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method to the normal equation A�Ax = A�b. However, the condition number of A�A
is square of that of A, and convergence becomes problematic for severely ill-conditioned
problems even with preconditioning. In this paper, we propose two methods for applying
the GMRES method to the least squares problem by using a n × m matrix B. We give
the necessary and sufficient condition that B should satisfy in order that the proposed
methods give a least squares solution. Then, for implementations for B, we propose an
incomplete QR decomposition IMGS(l). Numerical experiments show that the simplest
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faster than previous methods for severely ill-conditioned problems.
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1 Introduction

In this paper, we consider the linear least squares problem

min
x∈Rn

‖b − Ax‖2 (1.1)

where A is a m × n (m ≥ n) large sparse matrix with full column rank.
The popular methods to solve the problem (1.1) are, the direct method[2] and the

iterative method applying the Conjugate Gradient (CG) method[5] to the normal equation

A�Ax = A�b. (1.2)

This iterative method is called the CGLS method[2].
The direct method is reliable, but for large problems, computation time and storage

become huge, while the iterative method generally requires small storage, and can be fast
in execution time. However, this applies only if the convergence proceeds fast enough.
The condition number of A�A is square of that of A, so the convergence becomes slow
for ill-conditioned problems, and preconditioning is necessary.

Instead of using the normal equation, Zhang and Oyanagi[10, 11, 12] introduced map-
ping the least squares problem (1.1) to a system of linear equations with a (large) m×m
square coefficient matrix AB by a n × m matrix B and then applying the Orthomin(k)
method. By selecting the mapping matrix B properly, the condition number becomes
small, and the convergence can be improved.

Following their work, in this paper, we will first consider applying the Generalized
Minimal Residual (GMRES(k)) method to the system of linear equations with the (large)
m × m coefficient matrix AB. Next, we will propose using the (small) n × n matrix
BA, which is equivalent to applying the GMRES(k) method to the system of linear
equations BAx = Bb. Numerical experiments show that this latter approach requires less
computation. We will also derive the necessary and sufficient condition that the mapping
matrix B should satisfy in order that both methods give a least squares solution. As
the mapping matrix B, we propose using an incomplete QR decomposition. Numerical
experiments show that the proposed method is faster and robust compared to previous
methods, for severely ill-conditioned problems.
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2 Previous methods for the linear least squares prob-

lems

2.1 Direct methods

The common direct method to solve (1.1) is to use QR decomposition[2]. The QR de-
composition of a m × n rectangular matrix A is given by

A = QR,

where Q is a m×n rectangular matrix whose column vectors are orthonormal, i.e. Q�Q =
In, where In is the n × n identity matrix, and R is a n × n upper triangular matrix. If
this decomposition can be carried out, the normal equation (1.2) becomes

R�Rx = R�Q�b, (2.1)

and when A is full column rank, R is nonsingular, and (2.1) becomes

Rx = Q�b. (2.2)

Since R is an upper triangular matrix, (2.2) can be solved by backward substitution.
The QR decomposition can be carried out in a finite number of steps. There are vari-
ous algorithms for implementing the QR decomposition, among which the Householder
method and the (modified) Gram-Schmidt method is commonly used. The direct method
is reliable, but when the problem is large, the required computational work and memory
become huge.

2.2 Iterative methods using the normal equation

By transforming to the normal equation (1.2), the problem becomes a system of linear
equations whose coefficient matrix is square and symmetric positive definite. The method
of applying the conjugate gradient (CG) method to the normal equation is called the
CGLS method[2]. The algorithm of the CGLS method is as follows.

Algorithm 2.1 : CGLS method

Choose x0.

r̃0 = A�(b − Ax0)

p0 = r̃0

for i = 0, 1, 2, ... until convergence

αi =
(r̃i, r̃i)

(pi, A
�Api)

xi+1 = xi + αipi

r̃i+1 = r̃i − αiA
�Api

βi =
(r̃i, r̃i)

(r̃i−1, r̃i−1)

pi+1 = r̃i+1 + βipi

end
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Iterative methods generally require relatively small memory and may be computation-
ally efficient. However, this is true only when the convergence is sufficiently fast. The
condition number of A�A is square of the condition number of A. Hence, the convergence
may be slow for ill-conditioned problems so that preconditioning becomes necessary. As
preconditioners, diagonal scaling, incomplete Cholesky decomposition, and incomplete
QR decomposition are commonly used[2]. Recently, a robust preconditioner was pro-
posed in [1]. In this paper, we will look at preconditoning methods based on incomplete
QR decomposition, in comparing the use of the GMRES method to the use of the CG
method for least squares problems.

2.3 Incomplete QR decomposition

The incomplete QR decomposition as a preconditioner was proposed by Jennings[6], and
it can be classified roughly into two ways. One is the IMGS (Incomplete Modified Gram-
Schmidt decomposition) method in which the incomplete decomposition is realized by an
incomplete modified Gram-Schmidt method. The other is the IG (Incomplete Givens)
method in which the incomplete decomposition is realized by Givens rotations[6]．

The IMGS method uses a threshold for the elements in R, where the magnitude of
each off-diagonal element rij is compared against a threshold τ times the norm of the
corresponding column norm di ≡ ‖a i‖2, i.e., elements which satisfy ‖rij‖2 < τdi are
dropped, where A = [a1, ...,an][2]. In the IMGS method, A is approximated by QR,
where R is an upper triangular matrix with positive diagonal elements, and

〈 q1, ..., qn 〉=〈 a1, ...,an 〉,

where 〈 a1, ...,an 〉 denotes the subspace spanned by a1, ...,an. The algorithm of the

IMGS method is as follows, where a
(1)
i ≡ a i (i = 1, ..., n).

Algorithm 2.2 : IMGS method (Jennings’ version)

for i = 1, 2, ..., n

rii = ‖a(i)
i ‖2, qi =

a
(i)
i

rii

for j = i + 1, ..., n

rij = q�
i a

(i)
j

If |rij| < τdi, then rij = 0, end.

a
(i+1)
j = a

(i)
j − rijqi

end

end
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If A is full column rank, this algorithm never breaks down.
Saad proposed an alternative algorithm in which the pQ largest (in absolute value)

elements in a column of Q and the pR largest elements in a row of R are kept, where pQ

and pR are two chosen parameters[8]. This algorithm is given as follows.

Algorithm 2.3 : IMGS method (Saad’s version)

for i = 1, 2, ..., n

rii = ‖a(i)
i ‖2, qi =

a(i)
i

rii

Determine the pQ largest elements of qi

and assign a zero value to the other elements.

for j = i + 1, ..., n

rij = q�
i a

(i)
j

Determine the pR largest rij’s for i + 1 ≤ j ≤ n,

and assign a zero value to the others.

a
(i+1)
j = a

(i)
j − rijqi

end

end

When these IMGS preconditioners are applied to the normal equation, we have

R−�A�AR−1Rx = R−�A�b,

or

Ãx̃ = b̃, x̃ = Rx , (2.3)

where Ã = R−�A�AR−1，x̃ = Rx，b̃ = R−�A�b.
Then, the conjugate gradient (CG) method is applied to (2.3).

2.4 CR-LS(k) method

Zhang and Oyanagi[10, 11, 12] proposed a different type of method in which they applied
the Orthomin(k) method to (1.1) by introducing a n × m mapping matrix B, instead of
solving the normal equation, so that the condition number becomes smaller and improved
convergence of the iterative method is expected. This method is called the CR-LS(k)
method. The algorithm of the CR-LS(k) method is as follows.

Algorithm 2.4 : CR-LS(k) method

Choose x0.

r0 = b− Ax0, p0 = Br0
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for i = 0, 1, 2, ... until convergence

αi =
(ri, Api)

(Api, Api)
xi+1 = xi + αipi

ri+1 = ri − αiApi

for j = 0 to min(k − 1, i)

βi,i−j = −(ABri+1, Api−j)

(Api−j , Api−j)

end

pi+1 = Bri +
min(k−1,i)∑

j=0

βi,i−jpi−j

end
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3 The GMRES(k)-LS method

The GMRES(k) method[9] is an efficient and robust Krylov subspace method for solving
systems of linear equations

Ax = b,

where A is square, nonsingular and nonsymmetric.
In this section, we propose algorithms which apply the GMRES(k) method to the

linear least squares problem (1.1) by using a n × m mapping matrix B.
In a linear least squares problem, we seek the solution x∗ which minimizes the objective

function

S(x) = ‖b− Ax‖2
2

of n variables x = (x1, x2, ..., xn)�, where A is a m × n (m ≥ n) matrix, and b is a
m-dimensional vector.

3.1 GMRES(k)-LS method 1

If one were to apply the GMRES(k) method directly to the linear least squares problem
in which A is a m × n rectangular matrix, and the initial residual r0 is a m-dimensional
vector, one cannot create a Krylov subspace, just by multiplying r0 by A.

There are two possible ways of overcoming this problem. The first is to use a n × m
mapping matrix B to create a Krylov subspace

〈 r0, ABr0, ..., (AB)i−1r0 〉
in the (larger) m-dimensional space, where AB is a m × m matrix, as in the CR-LS(k)
method[10, 11, 12], and to apply the GMRES(k) method using this Krylov subspace.

This gives the following algorithm.

Algorithm 3.1 : GMRES(k)-LS method 1

Choose x0.

∗ r0 = b− Ax0

β = ‖r0‖2, v1 =
r0

β
For i = 1, 2, ..., k until convergence

hj,i = (ABvi, vj) (j = 1, 2, ..., i)

v̂i+1 = ABvi −
i∑

j=1

hj,ivj

hi+1,i = ‖v̂i+1‖2

vi+1 =
v̂i+1

hi+1,i

Find yi ∈ Ri which minimizes ‖ri‖2 = ‖βei − H̄iy‖2
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end

xk = x0 + B[v1, ..., vk]yk

x0 = xk

Go to ∗ .

Here, H̄i = (hpq) ∈ R(i+1)×i, and ei = (1, 0, ..., 0)� ∈ Ri+1.
Note here that

min
x∈Rn

‖b− Ax‖2 ≤ min
z∈Rm

‖b− ABz‖2, (3.1)

where the equality holds if and only if

rank B = n.

This is because x∗ gives the minimum of the left hand side of (3.1) if and only if

A�Ax∗ − A�b = 0,

where as z∗ gives the minimum of the right hand side of (3.1) if and only if

B�(A�ABz∗ − A�b) = 0.

Hence,

rank B = rank B� = n ⇐⇒ A�ABz∗ − A�b = 0

⇐⇒ Bz∗ is a least squares solution of the left hand side of (3.1).

Therefore, we will assume that rank B = n. Then, the above GMRES(k)-LS method
1 is equivalent to applying the GMRES(k) method to the system

ABz = b

with initial approximation z0, such that

Bz0 = x0.

Note that if rank B = n, there exists z0 such that Bz0 = x0. This is because if we denote

B = [b1, ..., bn]�,

and assume that rankB = n, there exist bn+1, ..., bm such that

B̃ = [b1, ..., bm]�

is nonsingular. Then

z0 = B̃−1

[
x0

t

]
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satisfies Bz0 = x0, where t ∈ Rm−n is an arbitary vector. Note that the line

xk = x0 + B[v1, ..., vk]yk

in Algorithm 3.1 corresponds to

zk = z0 + [v1, ..., vk]yk,

where

xk = Bzk

and

x0 = Bz0.

Then, we have the following theorem.

Theorem 3.1 If rank A = rank B = n, the GMRES-LS method 1 determines the least
squares solution of

min
x∈Rn

‖b− Ax‖2 (1.1)

for arbitary b and x0, if and only if B can be expressed as

B = CA� (3.2)

where C is a nonsingular matrix.

Note that the GMRES-LS method 1 corresponds to GMRES(∞)-LS method 1 (no
restarts).

Proof. It is sufficient to prove that the GMRES method determines the least squares
solution of

min
z∈Rm

‖b− ABz‖2

for arbitary b and z0, where Bz0 = x0.
From Theorem 2.4 of [3], it is sufficient to prove that

N (AB) = N (B�A�),

where N (·) denotes the null space. Let

A = [a1, ...,an]

and

B� = [b1, ..., bn].
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Then, note that

z ∈ N (AB) ⇐⇒ ABz = 0

⇐⇒ Bz = 0

⇐⇒ z ⊥〈 b1, ..., bn 〉,
where the second equivalence is due to rank A = n. Note also that,

z ∈ N (B�A�) ⇐⇒ B�A�z = 0

⇐⇒ A�z = 0

⇐⇒ z ⊥〈 a1, ...,an 〉,
where the second equivalence is due to rank B� = rank B = n.

Hence,

N (AB) = N (B�A�) ⇐⇒ 〈 b1, ..., bn 〉=〈 a1, ...,an 〉
⇐⇒ B� = AC� where C�:nonsingular

⇐⇒ B = CA� where C:nonsingular.

Here we note that there is a related method of applying the GMRES method to
overdetermined systems due to Calvetti, Lewis and Reichel[4]. The method essentially
appends m − n zero columns to A to obtain a m × m square singular matrix

Ã = [A, 0],

and then applies the GMRES method to the system

Ãz = b.

This method can be considered as a special case of our GMRES(k)-LS method 1, where

B = [In, 0].

However, this special choice of B does not necessarily meet the condition (3.2) in Theorem
3.1, so that their method may break down before reaching the least squares solution of
(1.1).

3.2 GMRES(k)-LS method 2

The other alternative is to use the n × m mapping matrix B to map r0 to

r̃0 = Br0,

and then to create a Krylov subspace

〈 r̃0, BAr̃0, ..., (BA)i−1r̃0 〉
in the (smaller) n-dimensional space, where BA is a n × n matrix, and to apply the
GMRES(k) method using this Krylov subspace as follows.
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Algorithm 3.2 : GMRES(k)-LS method 2

Choose x0.

∗ r̃0 = B(b− Ax0)

β = ‖r̃0‖2, v1 =
r̃0

β
for i = 1, 2, ..., k until convergence

hj,i = (BAvi, vj) (j = 1, 2, ..., i)

v̂i+1 = BAvi −
i∑

j=1

hj,ivj

hi+1,i = ‖v̂i+1‖2

vi+1 =
v̂i+1

hi+1,i

Find yi ∈ Ri which minimizes ‖r̃i‖2 = ‖βei − H̄iy‖2

end

xk = x0 + [v1, ..., vk]yk

x0 = xk

Go to ∗ .

Here, H̄i, and ei are defined as in Algorithm 3.1.
As will be shown in the numerical experiments, it turns out that the GMRES(k)-LS

method 2, which uses the Krylov space

〈 r̃0, BAr̃0, ..., (BA)i−1r̃0 〉
in the (smaller) n-dimensional space requires less computational work compared to the
GMRES(k)-LS method 1.

Note that the GMRES(k)-LS method 2 is equivalent to applying the GMRES(k)
method to

BAx = Bb, (3.3)

where BA is a n × n matrix.
The following theorem gives the necessary and sufficient condition for the mapping

matrix B, in order that equation (3.3) is equivalent to the original least squares problem
(1.1).

Theorem 3.2 The solution of

BAx = Bb, (3.3)

is a (least squares) solution of

min
x∈Rn

‖b− Ax‖2 (1.1)
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if and only if B can be expressed as

B = CA�, (3.4)

where C is a nonsingular matrix.

Proof. x is a least squares solution of

min
x∈Rn

‖b − Ax‖2 (1.1)

if and only if x satisfies the normal equation

A�Ax = A�b. (1.2)

which is equivalent to

A�r = 0 (3.5)

where r = b − Ax .
(3.5), in turn, is equivalent to

〈 a1, ...,an 〉⊥ r (3.6)

where 〈 a1, ...,an 〉 is the subspace spanned by the column vectors a1, ...,an of A.
On the other hand,

BAx = Bb, (3.3)

is equivalent to

Br = 0,

which, in turn, is equivalent to

〈 b1, ..., bn 〉⊥ r (3.7)

where b1, ..., bn are the column vectors of B�.
Now, (3.6) and (3.7) are equivalent, if and only if 〈 a1, ...,an 〉 and

〈 b1, ..., bn 〉 are the same subspace, which is true, if and only if

A =[ a1, ...,an ]=[ b1, ..., bn ] C ′ = B�C ′,

where C ′ is a nonsingular n × n matrix.
Hence, (3.3) and (1.2) are equivalent if and only if

A = B�C ′,

where C ′ is a nonsingular n × n matrix, or, in other words,

AC ′−1 = B�

or

B = C ′−�A�.

Thus, the solution of (3.3) is a least squares solution of (1.1), if and only if

B = CA�, (3.4)

where C = C ′−� is nonsingular.
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3.3 Incomplete QR decomposition

Besides satisfying the condition (3.2) or (3.4), it is natural to choose a mapping matrix B
which satisfies BA ≈ In, so that we may expect fast convergence of the iterative method.

In [12], B = (diag(A�A))−1A� was proposed for the CR-LS(k) method, where diag(A�A)
is the diagonal matrix obtained by taking the diagonal part of A�A, and is nonsingular
when A is full rank. It is obvious that this choice of B fulfills the condition (3.2) and
(3.4). For this B, (3.3) is equivalent to carrying out the preconditioning of row diagonal
scaling to the normal equation (1.2).

In this paper, we consider using the incomplete QR decomposition of A given by

A = QR + E,

where Q is a m × n matrix, R is a n × n upper triangular matrix, and E is the error
matrix. The column vectors of Q may not be perfectly orthonormal. Previous methods
for solving the linear least squares problem (1.1) using the incomplete QR decomposition
used R as the preconditioning matrix for the normal equation A�Ax = A�b[6]．That is,
to solve

(R−�A�AR−1)Rx = R−�A�b, (3.8)

or

Ãx̃ = b̃

where Ã = R−�A�AR−1, x̃ = Rx , b̃ = R−�A�b, using the conjugate gradient method.
In our case, we set B = R−1Q�. In the GMRES(k)-LS method 2, this is equivalent to

solving

R−1Q�Ax = R−1Q�b (3.9)

using the GMRES(k) method. We expect that (3.9) is better conditioned compared to
(3.8).

If we take E = 0, the QR decomposition is performed completely, i.e. A = QR, so
that x = R−1Q�b, and only one iteration is required, but the computational work and
storage would become prohibitive for large problems. Hence, we set E �= 0, and do an
incomplete QR decomposition. The nearer the incomplete QR decomposition is to the
complete QR decomposition, the required number of iterations will decrease, but more
time and memory would be required to do the incomplete QR decomposition. Hence, we
need to strike a balance.

Consider the QR decomposition using the modified Gram-Schmidt process. In this
paper, we will realize the incomplete QR decomposition by making the current column
vector of Q to be orthogonal to the previous l column vectors, where the incompleteness
of the decomposition is adjusted by the parameter l. If l = n − 1, it is equivalent to the
complete QR decomposition. We call this procedure the IMGS(l) method. The algorithm
is as follows.
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Algorithm 3.3 : IMGS(l) method

for i = 1, 2, ..., n

rii = ‖ai‖2, qi =
ai

rii

for j = i + 1, ..., min(i + l, n)

rij = q�
i aj

aj = aj − rijqi

end

end

At each step of the IMGS(l) method, the column vector of Q is computed as a linear
combination of the column vectors of A such that

〈 q1, ..., qn 〉 = 〈 a1, ...,an 〉,
where 〈 q1, ..., qn 〉 denotes the subspace spanned by the vectors q1, ..., qn.

Thus, we have Q = AC̃, where C̃ is a nonsingular matrix. Thus, we have

Q� = C̃�A� (3.10)

where C̃� is nonsingular.
Now, consider

B ≡ R−1Q� (3.11)

obtained by the IMGS(l) decomposition. Since rii �= 0, i = 1, ..., n, R = (rij) is nonsin-
gular. From (3.11) and (3.10), we have

B = R−1Q� = R−1C̃�A� = CA�,

where C = R−1C̃� is nonsingular. Hence, B satisfies the condition (3.2) and (3.4).
Here, we note that IMGS(0) is equivalent to the diagonal scaling proposed in [12].

Lemma. The IMGS(0) method is equivalent to the diagonal scaling given by B =
(diag(A�A))−1A�.

Proof. From Algorithm 3.3, the IMGS(0) method is given by

for i = 1, 2, ..., n

rii = ‖a i‖2, q i =
a i

rii

end

which gives

R = diag(‖a1‖2, ..., ‖an‖2)

14



and

Q = [a1/‖a1‖2, ...,an/‖an‖2] ,

so that

B = R−1Q� =




a�
1 /‖a1‖2

2
...

a�
n /‖an‖2

2


 .

On the other hand,

diag(A�A) = diag(‖a1‖2, ..., ‖an‖2),

so that

(
diag(A�A)

)−1
A� =




a�
1 /‖a1‖2

2
...

a�
n /‖an‖2

2


 .

Hence,

B = R−1Q� =
(
diag(A�A)

)−1
A�.
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4 Numerical experiments

In this section, we give numerical experiment results solving linear least squares problems

min
x

‖Ax − b‖2, A ∈ Rm×n, m ≥ n,

in order to demonstrate the effectiveness of the proposed method. The following sparse
matrices were used for A.

The first set of matrices were taken from the Harwell-Boeing test collection which is
widely used in numerical experiments on linear least squares problems. These matrices
are available from Matrix Market[7]. The matrices of the form “ARTFnnnn” are artificial
matrices made of two Harwell-Boeing matrices such as

A =

(
WELLnnnn
0 ASHnnn

)
.

The characteristics of these matrices are given in Table 4.1, where ‘Condition’ denotes
the condition number, and ‘Density’ is the percentage of non-zero elements. The elements
of the matrices “ABB” and “ASH” are random numbers uniformly distributed in [−1, 1].
The elements of the matrices “WELL” and “ILLC” are the same as the original. The
structure of the non-zero elements of the matrices “WELL” and “ILLC” are the same,
but the values of the elements are different.

Table 4.1: Characteristics of test matrices (1).

No Name m n Density Condition Description

1 WELL1033 1033 320 1.4% 2 × 102 Gravity-meter obs.

2 ILLC1033 1033 320 1.4% 2 × 104 ˝

3 ARTF1252 1252 320 1.3% 4 × 101 WELL1033+ASH219

4 ARTF1346 1346 320 1.2% 4 × 101 WELL1033+ABB313

5 ARTF1641 1641 320 1.1% 4 × 100 WELL1033+ASH608

6 ARTF1991 1991 320 1.0% 4 × 100 WELL1033+ASH958

7 ARTF2808 2808 712 0.53% 3 × 101 WELL1850+ASH958
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The second set of matrices are newly made artificial matrices. These matrices were
generated in order to test the methods for problems with varying condition numbers. They
were produced by the MATLAB command “sprandn” which makes a m×n nonsymmetric
matrix of a certain density and condition number. The non-zero elements of the matrices
are random numbers of normal distribution, whose mean is zero and variance is one, and
the pattern of the non-zero elements is also random. The characteristics of these matrices
are shown in Table 4.2.

Table 4.2: Characteristics of test matrices (2).

No Name m n Density Condition Description

8 RANDS2 1000 320 4.9% 2 × 102 “sprandn”

9 RANDS4 1000 320 4.9% 1 × 104 ˝

10 RANDS6 1000 320 4.9% 1 × 106 ˝

11 RANDS8 1000 320 4.9% 1 × 108 ˝

The third and fourth set of matrices are also newly made artificial matrices including
even larger matrices. These matrices were also generated in order to test the methods for
problems with varying condition numbers. We produced the matrices by the MATLAB
command “sprandn” as in the previous set. The characteristics of these matrices are
shown in Table 4.3 and Table 4.4.

Using different methods, we solved the linear least squares problem corresponding to
Ax = b that has the right hand side b computed from the exact solution x = (1, ..., 1)�.
In order to perform a fair comparison among different methods, in all the following ex-
periments, convergence of the numerical solution was assessed by comparing them to the
exact solution. More specifically, the criterion

‖x− x∗‖2

‖x∗‖2

< 10−6

using the relative error between the approximated solution x and the exact solution x∗,
was used. The initial approximation was set to x0 = 0. In practice, convergence can be
monitored using the (relative) residual corresponding to each method.
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Table 4.3: Characteristics of test matrices (3).

No Name m n Density Condition Description

12 RANDM1 3000 1000 4.9% 8 × 101 “sprandn”

13 RANDM2 3000 1000 4.9% 6 × 102 ˝

14 RANDM3 3000 1000 4.9% 2 × 103 ˝

15 RANDM4 3000 1000 4.9% 2 × 104 ˝

16 RANDM5 3000 1000 4.9% 2 × 105 ˝

17 RANDM6 3000 1000 4.9% 2 × 106 ˝

18 RANDM7 3000 1000 4.9% 2 × 107 ˝

19 RANDM8 3000 1000 4.9% 1 × 108 ˝

Table 4.4: Characteristics of test matrices (4).

No Name m n Density Condition Description

20 RANDL1 10000 1000 1.5% 6 × 101 “sprandn”

21 RANDL2 10000 1000 1.5% 4 × 102 ˝

22 RANDL3 10000 1000 1.5% 3 × 103 ˝

23 RANDL4 10000 1000 1.5% 3 × 104 ˝

24 RANDL5 10000 1000 1.5% 2 × 105 ˝

25 RANDL6 10000 1000 1.5% 2 × 106 ˝

26 RANDL7 10000 1000 1.5% 2 × 107 ˝
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The following methods were compared.

(1) The CGLS method, which is equivalent to applying the conjugate gradient (CG)
method to the normal equation

A�Ax = A�b.

(2) The method of applying the CG method to the normal equation using the IMGS pre-
conditioning (Jennings’ version)[2],[6]. It is equivalent to applying the CG method
to

R−�A�AR−1Rx = R−�A�b,

or to

Ãx̃ = b̃,

where Ã = R−�A�AR−1, x̃ = Rx , and b̃ = R−�A�b.

(3) The method of using the IMGS(l) method of section 3.3 for the preconditioning, in
place of the IMGS method in (2).

(4) The proposed GMRES(k)-LS method 1 with the IMGS(l) as the preconditioner for
B = R−1Q�.

(5) The proposed GMRES(k)-LS method 2 with the IMGS(l) as the preconditioner for
B = R−1Q�. It is equivalent to solving

R−1Q�Ax = R−1Q�b

by the GMRES(k) method.

Saad’s version of the IMGS (Algorithm 2.3) was also tested with various parameters,
but it required more computational time compared to Jennings’ version, so we do not give
the results here. We coded the algorithm in MATLAB 6 and ran the experiments on a
NEC PC with mobile AMD AthlonXP 2000+, 736MB RAM.

First, we tested the IMGS method (Jennings’ version) and the IMGS(l) method in
combination with the GMRES-LS method 2, changing the parameter values for the pre-
conditioners. The results are shown in Table 4.5 and Table 4.6. The results were obtained
using the matrix “WELL1033” and “RANDS6”, respectively. The results show the com-
putational time and the number of iterations required to obtain relative error less than
10−6.
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Table 4.5: Computation time required by different parameter values for incomplete QR
decomposition (WELL1033, time in seconds).

Method preconditioning iteration number of total

time time iterations time

Jennings’ IMGS

τ = 1 2.94 1.01 98 3.95

τ = 0.5 2.99 1.02 99 4.03

τ = 0.4 2.98 1.04 100 4.02

τ = 0.3 2.98 1.13 104 4.01

τ = 0.2 3.04 0.99 95 4.03

τ = 0.1 3.36 0.67 67 4.03

τ = 0.07 4.72 1.02 54 5.74

τ = 0.01 7.61 0.41 17 8.02

τ = 0 8.77 0.09 1 8.86

IMGS(l)

l = 0 0.02 0.82 98 0.84

l = 1 0.07 1.20 100 1.27

l = 10 0.60 1.85 104 2.45

l = 50 2.40 2.75 113 5.15

l = 100 3.97 2.30 97 6.27

l = 150 5.97 2.06 83 8.03

l = 200 8.20 1.16 47 9.36

l = 250 8.30 0.62 26 8.92

l = 300 8.40 0.30 11 8.70

l = 320 8.45 0.10 1 8.55
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Table 4.6: Computation time required by different parameter values for incomplete QR
decomposition (RANDS6, time in seconds).

Method preconditioning iteration number of total

time time iterations time

Jennings’ IMGS

τ = 1 5.50 21.94 320 27.44

τ = 0.5 7.59 23.30 320 30.89

τ = 0.4 8.51 23.82 320 32.33

τ = 0.3 9.82 23.81 317 33.63

τ = 0.2 12.60 21.76 302 34.36

τ = 0.1 17.88 20.67 287 38.55

τ = 0.07 22.11 18.82 270 40.93

τ = 0.01 47.66 12.33 200 59.99

τ = 0 170.08 0.34 1 170.42

IMGS(l)

l = 0 0.04 17.70 320 17.74

l = 1 1.40 31.18 320 32.58

l = 10 3.11 33.93 320 37.04

l = 50 15.61 33.88 320 49.49

l = 100 40.50 34.04 320 74.54

l = 150 73.24 25.01 277 98.25

l = 200 113.50 13.14 193 126.64

l = 250 149.22 6.27 110 155.49

l = 300 170.61 1.44 25 172.05

l = 320 169.18 0.33 1 169.51
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In the IMGS method (Jennings’ version), the smaller the threshold parameter τ be-
comes, the less incomplete the incomplete QR decomposition becomes, and the number
of required iterations tends to decrease, but more time is required for the incomplete
decomposition. However, the effect of changing τ is relatively small. For the following
experiments, we fixed τ at 0.1 for the method (2).

Similarly, for the IMGS(l) method, as l is increased, the incompleteness of the incom-
plete QR decomposition becomes small, and the number of iterations tends to decrease,
but the computation time for the decomposition increases. It turns out that l = 0, which
is equivalent to the diagonal scaling B = (diag(A�A))−1A� is optimal in terms of total
time.

Among the different preconditioning methods compared, the IMGS(l) method with
l = 0 was the fastest. For all the following experiments, l was fixed at l = 0 for the
IMGS(l) method.

Table 4.7: Results for changing k of the GMRES(k)-LS method 2.

RANDL2 k 10 50 100 150 200 250 ≥ 262

iter 559 369 298 306 287 279 262

time 35.93 23.65 21.69 25.30 26.01 30.95 31.75

RANDL3 k 50 100 200 300 400 500 ≥ 574

iter 1336 988 898 743 706 652 574

time 83.20 69.67 79.05 83.86 110.41 148.94 204.79

RANDL4 k 400 500 600 700 800 900 ≥ 993

iter 41149 29909 19095 22379 15168 9802 993

time 7247.13 5525.54 4785.23 6690.14 6013.33 4113.34 1211.83

RANDL5 k 400 500 600 700 800 900 ≥ 998

iter 46704 25971 28086 23767 16566 9563 998

time 8170.12 4752.82 6912.20 7739.61 4955.51 3570.22 1228.72

Next, we demonstrate the effect of changing the restarting cycle k of the GMRES(k)-LS
method 2 in Table 4.7. In each cell of the table, the middle number (iter) is the number of
iterations, and the bottom number (time) is the computation time (in seconds). Although
restarting is effective for less ill-conditioned problems “RANDL2” and “RANDL3”, the
full GMRES is faster for more ill-conditioned problems. Hence, in the following, we used
k = ∞ (the full GMRES).
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Table 4.8: Results for test matrices (1).

Matrix (1)CG (2)CG (3)CG (4)GMRES 1 (5)GMRES 2

IMGS IMGS(0) IMGS(0) IMGS(0)

WELL1033 159 68 158 98 98

0.14 4.03 0.25 2.03 0.84

ILLC1033 3317 181 3342 256 257

1.12 3.42 2.09 17.72 9.05

ARTF1252 150 25 72 70 70

0.14 4.36 0.14 1.31 0.51

ARTF1346 202 33 104 92 94

0.22 6.21 0.22 2.37 0.86

ARTF1641 115 17 46 45 45

0.12 6.26 0.10 0.72 0.24

ARTF1991 34 11 14 14 14

0.04 8.54 0.06 0.13 0.06

ARTF2808 142 15 51 51 52

0.29 34.05 0.26 2.36 0.61

The computation results for the test matrices (1) of Table 4.1 from the Matrix Mar-
ket are shown in Table 4.8. In each cell of the table, the upper number is the number of
iterations, and the lower number is the computation time (in seconds) required for conver-
gence. The CG method (1) and the CG method with IMGS(0) preconditioning (3) were
the fastest since the problems are relatively well conditioned. (2) required the least num-
ber of iterations, but was computationally expensive, due to the time for preconditioning
and backward and forward substitutions.
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Table 4.9: Results for test matrices (2).

Matrix (1)CG (2)CG (3)CG (4)GMRES 1 (5)GMRES 2

IMGS IMGS(0) IMGS(0) IMGS(0)

RANDS2 550 33 158 137 141

0.72 12.63 0.55 4.42 2.15

RANDS4 6411 203 1002 319 319

6.99 15.02 2.59 30.75 17.65

RANDS6 61281 686 4038 320 320

64.11 21.38 10.12 31.75 17.74

RANDS8 485766 1903 16546 320 334

490.65 29.63 43.17 31.90 20.45

Next, results for the test matrices (2) of Table 4.2 with varying conditon numbers
are given in Table 4.9. For the very ill-conditioned problem “RANDS8”, the CG method
(1) required many iterations and computation time. On the other hand, the GMRES 2
method with IMGS(0) (5) converged quickly and was the fastest. Comparing (3) and
(5), it is observed that when using the same preconditioning of IMGS(0), our approach of
applying the GMRES method requires less iterations and computation time compared to
the usual approach of applying CG to the normal equation. This may be explained by the
fact that the coefficient matrix R−1Q�A for the GMRES method is better conditioned
compared to the coefficient matrix R−1A�AR−1 for the CG method. Another explanation
may be that GMRES performs the Gram-Schmidt orthogonalization explicitly, where as
the CG relies on the three term recurrence, so that GMRES is more robust against
loss of orthogonality due to rounding error, especially in ill-conditioned problems. (cf.
convergence graphs in Fig. 4.3 and Fig. 4.4.) For less ill conditioned problems “RANDS4”
and “RANDS6”, the same phenomenon is observed in the sense that GMRES requires
less iterations than CG, but CG (3) is faster than GMRES 2 (5) in computation time
because the (modified) Gram-Schimidt process of the GMRES is time consuming.
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Table 4.10: Results for test matrices (3).

Matrix (1)CG (2)CG (3)CG (4)GMRES 1 (5)GMRES 2

IMGS IMGS(0) IMGS(0) IMGS(0)

RANDM1 145 33 82 81 83

1.33 651.18 3.88 9.20 5.33

RANDM2 865 80 343 292 301

7.26 638.32 12.95 74.45 37.56

RANDM3 2904 230 807 540 556

24.00 991.58 30.01 330.26 174.51

RANDM4 15319 513 2750 875 879

125.39 1053.98 96.49 1260.92 769.30

RANDM5 45140 1668 8040 922 926

369.21 1055.62 281.66 1362.47 927.19

RANDM6 129380 4179 23401 959 963

1070.30 1422.33 818.38 1624.99 1090.49

RANDM7 606754 11169 80370 981 997

5529.10 1827.32 2821.29 1677.47 1210.97

RANDM8 1000000* 30641 168264 983 1005

3090.80 5869.60 1598.08 1294.39

Finally, experiment results for test matrices (3) of Table 4.3 and (4) of Table 4.4
including even larger matrices with varying condition numbers are given in Table 4.10
and Table 4.11, respectively. (The * indicates that convergence was not obtained within
the number of iterations.) Similar results are observed, where the GMRES 2 method with
IMGS(0) preconditioning of (5) was the fastest for the severely ill-conditioned problems
“RANDM7”, “RANDM8”, “RANDL6” and “RANDL7”.
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Table 4.11: Results for test matrices (4).

Matrix (1)CG (2)CG (3)CG (4)GMRES 1 (5)GMRES 2

IMGS IMGS(0) IMGS(0) IMGS(0)

RANDL1 146 21 61 61 63

1.48 401.04 3.99 14.12 5.06

RANDL2 994 51 270 254 262

9.18 535.74 12.83 200.01 31.80

RANDL3 7801 134 737 554 574

70.71 727.50 36.17 990.38 204.79

RANDL4 40851 611 4558 991 993

368.96 1094.75 218.15 4234.94 1211.83

RANDL5 157470 1101 9954 998 998

1444.30 1180.55 478.87 3858.91 1228.72

RANDL6 583250 2733 27129 1000 1000

5274.50 1841.82 1302.85 4562.32 1296.03

RANDL7 1000000* 7018 75995 1000 1060

2021.13 3645.71 4300.09 1572.70
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Figure 4.1: Relative error versus the number
of iterations for the problem RANDL1.
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Figure 4.2: Relative residual versus the num-
ber of iterations for the problem RANDL1.
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Figure 4.3: Relative error versus the number
of iterations for the problem RANDL6.
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Figure 4.4: Relative residual versus the num-
ber of iterations for the problem RANDL6.

Fig. 4.1 shows the relative error vs. iterations, and Fig. 4.2 shows the relative residual
vs. iterations for the case “RANDL1” in Table 4.4 and 4.11. Fig. 4.3 shows the relative
error vs. iterations, and Fig. 4.4 shows the relative residual vs. iterations for the case
“RANDL6” in Table 4.4 and 4.11. Again, it is shown that the GMRES converges better
than CG with the same IMGS(0) preconditioning for the severely ill-conditioned problem
“RANDL6”.

From these experiments, we conclude that the proposed GMRES 2 method with
IMGS(0) preconditioning, which is equivalent to applying the GMRES method to the
diagonally scaled normal equation, becomes superior to previous methods particularly for
severely ill-conditioned problems.
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5 Conclusions

In this paper, we proposed two methods for applying the GMRES method to the least
squares problem by using a mapping matrix B. The first method applies GMRES to
ABz = b, and the second method applies GMRES to BAx = Bb. Next, we gave
the necessary and sufficient condition which should be satisfied by B, in order that the
methods give a least squares solution.

As an example for B, we proposed using IMGS(l), which is a kind of incomplete QR
decomposition. In fact, IMGS(0) and GMRES applied to BAx = Bb, which is equivalent
to applying the GMRES method to the diagonally scaled normal equation, turned up to
be the fastest.

Numerical experiments showed that the proposed method is superior to previous meth-
ods, particularly when the coefficient matrix is severely ill-conditioned.
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