

ISSN 1346-5597

NII Technical Report

 Efficient Computation of Power Indices for
 Weighted Majority Games

 Takeaki Uno

NII-2003-006E
July 2003

Efficient Computation of Power Indices for Weighted

Majority Games

Takeaki UNO ∗

July 11, 2003

Abstract: Power indices of weighted majority games are measures of the effects of
parties on the voting in a council. Among the many kinds of power indices, Banzhaf in-
dex, Shapley-Shubik index and Deegan-Packel index have been studied well. For computing
these power indices, dynamic programming algorithms had been proposed. The time com-
plexities of these algorithms are O(n2q), O(n3q), and O(n4q), respectively. We propose new
algorithms for computing power indices, whose time complexities are O(nq), O(n2q), and
O(n2q), respectively.

Keywords: weighted majority game, power index, Banzhaf index, Shapley-Shubik
index, Deegan-Packel index, dynamic programming

1 Introduction

Let {p1, ..., pn} be a set of players, and wi be the weight of player pi. We consider a council
composed of parties each of which corresponds to a player. Suppose that the weight of a
party is the number of members of the party. For each proposal, each party (player) votes
“yes” or “no”. If the sum of the weights of the “yes” votes is larger than a constant q, the
proposal is accepted. Constant q is called a quota. A weighted majority game is a game
dealing with this situation, composed of these players, their weights, and the quota. Each
player has a distinct weight for their vote, thus the effect of each player on the voting is
different. Many kinds of power indices have been proposed for measuring the intensity of
these effects.

Among these power indices proposed for weighted majority games, Banzhaf index, Shapley-
Shubik index and Deegan-Packel index have been well studied. In general, computing exact
values of Banzhaf index, Shapley-Shubik index and Deegan-Packel index take huge com-
putation time if the number of players n is large, since existing algorithms for computing
these indices take O(2n) time. Under the condition that all the weights of the players are
integer, these indices are computed in polynomial time of n and q by dynamic programming
algorithms [4, 2, 5]. For computing the power index of a player, the algorithm for computing
Banzhaf index takes O(nq) time [4, 2], the algorithm for Shapley-Shubik index takes O(n2q)
time [4, 2], and the algorithm for Deegan-Packel index takes O(n3q) time [5]. For computing
indices of all players, these algorithms take O(n2q) time, O(n3q) time, and O(n4q) time,
respectively.

∗National Institute of Informatics, 2-1-2, Hitotsubashi, Chiyoda-ku, Tokyo, Tokyo 101-8430, Japan.
uno@nii.jp

1

Roughly speaking, an exponential time algorithm does not terminate in one hour when
the input size is up to 30. In a practical sense, a computation should terminate at most in
an hour, hence this is a limit for exponential algorithms. These days, a PC can execute
about 1011 basic calculations in an hour. If qn2, qn3 or qn4 are larger than this number,
dynamic programming algorithms take more than one hour for computation. Usually, basic
problems such as computing power indices are solved many times repeatedly, or solved as
a sub-problem of another large complicated problem. Algorithms for solving these basic
problems should be speeded up so that they can terminate in a short time.

In this paper, we propose new algorithms for computing these three power indices of all
players. The framework of our algorithms is to compute the power indices of two players by
existing dynamic programming algorithms, and compute indices of other players by using the
computational results. By our algorithms, Banzhaf index and Shapley-Shubik of all players
are computed in O(nq) time and O(n2q) time, respectively. Our algorithm for Deegan-Packel
index is based on a new dynamic programming taking O(n2q) time for one player. Hence,
the new algorithm takes only O(n2q) time for all players. The constant factor of the time
complexity increases about 3, i.e. the computing time of our algorithms are almost equal to
that of original dynamic programming algorithms for three players. For example, if n = 50,
the increase of speed is about 16 times.

These algorithms are described in the following sections. Section 2 explains our algorithm
for Banzhaf index, which is the simplest one among our three algorithms. In this section,
we explain the common basic idea of our algorithms. In Section 3, we explain the way to
save unnecessary computation. Section 4 and Section 5 describe the algorithms for Shapley-
Shubik index and Deegan-Packel index, respectively.

2 Algorithm for Banzhaf Index

We define several notations. A set of players is called a coalition. For a coalition S, we define
the weight of S by

∑
pi∈S wi, and denote it by w(S). In particular, we define w(∅) = 0. If

w(S) ≥ q holds, S is called a winner, and if w(S) < q holds, S is called a loser. Let Pi be
the set of players from p1 through pi, i.e., Pi = {p1, p2, ..., pi}, and P̄i be the set of players
from pi through pn, i.e., P̄i = {pi, pi+1, ..., pn}. For a function g(p, a, b, ...), we define V (g(pi))
be the set of the values of g for all possible combination of parameters pi, a, b, ...

Let S be a winner including player pi. If S becomes a loser when pi exits from S, then
pi is considered to have a power in S. By assuming that every coalition occurs randomly at
the same probability, then the probability that pi belongs to the coalition and has a power
in the coalition is

| {S|S ⊆ {p1, ..., pn}, pi ∈ S, w(S) ≥ q, w(S \ {pi}) < q} | / 2n.

This probability is the definition of the Banzhaf index [1] of player pi. We denote it by
Bz(pi).

A dynamic programming algorithm for computing Bz(pn) was proposed in [4, 2]. This
algorithm computes the index by computing all the values of a function, which we denote it
by f in this paper. For any player pi and any y, 0 ≤ y ≤ q − 1, f is defined by the number
of coalition S ⊆ Pi satisfying w(S) = y, i.e.,

f(pi, y) = | {S|S ⊆ Pi, w(S) = y} |.
Since

2

Bz(pn)× 2n = | {S|S ⊆ Pn, pn ∈ S, w(S) ≥ q, w(S \ {pn}) < q} |
= | {S|S ⊆ Pn−1, q − wn ≤ w(S) ≤ q − 1} |

=
q−1∑

y=q−wn

f(pn−1, y),

we can compute Bz(pn) from V (f(pn−1)) in O(q) time. To compute the values of f, the
following lemma is used.

Property 1 For any 2 ≤ i ≤ n and any 0 ≤ y ≤ q − 1,

f(pi, y) =

{
f(pi−1, y) + f(pi−1, y −wi) if y ≥ wi

f(pi−1, y) if y < wi

holds.

This property shows that V (f(pi)) is computed from V (f(pi−1)) in O(q) time. Since each
value of V (f(p1)) can be computed directly in O(1) time, V (f(pn−1)) can be computed in
O(nq) time. This is the basic idea of the existing dynamic programming algorithms of [4, 2].
For player pi, i < n, we exchange the indices of players pi and pn, and compute Bz(pn).
Therefore, the time complexity of the existing dynamic programming algorithm is O(n2q)
for all players.

This dynamic programming algorithm seems to do no unnecessary operations to compute
Bz(pn). Hence, reducing time complexity of the dynamic programming algorithm for com-
puting Bz(pn) seems to be hard. However, the algorithm does quite similar operations for
computing Bz(pn) and that of Bz(pi). In this point, we can see a possibility of improving.
In the following, we define new functions b and h, and propose an algorithm for comput-
ing Bz(p1), Bz(p2), ..., Bz(pn) by using these functions, instead of solving n similar dynamic
programming problems.

The functions are defined as follows:

b(pi, y) = | {S|S ⊆ P̄i, w(S) = y} |, and

h(pi, z) =
z∑

y=0

b(pi, y).

For y = −1, we define h(pi, y) = 0. The function f is used to solve the dynamic pro-
gramming in the forward direction, and b is that in the backward direction. Since f and b
are symmetric, the following equation holds according to Property 1.

b(pi, y) =

{
b(pi+1, y) + b(pi+1, y − wi) if y ≥ wi

b(pi+1, y) if y < wi

This shows that V (b(pi)) can be computed from V (b(pi+1)) in O(q) time, in the same
way as f. V (h(pi)) can be computed from V (b(pi)) in O(q) time.

Now we explain the way to compute Bz(pi) by using f, b and h. For each coalition S not
including pi, consider the partition of S, which are S∩Pi−1 and S∩ P̄i+1. Thus, the condition

q − wi ≤ w(S) ≤ q − 1

3

is equal to
q − wi ≤ w(S ∩ Pi−1) + w(S ∩ P̄i+1) ≤ q − 1.

Hence,

Bz(pi)× 2n = |{S|pi �∈ S, q − wi ≤ w(S) ≤ q − 1}|
= |{S|pi �∈ S, q − wi ≤ w(S ∩ Pi) + w(S ∩ P̄i) ≤ q − 1}|
= |{(S1, S2)|S1 ⊆ Pi−1, S2 ⊆ P̄i+1, q − wi ≤ w(S1) + w(S2) ≤ q − 1}|

=
q−1∑
z=0

|{S1|S1 ⊆ Pi−1, w(S1) = z}| ×
q−1−z∑

y=max{q−wi−z,0}
|{S2|S2 ⊆ P̄i+1, w(S2) = y}|.

In the last line, the left side and right side can be computed by using f and b, respectively.
Hence,

Bz(pi)× 2n =
q−1∑
z=0

f(pi−1, z)×
q−1−z∑

y=max{q−wi−z,0}
b(pi+1, y)

=
q−1∑
z=0

f(pi−1, z)× (h(pi, q − 1− z)− h(pi,max{q − wi − z, 0} − 1)) .

Since the last line takes O(q) time to be computed, we have the following theorem.

Theorem 1 For a weighted majority game with n players, weights w1, ..., wn of players and
a quota q, Banzhaf indices for all players can be computed in O(nq) time and O(nq) space.

3 Reducing Space Complexity and Unnecessary Oper-

ations

The algorithm described in the previous section is quite basic. Hence, slight modifications
can reduce its computation time and the space complexity. Note that the modifications do
not reduce the time complexity.

First, we explain the technique for reducing the space complexity. Transforming the
statement of Property 1 gives the following equation. For 2 ≤ i ≤ n,

f(pi−1, y) =

{
f(pi, y) if 0 ≤ y ≤ wi

f(pi, y)− f(pi−1, y − wi) if wi ≤ y ≤ q − 1.

From this, we can compute all the elements of V (f(pi)) from V (f(pi+1)) in the increasing
order of y, in O(q) time. At the beginning of the algorithm, we compute V (f(pn−1)). After
computing Bz(pn), we compute V (f(pi) and V (b(pi+2)) in the backward direction, and com-
pute Bz(pi). After computing Bz(pi), V (f(pi−1)) and V (b(pi+1)) are never referred. Thus,
we delete them from the memory. As a result of the deletion, when we compute Bz(pi),
only V (f(pi−1)) and V (b(pi+1)) are on the memory. Hence the space complexity is reduced
to O(q).

Second, we explain the reduction of unnecessary operations. In the above algorithms,
we compute all the elements of V (f(pi)) and V (b(pi)). However, in practical computation,
a large number of them are unnecessary. Clearly, we need only non-zero elements, hence we
represents V (f(pi)) by a linked list of its non-zero elements. For 2 ≤ i ≤ n, suppose that
f(pi, y) > 0. From the definition of f, we obtain:

4

if 0 ≤ y < wi, then f(pi−1, y) > 0, and
if wi ≤ y ≤ q − 1, then f(pi−1, y) > 0 or f(pi−1, y − wi) > 0.

Hence, f(pi+1, y) > 0 if and only if f(pi, y) > 0 or f(pi, y − wi) > 0. Therefore, we can
compute V (f(pi)) by tracing the list representing V (f(pi−1)). Moreover, if y < q − w(P̄i),
then

h(pi+1, q − y − 1)− h(pi+1,max{q − y − wi − 1, 0} − 1) = 0

holds, hence f(pi−1, y) does not need to be computed in this case. In the same way, compu-
tation of the values of b and h can be saved.

Theorem 2 For a weighted majority game with n players and a quota q, Banzhaf indices
for all players can be computed in O(nq) time and O(q) space.

4 Computing Shapley-Shubik Index

Suppose that, at first, a coalition S is an empty set, and players participate to the coalition
one by one in an order. We suppose that the coalition changes from a loser to a winner when
a player pi participates in S. Then, we can naturally consider that pi has power. Let Πn be
the set of permutations with length n. We note that |Πn| = n!. If the order occurs randomly
and uniformly, then the probability that pi has power is

| {(j1, ..., jn) ∈ Πn|q ≤ w({pj1 , pj2, ..., pi}) < q + wi} | / n!.

This is a definition of Shapley-Shubik index [6] of player pi, denoted by Ss(pi).
For computing Shapley-Shubik index, a dynamic programming algorithm has been pro-

posed [4, 2]. This algorithm also computes the power indices by computing the values of a
function defined in a similar way to Banzhaf index. Here we denote the function by f. For
1 ≤ i ≤ n, 0 ≤ y ≤ q − 1, and 0 ≤ k ≤ i, function f is defined as

f(pi, k, y) = | {S|S ⊆ Pi, w(S) = y, |S| = k} |.

For any player pi, the number of permutations (j1, ..., jn) satisfying {pj1 , pj2 ..., pi} = S is
(|S| − 1)!(n − |S|)!, thus,

Ss(pi)× n! = | {(j1, ..., jn) ∈ Πn|q ≤ w({pj1 , pj2 , ..., pi}) < q + wi} |
=

∑
S|pi �∈S,q−wi≤w(S)≤q−1

|S|!(n − |S| − 1)!

=
q−1∑

y=q−wi

i−1∑
k=0

∑
S|pi �∈S,w(S)=y,|S|=k

k!(n − k − 1)!,

thereby

Ss(pn)× n! =
q−1∑

y=q−wn

n−1∑
k=0

f(pn−1, k, y).

Therefore, Ss(pn) can be computed from V (f(pn−1)). To compute f, the following prop-
erty similar to Property 1 is used.

5

Property 2 For any i, k, and y satisfying 2 ≤ i ≤ n, 1 ≤ k ≤ i and 0 ≤ y ≤ q − 1,

f(pi, k, y) =

{
f(pi−1, k, y) + f(pi−1, k − 1, y − wi) if y ≥ wi

f(pi−1, k, y) if y < wi.

From this property, V (f(pi)) can be computed from V (f(pi−1)) in O(nq) time. Since each
element of V (f(p1)) can be computed directly, V (f(pn−1)) and Ss(pn) can be computed
in O(n2q) time. The indices of the other players can be computed in the same way by
exchanging the indices. Hence, computing Ss(pi) for all players takes O(n

3q) time. This is
the framework of the algorithm in [4, 2].

The algorithm also seems to have no unnecessary operations involved in the dynamic
programming. However, as in the case of Banzhaf index, computing Ss(pi) for all players
involves unnecessary operations, that is, solving n similar dynamic programming problems.

Although the idea of the improved algorithm for Banzhaf index seems to be applicable to
Shapley-Shubik index, it does not work efficiently. If b is defined as the same way as Banzhaf
index as follows,

b(pi, k, y) = | {S|S ⊆ P̄i, w(S) = y, |S| = k} |,
Ss(pi) is given by

Ss(pi)× n! =
q−1∑
z=0

i−1∑
k=0

q−1−z∑
y=max{0,q−wi−z}

n−(i−1)∑
l=0

f(pi−1, k, z)× b(pi+1, l, y)× |k+ l|!|n− k − l − 1|!.

The right side of the equation includes four summations. By the idea of using a function
h defined in the previous section, the third summation can be eliminated, however three
summations still remain. Hence, we have to spend O(n2q) time to compute Ss(pi) for a
player pi in this way. This does not decrease the time complexity.

Our improved algorithm uses b and h defined as follows

b(pi, k, y) =
∑

S,S⊆P̄i ,w(S)=y

(|S|+ k)!(n − |S| − k − 1)! and

h(pi, k, z) =

{ ∑z
y=0 b(pi, k, y) if 0 ≤ y ≤ q − 1

0 if y = −1 .

Property 3 For i and k with 1 ≤ i < n and 0 ≤ k ≤ i,

b(pi, k, y) =

{
b(pi+1, k, y) + b(pi+1, k + 1, y − wi) if y ≥ wi

b(pi+1, k, y) if y < wi
.

Proof : For any S ⊆ P̄i, if w(S) < wi then pi �∈ S. Hence,

b(pi, k, y) = b(pi+1, k, y)

holds if y < wi. In the case that y ≥ wi,

b(pi, k, y) =
∑

S|S⊆P̄i ,w(S)=y

(|S|+ k)!(n − |S| − k − 1)!

=
∑

S|S⊆P̄i ,w(S)=y,pi �∈S

(|S|+ k)!(n − |S| − k − 1)!

6

+
∑

S|S⊆P̄i,w(S)=y,pi∈S

(|S|+ k)!(n − |S| − k − 1)!

=
∑

S|S⊆P̄i+1 ,w(S)=y

(|S|+ k)!(n − |S| − k − 1)!

+
∑

S′|S′⊆P̄i+1 ,w(S′)=y−wi

(|S ′|+ k + 1)!(n − |S ′| − k − 2)!

= b(pi+1, k, y) + b(pi+1, k + 1, y − wi).

Therefore, the statement holds.

From the lemma, we can compute V (b(pi)) from V (b(pi+1)) in O(qn) time.

Lemma 1 There holds

Ss(pi)× n! =
q−1∑
z=0

i−1∑
k=0

(f(pi−1, k, z)× (h(pi, k, q − 1− z)− h(pi, k,max{q −wi − z, 0} − 1))) .

Proof : Similar to the previous section, we consider a partition of a coalition S, given by

S ∩ Pi−1, and S ∩ P̄i+1.

The condition w(S) = y is equal to w(S ∩ Pi−1) + w(S ∩ P̄i+1) = y. Hence,

Ss(pi)× n!

=
∑

S|pi �∈S,q−wi≤w(S)≤q−1

|S|!(n − |S| − 1)!

=
∑

S1⊆Pi−1


 ∑

S2⊆P̄i+1 ,q−wi≤w(S1)+w(S2)≤q−1

(|S1|+ |S2|)!(n − |S1| − |S2| − 1)!




=
q−1∑
z=0

i−1∑
k=0


 ∑

S1⊆Pi−1,w(S1)=z,|S1|=k


 q−1−z∑

y=max{q−wi−z,0}

∑
S2⊆P̄i+1,w(S2)=y

(k + |S2|)!(n − k − |S2| − 1)!







=
q−1∑
z=0

i−1∑
k=0


| {S1|S1 ⊆ Pi−1, w(S1) = z, |S1| = k} | ×

q−1−z∑
y=max{q−wi−z,0}

b(pi+1, k, y)




=
q−1∑
z=0

i−1∑
k=0


f(pi−1, k, z)×

q−1−z∑
y=max{q−wi−z,0}

b(pi+1, k, y)




=
q−1∑
z=0

i−1∑
k=0

f(pi−1, k, z)× (h(pi, k, q − 1− z)− h(pi, k,max{q − wi − z, 0} − 1)) .

From the lemma, we can compute Ss(pi) in O(nq) time by using V (f(pi−1)), V (b(pi+1))
and V (h(pi+1)). Using the technique described in Section 3, we can compute V (f(pi)) in the
backward direction, hence the required memory space is O(qn).

Theorem 3 For a weighted majority game with n players, weights w1, ..., wn of players and
a quota q, Shapley-Shubik indices of all players can be computed in O(n2q) time and O(nq)
space.

7

5 Computing Deegan-Packel Indices

A winner is called a minimal winner if the removal of any player from the winner is a loser.
If a player belongs to a minimal winner S, then the player can be considered to have power.
The power can be considered to be proportional to |S|, hence we let the power be 1/|S|. The
definition of Deegan-Packel index Dp(pi) [3] of player pi is the expected value of the power
of pi under the assumption that every minimal winner occurs in equal probability.

For computing Deegan-Packel index, a dynamic programming algorithm has been pro-
posed [5]. In the same way as the algorithms for computing Banzhaf index and Shapley-
Shubik index, the algorithm computes the values of a function by dynamic programming.
The function has parameters: a player, a weight, a size, and the minimum weight player of
the coalition. Thus, the time complexity of the algorithm is O(n3q) for computing an index
of a player, and O(n4q) time for all players.

In this section, to compute Dp(pi), we use a new function f having only three parameters.
By using the function, we can construct a dynamic programming algorithm computingDp(pi)
in O(n2q) time. In the similar way to the previous sections, computing Dp(pi) for all players
can be done in O(n2q) time.

Assume that the indices are assigned to players in the decreasing order of their weights,
i.e., wi ≥ wj for any 1 ≤ i < j ≤ n. The order enables the minimal winners to be character-
ized in a useful way. Let d(S) be the coalition obtained from S by removing the player with
maximum index among players in S, and X be the set of all minimal winners. Then,

S ∈ X ⇔ w(S) ≥ q and w(d(S)) < q.

Thus,

Dp(pi)× |X| = ∑
S|S⊆Pn ,pi∈S,w(S)≥q,w(d(S))<q

1

|S| .

For any 1 ≤ i ≤ n, 0 ≤ y ≤ q − 1 and 0 ≤ k ≤ i, we define

f(pi, k, y) = | {S|S ⊆ Pi, w(S) = y, |S| = k} |, and

b(pi, k, y) =
∑

S,S⊆P̄i,pi∈S,w(S)≥y,w(d(S))<y

1

|S|+ k
.

The definition of f is the same as that in the previous section.

Property 4 For any 1 ≤ i ≤ n − 1, 0 ≤ k ≤ i and wi ≤ y ≤ q − 1,

b(pi, k, y) = b(pi+1, k, y − wi + wi+1) + b(pi+1, k + 1, y − wi)

Proof :

b(pi, k, y) =
∑

S|S⊆P̄i,pi∈S,w(S)≥y,w(d(S))<y

1

|S|+ k

=
∑

S|S⊆P̄i+1 ,w(S)≥y−wi,w(d(S))<y−wi ,pi+1 �∈S

1

|S|+ k + 1

+
∑

S|S⊆P̄i+1 ,w(S)≥y−wi ,w(d(S))<y−wi,pi+1∈S

1

|S|+ k + 1

8

=
∑

S|S⊆P̄i+1 ,pi+1∈S,w(S)≥y−wi+wi+1 ,w(d(S))<y−wi+wi+1

1

|S|+ k

+ b(pi+1, k + 1, y −wi)

= b(pi+1, k, y − wi + wi+1) + b(pi+1, k + 1, y − wi).

Lemma 2

Dp(pi)× |X| =
q−1∑
z=0

i−1∑
k=0

(f(pi−1, k, y)× b(pi, k, q − z))

Proof : In a similar way to that described in the previous sections, consider a partition of a
coalition S including pi.

S ∩ Pi−1, S ∩ P̄i

Then, the condition
w(S) ≥ q and w(d(S)) < q

is equal to

q ≤ w(S ∩ Pi−1) + w(S ∩ P̄i) and w(S ∩ Pi−1) + w(d(S ∩ P̄i)) < q,

since S ∩ P̄i is always non-empty. Hence,

Dp(pi)× |X|
=

∑
S|S⊆Pn,pi∈S,w(S)≥q,w(d(S))<q

1

|S|

=
∑

(S1,S2)|S1⊆Pi−1,S2⊆P̄i,pi∈S2,w(S1)+w(S2)≥q,w(S1)+w(d(S2))<q

1

|S1|+ |S2|

=
∑

S1⊆Pi−1


 ∑

S2⊆P̄i,pi∈S2,q≤w(S1)+w(S2),w(S1)+w(d(S2))<q

1

|S1|+ |S2|


 .

=
q−1∑
z=0

i−1∑
k=0


 ∑

S1⊆Pi−1,w(S1)=z,|S1|=k

∑
S2⊆P̄i,pi∈S2,q≤z+w(S2),z+w(d(S2))<q

1

|S1|+ |S2|


 .

=
q−1∑
z=0

i−1∑
k=0


|{S1|S1 ⊆ Pi−1, w(S1) = z, |S1| = k}| × ∑

S2⊆P̄i,pi∈S2,q≤z+w(S2),z+w(d(S2))<q

1

|S1|+ |S2|


 .

Substituting f and b into the last equation gives

q−1∑
z=0

i−1∑
k=0

(f(pi−1, k, z)× b(pi, k, q − z)) .

If i = n or y < wi, then b(pi, k, y) can be computed in constant time. V (b(pi)) can be
computed from V (b(pi+1)) in O(nq) time. Hence, we have the following theorem.

Theorem 4 For a weighted majority game with n players, weights w1, ..., wn of players and
a quota q, Deegan-Packel indices of all players can be computed in O(n2q) time and O(nq)
space.

9

6 Conclusion

In this paper, we proposed algorithms for computing three popular power indices of weighted
games, which are Banzhaf index, Shapley-Shubik index, and Deegan-Packel index. The key
idea of our algorithm is to solve the existing dynamic programming for solving the problem in
the forward direction and the backward direction, and compute the indices of all players by
using the computational results. For n players and the quota q, the time complexities of our
algorithms for computing the indices of all players are O(nq) for Banzhaf index, and O(n2q)
for Shapley-Shubik index, respectively, while existing algorithms take O(n2q) and O(n3q)
time, respectively. For Deegan-Packel index, we propose a new dynamic programming for
computing the index of a player in O(nq) time, while the existing algorithm takes O(n3q)
time. The computation time of indices for all players is reduced from O(n4q) to O(n2q).

References

[1] J. F. Banzhaf III, “Weighted Voting doesn’t work,” Rutgers Law Review, vol. 19 pp. 317-
343 (1965).

[2] S. J. Brams and P. J. Affuso, “Power and size: a new paradox,” Theory and Decision,
vol. 7, pp. 29-56 (1975).

[3] J. Deegan and E. W. Packel, “A New Index of Power for Simple n-person Games,”
International Journal of Game Theory, vol. 7, pp. 113-123 (1978).

[4] W.F.Lucas, “Measuring Power in Weighted Voting Systems,” in S. J. Brams, W. F.
Lucas and P. D. Straffin Eds., Political and related models, Springer-Verlag, pp. 183-238
(1983).

[5] T. Matsui and Y. Matsui, “A Survey of Algorithms for Calculating Power Indices of
Weighted Majority Games,” Journal of the Operations Research Society of Japan, vol.
43, pp. 71-86 (2000).

[6] L. S. Shapley and M. Shubik, “A Method for Evaluating the Distribution of Power in a
Committee System,” American Political Science Review, vol. 48, pp. 787-792 (1954).

10

