformation in the parameter space.

We mention here that Koizumi and Utamura[20, 21] also uses polar coordinates with
further corrections in order to improve accuracy.

The method proposed by Hackbusch and Sauter[7] also employs polar coordinates,
but performs the inner integration analytically, while the outer integral is evaluated us-
ing the Gauss-Legendre formula. Their method seems promising for planar elements,
but theoretical and numerical justification for using it for curved surface elements seems
lacking1 .

5 Optimal radial variable transformations

The choice of the variable transformation R(ρ) for the radial variable is particularly
important in the PART method.

For constant planar elements,

ρ dρ = r′αdR or R(ρ) =
∫

ρ

r′α
dρ

where r′ :=
√

ρ2 + d2, is equivalent to performing analytical integration in the radial
variable, since r = r′ in this case.

In [8], we proposed using the above ‘singularity cancelling’ transformation to curved
elements, where r = r′ does not necessarily hold, in the hope that in the radial variable
integration ∫ R(ρj (θ))

R(0)

fJρ

rα

dρ

dR
dR =

∫ R(ρj (θ))

R(0)

fJ

rα
r′αdR

in equation (7), the near singularity due to
1

rα
would be weakened by the term r′α.

Although this has some effect, it was later found[9] that the log L2 transformation

ρ dρ = r′2dR or R(ρ) = log
√

ρ2 + d2 (8)

1 At p.155 of their paper, it is not explained how to evaluate the second term of O(hmin ...) in the right
hand side of equation (35), which is not generally negligible for curved surface elements.
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turns out to be more robust and efficient, in the sense that the transformation works well
for all orders of near singularity: α = 1 ∼ 5.

However, this transformation was found to perform poorly for integrals arising in flux
calculations as in equation (4), or for model radial variable integrals Iα,δ in (5) with δ = 2.
The reason is that the log L2 transformation of equation (8) has the property

dρ

dR

∣∣∣∣∣
ρ=+0

= ∞,

so that it induces a infinite derivative at an endpoint of the transformed integrand. This
problem can be overcome by the transformation

R(ρ) = log(ρ + d) (log L1 transformation),

which was shown to work efficiently for flux as well as potential kernels over curved surface
elements, and also model integrals (5) with δ = 2 as well as δ = 1 [11].

In [3], parameter tuning by numerical experiments and theoretical error analysis of
the transformation

R(ρ) = log(ρ + ad)

showed that the transformation was optimum around a = 1, although the transformation
is not so sensitive on the parameter a.

Another efficient transformation was found to be[16]

R(ρ) = (ρ + d)−
1
5 (L1

− 1
5 transformation).

Tables 1 to 4 give some numerical experiment results comparing the effect of the
different transformations. The identity transformation in Table 1 means R(ρ) = ρ. Tests
were performed on the model radial variable integrals of equation (5) where r = r′ :=√

ρ2 + d2 and ρj = 1. The tables give the minimum number of integration points n
required for each method to achieve a relative error of 10−6 for source distance d varying
from 10 to 10−3.

Table 1: Identity Transformation

α δ d
10 1 10−1 10−2 10−3

1 1 3 5 12 35 80
3 1 3 6 16 60 190

2 3 5 20 64 210
5 1 3 6 20 64 210

2 3 7 25 60 190
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Table 2: log L2 Transformation

α δ d
10 1 10−1 10−2 10−3

1 1 2 3 4 5 6
3 1 2 3 4 5 6

2 55 55 64 72 80
5 1 2 3 6 8 10

2 55 64 120 170 200

Table 3: log L1 Transformation

α δ d
10 1 10−1 10−2 10−3

1 1 3 5 8 9 8
3 1 3 5 12 16 20

2 3 6 11 11 16
5 1 3 6 14 20 25

2 3 6 14 20 20

Table 4: L1
− 1

5 Transformation

α δ d
10 1 10−1 10−2 10−3

1 1 3 5 7 8 11
3 1 3 5 9 14 16

2 3 6 10 12 14
5 1 3 6 11 16 20

2 3 6 12 16 20

For extensive numerical experiment results on nearly singular integrals over curved sur-
face elements, see [8, 9],[11]-[17]. The results indicate that the proposed method becomes
more efficient, in terms of the necessary integration points and CPU-time, compared to
previous methods such as Telles’[29] when the source distance d is less than 5% of the
element size.

For planar elements, the method of Hackbusch and Sauter[7] may require less inte-
gration points than ours, since the inner integration is done analytically. However, their
formula includes many terms so that it is not obvious which method is more efficient in
terms of CPU-time. For curved surface elements, as mentioned before, the justification
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for using their method is not clear.

6 Error analysis using complex function theory

The essential nature of the integration in the radial variable which appear in the 3-D
potential problem can be modelled by equation (5), which is transformed by R(ρ) as

I =
∫ R(ρj )

R(0)

ρδ

rα

dρ

dR
dR

where r =
√

ρ2 + d2. This can be further transformed as

I =
∫ 1

−1
f(x)dx

where

f(x) :=
ρδ

rα

dρ

dR

dR

dx
. (9)

Here

R :=
{R(ρj) − R(0)}x + R(ρj) + R(0)

2
.

The following theorem [1, 30, 5] gives the error En = I−In of the numerical integration

In =
n∑

j=1

Ajf(aj) of the integral I =
∫ 1
−1 f(x)dx.

Theorem 1 If f(z) is regular on K := [−1, 1],

En(f) =
1

2πi

∮
C

Φn(z)f(z)dz (10)

where

Φn =
∫ 1

−1

dx

z − x
−

n∑
j=1

Aj

z − aj
(11)

and the contour C is taken so that it encircles the integration points a1, a2, . . . , an in the
positive (anti-clockwise) direction, and f(z) is regular inside C.

The following asymptotic expressions are known for the error characteristic function
Φn(z) of equation (11) for the Gauss-Legendre rule.

1. For |z| � 1 [26]

Φn(z) =
cn

z2n+1
1 + O(z−2) (12)

where

cn =
22n+1(n!)4

(2n)!(2n + 1)!

and cn ∼ π2−2n for n � 1.

2. For n � 1 [1, 5]

9



• For all z ∈ C except for an arbitrary neighbourhood of K := [−1, 1]:

Φn(z) ∼ 2π(z +
√

z2 − 1)−2n−1 (13)

• For all z ∈ C except for an arbitrary neighbourhood of z = 1:

Φn(z) ∼ 2e−iπ K0(2kζ)

I0(2kζ)
(14)

where z = eiπcosh(2ζ), k = n + 1
2

and I0(z), K0(z) are the modified Bessel
functions of the first and second kind, respectively.

In the following, let D :=
d

ρj
, which is the relative source distance.

6.1 Error analysis for the log L2 transformation

For the log L2 transformation R(ρ) = log
√

ρ2 + d2 of equation (8),

R(0) = log d, R(ρj) = log rj, rj =
√

ρj
2 + d2

and

ρ(R) =
(
e2R − d2

) 1
2

so that

f(z) = a
{
e(− log ∆′)z − ∆′} δ−1

2 e
2−α

2
(− log ∆′)z (15)

where

∆′ :=
d

rj
=

D√
1 + D2

< 1, − log ∆′ > 0, a :=
(− log ∆′)

2
(rjd)

δ−α+1
2 > 0 .

Case: δ =odd

Since
δ − 1

2
is a non-negative integer, f(z) is regular except for z = ∞. Hence,

taking C = {z | |z| = R, R → ∞} as the contour in Theorem 1 and using the asymptotic
expression of equation (12) for |z| � 1, we obtain

En(f) =
cn

2πi

∮
C

f(z)z−2n−1dz = cna2n

where

f(z) =
∞∑

k=1

akz
k,

so that

En(f) ∼ D
δ+1−α

2

(
log D

n

)2n

∼ O(n−2n).
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This corresponds well with numerical results for the integration of potential kernels using
the log L2 transformation [12].

Case: δ =even

When δ is even, as in the case of flux kernels, f(z) of equation (15) has a branching
point singularity at

zm = −1 + i
2πm

(− log ∆′)
, (m : integer).

In this case, f(z) has a singularity at the endpoint z = −1 of the interval K = [−1, 1].
However, we can apply Theorem 1 by taking the contour as C = εσ + l+ + Cε + l−, where
εσ is an ellipse ∣∣∣z +

√
z2 − 1

∣∣∣ = σ, σ > 1, (16)

with an anti-clockwise direction, which has z = ±1 as its focii, and the singularities z1, z−1

are outside the ellipse. l+ and l− are the real segment (−x0,−1 − ε) in the positive and

negative directions, respectively. x0 =
1

2

(
σ +

1

σ

)
is the major axis of εσ. Cε is a circle of

radius 0 < ε 	 1 in the clockwise direction with its centre at z = −1, so that C escapes
the singularity at z = −1.

It turns out that the most significant contribution to En(f) of equation (10) comes
from the branch lines l+ and l−, i.e.,

En(f) ∼ El+,l− ∼ (− log D)
δ+1
2 D δ+1−αn−δ−1 ∼ O(n−δ−1),

where the asymptotic expression (14) is used [12, 13]. This matches well with numerical
results for the integration of the flux kernels, which give
En(f) ∼ O(n−3), where δ = 2 .

6.2 Error analysis for the log L1 transformation

For the log L1 transformation R(ρ) = log(ρ + d), we have

R(0) = log d, R(ρj) = log(ρj + d)

and

ρ(R) = eR − d,
dρ

dR
= eR,

so that f(x) of equation (9) is given by

f(z) =
b(w − 1)δw

{w − (1 − i)}α
2 {w − (1 + i)}α

2
(17)

where

w := e
z+1
2

(− log ∆), ∆ :=
D

1 + D
< 1, − log ∆ > 0, b :=

(− log ∆)

2
d δ−α+1.

11



f(z) has singularities (branching when α =odd) at

z = z±m := −1 +
log 2

(− log ∆)
+ i

(
4m ± 1

2

)
π

(− log ∆)
, (m : integer).

As the contour C in Theorem 1, we take the ellipse εσ of equation (16) which passes
through the point

zt := −1 +
log 2

(− log ∆)
+ i

πt

2(− log ∆)
(0 < t < 1),

so that the singularities z±0 nearest to the endpoint z = −1 lie outside C. Hence, there
are no singularities of f(z) inside C = εσ.

Using the asymptotic expression of equation (13) for n � 1 in equation (10), we obtain

|En(f)| ≤ l(εσ)

σ2n+1
max
z∈εσ

|f(z)| < 2πσ−2n max
z∈εσ

|f(z)| (18)

where l(εσ) is the length of the ellipse εσ [6].
For the ellipse εσ passing through zt, we have

σ =
c

2
p +

√
c2

4
p2 − p log 2 + 1 (19)

+

√√√√c2

2
p2 − p log 2 +

√
c2

4
p2 − p log 2 + 1

where

p :=
1

(− log ∆)

and

c :=

√
(log 2)2 +

(
πt

2

)2

(0 < t < 1).

σ = σ(D, t) is a strictly increasing with respect to D.
Since |f(z1)| = +∞, for |1 − t| 	 1, we have

max
z∈εσ

|f(z)| ∼ |f(zt)| ∼ 2
α−2

4 π−α
2 d δ−α+1(− log ∆)(1 − t)−

α
2

from equation (17).
Since we are interested in the cases α = 1, 3, 5, (1− t)−

α
2 ≤ 10 implies t ≤ 0.6. Hence,

we let t = 0.6, so that equation (20) gives σ = 1.31, 1.40, 1.63 for the nearly singular cases
D = 10−3, 10−2, 10−1, respectively.

To sum up, for the log L1 transformation R(ρ) = log(ρ + d), the numerical integration
error is estimated by

En(f) ∼ (− log D)D δ+1−ασ−2n (20)

where σ = 1.31 ∼ 1.63 for D = 10−3 ∼ 10−1. This estimate was found to correspond well
with numerical results [12, 13].
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6.3 Error analysis for the L1
− 1

5 transformation

For the L1
− 1

m transformation R(ρ) = (ρ + d)−
1
m (m > 1), we have

R(0) = d− 1
m , R(ρj) = (ρj + d)−

1
m

and

ρ(R) = R−m − d,
dρ

dR
= −mR−m−1,

so that f(x) of equation (9) is given by

f(z) = A {(z − z1)
m − α1

m}δ (z − z1)
(α−δ−1)m−1

×
{
(z − z1)

m − 2−
1
2 e

π
4
iα1

m
}−α

2
{
(z − z1)

m − 2−
1
2 e−

π
4
iα1

m
}−α

2
(21)

where

z1 :=
1 + ∆

1
m

1 − ∆
1
m

, α1 := − 2

1 − ∆
1
m

, ∆ :=
D

1 + D
,

A := m (−1)δ−m−1 2m−α
2 (ρjD)δ−α+1 (1 − ∆

1
m )−m.

When m ∈ N, the singularities of f(z) are situated at

z = z±k := z1 +
21− 1

2m

1 − ∆
1
m

e(1± 1
4m

+ 2k
m )πi

where k ∈ Z. For α = δ = 1 (u∗) and α = 3, δ = 2

(
∂u∗

∂xs

)
, z = z1 is also a singularity.

As the contour C in Theorem 1, again we take the ellipse εσ of equation(16) which
does not have any singularities inside. Also, we employ the asymtotic expression of
equation(13) for n � 1 in equation (10) to obtain equation (18).

It can be shown [16] that for m = 5, D > D∗ ∼ 3 × 10−7, the ellipse described by
equation (16) passing through z = Z−

0 is smaller than the one passing through z = Z1,
and hence the former is the critical one. Hence, for the case D > D∗, we will consider the
ellipse εσ of equation (16) passing through the point:

zt := x0 + i t y0 =
1 + ∆

1
m − 21− 1

2m cos π
4m

1 − ∆
1
m

+ i
21− 1

2m sin π
4m

1 − ∆
1
m

t (0 < t < 1)

which is located just below the singular point z−0 = x0 + i y0.
Note that the size σ of the ellipse of equation (16) passing through a point z = x + i y

is given by σ = γ +
√

γ2 − 1 where

γ :=

√
(x + 1)2 + y2 +

√
(x − 1)2 + y2

2
.

Hence, the size of the ellipse of equation (16) passing through zt can be determined as a
function σ(D, t) of D and t, where σ(D, t) is strictly increasing with respect to D.
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Since |f(z1)| = +∞, for |1 − t| 	 1, we have

max
z∈εσ

|f(z)| ∼ |f(zt)|
∼ m1−α

2 2−
3
4α

+ 1
2m

− 1
2 (ρjD)δ−α+1

(
1 − ∆

1
m

) (
sin π

4m

)−α
2 (1 − t)−

α
2

from equation (21).
Since we are interested in the cases α = 1, 3, 5, (1 − t)−

α
2 ≤ 10 implies t ≤ 0.6.

Hence, we let t = 0.6, so that we have σ = 1.41, 1.48, 1.67 for the nearly singular cases
D = 10−3, 10−2, 10−1, respectively.

To sum up, for the L1
− 1

5 transformation R(ρ) = (ρ + d)−
1
5 , the numerical integration

error is estimated by
En(f) ∼ (1 − D

1
5 )D δ+1−ασ−2n

where σ = 1.41 ∼ 1.67 for D = 10−3 ∼ 10−1, which is slightly better than the correspond-
ing estimate for the log L1 transformation of equation (20). This estimate was also found
to correspond well with numerical results [15, 16].

6.4 Error analysis of the identity transformation

Finally, as a comparison, we analyze the integration error when the identity transformation
R(ρ) = ρ is used. In this case,

f(z) = B(z + 1)δ(z − z1)
−α

2 (z − z1)
−α

2

where

B :=
(

ρj

2

)δ+1−α

, z1 := −1 + 2Di.

We take the ellipse of equation (16) passing through

zt := −1 + 2Dti (0 < t < 1),

so that

σ =
√

1 + (Dt)2 +

√
2Dt{

√
1 + (Dt)2 + Dt} + Dt.

Since
max
z∈εσ

|f(z)| ∼ |f(zt)| ∼ 2−α−1(ρj)
δ+1−αDδ− 3α

2 |1 − t|−α
2 ,

letting t = 0.6 so that (1 − t)−
α
2 ∼ 10 gives

En(f) ∼ Dδ− 3α
2 σ−2n

where σ = 1.04, 1.12, 1.42 for D = 10−3, 10−2, 10−1, respectively. These error estimates
were also found match well with numerical experiments [13, 15].
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6.5 Summary of the error analysis

Summing up the error analysis, we have the following.
For the identity transformation R(ρ) = ρ,

En(f) ∼ Dδ− 3α
2 σ−2n

where σ = 1.04, 1.12, 1.42 for D = 10−3, 10−2, 10−1, respectively.
For the log L2 transformation R(ρ) = log

√
ρ2 + d2,

• when δ =odd,

En(f) ∼ D
δ+1−α

2

(
log D

n

)2n

,

• when δ =even,

En(f) ∼ (− log D)
δ+1
2 D δ+1−αn−δ−1.

For the log L1 transformation R(ρ) = log(ρ + d),

En(f) ∼ (− log D)D δ+1−ασ−2n

where σ = 1.31, 1.40, 1.63 for D = 10−3, 10−2, 10−1, respectively.

For the L1
− 1

5 transformation R(ρ) = (ρ + d)−
1
5 ,

En(f) ∼ (1 − D
1
5 )D δ+1−ασ−2n

where σ = 1.41, 1.48, 1.67 for D = 10−3, 10−2, 10−1, respectively.

Thus, the log L1 transformation and the L1
− 1

5 transformation are predicted to be the
most efficient radial variable transformations among the above, where the latter is slightly
better than the former.

These error estimates were found to match well with numerical experiments.
The theoretical error estimates also give a clear insight regarding the optimization of

the radial variable transformation R(ρ) for nearly singular integrals arising in boundary
element analysis.

To be more precise, the singularities ρ± = ±di ∈ C, inherent in the near singularity
of

1

rα
=

1√
ρ2 + d2α ,

are mapped to R(ρ±) by the radial variable transformation R(ρ). Then, R(ρ±) are mapped
to z± = x(R(ρ±)) by the transformation

x =
2R − {R(ρj) + R(0)}

R(ρj) − R(0)
,

in the process of mapping the interval R : [R(0), R(ρj)] to the interval x : [−1, 1] in order
to apply the Gauss-Legendre rule.
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The error analysis in this section showed that the numerical integration error is gov-
erned by the maximum size σ of the ellipse εσ∣∣∣z +

√
z2 − 1

∣∣∣ = σ, (σ > 1)

in the complex plane which does not include the singularities z± inside.
Therefore, roughly speaking, the optimum radial variable transformation R(ρ) is the

transformation which maps the singularities ρ± = ±di, inherent in the near singularity,
to z± = x{R(ρ±)} which are as far away as possible from the real interval z : [−1, 1],
allowing an ellipse εσ of maximum size σ.

7 On the use of the double exponential transforma-

tion

The double exponential (DE) formula[31] is known to be a powerful method for singular
integrals and have also been used for nearly singular integrals in the boundary element
method[18, 19]. In [10, 13, 15], we applied the single (SE) and double exponential (DE)
formulas to the model radial variable integrals of equation (5), in combination with the

truncated trapezium rule. However, they were not as efficient as the log L1 and the L1
− 1

5

transformations combined with the Gauss-Legendre rule.
Nevertheless, in the context of automatic integration, methods based on the double

exponential transformation are attractive. This is because they are based on the trapez-
ium rule with equal step size, so that one can keep on adding integration points, making
use of previous integration points, until sufficient accuracy is achieved. In [22]-[24], we
showed by theoretical error analysis and numerical experiments on the model radial vari-
able integrals of equation (5), that the log L2 transformation R(ρ) = log

√
ρ2 + d2 in

combination with the double exponential transformation gives promising results when
using the trapezium rule. These transformations alone, which were not particularly at-
tractive, proved to be useful when combined. This is because the double exponential
transformation has the effect of removing the problematic end-point singularity inherent
in the log L2 transformation.

To be more specific, the procedure applied to the model integrals of (5) is described
as follows.

Step 1: Apply the log L2 transformation:

R(ρ) = log
√

ρ2 + d2

and let

x =
2R − {R(ρj) + R(0)}

R(ρj) − R(0)
.

Then, the integrals of (5) become

I =
∫ 1

−1

ρδ

rα

dρ

dR

dR

dx
dx =

∫ 1

−1
b
(
ax − 1

a

) δ−1
2

a
2−α

2
xdx ≡

∫ 1

−1
g(x)dx,
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where a =

√
ρj

2+d2

d
, b = log a

2

(√
ρj

2 + d2 · d
) δ−α+1

2
.

Step 2: Apply the Double Exponential(DE) transformation:

x = tanh
(

π
2

sinh u
)
. Then,

I =
∫ ∞

−∞
g(x)

dx

du
du =

∫ ∞

−∞
f(u)du , (22)

where

f(u) = g
(
tanh

(
π

2
sinhu

)) π
2

cosh u

cosh2
(

π
2

sinh u
) .

Step 3: Approximate by the trapezium rule:

I ∼ h
∞∑

k=−∞
f(kh),

with an appropriate truncation.

The numerical integration of Step 3 can be done automatically as follows:

Step 3.1: Determine the integration interval [a, b] and the step size h for approximating
the integral of equation (22), and compute according to the n point formula:

Ih = h

⎧⎨
⎩1

2
f(a) +

n−2∑
j=1

f(a + jh) +
1

2
f(b)

⎫⎬
⎭ ,

where h =
b − a

n − 1
.

Step 3.2: Halve the discretization width h and compute Ih/2.

Step 3.3: Determine whether the convergence condition:

∣∣∣∣∣Ih/2 − Ih

Ih/2

∣∣∣∣∣ < ε

is satisfied.
If it is satisfied, end. If is is not satisfied, let h = h/2 and go to Step 3.2.

Table 5 and 6 give numerical experiment results comparing the DE transformation
with the log L2-DE transformation, showing the effectiveness of combining the log L2 and
the DE transformations. Tests were performed on the same model radial variable integrals
as in Table 1 to 4, with the same conditions.
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Table 5: DE Transformation
α δ d

10 1 10−1 10−2 10−3

1 1 15 18 26 32 34
3 1 15 19 36 52 70

2 15 18 32 47 63
5 1 15 19 36 51 67

2 15 20 40 50 68

Table 6: log L2-DE Transformation

α δ d
10 1 10−1 10−2 10−3

1 1 14 15 18 20 20
3 1 14 15 18 20 20

2 14 14 16 18 18
5 1 14 16 19 18 18

2 14 16 22 23 21

In [24], error estimates were also derived for the above transformations and it was
shown that combining the log L2 transformation with the DE transformation has the
effect of increasing the distance between the singularity and the real axis, thus improving
the accuracy of the quadrature.

8 Conclusions

In this paper we reviewed variable transformation methods for evaluating nearly singular
integrals over curved surfaces arising in the three-dimensional boundary element method,
which were proposed by the author and co-workers. Particularly, we showed that certain
nonlinear radial variable transformations play an important role in the methods, and
that error analysis using complex function theory yields a clear insight regarding the
optimization of the radial variable transformation.

Acknowledgements. The author would like to thank the referee for useful comments.
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