
ISSN 1346-5597

NII Technical Report Jan 2003

Evaluation of Enigma:

an Open Mosix Cluster for Text Mining

Nigel Collier

NII-2003-001E
Jan 2003



Evaluation of Enigma: an Open Mosix Cluster for Text Mining

Nigel Collier
National Institute of Informatics

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, 101-8430 Japan
E-mail: collier@nii.ac.jp

Abstract

In this report we present the results of evaluating the
speed of text mining experiments using the OpenMosix clus-
ter software. Our primary purpose is to develop a computa-
tional environment where the time taken to perform compute
intensive experiments over a large range of parameter set-
tings is minimized. This will lead to clearer analysis of al-
gorithms and ultimately to a better choice of models based
on empirical results. Results are shown that characterize
each of the cluster components and also show the speedup
in performance over compute nodes.

1 Introduction

In this report we present the results of our experiments in
adapting text mining algorithms to cluster computing using
OpenMosix. Our primary purpose is to develop a compu-
tational environment where the time taken to perform com-
pute intensive experiments over a large range of parameter
settings is minimized. This will lead to clearer analysis of
algorithms and ultimately to a better choice of models based
on empirical results.

OpenMosix (OM) is based on Mosix [2] [3] [7] and pro-
vides a kernel-level solution for preemptive and transpar-
ent process (re-)migration among cluster nodes, i.e. without
the knowledge or intervention of the user. Response is dy-
namic based on the current information a cluster node has
about itself and a random list of other nodes. Overall, the
user is presented with a collection of cooperating computers
that look like a single system image where cluster resources
(CPU cycles, memory and bandwidth) are shared among the
nodes.

There are several other noteworthy features of OM clus-
ters that make it suitable for our needs:

• good load balancing - i.e. an even distribution of com-
putation among the cluster resources which maximizes
usage of cluster-wide RAM and avoids the expense of

disk paging [1]. This is achieved using a scheduling
algorithm called the Commodity Market Model from
economics research;

• a cluster-wide file system in which direct file system
access (DFSA) is possible. DFSA allows for some I/O
to be performed locally on the remote node;

• robustness - since control is decentralized, failure in
one node does not bring the whole cluster down, it just
reduces the resources available to the whole cluster;

• no requirement for explicit parallelism in the software
code;

• support for process monitoring and management;

In particular OM seems well suited to our need to run
mixed experiments in which some models may make very
heavy use of I/O such as hidden Markov Models [12] us-
ing maximum likelihood estimates calculated directly from
word list counts, to support vector machines [15]where pe-
riods of CPU intensive activity are much longer. OM also
provides a balanced multi-user environment for our research
team where user has a different level of expertise in paral-
lelizing software.

There have been few empirical studies of OM since ear-
lier tests were done on the parent Mosix system. Since
OM developed as a separate project from MOSIX in 2001
there have been several performance enhancements such as
an improved load balancing, reduced kernel latencies, node
auto-discovery and a more sophisticated algorithm for pro-
cess migration. We therefore feel that our investigation has
two important aspects: (1) to show the application of clus-
ter computing using OM for text mining, and (2) to provide
empirical performance results for OM in general.

2 Task Description

The task we want to accomplish is the extraction of in-
formation from inside a free-text collection based on a small

1



In this report we demonstrate that in certain [CNS-derived
cells]source.ct [Tat]protein is capable of activating [HIV-
1]source.vi through a [TAR]RNA-independent pathway. A
[Tat-responsive element]DNA is found upstream within the
viral promoter that in [glial- derived cell lines]source.cl

allows transactivation in the absence of [TAR]RNA. Dele-
tion mapping and hybrid promoter constructs demonstrate
that the newly identified [Tat-responsive element]DNA

corresponds to a sequence within the viral [long terminal
repeat]DNA ([LTR]DNA) previously identified as the
[HIV-1 enhancer]DNA, or [NF-kappa B domain]DNA.
DNA band-shift analysis reveals [NF-kappa B]protein

binding activity in [glial cells]source.ct that differs from
that present in [T lymphoid cells]source.ct. Further, we ob-
serve that [TAR]RNA-deleted mutants of [HIV-1]source.vi

demonstrate normal [late gene]DNA expression in [glial
cells]source.ct as evidenced by syncytia formation and
production of [viral p24 antigen]protein.

Figure 1. Example of part of a MEDLINE ab-
stract marked up for NE expressions.

to medium collection of annotated examples. For example,
company take-over announcements for stock analysts, mis-
sile launches for military planners, conference announce-
ments for researchers. Text mining typically involves mod-
elling the proto-typical events as a frame of slots to be filled
and finding the individual facts in a text that fill the slots.
At a lower level we need to identify names of things that
fill the values of slots such as people, places, organizations
as well as temporal and monetary values. This low level
task is often referred to as the named entity task (NE) [10]
and many of the best performing approaches use supervised
machine learning algorithms on large annotated text collec-
tions. In our work we are actively investigating text min-
ing in the molecular biology domain and the proto-typical
events are interactions between genetic products such as
proteins, DNA and RNA. The text collections that we in-
vestigate are MEDLINE abstracts [9] and EMBO Journal
articles. An example of part of a MEDLINE abstract anno-
tated with biological named entities is given in Figure 1.

The basic purpose of our cluster is to enable us to ac-
curately evaluate text mining algorithms in a reasonable
amount of time using large data sets. The basic procedure
can be summarized in the following algorithm:

1 Data formatting

2 Experiment

2.1 create data partition

2.2 train model

2.3 test model

3 Group data

4 Evaluation

In the first stage we decide on the set of linguistic fea-
tures that we want to investigate and then add them to the
data set. Example features are lexical (orthographic, part
of speech, lemma) and grammatical (head noun, predicate-
argument position) within the window of context that we
choose to explore.

In data partitioning we try to maximize accuracy by the
traditional process of cross-validation, i.e. dividing the
available data into P equal partitions (P > 1) and then
training the model on P − 1 and evaluating it on the re-
maining partition. This is repeated P times so that each
partition is left out in turn. Finally the results of all folds
are collected together and evaluated.

The basic unit in the data collection is the sentence, and
in the extreme case where P is equal to the number of sen-
tences N this evaluation method becomes the leaving-one-
out method [11]. We perform our partitioning deterministi-
cally, i.e. with no random picking of sentences. The size of
the training and testing sets in relation to P and N is shown
in Equations (2) and (4) respectively. The total amount of
data that needs to be processed in the training stage grows
with P whereas that in the testing stage is constant and in-
dependent of P . The situation is in practice more complex
as we still need to consider time complexities of the algo-
rithms that do the training and testing.

P∑
1

N(P − 1)
P

=
NP 2 − NP

P
(1)

= N(P − 1) (2)

P∑
1

N

P
=

NP

P
(3)

= N (4)

Besides partitioning data for cross-validation we are in-
terested in seeing the effects of data set size on the results.
In theory, more data should lead to better results and we
are interested to see how the performance improves over
total data size. For this reason we take M samples from
N . Without considering the effects of cross-validation this
would give us a simple arithmetic series as shown in Equa-
tion (7),

M∑
i=1

iN

M
=

M

2
×

[
2N

M
+

(M − 1)N
M

]
(5)

2



Figure 2. Embarrassingly parallel: data parti-
tioning on the original data set.

= N +
(M − 1)N

2
(6)

=
N(1 + M)

2
(7)

Now if we substitute the Equations (2) and (4) into (7)
we find that the effect of combining cross-validation and
data size partitioning is

N(P − 1)(M + 1)
2

(8)

for the size of data in the training stage, and

N(1 + M)
2

(9)

for the size of data in the testing stage.
The process of data partitioning is shown in Figure 2.

Clearly this lends itself to a single process multiple data
model of processing where we can in theory run the same
training and testing algorithm on the partitions of N in par-
allel, collect the results together and evaluate. In practice
experimental runs need to be repeated several times with
different subsets of features that we want to explore, but
this is ignored in this discussion.

The analysis of the other stages in the task is as follows:
data formatting is essentially linear on N , and evaluation is
done only over the sum of the test data given in Equation
(9).

Table 2. Summary of dedicated LAN
Network Fast Ethernet (100 Mbps)
Topology Switched ethernet, single switch
Interconnect Twisted-pair (RJ45)
Network switch HP ProCurve 2324
NIC Intel 82550 10/100

In theory if we had available P × M CPUs we could do
the whole training and testing stages linearly with respect
to the data size. In practice we only have a finite number
R of CPUs and we have implemented a queuing system to
pool the list of P ×M unique partitions that need to be pro-
cessed. In the tests reported here we used the Perl Parallel
ForkManager1 with a maximum limit of R on the number
of processes that are run concurrently. These processes are
then automatically load balanced by Open Mosix across the
cluster nodes.

3 Experimental Context

3.1 Compute Nodes

The Enigma cluster is a small cluster of Appro dual Pen-
tium Xeon 2.4 GHz computers on a 400MHz front-side bus
and one IBM xSeries 330 with dual Pentium III CPUs. This
is summarized in Table 1

G01 has a special role as it holds the cluster file system
with access through the OM file system. It also provides
natural language parsing service to other nodes using the
FDG dependency parser from Conexor [14].

G01 is different to the other compute nodes in that it has
2 Pentium III CPUs and a 133MHz front-side bus. It is
well known [4] that this architecture has a memory bottle-
neck when both CPUs are used in symmetric multiprocess-
ing (SMP). In other words the CPU remains idle while it
waits for a response to its memory request. The Intel Xeon
was designed to overcome this limitation.

3.2 LAN and Switch

All nodes are connected over standard 100Base-T Fast
Ethernet using a Hewlitt-Packard Procurve 2324 unman-
aged layer 2 switch with 24 10/100Base-TX autosensing
ports, 9.6 Gbps switch fabric, 6.6 million pps (64-byte
packet) throughput, and a latency of less than 10µs (LIFO).
The LAN‘s characteristics are summarized in Table 2.

1Available from http://hacks.dlux.hu/Parallel-ForkManager/

3



Table 1. Description of cluster nodes. Note that Open Mosix was installed on RedHat Linux 7.3 on all
cluster nodes. †In L1 figures are given for D=data cache, I=instruction cache, or a unified cache.

Host System Clock (MHz) & RAM (GB) L1 (KB)† L2 (KB) Operating
Name Description CPU name System
G01 IBM xSeries 2 × 1200 0.76 16 512 Linux OM

330 Pentium III 2.4.19.4smp
E01 Appro 1224Xs 2 × 2400 1 8(D)/12(I) 512 Linux OM

Xeon 2.4.19.4smp
E02 Appro 1224Xi 2 × 2400 1 8(D)/12(I) 512 Linux OM

Xeon 2.4.19.4smp
E03 Appro 1224Xi 2 × 2400 1 8(D)/12(I) 512 Linux OM

Xeon 2.4.19.4smp

4 Metrics

We describe below general and specific metrics of com-
parison that characterize the overall performance of the
Enigma cluster using the node set {G01,E01,E02,E03}.
When evaluating the system performance it is important to
select the most appropriate benchmarks. In this case we
have run tests using three standard benchmarks: Netpipe
to measure the node interconnection speed, HPL to mea-
sure overall cluster floating-point performance on a SPMD
task, and LMbench. The best overall benchmark though for
our purpose are our own Text Mining scripts which involve
heavy bursts of I/O for formatting data and CPU for find-
ing the best named entity assignments with the HMM us-
ing maximum likelihood estimates in the Viterbi algorithm
[16]. This is described later.

4.1 NetPIPE

We measured the point-to-point node interconnect per-
formance using NetPIPE [13], a ping-pong LAN speed
measurement over block size and obtained results shown
in Figures 3. In the throughput graph of Figure 3(a) it can
clearly be seen that at just under 90Mbps we are obtain-
ing close to the theoretical maximum from the switch for
large packet sizes. (b) shows the network signature graph
which highlights the latency in cluster communication, i.e.
the first plotted point on the graph. (c) shows the saturation
point by plotting block size versus the transfer time on loga-
rithmic scales. The saturation point is the knee of the curve
and shows the point at which network throughput cannot be
increased by an increase in block size. Finally (d) shows re-
sults for local TCP/IP traffic, i.e. without using the network,
to show the influence of the interconnect.

Table 3. Time in microseconds to execute
common system commands on E01

Linux-2.4.19-
openmosix4smp
µs σn−1

null call 0.84 0.00
null I/O 1.40 0.00
stat 4.83 0.00
open/close 6.63 0.00
select 25.75 0.06
signal install 1.23 0.01
signal catch 4.51 0.02
fork proc 217.25 1.26
exec proc 563.75 2.22
shell proc 2955.75 2.50

4.2 LMbench 2.0 Benchmark

LMbench is a series of micro-benchmarks that measure
OS and hardware performance. The results reported in Ta-
bles 3 to 6 are for four independent runs of LMbench 2.0
[8] on the E01 node since this is representative of the other
E-series compute nodes.

4.3 HPL

The High Performance Linpack benchmark (HPL) [5]
was used to provide an overall level of performance for
the whole cluster. HPL basically solves a series of random
dense linear systems and is the standard used to evaluate
the world’s top performing cluster computers and the re-
sults are therefore highly transparent. Results are given in
GFlops (billions of floating point operations per second).

4



Figure 3. NetPIPE measurements for the HP Procurve interconnect: (a) LAN throughput, (b) LAN
signature, (c) LAN saturation, (d) local traffic for MPI and TCP/IP

Table 4. Context switching: the time in mi-
croseconds it takes for n processes of size s
to switch context on E01.

Linux-2.4.19-
openmosix4smp
µs σn−1

2p/0K 3.93 0.13
2p/16K 4.89 0.14
2p/64K 6.48 0.78
8p/16K 5.33 0.25
8p/64K 13.33 0.71
16p/16K 6.26 0.22
16p/64K 36.1 1.28

Table 5. Interprocess communication laten-
cies in microseconds between two processes
on E01

Linux-2.4.19-
openmosix4smp
µs σn−1

2p/OK 3.93 0.13
pipe 14.15 0.60
AF UNIX 23.23 1.00
UDP 22.7 0.42
RPC/UDP 32.58 0.57
TCP 28.4 2.11
RPC/TCP 42.18 0.53
TCP conn 48.55 0.08

5



Table 6. Memory latencies in nanonseconds
for E01

Linux-2.4.19-
openmosix4smp
µs σn−1

L1 cache 0.834 0.00
L2 cache 7.70 0.01
Main memory 149.9 0.26

HPL was installed on one of the Xeon nodes (E01) of
the cluster. HPL used the MPICH (version 1.2.4) [6] im-
plementation of the Message Passing Interface (version 1.1
compliant), installed on all nodes and configured to allow a
maximum of 4 processes for E01 to E03 and 2 processes for
G01. The Vector Signal Image Processing Library (VSIPL)
implementation of the Tactical Advanced Signal Processing
(TASP) Common Operating Environment Working Group2

was also installed on E01.
We performed two sets of experiments, the first using

MPICH and OM together. Processes were created on re-
mote nodes using rsh with the xinet.d files modified so that
processes created in this way would explicitly run using OM
using the mosrun command. In the second set of experi-
ments OM was disabled. Despite our hope that OM would
load balance MPICH processes we could not find a way to
make them migrate and results for both runs were not signif-
icantly different. We therefore report below the results for
our second set of experiments average over 10 runs in Table
7 below. The reason for migration failure may well be con-
nected with MPI processes being socket-bound and OM in-
ability to migrate sockets (although there are currently plans
to enable this in the future).

Since the HPL tests require message passing for inter-
process communication they are very sensitive to bandwidth
and latency. The overall results are very poor considering
the theoretical maximum CPU power of the overall cluster
and indicate the limitation imposed by the network inter-
connect. MPICH with SMP generally performs better than
MPICH without SMP.

5 HMM Text Mining Task

The Text Mining Task is the most important performance
measure we wish to evaluate. In these tests we evaluate a
hidden Markov model that uses linear interpolated bigrams.
The main cost during training is imposed by finding counts
of words and bigrams from the annotated texts which re-
quires heavy use of sorting and other I/O intensive tasks. In

2Available from: http://www.vsipl.org/software

Class # Description
PROTEIN 2125 proteins, protein

groups,families,
complexes and
substructures

DNA 358 DNAs, DNA groups,
regions and genes

RNA 30 RNAs, RNA groups,
regions and genes

SOURCE.cl 93 cell line
SOURCE.ct 417 cell type
SOURCE.mo 21 mono-organism
SOURCE.mu 64 multi-celled organism
SOURCE.vi 90 viruses
SOURCE.sl 77 sublocation
SOURCE.ti 37 tissue

Table 8. Markup classes used in Bio1 with the
number of word tokens for each class.

testing the main cost is in the O(n2) Viterbi algorithm used
to find a near-optimal path through the path of class labels
assigned to words from the named entity class list. The task
is therefore characterized by mixed bursts of input/output
bound processes and CPU bound processes.

After performing experiments in the previous section we
expanded the cluster to include one more compute node
called E04 with a similar specification to E03 except that it
has 2GB RAM. We also expanded E01 to have 2GB RAM.

In early experiments we used E01 as the combined file
server and Unique Home Node (UHN) for all processes. For
reasons that we comment on in the Conclusion this caused
E01 to regularly crash and we decided to put all file servic-
ing on G01 through the OM file system and to use E04 as
the UHN. G01 was configured to forbid accepting migrated
processes from other nodes to reduce its processing load.

Using this setup we performed tests on a molecular bi-
ology data set with characteristics of named entities shown
in Table 8. The total size of the data including annotations
is quite small, only 232Kb. Each test ran 10 times, used
10 sample sizes (M=10) and performed 10-fold cross vali-
dation (P=10) on each sample. The total number of experi-
ments performed is therefore 1000 for each timed result.

Results are shown in Table 9 for absolute wallclock times
and Speedup, calculated as,

Speedup(n) =
Processing time of 1 fork

Processing time of n parallel forks
(10)

We also performed two types of experiments in which
the queue of jobs was given linearly (in order of M and P)

6



Table 7. Results of running the High Performance Linpack Benchmark (HPL) on the Enigma cluster
using only MPICH on all nodes. All results are given in GFlops.

Grid 2000 5000 8000 10000
4 nodes (G01,E01,E02,E03) and MPI with SMP

1 × 14 0.5097 (± 0.0117) 1.0540 (± 0.0170) 1.0735 (± 0.0285) 0.9899 (± 0.0210)
1 × 12 0.5569 (± 0.0098) 1.0672 (± 0.0158) 0.9739 (± 0.0310) 0.8758 (± 0.0178)
1 × 8 0.7180 (± 0.0093) 0.8884 (± 0.1001) 0.7019 (± 0.0247) 0.6510 (± 0.0278)
2 × 4 0.7872 (± 0.0942) 0.5589 (± 0.0423) 0.4519 (± 0.0086) 0.3975 (± 0.0066)
1 × 4 0.7790 (± 0.0026) 0.4848 (± 0.0014) 0.3796 (± 0.0006) 0.3662 (± 0.0006)

4 nodes (G01,E01,E02,E03) and MPI without SMP
1 × 14 1.0229 (± 0.0275) 1.2155 (± 0.0283) 1.0562 (± 0.0198) 0.9640 (± 0.0207)
1 × 12 0.9718 (± 0.0311) 1.0726 (± 0.0195) 0.8447 (± 0.0175) 0.7820 (± 0.0237)
1 × 8 0.7823 (± 0.0209) 0.6459 (± 0.0271) 0.4837 (± 0.0078) 0.4467 (± 0.0085)
2 × 4 0.4670 (± 0.0145) 0.3221 (± 0.0028) 0.2910 (± 0.0014) 0.2747 (± 0.0020)
1 × 4 0.3717 (± 0.0190) 0.2319 (± 0.0028) 0.2062 (± 0.0015) 0.1975 (± 0.0020)

and in which it is randomly ordered. The intuition behind
random ordering is to spread the I/O bursts randomly among
the forks which is governed by the size of the data set used
in the experiment.

We clearly see that Speedup is far below linear and is
in fact converging quickly. Even though we did not use
the maximum number of CPUs in the cluster we can see
that it would not be greatly beneficial to add more given the
current setup. It is clear though that the bottleneck is in the
slow speed of the network as both CPU and memory appear
under utilized in our analysis of execution profiles.

6 Conclusion

In general OM was shown to provide an excellent mech-
anism for running SPMD experiments without the need to
incorporate explicit parallelism into the software code. In
two key areas though our experience of using OM under
HPC conditions showed that bottlenecks exist, at least with
regard to the types of processes we want to run.

Firstly too much communication between CPUs and a
low speed network in practice caused the cluster to perform
at well below optimal performance levels given the cluster-
wide CPU and memory.

Secondly, we saw a heavy burden on the Unique Home
Node (UHN), i.e. the node where the processes originated.
This is probably due to the way in which OM migrates pro-
cesses in which processes that perform moderate to heavy
I/O are encouraged to migrate to the node where the files
are located in order to save network time. If this is the UHN
then this means that there will be a heavy CPU and I/O bur-
den on the node leading to a building cycle of slower job
completion times. In our earlier experiments with a com-

bined central UHN and fileserver node this caused the node
(E01) to crash. An alternative explanation may be due to the
scheduling algorithm which may have tried to adjust pro-
cessing for the low interconnect speed. It is unclear at this
point whether this was a contributing factor pending further
analysis.

One solution (without changing the network) that seems
to be slightly more robust is to dedicate one node as a file-
server and to forbid process migration to this node from oth-
ers which are used as compute nodes. In practice we have
found that this reduced the number of node crashes consid-
erably, but at a cost of speed in processing time. This should
be overcome with a new faster interconnect.

Since we are aiming to achieve high performance we
plan now on upgrading to a Myrinet-2000 network very
soon. We understand that plans exist to make Myrinet
drivers for OM and when this is done we fully expect per-
formance to increase significantly.

A further point to note is that OM tries its best to bal-
ance the load of jobs across the cluster given the available
resources, but it cannot take a job off the cluster if the clus-
ter is overloaded. Monitoring job completion and putting
new jobs onto the cluster is a function performed by a job
scheduler in traditional batch queuing systems. In our sys-
tem we used Parallel Fork Manager to control scheduling
but since the task of the software is only to maintain a fixed
number of running processes, it has no way to interact with
the load information on the system to add more processes or
delay adding processes. We therefore feel that a fruitful line
of investigation will be to combine intelligent job queuing
with OM to get the best out of our cluster.

Finally, the approach we have outlined here to perform-
ing experiments naturally extends to other types of machine

7



Table 9. Results of running the NEHMM text mining on the Enigma cluster using OpenMosix on all
nodes. All results are given in wall clock seconds timed using the Perl Benchmark module. The
number of Forks is the maximum number of parallel forks given to the Perl Parallel::ForkManager
module.

Number of Wallclock execution times
Forks (n) Non-random Speedup(n) Random Speedup(n)
1 27123 1 27113 1
2 16249 1.669 16029 1.691
3 12063 2.248 12092 2.242
4 10756 2.522 10343 2.621
5 9167 2.959 8805 3.079
6 8296 3.269 7934 3.417
7 7585 3.576 7483 3.623
8 7187 3.774 6990 3.879
9 6775 4.003 6654 4.075
10 6676 4.063 6427 4.219
11 6292 4.311 6183 4.385
12 6222 4.359 6118 4.432

learning tasks such as speech processing which also makes
heavy use of HMMs during training.

Acknowledgements

This work was supported in part by the Japanese Min-
istry of Education and Science (grant no. 14701020).

References

[1] Y. Amir, B. Awerbuch, A. Barak, A. S. Borgstrom, and
A. Keren. An opportunity cost approach for job assignment
in a scalable computing cluster. IEEE Trans. Parallel and
Distributed Systems, 11(7), July 2000.

[2] A. Barack, O. La’adan, and A. Shiloh. Scalable cluster com-
puting with MOSIX for LINUX. In Proceedings of Linux
Expo ’99, Raleigh, N.C., pages 95–100, May 1999.

[3] A. Barak and O. La’adan. The MOSIX multicomputer oper-
ating system for high performance cluster computing. Jour-
nal of Future Generation Computer Systems, 13(4–5):361–
372, March 1998.

[4] Cornell Theory Center. Benchmarking intel systems and
understanding the results. High-Performance Computing,
4:53–55, 2001.

[5] J. Dongarra. Performance of various computers us-
ing standard linear equations software. Computer Sci-
ence Technical Report CS-89-85, University of Ten-
nessee, Knoxville, TN, 37996, 1989. Available from
http://www.netlib.org/benchmark/performance.ps.

[6] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-
performance, portable implementation of the MPI message
passing interface standard. Parallel Computing, 22(6):789–
828, Sept. 1996.

[7] S. McClure and R. Wheeler. MOSIX: How linux clusters
solve real world problems. In Proceedings of USENIX 2000
Annual Technical Conference, San Diego, CA., pages 49–56,
June 2000.

[8] L. McVoy and C. Staelin. lmbench: Portable tools for per-
formance analysis. Technical report, Silicon Graphics, Inc.
and Hewlett-Packard Laboratories, January 1996. Available
at http://www.bitmover.com/lmbench/.

[9] MEDLINE. The PubMed database can be found at:, 1999.
http://www.ncbi.nlm.nih.gov/PubMed/.

[10] Nancy Chinchor, editor. MUC-7 Named Entity Task Defini-
tion, Version 3.5, This document should be available from
Nancy Chinchor chinchor@gso.saic.com, September 17th
1997. DARPA.

[11] H. Ney, S. Martin, and F. Wessel. Statistical language mod-
eling using leaving-one-out. In S. Young and G. Bloothooft,
editors, Corpus-Based Methods in Language and Speech
Processing, pages 174–207. Dordrecht: Kluwer Academic,
1997.

[12] L. Rabiner and B. Juang. An introduction to hidden Markov
models. IEEE ASSP Magazine, pages 4–16, January 1986.

[13] Q. O. Snell, A. Mikler, and J. L. Gustafson. NetPIPE: A net-
work protocol independent performance evaluator. In Pro-
ceedings of IASTED International Conference on Intelligent
Information Management and Systems, June 1996.

[14] P. Tapanainen and T. Järvinen. A non-projective dependency
parser. In Proceedings of the 5th Conference on Applied Nat-
ural Language Processing, Washington D.C., Association of
Computational Linguistics, pages 64–71, 1997.

[15] V. N. Vapnik. The Nature of Statistical Learning Theory.
Springer-Verlag, New York, 1995.

[16] A. J. Viterbi. Error bounds for convolutions codes and an
asymptotically optimum decoding algorithm. IEEE Trans-
actions on Information Theory, IT-13(2):260–269, 1967.

8




